WorldWideScience

Sample records for extracellular auxin signaling

  1. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.

    Science.gov (United States)

    Feng, Mingxiao; Kim, Jae-Yean

    2015-10-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  2. Rooting of carnation cuttings: The auxin signal

    OpenAIRE

    Acosta, Manuel; Oliveros-Valenzuela, M Rocío; Nicolás, Carlos; Sánchez-Bravo, José

    2009-01-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. Among other signals, auxin polarly transported through the stem plays a key role in the formation and growth of adventitious roots. Unlike in other plant species, auxin from mature leaves plays a decisive role in the rooting of carnation (Dianthus caryophyllus. L) cuttings. The gene DcAUX1, which codifies an auxin influx carrier involved in polar auxin transport, has now been cloned and charac...

  3. Auxins as Signals in Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Güther, Mike

    2007-01-01

    Plant hormones such as auxin derivatives are likely signals during the establishment of an arbuscular mycorrhizal (AM) symbiosis. Although reports on auxin levels during AM in different plant species are contradictory, the contribution of auxins to the establishment of an AM symbiosis might be an important factor especially for the development of lateral roots which are the preferred infection sites for the fungi. In addition to evidence that different auxins could be elevated after colonization with AM fungi, there are also overlapping gene expression patterns between auxin-treated and AM-inoculated roots that provide further clues on auxin-triggered colonization events. Using an auxin-inducible promoter-reporter system it was shown that the reporter was strongly induced in AM colonized roots, although co-localization with AM fungi was not observed. Our data are discussed in frame of a model together with other plant hormones which might be involved in the AM colonization processes. PMID:19704695

  4. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    Science.gov (United States)

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.

  5. Evidence of oxidative attenuation of auxin signalling.

    Science.gov (United States)

    Peer, Wendy Ann; Cheng, Yan; Murphy, Angus S

    2013-06-01

    Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.

  6. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport.

    Science.gov (United States)

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong

    2015-09-01

    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.

  7. Auxin signaling modules regulate maize inflorescence architecture.

    Science.gov (United States)

    Galli, Mary; Liu, Qiujie; Moss, Britney L; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L; Gallavotti, Andrea

    2015-10-27

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.

  8. The role of auxin signaling in early embryo pattern formation.

    Science.gov (United States)

    Smit, Margot E; Weijers, Dolf

    2015-12-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mechanisms interact to generate local auxin accumulation in the early embryo. New auxin-dependent reporters help identifying these sites, while atomic structures of transcriptional response mediators help explain the diverse outputs of auxin signaling. Key auxin outputs are control of cell identity and cell division orientation, and progress has been made towards understanding the cellular basis of each. Importantly, a number of studies have combined computational modeling and experiments to analyze the developmental role, genetic circuitry and molecular mechanisms of auxin-dependent cell division control.

  9. The role of auxin signaling in early embryo pattern formation

    NARCIS (Netherlands)

    Smit, Margot E.; Weijers, Dolf

    2015-01-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mec

  10. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

    Science.gov (United States)

    Krishna Reddy, Srirama; Finlayson, Scott A

    2014-03-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.

  11. RAC/ROP GTPases and Auxin Signaling[W

    Science.gov (United States)

    Wu, Hen-ming; Hazak, Ora; Cheung, Alice Y.; Yalovsky, Shaul

    2011-01-01

    Auxin functions as a key morphogen in regulating plant growth and development. Studies on auxin-regulated gene expression and on the mechanism of polar auxin transport and its asymmetric distribution within tissues have provided the basis for realizing the molecular mechanisms underlying auxin function. In eukaryotes, members of the Ras and Rho subfamilies of the Ras superfamily of small GTPases function as molecular switches in many signaling cascades that regulate growth and development. Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions. Here, we discuss the advances made over the last decade that implicate RAC/ROPs as mediators for auxin-regulated gene expression, rapid cell surface-located auxin signaling, and directional auxin transport. We also describe experimental data indicating that auxin–RAC/ROP crosstalk may form regulatory feedback loops and theoretical modeling that attempts to connect local auxin gradients with RAC/ROP regulation of cell polarity. We hope that by discussing these experimental and modeling studies, this perspective will stimulate efforts to further refine our understanding of auxin signaling via the RAC/ROP molecular switch. PMID:21478442

  12. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  13. The circadian clock regulates auxin signaling and responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Michael F Covington

    2007-08-01

    Full Text Available The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day-specific sensitivity, with likely important consequences for plant growth and environmental responses.

  14. Protein ubiquitination in auxin signaling and transport

    NARCIS (Netherlands)

    Santos Maraschin, Felipe dos

    2009-01-01

    What makes plant shoots grow towards the light, and plant roots grow down into the soil? This was a question that Charles Darwin asked himself, and his experiments more than a century ago to find the answer laid the basis for the identification of the growth hormone auxin. Auxin, or indole-3-acetic

  15. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  16. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Science.gov (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  17. Cytokinin responses counterpoint auxin signaling during rhizobial infection

    Science.gov (United States)

    Liu, Cheng-Wu; Breakspear, Andrew; Roy, Sonali; Murray, Jeremy D

    2015-01-01

    The transcriptomics approach to study gene expression in root hairs from M. truncatula has shed light on the developmental events during rhizobial infection and the underlying hormone responses. This approach revealed the induction of several cyclins and an aurora kinase which suggests that the cell-division machinery plays a role in rhizobial infection. Changes in the cell cycle in plants are governed by hormones, in particular auxin and cytokinin. Through gene expression and genetic analyses, we have shown auxin plays a role during rhizobial infection. Here we provide further analysis of the data showing the induction of a set of cytokinin signaling components. These include genes encoding 2 cytokinin-activating enzymes, the cytokinin receptor CRE1, and 5 type-A cytokinin response regulators. We discuss the possible interactions between auxin and cytokinin signaling during the infection process. We also consider a potential role for cytokinin signaling in rhizobial attachment. PMID:26176899

  18. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.

    Science.gov (United States)

    Bailly, Aurélien; Groenhagen, Ulrike; Schulz, Stefan; Geisler, Markus; Eberl, Leo; Weisskopf, Laure

    2014-12-01

    Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.

  19. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    Science.gov (United States)

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  20. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  1. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  2. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism

    NARCIS (Netherlands)

    Baster, P.; Robert, S.; Kleine-Vehn, J.; Vanneste, S.; Kania, U.; Grunewald, W.; Rybel, de B.P.M.; Beeckman, T.; Friml, J.

    2013-01-01

    The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels.

  3. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism

    NARCIS (Netherlands)

    Baster, P.; Robert, S.; Kleine-Vehn, J.; Vanneste, S.; Kania, U.; Grunewald, W.; Rybel, de B.P.M.; Beeckman, T.; Friml, J.

    2013-01-01

    The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. Th

  4. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    Science.gov (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  5. Auxin Signaling in Regulation of Plant Translation Reinitiation

    Directory of Open Access Journals (Sweden)

    Mikhail Schepetilnikov

    2017-06-01

    Full Text Available The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR signaling pathway—a major growth-related pathway—plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs within their 5′-untranslated regions (5′-UTRs. This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins—transcription factors, protein kinases and other cellular controllers—and how their control can impact plant growth and development.

  6. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  7. Inter-regulation of the unfolded protein response and auxin signaling.

    Science.gov (United States)

    Chen, Yani; Aung, Kyaw; Rolčík, Jakub; Walicki, Kathryn; Friml, Jiří; Brandizzi, Federica

    2014-01-01

    The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.

  8. Oligomerization of SCFTIR1 Is Essential for Aux/IAA Degradation and Auxin Signaling in Arabidopsis.

    Science.gov (United States)

    Dezfulian, Mohammad H; Jalili, Espanta; Roberto, Don Karl A; Moss, Britney L; Khoo, Kerry; Nemhauser, Jennifer L; Crosby, William L

    2016-09-01

    The phytohormone auxin is a key regulator of plant growth and development. Molecular studies in Arabidopsis have shown that auxin perception and signaling is mediated via TIR1/AFB-Aux/IAA co-receptors that assemble as part of the SCFTIR1/AFB E3 ubiquitin-ligase complex and direct the auxin-regulated degradation of Aux/IAA transcriptional repressors. Despite the importance of auxin signaling, little is known about the functional regulation of the TIR1/AFB receptor family. Here we show that TIR1 can oligomerize in planta via a set of spatially clustered amino acid residues. While none of the residues identified reside in the interaction interface of the TIR1-Aux/IAA degron, they nonetheless regulate the binding of TIR1 to Aux/IAA substrate proteins and their subsequent degradation in vivo as an essential aspect of auxin signaling. We propose oligomerization of TIR1 as a novel regulatory mechanism in the regulation of auxin-mediated plant patterning and development.

  9. Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle

    Directory of Open Access Journals (Sweden)

    Elizabeth Estrada-Johnson

    2017-05-01

    Full Text Available The role of auxin in ripening strawberry (Fragaria ×ananassa fruits has been restricted to the early stages of development where the growth of the receptacle is dependent on the delivery of auxin from the achenes. At later stages, during enlargement of the receptacle, other hormones have been demonstrated to participate to different degrees, from the general involvement of gibberellins and abscisic acid to the more specific of ethylene. Here we report the involvement of auxin at the late stages of receptacle ripening. The auxin content of the receptacle remains constant during ripening. Analysis of the transcriptome of ripening strawberry fruit revealed the changing expression pattern of the genes of auxin synthesis, perception, signaling and transport along with achene and receptacle development from the green to red stage. Specific members of the corresponding gene families show active transcription in the ripe receptacle. For the synthesis of auxin, two genes encoding tryptophan aminotransferases, FaTAA1 and FaTAR2, were expressed in the red receptacle, with FaTAR2 expression peaking at this stage. Transient silencing of this gene in ripening receptacle was accompanied by a diminished responsiveness to auxin. The auxin activity in the ripening receptacle is supported by the DR5-directed expression of a GUS reporter gene in the ripening receptacle of DR5-GUS transgenic strawberry plants. Clustering by co-expression of members of the FaAux/IAA and FaARF families identified five members whose transcriptional activity was increased with the onset of receptacle ripening. Among these, FaAux/IAA11 and FaARF6a appeared, by their expression level and fold-change, as the most likely candidates for their involvement in the auxin activity in the ripening receptacle. The association of the corresponding ARF6 gene in Arabidopsis to cell elongation constitutes a suggestive hypothesis for FaARF6a involvement in the same cellular process in the growing and

  10. Auxin transport sites are visualized in planta using fluorescent auxin analogs

    OpenAIRE

    2014-01-01

    Fluorescent auxin analogs are designed to function as active auxins for the auxin transport system but to be inactive for auxin signaling. These fluorescent auxin analogs can mimic auxin via the transport system and be used to visualize inter- and intracellular auxin distribution in roots. These analogs allow imaging of auxin transport sites with high spatiotemporal resolution. Our fluorescent auxin system provides insight into auxin transport dynamics and subcellular auxin distribution.

  11. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module.

    Science.gov (United States)

    Baima, Simona; Forte, Valentina; Possenti, Marco; Peñalosa, Andrés; Leoni, Guido; Salvi, Sergio; Felici, Barbara; Ruberti, Ida; Morelli, Giorgio

    2014-06-01

    The role of auxin as main regulator of vascular differentiation is well established, and a direct correlation between the rate of xylem differentiation and the amount of auxin reaching the (pro)cambial cells has been proposed. It has been suggested that thermospermine produced by ACAULIS5 (ACL5) and bushy and dwarf2 (BUD2) is one of the factors downstream to auxin contributing to the regulation of this process in Arabidopsis. Here, we provide an in-depth characterization of the mechanism through which ACL5 modulates xylem differentiation. We show that an increased level of ACL5 slows down xylem differentiation by negatively affecting the expression of homeodomain-leucine zipper (HD-ZIP) III and key auxin signaling genes. This mechanism involves the positive regulation of thermospermine biosynthesis by the HD-ZIP III protein Arabidopsis thaliana homeobox8 tightly controlling the expression of ACL5 and BUD2. In addition, we show that the HD-ZIP III protein REVOLUTA contributes to the increased leaf vascularization and long hypocotyl phenotype of acl5 likely by a direct regulation of auxin signaling genes such as like auxin resistant2 (LAX2) and LAX3. We propose that proper formation and differentiation of xylem depend on a balance between positive and negative feedback loops operating through HD-ZIP III genes.

  12. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis.

    Science.gov (United States)

    Blomster, Tiina; Salojärvi, Jarkko; Sipari, Nina; Brosché, Mikael; Ahlfors, Reetta; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2011-12-01

    Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.

  13. The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.

    Science.gov (United States)

    Turgeman, Tidhar; Lubinsky, Olga; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Kapulnik, Yoram; Koltai, Hinanit; Zaady, Eli; Ben-Shabat, Shimon; Guy, Ofer; Lewinsohn, Efraim; Sitrit, Yaron

    2016-05-01

    The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.

  14. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.

    Science.gov (United States)

    Müller, Christina Joy; Valdés, Ana Elisa; Wang, Guodong; Ramachandran, Prashanth; Beste, Lisa; Uddenberg, Daniel; Carlsbecker, Annelie

    2016-02-01

    Plant vascular tissues, xylem and phloem, differentiate in distinct patterns from procambial cells as an integral transport system for water, sugars, and signaling molecules. Procambium formation is promoted by high auxin levels activating class III homeodomain leucine zipper (HD-ZIP III) transcription factors (TFs). In the root of Arabidopsis (Arabidopsis thaliana), HD-ZIP III TFs dose-dependently govern the patterning of the xylem axis, with higher levels promoting metaxylem cell identity in the central axis and lower levels promoting protoxylem at its flanks. It is unclear, however, by what mechanisms the HD-ZIP III TFs control xylem axis patterning. Here, we present data suggesting that an important mechanism is their ability to moderate the auxin response. We found that changes in HD-ZIP III TF levels affect the expression of genes encoding core auxin response molecules. We show that one of the HD-ZIP III TFs, PHABULOSA, directly binds the promoter of both MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5, a key factor in vascular formation, and IAA20, encoding an auxin/indole acetic acid protein that is stable in the presence of auxin and able to interact with and repress MP activity. The double mutant of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, while overexpression of IAA30 causes discontinuous protoxylem and occasional ectopic metaxylem, similar to a weak loss-of-function mp mutant. Our results provide evidence that HD-ZIP III TFs directly affect the auxin response and mediate a feed-forward loop formed by MP and IAA20 that may focus and stabilize the auxin response during vascular patterning and the differentiation of xylem cell types.

  15. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  16. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]......Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...... and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromols. are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin...

  17. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  18. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    Science.gov (United States)

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  19. Correlation between a loss of auxin signaling and a loss of proliferation in maize antipodal cells

    Science.gov (United States)

    Chettoor, Antony M.; Evans, Matthew M. S.

    2015-01-01

    The plant life cycle alternates between two genetically active generations: the diploid sporophyte and the haploid gametophyte. In angiosperms the gametophytes are sexually dimorphic and consist of only a few cells. The female gametophyte, or embryo sac, is comprised of four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In some species the antipodal cells are indistinct and fail to proliferate, so many aspects of antipodal cell function and development have been unclear. In maize and many other grasses, the antipodal cells proliferate to produce a highly distinct cluster at the chalazal end of the embryo sac that persists at the apex of the endosperm after fertilization. The antipodal cells are a site of auxin accumulation in the maize embryo sac. Analysis of different families of genes involved in auxin biosynthesis, distribution, and signaling for expression in the embryo sac demonstrates that all steps are expressed within the embryo sac. In contrast to auxin signaling, cytokinin signaling is absent in the embryo sac and instead occurs adjacent to but outside of the antipodal cells. Mutant analysis shows a correlation between a loss of auxin signaling and a loss of proliferation of the antipodal cells. The leaf polarity mutant Laxmidrib1 causes a lack of antipodal cell proliferation coupled with a loss of DR5 and PIN1a expression in the antipodal cells. PMID:25859254

  20. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Science.gov (United States)

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  1. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    Directory of Open Access Journals (Sweden)

    Kaori N Miyawaki

    2014-09-01

    Full Text Available Rho-like GTPase from plants (ROPs function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound active state, the activation of ROPs by upstream factor(s is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during PC morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid (ABA, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  2. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants.

    Science.gov (United States)

    Miyawaki, Kaori N; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.

  3. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu

    2015-01-01

    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  4. [Glutamic acid as a universal extracellular signal].

    Science.gov (United States)

    Yoneda, Yukio

    2015-08-01

    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  5. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development

    Science.gov (United States)

    de Jong, Maaike; Wolters-Arts, Mieke; García-Martínez, José L.; Mariani, Celestina; Vriezen, Wim H.

    2011-01-01

    Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development. PMID:20937732

  6. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    Regulation, 1998, 25: 23-28.[34]Cui. S. J.. Wang, H. H., Ma, L. G. et al., The effects of extracellular calmodulin of style and pollen on pollen germination and pollen tube growth, Acta Phytophysiologica Sinica (in Chinese), 1998, 42: 320-326.[35]Ma, L. G.. Xu, X. D., Cui, S. J. et al., Effects of extracellular calmodulin on pollen germination and tube growth, Chin. Sci.Bull. (in Chinese), 1998, 43(2): 143-146.[36]Wanner. L. A., Gruissem, W., Expression dynamics of the tomato rbcS gene family during development, Plant Cell, 1991,3: 1289-1303.[37]Sawbridge, T. I., Knight, M. R., Jenkins, G. I., Ontogenetic regulation and photoregulation of members of the Phaseolus vulgaris L. rbcS gene family, Planta, 1996, 198: 31-38.[38]Zhang, S. Q., Ma, L. G., Sun, D. Y., The effect of extracellular calmodulin on rbcS-3A expression in suspension-cultured tomato cells, Acta Botanica Sinica (in Chinese), 2000, 42(6): 653-655.[39]Shang, Z. L., Ma, L. G., Wang, X. C. et al., Effect of extracellular calmodulin on the cytosolic Ca2+ concentration in lily pollen grains, Acta Botanica Sinica (in Chinese), 2001, 43(1): 12-17.[40]Ma, L. G., Xu, X. D., Cui, S. J. et al., The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth, Plant Cell, 1999, 11: 1351-1363.[41]Guo, Y., Ma, L. G., Zhang, L. et al., The involvement of hetrotrimeric G protein in signal transduction of extracellular calmodulin in regulating rbcS expression, Chin. Sci. Bull., 2000, 45(20): 2195-2200.[42]Ma, L. G., Xu, X. D., Cui, S. J. et al., The involvement of phosphoinositide signaling pathway in the initiatory effects of extracellular calmodulin on pollen germination and tube growth, Acta Phytophysiologica Sinica (in Chinese), 1998, 24:196-200.[43]Wang, X., Cui, S. J., Ma, L. G. et al., The involvement of PLC-IP3 pathway in pollen tube growth by microinjection study,Acta Botanica Sinica (in Chinese), 2000

  7. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.

    Science.gov (United States)

    Xie, Qi; Guo, Hui-Shan; Dallman, Geza; Fang, Shengyun; Weissman, Allan M; Chua, Nam-Hai

    2002-09-12

    The plant hormone indole-3 acetic acid (IAA or auxin) controls many aspects of plant development, including the production of lateral roots. Ubiquitin-mediated proteolysis has a central role in this process. The genes AXR1 and TIR1 aid the assembly of an active SCF (Skp1/Cullin/F-box) complex that probably promotes degradation of the AUX/IAA transcriptional repressors in response to auxin. The transcription activator NAC1, a member of the NAM/CUC family of transcription factors, functions downstream of TIR1 to transduce the auxin signal for lateral root development. Here we show that SINAT5, an Arabidopsis homologue of the RING-finger Drosophila protein SINA, has ubiquitin protein ligase activity and can ubiquitinate NAC1. This activity is abolished by mutations in the RING motif of SINAT5. Overexpressing SINAT5 produces fewer lateral roots, whereas overexpression of a dominant-negative Cys49 --> Ser mutant of SINAT5 develops more lateral roots. These lateral root phenotypes correlate with the expression of NAC1 observed in vivo. Low expression of NAC1 in roots can be increased by treatment with a proteasome inhibitor, which indicates that SINAT5 targets NAC1 for ubiquitin-mediated proteolysis to downregulate auxin signals in plant cells.

  8. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dario A Breitel

    2016-03-01

    Full Text Available The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A, a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA. Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1 protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  9. Target of rapamycin is a key player for auxin signaling transduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kexuan eDeng

    2016-03-01

    Full Text Available Target of rapamycin (TOR, a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity via FK506 binding protein 12 kDa (FKBP12 in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR. GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can

  10. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    Science.gov (United States)

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  11. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  12. Auxin regulation of cell polarity in plants.

    Science.gov (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  13. The effect of carbon monoxide integrating nitric oxide through auxin signal in Arabidopsis to modulate iron deficiency

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-03-01

    Full Text Available Carbon monoxide (CO and nitric oxide (NO are essential modulators that regulate the plant response to iron deficiency (-Fe. Auxin is a phytohormone that plays important roles in plant growth and development. We report here that in Arabidopsis –Fe enhanced heme oxygenase-dependent CO generation and auxin transport through redistribution of PIN1 protein, which subsequently increased NO accumulation; NO signaling regulated the activity of ferric chelate reductase (FCR and the expression of Fe-uptake genes including basic helix-loop-helix transcription factor (FIT and the ferric reduction oxidase 2 (FRO2. Over-expression of HY1 encoding heme oxygenase, or treatment with CO donor enhanced basipetal auxin transport, FCR activity, and the expressions of FIT and FRO2 under –Fe. Such effects were compromised in the mutant aux1-7 impaired in auxin transport or in the mutant noa1 or nia1/nia2 defective in NO biosynthesis. -Fe failed to promote auxin transport and FCR activity in hy1 mutant; such inability was reversed in the double mutant of hy1/yucca1 with elevated auxin production, or in hy1/cue1 mutant with NO over-accumulation. Taken together, our results suggest that CO modulates NO signaling through auxin to cope with Fe deficiency in Arabidopsis.

  14. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  15. Interactions of auxinic compounds on a Ca2+ signaling and root growth in Arabidopsis thaliana

    Science.gov (United States)

    Auxinic-like compounds have been widely used as weed control agents. Over the years, the mode of action of auxinic herbicides have been elucidated, but most studies thus far have focused on their effects on later stages of plant growth. Here, we show that some select auxins and auxinic-like herbicid...

  16. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis.

    Science.gov (United States)

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei; Lu, Ying-Tang

    2015-05-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor N(ω)-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Péret, Benjamin; Porco, Silvana; Sairanen, Ilkka; Ljung, Karin; Bennett, Malcolm; King, John

    2015-02-07

    Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion.

  18. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis.

    Science.gov (United States)

    Pierik, Ronald; Djakovic-Petrovic, Tanja; Keuskamp, Diederik H; de Wit, Mieke; Voesenek, Laurentius A C J

    2009-04-01

    Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.

  19. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    Directory of Open Access Journals (Sweden)

    Wang-Jin Lu

    2012-11-01

    Full Text Available Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA, Gretchen Hagen3 (GH3 and small auxin upregulated (SAUR and auxin response factors (ARF, which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1, one GH3 (LcGH3.1, one SAUR (LcSAUR1 and two ARFs (LcARF1 and LcARF2, were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.

  20. Auxin transport sites are visualized in planta using fluorescent auxin analogs.

    Science.gov (United States)

    Hayashi, Ken-ichiro; Nakamura, Shouichi; Fukunaga, Shiho; Nishimura, Takeshi; Jenness, Mark K; Murphy, Angus S; Motose, Hiroyasu; Nozaki, Hiroshi; Furutani, Masahiko; Aoyama, Takashi

    2014-08-05

    The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.

  1. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development.

    Science.gov (United States)

    de Jong, Maaike; Wolters-Arts, Mieke; Feron, Richard; Mariani, Celestina; Vriezen, Wim H

    2009-01-01

    Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.

  2. Auxin and chloroplast movements.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  3. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    Science.gov (United States)

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development.

  4. The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signalling

    Science.gov (United States)

    Cheung, Alice Y.

    2013-01-01

    Rac-like GTPases or Rho-related GTPases from plants (RAC/ROPs) are important components of hormone signalling pathways in plants. Based on phylogeny, several groups can be distinguished, and the underlying premise is that members of different groups perform distinct functions in the plant. AtRAC7/ROP9 is phylogenetically unique among 11 Arabidopsis RAC/ROPs, and here it was shown that it functions as a modulator of auxin and abscisic acid (ABA) signalling, a dual role not previously assigned to these small GTPases. Plants with reduced levels of AtRAC7/ROP9 had increased sensitivity to auxin and were less sensitive to ABA. On the other hand, overexpressing AtRAC7/ROP9 activated ABA-induced gene expression but repressed auxin-induced gene expression. In addition, both hormones regulated the activity of the AtRAC7/ROP9 promoter, suggesting a feedback mechanism to modulate the signalling output from the AtRAC7/ROP9-controlled molecular switch. High levels of AtRAC7/ROP9 were detected specifically in embryos and lateral roots, underscoring the important role of this protein during embryo development and lateral root formation. These results place AtRAC7/ROP9 as an important signal transducer in recently described pathways that integrate auxin and ABA signalling in the plant. PMID:23918972

  5. A Role for Auxin in Flower Development

    Institute of Scientific and Technical Information of China (English)

    Youfa Cheng; Yunde Zhao

    2007-01-01

    Auxin has long been implicated in many aspects of plant growth and development including flower development. However, the exact roles of auxin in flower development have not been well defined until the recent identification of auxin biosynthesis mutants. Auxin is necessary for the initiation of floral primordia,and the disruption of auxin biosynthesis, polar auxin transport or auxin signaling leads to the failure of flower formation. Auxin also plays an essential role in specifying the number and identity of floral organs.Further analysis of the relationship between the auxin pathways and the known flower development genes will provide critical information regarding mechanisms of organogenesis and pattern formation in plants.

  6. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  7. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  8. Auxin: simply complicated.

    Science.gov (United States)

    Sauer, Michael; Robert, Stéphanie; Kleine-Vehn, Jürgen

    2013-06-01

    Auxin is a plant hormone involved in an extraordinarily broad variety of biological mechanisms. These range from basic cellular processes, such as endocytosis, cell polarity, and cell cycle control over localized responses such as cell elongation and differential growth, to macroscopic phenomena such as embryogenesis, tissue patterning, and de novo formation of organs. Even though the history of auxin research reaches back more than a hundred years, we are still far from a comprehensive understanding of how auxin governs such a wide range of responses. Some answers to this question may lie in the auxin molecule itself. Naturally occurring auxin-like substances have been found and they may play roles in specific developmental and cellular processes. The molecular mode of auxin action can be further explored by the utilization of synthetic auxin-like molecules. A second area is the perception of auxin, where we know of three seemingly independent receptors and signalling systems, some better understood than others, but each of them probably involved in distinct physiological processes. Lastly, auxin is actively modified, metabolized, and intracellularly compartmentalized, which can have a great impact on its availability and activity. In this review, we will give an overview of these rather recent and emerging areas of auxin research and try to formulate some of the open questions. Without doubt, the manifold facets of auxin biology will not cease to amaze us for a long time to come.

  9. Auxin as a Model for the Integration of Hormonal Signal Processing and Transduction

    Institute of Scientific and Technical Information of China (English)

    W.D.Teale; F.A.Ditengou; A.D.Dovzhenko; X.Li; A.M.Molendijk; B.Ruperti; I.Paponov; K.Palme

    2008-01-01

    The regulation of plant growth responds to many stimuli.These responses allow environmental adaptation,thereby increasing fitness.In many cases,the relay of information about a plant's environment is through plant hormones.These messengers integrate environmental information into developmental pathways to determine plant shape.This review will use,as an example,auxin in the root ofArabidopsis thaliana to illustrate the complex nature of hormonal signal processing and transduction.It will then make the case that the application of a systems-biology approach is necessary,if the relationship between a plant's environment and its growth/developmental responses is to be properly understood.

  10. Bidirectional extracellular matrix signaling during tissue morphogenesis

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  11. Inhibition of auxin transport and auxin signaling and treatment with far red light induces root coiling in the phospholipase-A mutant ppla-I-1. Significance for surface penetration?

    Science.gov (United States)

    Perrineau, F; Wimalasekera, R; Effendi, Y; Scherer, G F E

    2016-06-01

    When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where - at least - gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil.

  12. The effect of NGATHA altered activity in auxin signaling pathways within the Arabidopsis gynoecium

    Directory of Open Access Journals (Sweden)

    Irene eMartinez-Fernandez

    2014-05-01

    Full Text Available The four NGATHA genes (NGA form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium.We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.

  13. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis.

    Science.gov (United States)

    Yuan, Hong-Mei; Huang, Xi

    2016-01-01

    The root is the first plant organ to get in contact with the toxin cadmium (Cd), which is a widespread soil contaminant. Cd inhibits the growth of the primary root, but the mechanisms underlying this inhibition remain elusive. In this study, we used physiological, pharmacological and genetic approaches to investigate the roles of nitric oxide (NO) and auxin in Cd-mediated inhibition of Arabidopsis thaliana root meristem growth. Our study demonstrated that in the first 12 h of exposure, Cd inhibits primary root elongation through a decrease in the sizes of both the elongation and meristematic zones. Following Cd exposure, a decrease in auxin levels is associated with reduced PIN1/3/7 protein accumulation, but not with reduced PIN1/3/7 transcript levels. Additionally, Cd stabilized AXR3/IAA17 protein to repress auxin signalling in this Cd-mediated process. Furthermore, decreasing Cd-induced NO accumulation with either NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N(ω) -nitro-l-Arg-methylester (l-NAME) compromised the Cd-mediated inhibition of root meristem development, reduction in auxin and PIN1/3/7 accumulation, as well as stabilization of AXR3/IAA17, indicating that NO participates in Cd-mediated inhibition of root meristem growth. Taken together, our data suggest that Cd inhibits root meristem growth by NO-mediated repression of auxin accumulation and signalling in Arabidopsis. © 2015 John Wiley & Sons Ltd.

  14. Auxin response factors.

    Science.gov (United States)

    Chandler, John William

    2016-05-01

    Auxin signalling involves the activation or repression of gene expression by a class of auxin response factor (ARF) proteins that bind to auxin response elements in auxin-responsive gene promoters. The release of ARF repression in the presence of auxin by the degradation of their cognate auxin/indole-3-acetic acid repressors forms a paradigm of transcriptional response to auxin. However, this mechanism only applies to activating ARFs, and further layers of complexity of ARF function and regulation are being revealed, which partly reflect their highly modular domain structure. This review summarizes our knowledge concerning ARF binding site specificity, homodimer and heterodimer multimeric ARF association and cooperative function and how activator ARFs activate target genes via chromatin remodelling and evolutionary information derived from phylogenetic comparisons from ARFs from diverse species. ARFs are regulated in diverse ways, and their importance in non-auxin-regulated pathways is becoming evident. They are also embedded within higher-order transcription factor complexes that integrate signalling pathways from other hormones and in response to the environment. The ways in which new information concerning ARFs on many levels is causing a revision of existing paradigms of auxin response are discussed.

  15. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo.

    Science.gov (United States)

    Sattar, Sampurna; Addo-Quaye, Charles; Thompson, Gary A

    2016-06-01

    Resistance to Aphis gossypii in melon is attributed to the presence of the single dominant R gene virus aphid transmission (Vat), which is biologically expressed as antibiosis, antixenosis and tolerance. However, the mechanism of resistance is poorly understood at the molecular level. Aphid-induced transcriptional changes, including differentially expressed miRNA profiles that correspond to resistance interaction have been reported in melon. The potential regulatory roles of miRNAs in Vat-mediated aphid resistance were further revealed by identifying the specific miRNA degradation targets. A total of 70 miRNA:target pairs, including 28 novel miRNA:target pairs, for the differentially expressed miRNAs were identified: 11 were associated with phytohormone regulation, including six miRNAs that potentially regulate auxin interactions. A model for a redundant regulatory system of miRNA-mediated auxin insensitivity is proposed that incorporates auxin perception, auxin modification and auxin-regulated transcription. Chemically inhibiting the transport inhibitor response-1 (TIR-1) auxin receptor in susceptible melon tissues provides in vivo support for the model of auxin-mediated impacts on A. gossypii resistance.

  16. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem.

    Science.gov (United States)

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A N; Costa, Luciano da F; Sakakibara, Hitoshi; Jackson, David

    2009-05-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.

  17. Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem1[W][OA

    Science.gov (United States)

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A.N.; Costa, Luciano da F.; Sakakibara, Hitoshi; Jackson, David

    2009-01-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants. PMID:19321707

  18. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants

    OpenAIRE

    2012-01-01

    The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-depend...

  19. Auxin, the organizer of the environmental/hormonal signals for root hair growth

    Directory of Open Access Journals (Sweden)

    Hyung-Taeg eCho

    2013-11-01

    Full Text Available The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth.

  20. Protein Geranylgeranyltransferase I Is Involved in Specific Aspects of Abscisic Acid and Auxin Signaling in Arabidopsis1

    Science.gov (United States)

    Johnson, Cynthia D.; Chary, S. Narasimha; Chernoff, Ellen A.; Zeng, Qin; Running, Mark P.; Crowell, Dring N.

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the β-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the β-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared α-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. PMID:16183844

  1. Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus).

    Science.gov (United States)

    Tamaki, Vívian; Mercier, Helenice

    2007-11-01

    This work aimed at identifying a possible role of phytohormones in long-distance (root-shoot) signaling under nitrogen deficiency. Three-months old pineapple plants were transferred from Murashige and Skoog (MS) medium to nitrogen-free MS (-N). During the first 24h on -N, 20 plants were harvested every 4h. After 30 days in -N, the remaining plants were transferred back to regular MS (+N) and 20 plants harvested every 4h for the first 24h. Following the harvests, endogenous levels of nitrate (NO(3)(-)), indole-3-acetic acid (IAA), isopentenyladenine (iP), isopentenyladenine riboside (iPR), zeatin (Z) and zeatin riboside (ZR) were analyzed in roots and leaves. In N-starved plants, the NO(3)(-) level dropped by 20% in roots between the first (4h) and the second harvest (8h). In leaves a reduction of 20% was found 4h later. Accumulation of IAA peaked in leaves at 16h. In roots, the accumulation of IAA only started at 16h while the leaf content was already in decline, which suggests that the hormone might have traveled from the leaves to the roots, communicating N-shortage. The contents of the four cytokinins were generally low in both, shoot and roots, and remained almost unchanged during the 24h of analysis. After N re-supply, roots showed a NO(3)(-) peak at 8h whereas the foliar concentration increased 4h later. Hormone levels in roots climaxed at 8h, this coinciding with the highest NO(3)(-) concentration. In leaf tissue, a dramatic accumulation was only observed for Z and ZR, and the peak was seen 4h later than in roots, suggesting that Z-type cytokinins might have traveled from the roots to the leaves. These findings provide evidence that there is a signaling pathway for N availability in pineapple plants, communicated upwards through cytokinins (N-supplemented plants) and downwards through auxin (N-starved plants).

  2. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.

    Science.gov (United States)

    Liu, Yangyang; Wang, Ruling; Zhang, Ping; Chen, Qi; Luo, Qiong; Zhu, Yiyong; Xu, Jin

    2016-07-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants.

  3. A ROP GTPase-dependent auxin signaling pahtway regulates the subcellular distribution of PIN2 in Arabidopsis roots

    NARCIS (Netherlands)

    Lin, D.; Nagawa, S.; Chen, J.; Cao, L.; Scheres, B.

    2012-01-01

    PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis [1 and 2], but how auxin regulates this process is

  4. A ROP GTPase-dependent auxin signaling pahtway regulates the subcellular distribution of PIN2 in Arabidopsis roots

    NARCIS (Netherlands)

    Lin, D.; Nagawa, S.; Chen, J.; Cao, L.; Scheres, B.

    2012-01-01

    PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis [1 and 2], but how auxin regulates this process is poorl

  5. Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae.

    Science.gov (United States)

    Nomura, Toshihisa; Itouga, Misao; Kojima, Mikiko; Kato, Yukari; Sakakibara, Hitoshi; Hasezawa, Seiichiro

    2015-03-01

    The copper (Cu) moss Scopelophila cataractae (Mitt.) Broth. is often found in Cu-enriched environments, but it cannot flourish under normal conditions in nature. Excess Cu is toxic to almost all plants, and therefore how this moss species thrives in regions with high Cu concentration remains unknown. In this study, we investigated the effect of Cu on gemma germination and protonemal development in S. cataractae. A high concentration of Cu (up to 800 µM) did not affect gemma germination. In the protonemal stage, a low concentration of Cu promoted protonemal gemma formation, which is the main strategy adopted by S. cataractae to expand its habitat to new locations. Cu-rich conditions promoted auxin accumulation and induced differentiation of chloronema into caulonema cells, whereas it repressed protonemal gemma formation. Under low-Cu conditions, auxin treatment mimicked the effects of high-Cu conditions. Furthermore, Cu-induced caulonema differentiation was severely inhibited in the presence of the auxin antagonist α-(phenylethyl-2-one)-indole-3-acetic acid, or the auxin biosynthesis inhibitor l-kynurenine. These results suggest that S. cataractae flourishes in Cu-rich environments via auxin-regulated cell differentiation. The copper moss might have acquired this mechanism during the evolutionary process to benefit from its advantageous Cu-tolerance ability. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  7. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis1[OPEN

    Science.gov (United States)

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei

    2015-01-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. PMID:25818700

  8. Advances in Research of Auxin Signaling in the Root Tip%植物根尖生长素信号研究进展

    Institute of Scientific and Technical Information of China (English)

    沈燕霞; 倪君

    2012-01-01

    Auxin signaling regulates many aspects of plant development. In this article, we gave a brief review of advances in research of auxin signaling in the root tip. We summarized recent progress from three aspects, auxin transport and distribution in root tip, the influences of auxin signaling in root tip cell identities, and auxin signaling in the quiescent center. In addition, we provided prospective views of this field in the end of this article.%生长素信号调控植物生长发育的各个方面.该文综述了生长素信号在植物根尖的研究进展概况,从生长素在根尖的运输与分布、生长素信号对根尖细胞命运的影响及静止中心细胞的生长素信号研究三个方面进行了阐述,并对未来该领域的研究方向进行了展望.

  9. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms.

    Science.gov (United States)

    Yang, Qian; Pande, Gde Sasmita Julyantoro; Wang, Zheng; Lin, Baochuan; Rubin, Robert A; Vora, Gary J; Defoirdt, Tom

    2017-05-01

    Vibrios belonging to the Harveyi clade are major pathogens of marine vertebrates and invertebrates, causing major losses in wild and cultured organisms. Despite their significant impact, the pathogenicity mechanisms of these bacteria are not yet completely understood. In this study, the impact of indole signalling on the virulence of Vibrio campbellii was investigated. Elevated indole levels significantly decreased motility, biofilm formation, exopolysaccharide production and virulence to crustacean hosts. Indole furthermore inhibited the three-channel quorum sensing system of V. campbellii, a regulatory mechanism that is required for full virulence of the pathogen. Further, indole signalling was found to interact with the stress sigma factor RpoS. Together with the observations that energy-consuming processes (motility and bioluminescence) are downregulated, and microarray-based transcriptomics demonstrating that indole decreases the expression of genes involved in energy and amino acid metabolism, the data suggest that indole is a starvation signal in V. campbellii. Finally, it was found that the auxins indole-3-acetic acid and indole-3-acetamide, which were produced by various (micro)algae sharing the aquatic environment with V. campbellii, have a similar effect as observed for indole. Auxins might, therefore, have a significant impact on the interactions between vibrios, (micro)algae and higher organisms, with major ecological and practical implications. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Indian Academy of Sciences (India)

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  11. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis.

    Science.gov (United States)

    Yu, Song; Ligang, Chen; Liping, Zhang; Diqiu, Yu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and infl orescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42 degrees C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  12. Spike library based simulator for extracellular single unit neuronal signals.

    Science.gov (United States)

    Thorbergsson, P T; Jorntell, H; Bengtsson, F; Garwicz, M; Schouenborg, J; Johansson, A

    2009-01-01

    A well defined set of design criteria is of great importance in the process of designing brain machine interfaces (BMI) based on extracellular recordings with chronically implanted micro-electrode arrays in the central nervous system (CNS). In order to compare algorithms and evaluate their performance under various circumstances, ground truth about their input needs to be present. Obtaining ground truth from real data would require optimal algorithms to be used, given that those exist. This is not possible since it relies on the very algorithms that are to be evaluated. Using realistic models of the recording situation facilitates the simulation of extracellular recordings. The simulation gives access to a priori known signal characteristics such as spike times and identities. In this paper, we describe a simulator based on a library of spikes obtained from recordings in the cat cerebellum and observed statistics of neuronal behavior during spontaneous activity. The simulator has proved to be useful in the task of generating extracellular recordings with realistic background noise and known ground truth to use in the evaluation of algorithms for spike detection and sorting.

  13. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.

    Science.gov (United States)

    Guo, Hui-Shan; Xie, Qi; Fei, Ji-Feng; Chua, Nam-Hai

    2005-05-01

    Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain-encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3'-specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wild-type plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 3' fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

  14. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling

    NARCIS (Netherlands)

    Wabnik, K.; Kleine-Vehn, J.; Balla, J.; Sauer, M.; Naramoto, S.; Reinöhl, V.; Merks, R.M.H.; Govaerts, W.; Friml, J.

    2010-01-01

    Plant development is exceptionally flexible as manifested by its potential for organogenesis and regeneration, which are processes involving rearrangements of tissue polarities. Fundamental questions concern how individual cells can polarize in a coordinated manner to integrate into the multicellular

  15. Differentially timed extracellular signals synchronize pacemaker neuron clocks.

    Directory of Open Access Journals (Sweden)

    Ben Collins

    2014-09-01

    Full Text Available Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h. To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs or two dorsal clock neurons (DN1s. Unexpectedly, we found that the PDF Receptor (PdfR is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA. Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.

  16. Auxin-driven patterning with unidirectional fluxes.

    Science.gov (United States)

    Cieslak, Mikolaj; Runions, Adam; Prusinkiewicz, Przemyslaw

    2015-08-01

    The plant hormone auxin plays an essential role in the patterning of plant structures. Biological hypotheses supported by computational models suggest that auxin may fulfil this role by regulating its own transport, but the plausibility of previously proposed models has been questioned. We applied the notion of unidirectional fluxes and the formalism of Petri nets to show that the key modes of auxin-driven patterning-the formation of convergence points and the formation of canals-can be implemented by biochemically plausible networks, with the fluxes measured by dedicated tally molecules or by efflux and influx carriers themselves. Common elements of these networks include a positive feedback of auxin efflux on the allocation of membrane-bound auxin efflux carriers (PIN proteins), and a modulation of this allocation by auxin in the extracellular space. Auxin concentration in the extracellular space is the only information exchanged by the cells. Canalization patterns are produced when auxin efflux and influx act antagonistically: an increase in auxin influx or concentration in the extracellular space decreases the abundance of efflux carriers in the adjacent segment of the membrane. In contrast, convergence points emerge in networks in which auxin efflux and influx act synergistically. A change in a single reaction rate may result in a dynamic switch between these modes, suggesting plausible molecular implementations of coordinated patterning of organ initials and vascular strands predicted by the dual polarization theory.

  17. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  18. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    Science.gov (United States)

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism.

  19. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles.

    Science.gov (United States)

    Grones, Peter; Chen, Xu; Simon, Sibu; Kaufmann, Walter A; De Rycke, Riet; Nodzyński, Tomasz; Zažímalová, Eva; Friml, Jiří

    2015-08-01

    The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.

  20. 生长素与乙烯信号途径及其相互关系研究进展%Research Advances in Auxin and Ethylene Signaling and Effects of Auxin on Ethylene Response of Plants

    Institute of Scientific and Technical Information of China (English)

    胡一兵; 刘炜; 徐国华

    2011-01-01

    长期的研究表明,生长素在调节植物生长发育的各种生理活动中起关键作用,但对它如何调控这些生理活动却缺乏系统和深入的了解.最近,细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光.乙烯参与果实成熟及植物对逆境的反应等生理活动,其信号途径也已得到部分阐明.越来越多的证据表明,乙烯的作用与生长素对植物生长发育的调控之间有密切的联系.该文概述了生长素与乙烯信号途径的研究进展及其相互关系,讨论了生长素在植物三重反应中的作用;并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨.%Auxin has long been identified to play a critical role in regulating various activities of plant growth and development. However, systematic and in-depth understanding of these regulations is still lacking. Recently, the verification of the nucleic auxin signaling pathway has thrown light on research in this field. The hormone ethylene is involved in fruit ripening and the stress response of plants; its signaling pathway has been partially elucidated. Increasing data show that the effects of ethylene on plants are largely connected to the participation of auxin. In this review, we summarize the research advances in auxin and ethylene signaling and discuss the role of auxin in the triple response of ethylene. Difficulties in unraveling their relationship and possible ways of resolving them are also proposed.

  1. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    Directory of Open Access Journals (Sweden)

    Aleksei V. Ermakov

    2013-01-01

    Full Text Available The term “cell-free DNA” (cfDNA was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA. Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2 that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.

  2. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  3. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    Science.gov (United States)

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  4. GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses.

    Science.gov (United States)

    Mellor, Nathan; Bennett, Malcolm J; King, John R

    2016-02-01

    The conjugation of the phytohormone auxin to amino acids via members of the gene family GH3 is an important component in the auxin-degradation pathway in the model plant species Arabidopsis thaliana, as well as many other plant species. Since the GH3 genes are themselves up-regulated in response to auxin, providing a negative feedback on intracellular auxin levels, it is hypothesised that the GH3s have a role in auxin homoeostasis. To investigate this, we develop a mathematical model of auxin signalling and response that includes the auxin-inducible negative feedback from GH3 on the rate of auxin degradation. In addition, we include a positive feedback on the rate of auxin input via the auxin influx transporter LAX3, shown previously to be expressed in response to auxin and to have an important role during lateral root emergence. In the absence of the LAX3 positive feedback, we show that the GH3 negative feedback suffices to generate a transient transcriptional response to auxin in the shape of damped oscillations of the model system. When LAX3 positive feedback is present, sustained oscillations of the system are possible. Using steady-state analyses, we identify and discuss key parameters affecting the oscillatory behaviour of the model. The transient peak of auxin and subsequent transcriptional response caused by the up-regulation of GH3 represents a possible protective homoeostasis mechanism that may be used by plant cells in response to excess auxin.

  5. Regulation of auxin transport during gravitropism

    Science.gov (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  6. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    P. Dhonukshe (Pankaj); I. Grigoriev (Ilya); R. Fischer (Rainer); M. Tominaga (Motoki); D.G. Robinson (David); J. Hašek (Jiří); T. Paciorek (Tomasz); J. Petrášek (Jan); D. Seifertová (Daniela); R. Tejos (Ricardo); L.A. Meisel (Lee); E. Zažímalová (Eva); T.W.J. Gadella (Theodorus); Y.D. Stierhof; T. Ueda (Takashi); K. Oiwa (Kazuhiro); A.S. Akhmanova (Anna); R. Brock (Roland); A. Spang (Anne); J. Friml (Jiří)

    2008-01-01

    textabstractMany aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating

  7. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts.

    Science.gov (United States)

    Rutschow, Heidi L; Baskin, Tobias I; Kramer, Eric M

    2014-11-01

    The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 μm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.

  8. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis.

    Science.gov (United States)

    Wang, Jing-Jing; Guo, Hui-Shan

    2015-03-01

    MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.

  9. Auxin Biogenesis

    Science.gov (United States)

    Bower, Peter J.; Brown, Hugh M.; Purves, William K.

    1976-01-01

    Subcellular fractionation of cucumber (Cucumis sativus L.) seedlings was achieved, and two of the enzymes in the auxin biosynthetic pathway were localized. NADH-specific indoleacetaldehyde reductase activity was observed only in the cytosol fractions obtained from separated hypocotyl and cotyledon tissue. In contrast, a portion of the NADPH-specific indoleacetaldehyde reductase activity was associated with a microsomal fraction derived from these tissues. The NADPH-specific indoleacetaldehyde reductase was consistently found to be more firmly associated with the microsomal fraction derived from hypocotyls than with that from the cotyledons. These results indicate a division of the terminal steps of auxin biogenesis into at least two subcellular compartments. PMID:16659584

  10. Auxin-regulated cell polarity: an inside job?

    Science.gov (United States)

    Kramer, Eric M

    2009-05-01

    Auxin is now known to be a key regulator of polar events in plant cells. The mechanism by which auxin conveys a polar signal to the cell is unknown, but one well-known hypothesis is that the auxin flux across the plasma membrane regulates vesicle trafficking. This hypothesis remains controversial because of its reliance on an as-yet-undiscovered membrane flux sensor. In this article I suggest instead that the polar signal is the auxin gradient within the cell cytoplasm. A computer model of vascular development is presented that demonstrates the plausibility of this scenario. The auxin-binding protein ABP1 might be the receptor for the auxin gradient.

  11. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  12. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding.

    Science.gov (United States)

    Basu, Manojit M; González-Carranza, Zinnia H; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A

    2013-05-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place.

  13. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  14. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression1[OPEN

    Science.gov (United States)

    2016-01-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  15. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

    Science.gov (United States)

    Li, Xiaozun; Yang, Dong-Lei; Sun, Li; Li, Qun; Mao, Bizeng; He, Zuhua

    2016-09-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression.

  16. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    Science.gov (United States)

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  17. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus.

    Science.gov (United States)

    Li, Xiaolin; Lei, Mingjuan; Yan, Zhongyuan; Wang, Qi; Chen, Aimin; Sun, Jie; Luo, Da; Wang, Yanzhang

    2014-01-01

    The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    Science.gov (United States)

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones.

  19. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Generally,cell signal molecules are classified into the extracellular signal molecules (the first messengers) and the intracellular signal ones (the second messengers).Cyclic adenosine monophosphate (cAMP),calcium ions and calmodulin (CaM) are the traditional intracellular messengers,but they are also present in extracellular matrix (ECM).Some of them have been discovered to act as the first messengers through cell surface receptors.Other second messengers,such as cyclic guanosine monophosphate (cGMP),cyclic adenosine diphosphate ribose (cADPR) and annexin,are also found existing outside animal and plant cells.The existence of these messengers with intracellular-extracellular compatible functions in cells may be a regular biological phenomenon.These compatible messengers might be the communication factors between intracellular and extracellular regions or among the cell populations,and are also important in regulating cell development procedure.

  20. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  1. Auxin at the Shoot Apical Meristem

    Science.gov (United States)

    Vernoux, Teva; Besnard, Fabrice; Traas, Jan

    2010-01-01

    Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression and patterned growth. In this context, auxin transporters of the PIN and AUX families, creating auxin maxima and minima, are crucial regulators. However, auxin transport is not the only factor involved. Auxin biosynthesis genes also show specific, patterned activities, and local auxin synthesis appears to be essential for meristem function as well. In addition, auxin perception and signal transduction defining the competence of cells to react to auxin, add further complexity to the issue. To unravel this intricate signaling network at the SAM, systems biology approaches, involving not only molecular genetics but also live imaging and computational modeling, have become increasingly important. PMID:20452945

  2. Transcriptional Responses to the Auxin Hormone

    NARCIS (Netherlands)

    Weijers, Dolf; Wagner, Doris

    2016-01-01

    Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the fun

  3. Trypanosoma cruzi extracellular amastigotes and host cell signaling: more pieces to the puzzle

    Directory of Open Access Journals (Sweden)

    Éden Ramalho Ferreira

    2012-11-01

    Full Text Available Among the different infective stages that Trypanosoma cruzi employs to invade cells, extracellular amastigotes have recently gained attention by our group. This is true primarily because these amastigotes are able to infect cultured cells and animals, establishing a sustainable infective cycle. Extracellular amastigotes are thus an excellent means of adaptation and survival for T. cruzi, whose different infective stages each utilize unique mechanisms for attachment and penetration. Here we discuss some features of host cell invasion by extracellular amastigotes and the associated host cell signaling events that occur as part of the process.

  4. Lrp4 modulates extracellular integration of cell signaling pathways in development.

    Directory of Open Access Journals (Sweden)

    Atsushi Ohazama

    Full Text Available The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.

  5. Do trees grow on money? Auxin as the currency of the cellular economy.

    Science.gov (United States)

    Stewart, Jodi L; Nemhauser, Jennifer L

    2010-02-01

    Auxin plays a role in nearly every aspect of a plant's life. Signals from the developmental program, physiological status, and encounters with other organisms all converge on the auxin pathway. The molecular mechanisms facilitating these interactions are diverse; yet, common themes emerge. Auxin can be regulated by modulating rates of biosynthesis, conjugation, and transport, as well as sensitivity of a cell to the auxin signal. In this article, we describe some well-studied examples of auxin's interactions with other pathways.

  6. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  7. Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development.

    Science.gov (United States)

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2013-08-01

    Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development.

  8. Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Ivan A.Paponov; Martina Paponov; William Teale; Margit Menges; Sohini Chakrabortee; James A.H.Murray; Klaus Palme

    2008-01-01

    In plants,the hormone auxin shapes gene expression to regulate growth and development.Despite the detailed characterization of auxin-inducible genes,a comprehensive overview of the temporal and spatial dynamics of auxinregulated gene expression is lacking.Here,we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators.Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes.Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression.Changes in transcript levels were consistent with a distinct sequence of conjugation,increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations.Our data show that auxin regulates genes associated with the biosynthesis,catabolism and signaling pathways of other phytohormones.We present a transcriptional overview of the auxin response.Specific interactions between auxin and other phytohormones are highlighted,particularly the regulation of their metabolism.Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'-a tissue-specific fingerprint of gene expression that initiates specific developmental processes.

  9. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function.

    Science.gov (United States)

    Kakei, Yusuke; Yamazaki, Chiaki; Suzuki, Masashi; Nakamura, Ayako; Sato, Akiko; Ishida, Yosuke; Kikuchi, Rie; Higashi, Shouichi; Kokudo, Yumiko; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-11-01

    Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki ) of BBo and PPBo were 67 and 56 nm, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.

  10. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds

    Science.gov (United States)

    Li, Xiang; Xia, Kuaifei; Liang, Zhen; Chen, Kunling; Gao, Caixia; Zhang, Mingyong

    2016-08-01

    Rice tillering has an important influence on grain yield, and is promoted by nitrogen (N) fertilizer. Several genes controlling rice tillering, which are regulated by poor N supply, have been identified. However, the molecular mechanism associated with the regulation of tillering based on N supply is poorly understood. Here, we report that rice microRNA393 (OsmiR393) is involved in N-mediated tillering by decreasing auxin signal sensitivity in axillary buds. Expression analysis showed that N fertilizer causes up-regulation of OsmiR393, but down-regulation of two target genes (OsAFB2 and OsTB1). In situ expression analysis showed that OsmiR393 is highly expressed in the lateral axillary meristem. OsmiR393 overexpression mimicked N-mediated tillering in wild type Zhonghua 11 (ZH11). Mutation of OsMIR393 in ZH11 repressed N-promoted tillering, which simulated the effects of limited N, and this could not be restored by supplying N fertilizer. Western blot analysis showed that OsIAA6 was accumulated in both OsmiR393-overexpressing lines and N-treated wild type rice, but was reduced in the OsMIR393 mutant. Therefore, we deduced that N-induced OsmiR393 accumulation reduces the expression of OsTIR1 and OsAFB2, which alleviates sensitivity to auxin in the axillary buds and stabilizes OsIAA6, thereby promoting rice tillering.

  11. Extracellular ATP acts as a damage associated molecular pattern (DAMP signal in plants

    Directory of Open Access Journals (Sweden)

    Kiwamu eTanaka

    2014-09-01

    Full Text Available As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs. ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling role in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor Kinase, which is plant-specific. P2K1 (DORN1 is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression. Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of the future research of extracellular ATP as a DAMP signal.

  12. Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells.

    NARCIS (Netherlands)

    Hurk, MJ van den; Cruijsen, P.M.; Schoeber, J.P.H.; Scheenen, W.J.J.M.; Roubos, E.W.; Jenks, B.G.

    2008-01-01

    The extracellular calcium-sensing receptor (CaR) is expressed in various types of endocrine pituitary cell, but the intracellular mechanism this G protein-coupled receptor uses in these cells is not known. In the present study we investigated possible intracellular signal transduction pathway(s)

  13. Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity.

    Science.gov (United States)

    Milbank, Edward; Martinez, M Carmen; Andriantsitohaina, Ramaroson

    2016-01-01

    Obesity and its metabolic resultant dysfunctions such as insulin resistance, hyperglycemia, dyslipidemia and hypertension, grouped as the "metabolic syndrome", are chronic inflammatory disorders that represent one of the most severe epidemic health problems. The imbalance between energy intake and expenditure, leading to an excess of body fat and an increase of cardiovascular and diabetes risks, is regulated by the interaction between central nervous system (CNS) and peripheral signals in order to regulate behavior and finally, the metabolism of peripheral organs. At present, pharmacological treatment of obesity comprises actions in both CNS and peripheral organs. In the last decades, the extracellular vesicles have emerged as participants in many pathophysiological regulation processes. Whether used as biomarkers, targets or even tools, extracellular vesicles provided some promising effects in the treatment of a large variety of diseases. Extracellular vesicles are released by cells from the plasma membrane (microvesicles) or from multivesicular bodies (exosomes) and contain lipids, proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Owing to their composition, extracellular vesicles can (i) activate receptors at the target cell and then, the subsequent intracellular pathway associated to the specific receptor; (ii) transfer molecules to the target cells and thereby change their phenotype and (iii) be used as shuttle of drugs and, thus, to carry specific molecules towards specific cells. Herein, we review the impact of extracellular vesicles in modulating the central and peripheral signals governing obesity.

  14. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  15. Auxin-Cytokinin Interaction Regulates Meristem Development

    Institute of Scientific and Technical Information of China (English)

    Ying-Hua Su; Yu-Bo Liu; Xian-Sheng Zhang

    2011-01-01

    Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling.The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review.

  16. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions.

    Science.gov (United States)

    Gouveia, Ayden; Bajwa, Ekta; Klegeris, Andis

    2017-09-01

    Cytochrome c is well known to be released from mitochondria into the cytosol where it can initiate apoptosis. Recent studies indicate that cytochrome c is also released into the extracellular space by both healthy and damaged cells, where its function is not well understood. We hypothesized that extracellular cytochrome c could function as an intercellular signaling molecule of the brain, which is recognized by brain microglia. These cells belong to the mononuclear phagocyte system and can be activated by endogenous substances associated with diverse pathologies including trauma, ischemic damage and neurodegenerative diseases. Three different cell types were used to model microglia. Respiratory burst activity, nitric oxide production and cytotoxic secretions were measured following exposure of microglial cells to cytochrome c. We showed that extracellular cytochrome c primed the respiratory burst response of differentiated HL-60 cells, enhanced nitric oxide secretion by BV-2 cells, and augmented cytotoxicity of differentiated THP-1 cells. We demonstrated that the effects of cytochrome c on microglia-like cells were at least partially mediated by the toll-like receptor 4 (TLR4) and c-Jun N-terminal kinases (JNK) signaling pathway. Extracellular cytochrome c can interact with microglia TLR4 and modulate select functions of these brain immune cells. Our data identifies extracellular cytochrome c as a potential intercellular signaling molecule, which may be recognized by microglia causing or enhancing their immune activation. The data obtained support targeting TLR4 and JNK signaling as potential treatment strategies for brain diseases characterized by excessive cellular death and activation of microglia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia.

    Science.gov (United States)

    Langfelder, Antonia; Okonji, Emeka; Deca, Diana; Wei, Wei-Chun; Glitsch, Maike D

    2015-04-01

    Microglia are the resident macrophage and immune cell of the brain and are critically involved in combating disease and assaults on the brain. Virtually all brain pathologies are accompanied by acidosis of the interstitial fluid, meaning that microglia are exposed to an acidic environment. However, little is known about how extracellular acidosis impacts on microglial function. The activity of microglia is tightly controlled by 'on' and 'off' signals, the presence or absence of which results in generation of distinct phenotypes in microglia. Activation of G protein coupled purinergic (P2Y) receptors triggers a number of distinct behaviours in microglia, including activation, migration, and phagocytosis. Using pharmacological tools and fluorescence imaging of the murine cerebellar microglia cell line C8B4, we show that extracellular acidosis interferes with P2Y receptor-mediated Ca(2+) signalling in these cells. Distinct P2Y receptors give rise to signature intracellular Ca(2+) signals, and Ca(2+) release from stores and Ca(2+) influx are differentially affected by acidotic conditions: Ca(2+) release is virtually unaffected, whereas Ca(2+) influx, mediated at least in part by store-operated Ca(2+) channels, is profoundly inhibited. Furthermore, P2Y1 and P2Y6-mediated stimulation of migration is inhibited under conditions of extracellular acidosis, whereas basal migration independent of P2Y receptor activation is not. Taken together, our results demonstrate that an acidic microenvironment impacts on P2Y receptor-mediated Ca(2+) signalling, thereby influencing microglial responses and responsiveness to extracellular signals. This may result in altered behaviour of microglia under pathological conditions compared with microglial responses in healthy tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    Science.gov (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  19. Hydrogen Peroxide-Mediated Growth of the Root System Occurs via Auxin Signaling Modification and Variations in the Expression of Cell-Cycle Genes in Rice Seedlings Exposed to Cadmium Stress

    Institute of Scientific and Technical Information of China (English)

    Feng-Yun Zhao; Ming-Ming Han; Shi-Yong Zhang; Kai Wang; Cheng-Ren Zhang; Tao Liu; Wen Liu

    2012-01-01

    The link between root growth,H2O2,auxin signaling,and the cell cycle in cadmium (Cd)-stressed rice (Oryza sativa L.cv.Zhonghua No.11) was analyzed in this study.Exposure to Cd induced a significant accumulation of Cd,but caused a decrease in zinc (Zn) content which resulted from the decreased expression of OsHMA9 and OsZIP.Analysis using a Cd-specific probe showed that Cd was mainly localized in the meristematic zone and vascular tissues.Formation and elongation of the root system were significantly promoted by 3-amino-1,2,4-triazole (AT),but were markedly inhibited by N,N'-dimethylthiourea (DMTU) under Cd stress.The effect of H2O2 on Cd-stressed root growth was further confirmed by examining a gain-of-function rice mutant (carrying catalase1 and glutathione-S-transferase) in the presence or absence of diphenylene iodonium.DR5-GUS staining revealed close associations between H2O2 and the concentration and distribution of auxin.H2O2 affected the expression of key genes,including OsYUCCA,OsPIN,OsARF,and OsIAA,in the auxin signaling pathway in Cd-treated plants.These results suggest that H2O2 functions upstream of the auxin signaling pathway.Furthermore,H2O2 modified the expression of cell-cycle genes in Cd-treated roots.The effects of H2O2 on root system growth are therefore linked to auxin signal modification and to variations in the expression of cell-cycle genes in Cd-stressed rice.A working model for the effects of H2O2 on Cd-stressed root system growth is thus proposed and discussed in this paper.

  20. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R.; Pěnčík, Aleš; Rashed, Afaf; Holman, Tara; Wilson, Michael H.; Voß, Ute; Bishopp, Anthony; King, John R.

    2016-01-01

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1. Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development. PMID:27651495

  1. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton.

    Science.gov (United States)

    Min, Ling; Li, Yaoyao; Hu, Qin; Zhu, Longfu; Gao, Wenhui; Wu, Yuanlong; Ding, Yuanhao; Liu, Shiming; Yang, Xiyan; Zhang, Xianlong

    2014-03-01

    Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-adenosyl-L-homocysteine hydrolase1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of casein kinasei (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, phytochrome-interacting factor genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.

  2. Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology

    Directory of Open Access Journals (Sweden)

    Olsen Inger

    2005-11-01

    Full Text Available Abstract Background Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration. Results Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese. Conclusion The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.

  3. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora;

    2012-01-01

    Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1ß during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular cal......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  4. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression.

    Science.gov (United States)

    Zhu, Jieqing; Xiong, Gaofeng; Trinkle, Christine; Xu, Ren

    2014-09-01

    Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.

  5. Auxin biosynthesis and storage forms.

    Science.gov (United States)

    Korasick, David A; Enders, Tara A; Strader, Lucia C

    2013-06-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development.

  6. Acupuncture combined with curcumin disrupts platelet-derived growth factor β receptor/extracellular signal-regulated kinase signalling and stimulates extracellular matrix degradation in carbon tetrachloride-induced hepatic fibrosis in rats

    National Research Council Canada - National Science Library

    Zhang, Xiao-Ping; Zhang, Feng; Zhang, Zi-Li; Ma, Jin; Kong, De-Song; Ni, Guang-Xia; Wang, Ai-Yun; Chen, Wen-Xing; Lu, Yin; Zheng, Shi-Zhong

    2012-01-01

    ...) signalling and extracellular matrix (ECM) regulation in the fibrotic liver. A total of 60 Sprague-Dawley male rats were randomly divided into control, model, sham, acupuncture, curcumin and combination treatment groups...

  7. Galanthamine, an anticholinesterase drug, effects plant growth and development in Artemisia tridentate Nutt. via modulation of auxin and neutrotransmitter signaling.

    Science.gov (United States)

    Turi, Christina E; Axwik, Katarina E; Smith, Anderson; Jones, A Maxwell P; Saxena, Praveen K; Murch, Susan J

    2014-01-01

    Galanthamine is a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease, but the role of the compound in plant metabolism is not known. The current study was designed to investigate whether galanthamine could redirect morphogenesis of Artemisia tridentata Nutt. cultures by altering concentration of endogenous neurosignaling molecules acetylcholine (Ach), auxin (IAA), melatonin (Mel), and serotonin (5HT). Exposure of axenic A. tridentata cultures to 10 µM galanthamine decreased the concentration of endogenous Ach, IAA, MEL, and AchE, and altered plant growth in a manner reminiscent of 2-4D toxicity. Galanthamine itself demonstrated IAA activity in an oat coleotile elongation bioassay, 20 µM galanthamine showed no significant difference compared with 5 μM IAA or 5 μM 1-Naphthaleneacetic acid (NAA). Metabolomic analysis detected between 20,921 to 27,891 compounds in A. tridentata plantlets and showed greater commonality between control and 5 µM treatments. Furthermore, metabolomic analysis putatively identified coumarins scopoletin/isoscopoletin, and scopolin in A. tridentata leaf extracts and these metabolites linearly increased in response to galanthamine treatments. Overall, these data indicate that galanthamine is an allelopathic phytochemical and support the hypothesis that neurologically active compounds in plants help ensure plant survival and adaptation to environmental challenges.

  8. SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis.

    Science.gov (United States)

    Mahmud, Mufti; Bertoldo, Alessandra; Girardi, Stefano; Maschietto, Marta; Vassanelli, Stefano

    2012-05-30

    Rapid advances in neuronal probe technology for multisite recording of brain activity have posed a significant challenge to neuroscientists for processing and analyzing the recorded signals. To be able to infer meaningful conclusions quickly and accurately from large datasets, automated and sophisticated signal processing and analysis tools are required. This paper presents a Matlab-based novel tool, "SigMate", incorporating standard methods to analyze spikes and EEG signals, and in-house solutions for local field potentials (LFPs) analysis. Available modules at present are - 1. In-house developed algorithms for: data display (2D and 3D), file operations (file splitting, file concatenation, and file column rearranging), baseline correction, slow stimulus artifact removal, noise characterization and signal quality assessment, current source density (CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, and single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well as signals from multiple recording sources. The in-house developed tools for LFP analysis have been extensively tested with signals recorded using standard extracellular recording electrode, and planar and implantable multi transistor array (MTA) based neural probes. SigMate will be disseminated shortly to the neuroscience community under the open-source GNU-General Public License.

  9. Fractal dimension analysis for spike detection in low SNR extracellular signals

    Science.gov (United States)

    Salmasi, Mehrdad; Büttner, Ulrich; Glasauer, Stefan

    2016-06-01

    Objective. Many algorithms have been suggested for detection and sorting of spikes in extracellular recording. Nevertheless, it is still challenging to detect spikes in low signal-to-noise ratios (SNR). We propose a spike detection algorithm that is based on the fractal properties of extracellular signals and can detect spikes in low SNR regimes. Semi-intact spikes are low-amplitude spikes whose shapes are almost preserved. The detection of these spikes can significantly enhance the performance of multi-electrode recording systems. Approach. Semi-intact spikes are simulated by adding three noise components to a spike train: thermal noise, inter-spike noise, and spike-level noise. We show that simulated signals have fractal properties which make them proper candidates for fractal analysis. Then we use fractal dimension as the main core of our spike detection algorithm and call it fractal detector. The performance of the fractal detector is compared with three frequently used spike detectors. Main results. We demonstrate that in low SNR, the fractal detector has the best performance and results in the highest detection probability. It is shown that, in contrast to the other three detectors, the performance of the fractal detector is independent of inter-spike noise power and that variations in spike shape do not alter its performance. Finally, we use the fractal detector for spike detection in experimental data and similar to simulations, it is shown that the fractal detector has the best performance in low SNR regimes. Significance. The detection of low-amplitude spikes provides more information about the neural activity in the vicinity of the recording electrodes. Our results suggest using the fractal detector as a reliable and robust method for detecting semi-intact spikes in low SNR extracellular signals.

  10. 生长素信号转导途径与植物胁迫反应相互作用的证据%Evidence That the Auxin Signaling Pathway Interacts with Plant Stress Response

    Institute of Scientific and Technical Information of China (English)

    包方; 李家洋

    2002-01-01

    生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应.我们利用cDNA阵列技术鉴定拟南芥(Arabidopsis thaliana (L.) Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinase1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) 和Ferritin 1 (Fer1),说明生长素可调节胁迫应答基因的表达.此外,我们还证明吲哚乙酸(IAA)合成途径中的腈水解酶基因nitrilase 1 (NIT1) 和nitrilase 2 (NIT2) 受盐胁迫诱导,提示在逆境条件下IAA的合成可能随之增加.我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2 (axr2) 中可被盐胁迫诱导,而在auxin resistant 1-3 (axr1-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径.%Auxin influences a variety of developmental and physiological processes.Early reports suggested that auxin might affect plant stress response.We have identified a number of auxin responsive genes in Arabidopsis thaliana (L.) Heynh.by using cDNA array and found that stress responsive genes,such as Arabidopsis homolog of MEK kinase 1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) and Ferritin 1 (Fer1),were down-regulated by auxin,indicating that auxin regulates the expression of stress responsive genes.We also demonstrated that nitrilase genes,nitrilase 1 (NIT1) and nitrilase 2 (NIT2) involving in indole-3-acetic acid (IAA) biosynthesis,were induced by salinity stress,suggesting that the level of IAA might increase in response to salinity stress.To dissect the signal pathway involved in the interaction,two auxin insensitive mutants,auxin resistant 2 (axr2) and auxin resistant 1-3 (axr1-3) were used.Stress responsive genes were induced by salt stress in wild type and axr2,but not in axr1-3.The result suggests

  11. Extracellular expression of alkaline phytase in Pichia pastoris: Influence of signal peptides, promoters and growth medium

    Directory of Open Access Journals (Sweden)

    Mimi Yang

    2015-06-01

    Full Text Available Alkaline phytase isolated from pollen grains of Lilium longiflorum (LlALP possesses unique catalytic and thermal stability properties that suggest it has the potential to be used as a feed supplement. However, substantial amounts of active enzymes are needed for animal feed studies and endogenous levels of LlALP in lily pollen are too low to provide the required amounts. Active rLlALP2 (coded by LlAlp2, one of two isoforms of alkaline phytase cDNA identified in lily pollen has been successfully expressed in intracellular compartments of Pichia pastoris, however enzyme yields have been modest (25–30 mg/L and purification of the enzyme has been challenging. Expression of foreign proteins to the extracellular medium of P. pastoris greatly simplifies protein purification because low levels of endogenous proteins are secreted by the yeast. In this paper, we first describe the generation of P. pastoris strains that will secrete rLlALP2 to the extracellular medium. Data presented here indicates that deletion of native signal peptides at the N- and C-termini of rLlALP2 enhanced α-mating factor (α-MF-driven secretion by four-fold; chicken egg white lysozyme signal peptide was ineffective in the extracellular secretion of rLlALP2. Second, we describe our efforts to increase expression levels by employing a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene (PGAP in place of the strong, tightly controlled promoter of alcohol oxidase 1 gene (PAOX1. PGAP enhanced the extracellular expression levels of rLlALP2 compared to PAOX1. Finally, we report on the optimization of the culture medium to enhance yields of rLlALP2. The strength of PGAP varies depending on the carbon source available for cell growth; secreted expression of rLlALP2 was highest when glycerol was the carbon source. The addition of histidine and Triton X-100 also enhanced extracellular expression. Taken together, the employment of PGAP under optimized culture

  12. Urokinase plasminogen activator receptor: a functional integrator of extracellular proteolysis, cell adhesion, and signal transduction.

    Science.gov (United States)

    Ferraris, Gian Maria Sarra; Sidenius, Nicolai

    2013-06-01

    The urokinase plasminogen activator receptor (uPAR) is a cell surface receptor involved in a multitude of physiologic and pathologic processes. uPAR regulates simultaneously a branch of the plasminogen activator system and modulates cell adhesion and intracellular signaling by interacting with extracellular matrix components and signaling receptors. The multiple uPAR functions are deeply interconnected, and their integration determines the effects that uPAR expression triggers in different contexts. The proteolytic function of uPAR affects both the signaling and the adhesive functions of the receptor, whereas these latter two are closely interconnected. This review focuses on the molecular mechanisms that connect and mutually regulate the different uPAR functions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Is ABP1 an Auxin Receptor Yet?

    Institute of Scientific and Technical Information of China (English)

    Jing-Hua Shi; Zhen-Biao Yang

    2011-01-01

    AUXIN BINDING PROTEIN 1 (ABP1)has long been proposed as an auxin receptor to regulate cell expansion. The embryo lethality of ABPI-null mutants demonstrates its fundamental role in plant development, but also hinders inves-tigation of its involvement in post-embryonic processes and its mode of action. By taking advantage of weak alleles and inducible systems, several recent studies have revealed a role for ABP1 in organ development, cell polarization, and shape formation. In addition to its role in the regulation of auxin-induced gene expression, ABP1 has now been shown to mod-ulate non-transcriptional auxin responses. ABP1 is required for activating two antagonizing ROP GTPase signaling path-ways involved in cytoskeletal reorganization and cell shape formation, and participates in the regulation of clathrin-mediated endocytosis to subsequently affect PIN protein distribution. These exciting discoveries provide indisputable ev-idence for the auxin-induced signaling pathways that are downstream of ABP1 function, and suggest intriguing mech-anisms for ABPl-mediated polar cell expansion and spatial coordination in response to auxin.

  14. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robbie D Schultz

    Full Text Available In mammals, Bone Morphogenetic Protein (BMP pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  15. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  16. Extracellular Matrix Stiffness Controls VEGF Signaling and Processing in Endothelial Cells.

    Science.gov (United States)

    Sack, Kelsey D; Teran, Madelane; Nugent, Matthew A

    2016-09-01

    Vascular endothelial growth factor A (VEGF) drives endothelial cell maintenance and angiogenesis. Endothelial cell behavior is altered by the stiffness of the substrate the cells are attached to suggesting that VEGF activity might be influenced by the mechanical cellular environment. We hypothesized that extracellular matrix (ECM) stiffness modifies VEGF-cell-matrix tethering leading to altered VEGF processing and signaling. We analyzed VEGF binding, internalization, and signaling as a function of substrate stiffness in endothelial cells cultured on fibronectin (Fn) linked polyacrylamide gels. Cell produced extracellular matrices on the softest substrates were least capable of binding VEGF, but the cells exhibited enhanced VEGF internalization and signaling compared to cells on all other substrates. Inhibiting VEGF-matrix binding with sucrose octasulfate decreased cell-internalization of VEGF and, inversely, heparin pre-treatment to enhance Fn-matrix binding of VEGF increased cell-internalization of VEGF regardless of matrix stiffness. β1 integrins, which connect cells to Fn, modulated VEGF uptake in a stiffness dependent fashion. Cells on hard surfaces showed decreased levels of activated β1 and inhibition of β1 integrin resulted in a greater proportional decrease in VEGF internalization than in cells on softer matrices. Extracellular matrix binding is necessary for VEGF internalization. Stiffness modifies the coordinated actions of VEGF-matrix binding and β1 integrin binding/activation, which together are critical for VEGF internalization. This study provides insight into how the microenvironment may influence tissue regeneration and response to injury and disease. J. Cell. Physiol. 231: 2026-2039, 2016. © 2016 Wiley Periodicals, Inc.

  17. Evolution and structural diversification of PILS putative auxin carriers in plants

    Directory of Open Access Journals (Sweden)

    Elena eFeraru

    2012-10-01

    Full Text Available The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS putative auxin carriers localize to the endoplasmic reticulum (ER and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and subsequently, affect nuclear auxin signalling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.

  18. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    National Research Council Canada - National Science Library

    Poupin, María J; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    .... Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant...

  19. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  20. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  1. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  2. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  3. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-08-01

    Full Text Available Triggering receptor expressed on myeloid cells-1 (TREM-1 is a potent amplifier of pro-inflammatory innate immune reactions, and it is an essential mediator of death in sepsis. However, the ligand for TREM-1 has not been fully identified. Previous research identified a natural ligand of TREM-1 distributed on platelets that contributed to the development of sepsis. However, the exact signal for TREM-1 recognition remains to be identified. Here, we identified actin as a TREM-1-interacting protein on platelets and found that recombinant actin could interact with recombinant TREM-1 extracellular domain directly. Furthermore, actin co-localized with TREM-1 on the surface of activated mouse macrophage RAW264.7 cells interacting with platelets. In addition, recombinant actin could enhance the inflammatory response of macrophages from wt mice but not from trem1−/− mice, and the enhancement could be inhibited by LP17 (a TREM-1 inhibitor in a dose-dependent manner. Importantly, extracellular actin showed co-localization with TREM-1 in lung tissue sections from septic mice, which suggested that TREM-1 recognized actin during activation in sepsis. Therefore, the present study identified actin as a new ligand for TREM-1 signaling, and it also provided a link between both essential regulators of death in sepsis.

  4. ATP, an extracellular signaling molecule in red blood cells: A messenger for malaria?

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2014-10-01

    Full Text Available Adenosine 5′ triphosphate (ATP, discovered in 1929 by Karl Lohmannest, is described as an essential energy source for cells. In the biochemistry of all living organisms, ATP hydrolysis provides the energy required for the chemical reactions of metabolism. It is the precursor of a number of essential enzyme cofactors, such as nicotinamide adenine dinucleotide (NAD + and coenzyme A [NAD + , flavin adenine dinucleotide (FAD, and is ATP coenzyme A are all formed from ATP] and is the source of the phosphoryl group in most kinase-mediated phosphorylation reactions. Another essential, but less known function is that ATP plays a very important role as an extracellular signaling molecule, allowing cells and tissues to communicate. ATP is converted into cAMP, a major second messenger involved in many cellular processes, by adenylyl cyclase, a membrane-associated enzyme. In this review, we describe the role of ATP as a beneficial extracellular molecule released by healthy red blood cells (RBCs in response to hypoxia to mediate a vasodilator signal, by oxidatively stressed RBCs, and by Plasmodium falciparum-infected RBCs (iRBCs, and its similarity with released ATP that by the combined action of the ectonucleotidases CD39 and CD73 is converted to adenosine that mediates sickling in sickle cell disease (SCD.

  5. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling.

    Science.gov (United States)

    Bae, Yong Ho; Mui, Keeley L; Hsu, Bernadette Y; Liu, Shu-Lin; Cretu, Alexandra; Razinia, Ziba; Xu, Tina; Puré, Ellen; Assoian, Richard K

    2014-06-17

    Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.

  6. The role of auxin in cell specification during arabidopsis embryogenesis

    NARCIS (Netherlands)

    Lokerse, A.S.

    2011-01-01

    Auxin is a structurally simple molecule, yet it elicits many different responses in plants. In Chapter 1 we have reviewed how specificity in the output of auxin signaling could be generated by distinct regulation and the unique properties of the members of the Aux/IAA and ARF transcription factor fa

  7. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    Science.gov (United States)

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  8. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development.

    Science.gov (United States)

    Carrera, Esther; Ruiz-Rivero, Omar; Peres, Lazaro Eustaquio Pereira; Atares, Alejandro; Garcia-Martinez, Jose Luis

    2012-11-01

    procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA₃. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA₃ or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA₃ application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.

  9. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    Science.gov (United States)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  10. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  11. Posttranslational modification and trafficking of PIN auxin efflux carriers.

    Science.gov (United States)

    Löfke, Christian; Luschnig, Christian; Kleine-Vehn, Jürgen

    2013-01-01

    Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.

  12. Seek and Ye Shall [eventually] Find: The End of the Search for the Auxin Receptor

    Institute of Scientific and Technical Information of China (English)

    Lawrence HOBBIE

    2005-01-01

    The mechanism by which the plant hormone auxin regulates gene expression has been shown to involve regulated degradation, through the ubiquitin-proteasome pathway, of transcriptional repressor proteins. However, the key first component in this pathway, the receptor that binds auxin and initiates auxin signaling, has remained a mystery. Two recent papers identify the F-box protein TIR1, part of the complex that attaches ubiquitin to its targets, as an auxin receptor. This breakthrough reveals a new mode of signal transduction and lays the groundwork for a more complete understanding of auxin physiology.

  13. Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice

    Directory of Open Access Journals (Sweden)

    Fenny Wiradjaja

    2013-11-01

    Fras1-related extracellular matrix protein 1 (FREM1 is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane.

  14. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  15. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    Science.gov (United States)

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  16. Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of achilles tendinopathy.

    Science.gov (United States)

    Saunders, Colleen J; van der Merwe, Lize; Cook, Jill; Handley, Christopher J; Collins, Malcolm; September, Alison V

    2015-06-01

    The aim of this study was to investigate interactions between variants within genes encoding components of the collagen fibril and components of cell-signaling pathways within the extracellular matrix, and determine the relative contribution of these variants to Achilles tendinopathy risk in a polygenic model. A total of 339 asymptomatic control participants and 179 participants clinically diagnosed with Achilles tendinopathy were genotyped for variants within six genes encoding components of the collagen fibril and three genes encoding components of cell-signaling pathways. Logistic regression, stepwise selection, and receiver operating characteristic curve (ROC) analysis was used to select and evaluate genetic interactions and determine the relative contribution of these variants to overall genetic risk. The strongest, best fit polygenic risk model included the variables sex, three COL27A1 variants (rs4143245; rs1249744; rs946053), COL5A1 rs12722, CASP8 rs1045485, and CASP8 rs2824129 with an area under the ROC curve of 0.737 and the maximum sum of sensitivity and specificity indicators equal to 134%. Significant interactions between genes encoding components of the collagen fibril and genes encoding components of the cell-signaling pathways modify risk of Achilles tendinopathy.

  17. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    Science.gov (United States)

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  18. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal

    Science.gov (United States)

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach

  19. Pterygium epithelium abnormal differentiation related to activation of extracellular signal-regulated kinase signaling pathway in vitro

    Directory of Open Access Journals (Sweden)

    Juan Peng

    2015-12-01

    Full Text Available AIM: To investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK signaling pathway in vitro. METHODS: The expression levels of phosphorylated ERK (P-ERK, keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis. RESULTS: The expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression. CONCLUSION: We suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation.

  20. FLS2-BAK1 extracellular domain interaction sites required for defense signaling activation.

    Directory of Open Access Journals (Sweden)

    Teresa Koller

    Full Text Available Signaling initiation by receptor-like kinases (RLKs at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP receptor FLS2 builds signaling complexes with BAK1 (SERK3. We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs of the significantly different receptors FLS2, EFR (MAMP receptors, PEPR1 (damage-associated molecular pattern (DAMP receptor, and BRI1 (hormone receptor. Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants

  1. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    Science.gov (United States)

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized.

  2. Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development

    OpenAIRE

    2013-01-01

    Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible...

  3. Positioning of polarity formation by extracellular signaling during asymmetric cell division.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-07-07

    Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns.

  4. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression

    OpenAIRE

    2013-01-01

    Auxin response factors (ARFs), together with auxin/indole acetic acid proteins (Aux/IAAs), are transcription factors that play key roles in regulating auxin-responsive transcription in plants. Current models for auxin signaling predict that auxin response is dependent on ARF-Aux/IAA interactions mediated by the related protein-protein interaction domain (i.e., referred to as the CTD) found in the ARF and Aux/IAA C-terminal regions. When auxin concentrations in a cell are low, ARF activators r...

  5. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells.

    Science.gov (United States)

    Kranendonk, Mariëtte E G; Visseren, Frank L J; van Herwaarden, Joost A; Nolte-'t Hoen, Esther N M; de Jager, Wilco; Wauben, Marca H M; Kalkhoven, Eric

    2014-10-01

    Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined. EVs released from human subcutaneous (SAT) and omental AT (OAT)-explants ex vivo were used for stimulation of hepatocytes and myotubes in vitro. Subsequently, insulin-induced Akt phosphorylation and expression of gluconeogenic genes (G6P, PEPCK) was determined. AT-EV adipokine levels were measured by multiplex immunoassay, and AT-EVs were quantified by high-resolution flow cytometry. In hepatocytes, AT-EVs from the majority of patients inhibited insulin-induced Akt phosphorylation, while EVs from some patients stimulated insulin-induced Akt phosphorylation. In myotubes AT-EVs exerted an ambiguous effect on insulin signaling. Hepatic Akt phosphorylation related negatively to G6P-expression by both SAT-EVs (r = -0.60, P = 0.01) and OAT-EVs (r = -0.74, P = 0.001). MCP-1, IL-6, and MIF concentrations were higher in OAT-EVs compared to SAT-EVs and differently related to lower Akt phosphorylation in hepatocytes. Finally, the number of OAT-EVs correlated positively with liver enzymes indicative for liver dysfunction. Human AT-EVs can stimulate or inhibit insulin signaling in hepatocytes- possibly depending on their adipokine content- and may thereby contribute to systemic IR. Copyright © 2014 The Obesity Society.

  6. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2011-01-01

    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi: 10.1152/ajplu

  7. A proteomics study of auxin effects in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Meiqing Xing; Hongwei Xue

    2012-01-01

    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  8. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    Science.gov (United States)

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  9. Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers

    Directory of Open Access Journals (Sweden)

    VERA M. FERNANDES-DE-LIMA

    2001-09-01

    Full Text Available The brain is an excitable media in which excitation waves propagate at several scales of time and space. ''One-dimensional'' action potentials (millisecond scale along the axon membrane, and spreading depression waves (seconds to minutes at the three dimensions of the gray matter neuropil (complex of interacting membranes are examples of excitation waves. In the retina, excitation waves have a prominent intrinsic optical signal (IOS. This optical signal is created by light scatter and has different components at the red and blue end of the spectrum. We could observe the wave onset in the retina, and measure the optical changes at the critical transition from quiescence to propagating wave. The results demonstrated the presence of fluctuations preceding propagation and suggested a phase transition. We have interpreted these results based on an extrapolation from Tasaki's experiments with action potentials and volume phase transitions of polymers. Thus, the scatter of red light appeared to be a volume phase transition in the extracellular matrix that was caused by the interactions between the cellular membrane cell coat and the extracellular sugar and protein complexes. If this hypothesis were correct, then forcing extracellular current flow should create a similar signal in another tissue, provided that this tissue was also transparent to light and with a similarly narrow extracellular space. This control tissue exists and it is the crystalline lens. We performed the experiments and confirmed the optical changes. Phase transitions in the extracellular polymers could be an important part of the long-range correlations found during wave propagation in central nervous tissue.O encéfalo é um meio excitável no qual ondas de excitação se propagam em várias escalas de tempo e espaço. Potenciais de axônios ''unidimensionais'' (escala de milisegundos ao longo da membrana axonal e ondas de depressão alastrante (segundos a minutos nas três dimens

  10. The Role of PIN Auxin Efflux Carriers in Polar Auxin Transport and Accumulation and Their Effect on Shaping Maize Development

    Institute of Scientific and Technical Information of China (English)

    Cristian Forestan; Serena Varotto

    2012-01-01

    In plants,proper seed development and the continuing post-embryonic organogenesis both require that different cell types are correctly differentiated in response to internal and external stimuli.Among internal stimuli,plant hormones and particularly auxin and its polar transport(PAT)have been shown to regulate a multitude of plant physiological processes during vegetative and reproductive development.Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana,during the last few years,many studies tried to transfer this knowledge from model to crop species,maize in particular.Applications of auxin transport inhibitors,mutant characterization,and molecular and cell biology approaches,facilitated by the sequencing of the maize genome,allowed the identification of genes involved in auxin metabolism,signaling,and particularly in polar auxin transport.PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize.In this review,we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development.Similarities and differences between maize and Arabidopsis are analyzed and discussed,also considering that their different plant architecture depends on the differentiation of structures whose development is controlled by auxins.

  11. Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis.

    Science.gov (United States)

    Savatin, Daniel V; Ferrari, Simone; Sicilia, Francesca; De Lorenzo, Giulia

    2011-11-01

    α-1-4-Linked oligogalacturonides (OGs) derived from plant cell walls are a class of damage-associated molecular patterns and well-known elicitors of the plant immune response. Early transcript changes induced by OGs largely overlap those induced by flg22, a peptide derived from bacterial flagellin, a well-characterized microbe-associated molecular pattern, although responses diverge over time. OGs also regulate growth and development of plant cells and organs, due to an auxin-antagonistic activity. The molecular basis of this antagonism is still unknown. Here we show that, in Arabidopsis (Arabidopsis thaliana), OGs inhibit adventitious root formation induced by auxin in leaf explants as well as the expression of several auxin-responsive genes. Genetic, biochemical, and pharmacological experiments indicate that inhibition of auxin responses by OGs does not require ethylene, jasmonic acid, and salicylic acid signaling and is independent of RESPIRATORY BURST OXIDASE HOMOLOGUE D-mediated reactive oxygen species production. Free indole-3-acetic acid levels are not noticeably altered by OGs. Notably, OG- as well as flg22-auxin antagonism does not involve any of the following mechanisms: (1) stabilization of auxin-response repressors; (2) decreased levels of auxin receptor transcripts through the action of microRNAs. Our results suggest that OGs and flg22 antagonize auxin responses independently of Aux/Indole-3-Acetic Acid repressor stabilization and of posttranscriptional gene silencing.

  12. Cyclic-di-GMP signalling meets extracellular polysaccharide synthesis in Bacillus subtilis.

    Science.gov (United States)

    Kampf, Jan; Stülke, Jörg

    2017-06-01

    In order to resist harmful environmental conditions, many bacteria form multicellular aggregates called biofilms. In these biofilms, they protect themselves in a self-produced matrix consisting of extracellular polysaccharides, proteins and DNA. In many bacteria, biofilm formation is stimulated in the presence of the second messenger cyclic di-GMP. In this issue of Environmental Microbiology Reports, Bedrunka and Graumann have studied matrix production by the proteins encoded in the Bacillus subtilis ydaJKLMN operon. For the first time, they were able to provide a link between c-di-GMP signalling and matrix production in this bacterium. The work demonstrates that the c-di-GMP receptor protein YdaK forms a membrane-bound complex with the YdaM and YdaN proteins, and that this interaction with YdaK is required for polysaccharide production by YdaL, YdaM and YdaN. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  14. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  15. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome

    Science.gov (United States)

    Zhang, Hongbing; Pao, Lily I.; Zhou, Aileen; Brace, Arthur D.; Halenbeck, Robert; Hsu, Amy W.; Bray, Thomas L.; Hestir, Kevin; Bosch, Elizabeth; Lee, Ernestine; Wang, Gang; Liu, Haixia; Wong, Brian R.; Kavanaugh, W. Michael; Williams, Lewis T.

    2014-01-01

    There are many transmembrane receptor-like proteins whose ligands have not been identified. A strategy for finding ligands when little is known about their tissue source is to screen each extracellular protein individually expressed in an array format by using a sensitive functional readout. Taking this approach, we have screened a large collection (3,191 proteins) of extracellular proteins for their ability to activate signaling of an orphan receptor, leukocyte tyrosine kinase (LTK). Only two related secreted factors, FAM150A and FAM150B (family with sequence similarity 150 member A and member B), stimulated LTK phosphorylation. FAM150A binds LTK extracellular domain with high affinity (KD = 28 pM). FAM150A stimulates LTK phosphorylation in a ligand-dependent manner. This strategy provides an efficient approach for identifying functional ligands for other orphan receptors. PMID:25331893

  16. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis.

    Science.gov (United States)

    Takahashi, Koji; Hayashi, Ken-ichiro; Kinoshita, Toshinori

    2012-06-01

    The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCF(TIR1/AFB) (for Skp1-Cul1-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H(+)-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H(+)-ATPase activation has yet to be elucidated. Here, we present direct evidence for H(+)-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H(+)-ATPase and increased H(+)-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H(+)-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H(+)-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H(+)-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H(+)-ATPase phosphorylation. Our results define the activation mechanism of H(+)-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory.

  17. The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in Arabidopsis thaliana[C][W][OA

    Science.gov (United States)

    Pan, Jianwei; Fujioka, Shozo; Peng, Jianling; Chen, Jianghua; Li, Guangming; Chen, Rujin

    2009-01-01

    The PIN family of auxin efflux transporters exhibit polar plasma membrane (PM) localization and play a key role in auxin gradient-mediated developmental processes. Auxin inhibits PIN2 endocytosis and promotes its PM localization. However, the underlying mechanisms remain elusive. Here, we show that the inhibitory effect of auxin on PIN2 endocytosis was impaired in SCFTIR1/AFB auxin signaling mutants. Similarly, reducing membrane sterols impaired auxin inhibition of PIN2 endocytosis. Gas chromatography–mass spectrometry analyses indicate that membrane sterols were significantly reduced in SCFTIR1/AFB mutants, supporting a link between membrane sterols and auxin signaling in regulating PIN2 endocytosis. We show that auxin promoted PIN2 recycling from endosomes to the PM and increased PIN2 steady state levels in the PM fraction. Furthermore, we show that the positive effect of auxin on PIN2 levels in the PM was impaired by inhibiting membrane sterols or auxin signaling. Consistent with this, the sterol biosynthetic mutant fk-J79 exhibited pronounced defects in primary root elongation and gravitropic response. Our data collectively indicate that, although there are distinct processes involved in endocytic regulation of specific PM-resident proteins, the SCFTIR1/AFB-dependent processes are required for auxin regulation of endocytosis, recycling, and PM accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. PMID:19218398

  18. Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers

    Science.gov (United States)

    Yang, Jing; Yuan, Zheng; Meng, Qingcai; Huang, Guoqiang; Périn, Christophe; Bureau, Charlotte; Meunier, Anne-Cécile; Ingouff, Mathieu; Bennett, Malcolm J.; Liang, Wanqi; Zhang, Dabing

    2017-01-01

    The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture. PMID

  19. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  20. Involvement of extracellular signal regulated kinases in traumatic brain injury-induced depression in rodents.

    Science.gov (United States)

    Kuo, Jinn-Rung; Cheng, Yi-Hsuan; Chen, Yi-Shion; Chio, Chung-Ching; Gean, Po-Wu

    2013-07-15

    Traumatic brain injury (TBI) is the most common cause of death and acquired disability among children and young adults in the developed countries. In clinical studies, the incidence of depression is high after TBI, and the mechanisms behind TBI-induced depression remain unclear. In the present study, we subjected rats to a moderate fluid percussion into the closed cranial cavity to induce TBI. After 3 days of recovery, injured rats were given a forced swim test (FST) and novelty-suppressed feeding tests. We found that TBI rats exhibited increased duration of immobility and longer latency to begin chewing food in a new environment compared with sham-operated rats. Western blot analysis showed that TBI led to a decrease in the phosphorylated levels of extracellular signal regulated kinases (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK). Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), significantly reduced the duration of immobility when administered once per day for 14 days. Consistent with behavioral tests, fluoxetine treatment reversed TBI-induced decrease in p-ERK1/2 and p-p38 MAPK levels. Pre-treatment with a selective tryptophan hydroxylase inhibitor para-chlorophenylalanine (PCPA) blocked the antidepressant effect of fluoxetine. PCPA also prevented the effect of fluoxetine on ERK1/2 phosphorylation without affecting p38 MAPK phosphorylation. Pre-treatment with ERK inhibitor SL327 but not p38 MAPK inhibitor SB203580 prevented the antidepressant effect of fluoxetine. These results suggest that ERK1/2 plays a critical role in TBI-induced depression.

  1. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Elizabeth eMedina-Castellanos

    2014-11-01

    Full Text Available The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation. During this response, reactive oxygen species (ROS are produced by the NADPH oxidase (Nox1/NoxR complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK pathways by eATP, Ca2+ and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP. Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.

  2. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism.

    Science.gov (United States)

    Erickson, Craig A; Ray, Balmiki; Wink, Logan K; Bayon, Baindu L; Pedapati, Ernest V; Shaffer, Rebecca; Schaefer, Tori L; Lahiri, Debomoy K

    2017-01-01

    Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive

  3. Ligation of Signal Inhibitory Receptor on Leukocytes-1 Suppresses the Release of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus

    OpenAIRE

    Kristof Van Avondt; Ruth Fritsch-Stork; Derksen, Ronald H W M; Linde Meyaard

    2013-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leuk...

  4. The role of auxin in temperature regulated hypocotyl elongation

    Energy Technology Data Exchange (ETDEWEB)

    Estelle, Mark [Univ. of California, San Diego, CA (United States)

    2015-10-02

    The major goal of this project was to determine how auxin mediates the response of Arabidopsis seedlings to increased ambient temperature. Previous studies have shown that the response is due, in part, to increased auxin biosynthesis via the IPA auxin biosynthetic pathway. This effect is related to increased transcription of genes that encode enzymes in this pathway. However, during the last year we have shown that transcription of key auxin regulated genes increases within minutes of a shift to elevated temperature. This response is probably to rapid to be explained by changes in the levels of auxin biosynthetic enzymes. Interestingly, we have recently discovered that temperature shift is associated with a rapid increase in the level of the auxin co-receptor TIR1. This change appears is the result of increased stability of the protein. At the same time, we have discovered that stability of TIR1 is dependent on the chaperone HSP9o and its co-chaperone SGT1. By using the specific HSP90 inhibitor GDA, we show that HSP90 is required for the temperature dependent change in TIR1 levels. We have also shown that HSP90 and SGT1 interact directly with TIR1. Our results also lead us to propose a new model in which the plant responds rapidly to changes in ambient temperature by directly regulating the TIR1/AFB receptor system, thus modulating the auxin signaling pathway.

  5. Neovibsanin B increases extracellular matrix proteins in optic nerve head cells via activation of Smad signalling pathway.

    Science.gov (United States)

    Wang, Zhen; Xu, Wei; Rong, Ao; Lin, Yan; Qiu, Xu-Ling; Qu, Shen; Lan, Xian-Hai

    2015-01-01

    The present study demonstrates the effect of neovibsanin B on the synthesis and deposition of ECM proteins and the signalling pathways used in optic nerve head (ONH) astrocytes and lamina cribrosa (LC) cells. For investigation of the signalling pathway used by neovibsanin B, ONH cells were treated with neovibsanin B. Western blot and immunostaining analyses were used to examine the phosphorylation of proteins involved in Smad and non-Smad signalling pathway. The results revealed that ONH cells on treatment with neovibsanin B showed enhanced synthesis of extracellular matrix (ECM) proteins. Neovibsanin B induced phosphorylation of canonical signalling proteins, Smad2/3. However phosphorylation of non-canonical signalling proteins, extracellular signal-regulated kinases, p38, and c-Jun N-terminal kinases (JNK) 1/2 remained unaffected. There was also increase in co-localization of pSmad2/3 with Co-Smad4 in the nucleus of ONH astrocytes and LC cells indicating activation of the canonical Smad signalling pathway. Treatment of ONH cells with SIS3, inhibitor of Smad3 phosphorylation reversed the neovibsanin B stimulated ECM expression as well as activation of canonical pathway signalling molecules. In addition, inhibition of Smad2 or Smad3 using small interfering RNA (siRNA) also suppressed neovibsanin B stimulated ECM protein synthesis in ONH astrocytes and LC cells. Thus neovibsanin B utilizes the canonical Smad signalling pathway to stimulate ECM synthesis in human ONH cells. The neovibsanin B induced ECM synthesis and activation of the canonical Smad signalling pathway may be due to its effect on transforming growth factor-β2 (TGF-β2). However, further studies are under process to understand the mechanism.

  6. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Institute of Scientific and Technical Information of China (English)

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  7. Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud.

    Directory of Open Access Journals (Sweden)

    Xing Huang

    Full Text Available In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5 or extremely low (Dazhuhuangbaima shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.

  8. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    Science.gov (United States)

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  9. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen

    Science.gov (United States)

    Szatmári, Tünde; Kis, Dávid; Bogdándi, Enikő Noémi; Benedek, Anett; Bright, Scott; Bowler, Deborah; Persa, Eszter; Kis, Enikő; Balogh, Andrea; Naszályi, Lívia N.; Kadhim, Munira; Sáfrány, Géza; Lumniczky, Katalin

    2017-01-01

    Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation

  10. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Role of actin in auxin transport and transduction of gravity

    Science.gov (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  12. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  13. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    Directory of Open Access Journals (Sweden)

    Da-Wei Yan

    Full Text Available Aux/IAAs interact with auxin response factors (ARFs to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  14. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Directory of Open Access Journals (Sweden)

    Patricia Müller-Moulé

    2016-10-01

    Full Text Available Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  15. Plant cells use auxin efflux to explore geometry.

    Science.gov (United States)

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-07-28

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.

  16. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Science.gov (United States)

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L.; Palmer, Christine M.; Covington, Michael F.; Wallace, Andreah D.; Harmer, Stacey L.

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance. PMID:27761349

  17. Auxin regulates distal stem cell differentiation in Arabidopsis roots.

    Science.gov (United States)

    Ding, Zhaojun; Friml, Jirí

    2010-06-29

    The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Genetic analysis shows that auxin acts upstream of the major regulators of the stem cell activity, the homeodomain transcription factor WOX5, and the AP-2 transcription factor PLETHORA. Auxin signaling for differentiation of distal stem cells requires the transcriptional repressor IAA17/AXR3 as well as the ARF10 and ARF16 auxin response factors. ARF10 and ARF16 activities repress the WOX5 transcription and restrict it to the quiescent center, where WOX5, in turn, is needed for the activity of PLETHORA. Our investigations reveal that long-distance auxin signals act upstream of the short-range network of transcriptional factors to mediate the differentiation of distal stem cells in roots.

  18. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    Science.gov (United States)

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.

  19. Electroacupuncture at PC6 (Neiguan Improves Extracellular Signal-Regulated Kinase Signaling Pathways Through the Regulation of Neuroendocrine Cytokines in Myocardial Hypertrophic Rats

    Directory of Open Access Journals (Sweden)

    Jia Li

    2012-01-01

    Full Text Available Electroacupuncture (EA therapy has been widely accepted as a useful therapeutic technique with low or no risk in the clinical prevention of cardiac hypertrophy. However, the signaling transduction mechanism underlying this effect remains unclear. The current study investigates the effects of EA on the signaling pathways of myocardial hypertrophy (MH in rats. Up to 40 3-month-old Sprague-Dawley (SD rats were randomly divided into normal, model, PC6 (Neiguan, and LI4 (Hegu groups, with ten rats in each group. All the rats except for the normal group received 3 mg/kg⋅d of isoprinosine hydrochloride (ISO injection into the back skin. The rats in the PC6 and LI4 groups received EA for 14 days. On the 15th day, electrocardiograms were recorded, and the ultrastructure of the myocardial cells was observed. The myocardial hypertrophy indices (MHIs, electrocardiograph (ECG, ultrastructure observation, levels of plasma angiotensin II (Ang II and endothelin (ET, as well as protein expression of extracellular signal-regulated kinase (ERK, and phosphorylation extracellular signal regulating kinase (p-ERK in the left ventricular myocardial tissue were measured. The results indicated that EA can improve cardiac function in MH rats by modulating upstream neuroendocrine cytokines that regulate the ERK signaling pathways.

  20. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    Science.gov (United States)

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis.

  1. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.

    Science.gov (United States)

    Huang, Jia-bao; Liu, Huili; Chen, Min; Li, Xiaojuan; Wang, Mingyan; Yang, Yali; Wang, Chunling; Huang, Jiaqing; Liu, Guolan; Liu, Yuting; Xu, Jian; Cheung, Alice Y; Tao, Li-zhen

    2014-09-01

    ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.

  2. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling.

    Science.gov (United States)

    Sharp, L L; Hedrick, S M

    1999-12-15

    The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.

  3. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  4. Identification of auxin responsive genes in Arabidopsis by cDNA array

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The plant hormone auxin influences a variety of developmental and physiological processes. But the mechanism of its action is quite unclear. In order to identify and analyze the expression of auxin responsive genes, a cDNA array approach was used to screen for genes with altered expression from Arabidopsis suspension culture after IAA treatment and was identified 50 differentially expressed genes from 13824 cDNA clones. These genes were related to signal transduction, stress responses, senescence, photosynthesis, protein biosynthesis and transportation. The results provide the molecular evidence that auxin influences a variety of physiological processes and pave a way for further investigation of the mechanism of auxin action. Furthermore,we found that the expression of a ClpC (regulation subunit of Clp protease) was repressed by exogenous auxin, but increased in dark-induced senescing leaves. This suggests that ClpC may be a senescence-associated gene and can be regulated by auxin.

  5. Regulation of extracellular signal-regulated kinase 1/2 inlfuences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Pan Zhang; Liwei Jing; Changxiang Chen; Shuxing Li

    2014-01-01

    Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and Ku70 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These ifndings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac-celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/reperfusion.

  6. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing.

    Science.gov (United States)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-05-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at modifying pathogenic NET formation should ideally preserve other neutrophil antimicrobial functions. We now show that signal inhibitory receptor on leukocytes-1 (SIRL-1) attenuates NET release by human neutrophils in response to distinct triggers, including opsonized Staphylococcus aureus and inflammatory danger signals. NET release has different kinetics depending on the stimulus, and rapid NET formation is independent of NADPH oxidase activity. In line with this, we show that NET release and reactive oxygen species production upon challenge with opsonized S. aureus require different signaling events. Importantly, engagement of SIRL-1 does not affect bacterially induced production of reactive oxygen species, and intracellular bacterial killing by neutrophils remains intact. Thus, our studies define SIRL-1 as an intervention point of benefit to suppress NET formation in disease while preserving intracellular antimicrobial defense.

  7. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Directory of Open Access Journals (Sweden)

    Vania A Figueroa

    2014-09-01

    Full Text Available Gap junction channels (GJCs and hemichannels (HCs are composed of protein subunits termed connexins (Cxs and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive nonsyndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the ATP release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects.

  8. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  9. The diageotropica gene differentially affects auxin and cytokinin responses throughout development in tomato.

    Science.gov (United States)

    Coenen, C; Lomax, T L

    1998-05-01

    The interactions between the plant hormones auxin and cytokinin throughout plant development are complex, and genetic investigations of the interdependency of auxin and cytokinin signaling have been limited. We have characterized the cytokinin sensitivity of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) in a range of auxin- and cytokinin-regulated responses. Intact, etiolated dgt seedlings showed cross-resistance to cytokinin with respect to root elongation, but cytokinin effects on hypocotyl growth and ethylene synthesis in these seedlings were not impaired by the dgt mutation. Seven-week-old, green wild-type and dgt plants were also equally sensitive to cytokinin with respect to shoot growth and hypocotyl and internode elongation. The effects of cytokinin and the dgt mutation on these processes appeared additive. In tissue culture organ regeneration from dgt hypocotyl explants showed reduced sensitivity to auxin but normal sensitivity to cytokinin, and the effects of cytokinin and the mutation were again additive. However, although callus induction from dgt hypocotyl explants required auxin and cytokinin, dgt calli did not show the typical concentration-dependent stimulation of growth by either auxin or cytokinin observed in wild-type cells. Cross-resistance of the dgt mutant to cytokinin thus was found to be limited to a small subset of auxin- and cytokinin-regulated growth processes affected by the dgt mutation, indicating that auxin and cytokinin regulate plant growth through both shared and separate signaling pathways.

  10. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.

    2007-01-01

    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely

  11. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in arabidopsis

    NARCIS (Netherlands)

    Simonini, Sara; Deb, Joyita; Moubayidin, Laila; Stephenson, Pauline; Valluru, Manoj; Freire-Rios, Alejandra; Sorefan, Karim; Weijers, Dolf; Friml, Jiří; Østergaard, Lars

    2016-01-01

    Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant’s life cycle. Auxin signaling occurs through bindin

  12. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.

    2007-01-01

    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentif

  13. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  14. AUXIN STIMULATION OF ETHYLENE EVOLUTION

    Science.gov (United States)

    mechanism of auxin action on the enhancement of ethylene production is the formation of enzymes involved in ethylene biogenesis....The stimulation of ethylene production by auxin was inhibited by actinomycin D and other inhibitors of protein synthesis. It is concluded that the

  15. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  16. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.

    Science.gov (United States)

    Kami, Chitose; Allenbach, Laure; Zourelidou, Melina; Ljung, Karin; Schütz, Frédéric; Isono, Erika; Watahiki, Masaaki K; Yamamoto, Kotaro T; Schwechheimer, Claus; Fankhauser, Christian

    2014-02-01

    Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

  17. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    Science.gov (United States)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  18. Auxin control of root development.

    Science.gov (United States)

    Overvoorde, Paul; Fukaki, Hidehiro; Beeckman, Tom

    2010-06-01

    A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.

  19. Nature of extracellular signal that triggers RhoA/ROCK activation for the basal internal anal sphincter tone in humans.

    Science.gov (United States)

    Rattan, Satish; Singh, Jagmohan; Kumar, Sumit; Phillips, Benjamin

    2015-06-01

    The extracellular signal that triggers activation of rho-associated kinase (RhoA/ROCK), the major molecular determinant of basal internal anal sphincter (IAS) smooth muscle tone, is not known. Using human IAS tissues, we identified the presence of the biosynthetic machineries for angiotensin II (ANG II), thromboxane A2 (TXA2), and prostaglandin F2α (PGF2α). These end products of the renin-angiotensin system (RAS) (ANG II) and arachidonic acid (TXA2 and PGF2α) pathways and their effects in human IAS vs. rectal smooth muscle (RSM) were studied. A multipronged approach utilizing immunocytochemistry, Western blot analyses, and force measurements was implemented. Additionally, in a systematic analysis of the effects of respective inhibitors along different steps of biosynthesis and those of antagonists, their end products were evaluated either individually or in combination. To further describe the molecular mechanism for the IAS tone via these pathways, we monitored RhoA/ROCK activation and its signal transduction cascade. Data showed characteristically higher expression of biosynthetic machineries of RAS and AA pathways in the IAS compared with the RSM. Additionally, specific inhibition of the arachidonic acid (AA) pathway caused ~80% decrease in the IAS tone, whereas that of RAS lead to ~20% decrease. Signal transduction studies revealed that the end products of both AA and RAS pathways cause increase in the IAS tone via activation of RhoA/ROCK. Both AA and RAS (via the release of their end products TXA2, PGF2α, and ANG II, respectively), provide extracellular signals which activate RhoA/ROCK for the maintenance of the basal tone in human IAS.

  20. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  1. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  2. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    DEFF Research Database (Denmark)

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E

    2013-01-01

    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentia......During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (m......ESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial......-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key...

  3. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    Energy Technology Data Exchange (ETDEWEB)

    Curbo, Sophie; Gaudin, Raphael [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Carlsten, Mattias; Malmberg, Karl-Johan [Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Troye-Blomberg, Marita [Department of Immunology, Stockholm University, SE-10691 Stockholm (Sweden); Ahlborg, Niklas [Department of Immunology, Stockholm University, SE-10691 Stockholm (Sweden); Mabtech, Box 1233, SE-13128 Nacka Strand (Sweden); Karlsson, Anna; Johansson, Magnus [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Lundberg, Mathias, E-mail: mathias.lundberg@ki.se [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden)

    2009-12-25

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4R{alpha} receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  4. A novel sensor to map auxin response and distribution at high spatio-temporal resolution.

    Science.gov (United States)

    Brunoud, Géraldine; Wells, Darren M; Oliva, Marina; Larrieu, Antoine; Mirabet, Vincent; Burrow, Amy H; Beeckman, Tom; Kepinski, Stefan; Traas, Jan; Bennett, Malcolm J; Vernoux, Teva

    2012-01-15

    Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.

  5. The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Jason Liang Pin Ng

    2015-08-01

    Full Text Available Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root–microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root–nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.

  6. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

    Science.gov (United States)

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K

    2011-05-01

    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  7. Galanthamine, an anti-cholinesterase drug, effects plant growth and development in Artemisia tridentata Nutt. via modulation of auxin and neurotransmitter signaling.

    Science.gov (United States)

    Turi, Christina E; Axwik, Katarina E; Smith, Anderson; Jones, A Maxwell P; Saxena, Praveen K; Murch, Susan J

    2014-01-01

    Galanthamine is a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease, but the role of the compound in plant metabolism is not known. The current study was designed to investigate whether galanthamine could redirect morphogenesis of Artemisia tridentata Nutt. cultures by altering concentration of endogenous neurosignaling molecules acetylcholine (Ach), auxin (IAA), melatonin (Mel), and serotonin (5HT). Exposure of axenic A. tridentata cultures to 10 µM galanthamine decreased the concentration of endogenous Ach, IAA, MEL, and AchE, and altered plant growth in a manner reminiscent of 2-4D toxicity. Galanthamine itself demonstrated IAA activity in an oat coleoptile elongation bioassay, 20 µM galanthamine showed no significant difference compared with 5 μM IAA or 5 μM 1-Naphthaleneacetic acid (NAA). Metabolomic analysis detected between 20,921 to 27,891 compounds in A. tridentata plantlets and showed greater commonality between control and 5 µM treatments. Furthermore, metabolomic analysis putatively identified coumarins scopoletin/isoscopoletin, and scopolin in A. tridentata leaf extracts and these metabolites linearly increased in response to galanthamine treatments. Overall, these data indicate that galanthamine is an allelopathic phytochemical and support the hypothesis that neurologically active compounds in plants help ensure plant survival and adaptation to environmental challenges.

  8. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  9. Expression characteristics of GFP driven by NAC1 promoter and its responses to auxin and gibberellin

    Institute of Scientific and Technical Information of China (English)

    WANG Youhua; DUAN Liusheng; LU Mengzhu; LI Zhaohu; WANG Minjie; ZHAI Zhixi

    2006-01-01

    A 1050 bp fragment upstream transcription start site of a transcription factor gene NAC1 in Arabidopsis thaliana was amplified and cloned into plasmid pRD420 to construct a green fluorescent protein(GFP) fusion system under the control of NAC1 promoter. Plasmids were introduced into tobacco by Agrobacterium mediated method to regenerate plants with NAC1-GFP gene, and expression pattern of NAC1-GFP and its responses to auxin and gibberellin (GA) were observed. GFP was found to accumulate specifically in root, and was detected after treatment of auxin, N-1-Naphthylphthalamic acid (NPA, an auxin antagonist) or GA3. It was indicated that the expression of GFP driven by NAC1 promoter was induced not only by auxin but also by GAs, suggesting that NAC1 mediated both the auxin signaling and the GAs signaling involved in lateral roots development.

  10. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  11. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction*

    Science.gov (United States)

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xinning; Gritsenko, Marina A.; Zhao, Rui; Monore, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-01-01

    Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis. PMID:21454597

  12. Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction.

    Science.gov (United States)

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xinning; Gritsenko, Marina A; Zhao, Rui; Monore, Matthew E; Pertz, Olivier C; Purvine, Samuel O; Orton, Daniel J; Jacobs, Jon M; Camp, David G; Smith, Richard D; Klemke, Richard L

    2011-05-20

    Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  13. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution

    OpenAIRE

    2007-01-01

    In plants, each developmental process integrates a network of signaling events that are regulated by different phytohormones, and interactions among hormonal pathways are essential to modulate their effect. Continuous growth of roots results from the postembryonic activity of cells within the root meristem that is controlled by the coordinated action of several phytohormones, including auxin and ethylene. Although their interaction has been studied intensively, the molecular and cellular mech...

  14. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution.

    Directory of Open Access Journals (Sweden)

    Ora Hazak

    2010-01-01

    Full Text Available Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning.

  15. Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae.

    Science.gov (United States)

    Chen, Y; Norkin, L C

    1999-01-10

    It was reported earlier that entry of simian virus 40 (SV40) into cells is promoted by a signal transmitted by the virus from the cell surface and that SV40 enters cells through caveolae. It is shown here that bound SV40 begins to partition into a caveolae-enriched Triton X-100-insoluble membrane fraction at 30 min postadsorption. Maximal levels of SV40 were seen in that fraction at 1 h. The sterol-binding agent nystatin, which selectively disrupts the cholesterol-enriched caveolae-containing membrane microdomain, selectively blocked the SV40-induced signal. This implies that the SV40 signal is transmitted from that membrane microdomain. The tyrosine kinase inhibitor genistein, which was earlier shown to block the SV40-induced signal and infectious entry, did not block the partitioning of SV40 into the detergent-insoluble membrane fraction. This shows that the signal is not required for the translocation of SV40 to the detergent-insoluble membrane and is consistent with the finding that the signal is likely transmitted from that membrane microdomain. However, electron microscopy of the Triton X-100-insoluble membrane fraction showed that genistein caused SV40 particles to accumulate at the annuli or mouths of the caveolae. In contrast, most SV40 particles were found enclosed within caveolae in parallel samples from untreated control cells. Together, these results imply that SV40 initially binds to flat detergent-soluble membrane. The virus then translocates to a caveolae-containing detergent-insoluble membrane microdomain. From the flat portion of that membrane microdomain the virus induces a signal which promotes its entry into caveolae. Copyright 1999 Academic Press.

  16. Acupuncture combined with curcumin disrupts platelet-derived growth factor β receptor/extracellular signal-regulated kinase signalling and stimulates extracellular matrix degradation in carbon tetrachloride-induced hepatic fibrosis in rats.

    Science.gov (United States)

    Zhang, Xiao-Ping; Zhang, Feng; Zhang, Zi-Li; Ma, Jin; Kong, De-Song; Ni, Guang-Xia; Wang, Ai-Yun; Chen, Wen-Xing; Lu, Yin; Zheng, Shi-Zhong

    2012-12-01

    Acupuncture treatment has been increasingly used to treat chronic liver diseases. We previously reported that acupuncture combined with curcumin, a natural antifibrotic compound, could remarkably attenuate liver fibrosis in chemically intoxicated rats, but the underlying molecular mechanisms are poorly understood. The present study was aimed at investigating the effects of acupuncture combined with curcumin on platelet-derived growth factor (PDGF) signalling and extracellular matrix (ECM) regulation in the fibrotic liver. A total of 60 Sprague-Dawley male rats were randomly divided into control, model, sham, acupuncture, curcumin and combination treatment groups. During the establishment of fibrosis using carbon tetrachloride (CCl(4)), acupuncture at LR3, LR14, BL18 and ST36 and/or curcumin treatment by mouth were performed simultaneously. After treatment, serum PDGF levels were measured. Protein and mRNA expression of key effectors in PDGF pathway and fibrinolysis in the liver was determined. Acupuncture combined with curcumin potently reduced serum PDGF levels and selectively disrupted the PDGF-βR/extracellular signal-regulated kinase (ERK) cascade. Combination treatment also significantly repressed expression of connective tissue growth factor and upregulated expression of matrix metalloproteinase-9, promoting fibrinolysis in the fibrotic liver. The beneficial effects of acupuncture and its combination with curcumin could be attributed to the disruption of PDGF-βR/ERK pathway and stimulated ECM degradation in the fibrotic liver. Acupuncture treatment significantly enhanced curcumin effects at the molecular level. These findings may provide molecular insights into the potential of acupuncture combined with curcumin for prevention of hepatic fibrosis.

  17. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1.

    Science.gov (United States)

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T; Hocart, Charles H; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-08-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.

  18. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  19. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer

    Science.gov (United States)

    Soekmadji, Carolina; Riches, James D.; Russell, Pamela J.; Ruelcke, Jayde E.; McPherson, Stephen; Wang, Chenwei; Hovens, Chris M.; Corcoran, Niall M.; Hill, Michelle M.; Nelson, Colleen C.

    2017-01-01

    Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. PMID:28881726

  20. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis.

    Science.gov (United States)

    Robert, Hélène S; Crhak Khaitova, Lucie; Mroue, Souad; Benková, Eva

    2015-08-01

    Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.

  1. Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2.

    Science.gov (United States)

    Ranieri, Marianna; Tamma, Grazia; Di Mise, Annarita; Russo, Annamaria; Centrone, Mariangela; Svelto, Maria; Calamita, Giuseppe; Valenti, Giovanna

    2015-07-01

    We previously described that high luminal Ca(2+) in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through activation of the Ca(2+)-sensing receptor (CaSR). Here, we evaluated AQP2 phosphorylation and permeability, in both renal HEK-293 cells and in the dissected inner medullary collecting duct, in response to specific activation of CaSR with NPS-R568. In CaSR-transfected cells, CaSR activation drastically reduced the basal levels of AQP2 phosphorylation at S256 (AQP2-pS256), thus having an opposite effect to vasopressin action. When forskolin stimulation was performed in the presence of NPS-R568, the increase in AQP2-pS256 and in the osmotic water permeability were prevented. In the freshly isolated inner mouse medullar collecting duct, stimulation with forskolin in the presence of NPS-R568 prevented the increase in AQP2-pS256 and osmotic water permeability. Our data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response. By extension, our results suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP, conferring high sensitivity of hormone to extracellular Ca(2+). © 2015. Published by The Company of Biologists Ltd.

  2. Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signalling in a High-Throughput Format

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub

    2014-06-01

    Full Text Available The extracellular signal-regulated kinases (ERKs are key components of multiple important cell signalling pathways regulating diverse biological responses. This signalling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs and receptor tyrosine kinases (RTKs. We report the development of a new cell-based phospho-ERK1/2 assay (designated Phospho-ERK, which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor (EGFR as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently or stably expressing the different receptors. The validation was performed for agonists, antagonists and inhibitors in dose-response as well as kinetic analysis, and the signalling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z’-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signalling. Finally, our study is of great interest in the current context of investigating ERK1/2 signalling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signalling.

  3. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz-Cuesta, Elena; Olesen, Christina W;

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...... the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D...... and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2....

  4. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz Cuesta, Elena; Olesen, Christina Wilkens

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...... the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D...... in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. CONCLUSIONS: This work characterizes a new type of scaffolding complex, which we term a "shuffle complex", between the disordered hNHE1-tail...

  5. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  6. Epidermal Growth Factor Stimulates Extracellular-Signal Regulated Kinase Phosphorylation of a Novel Site on Cytoplasmic Dynein Intermediate Chain 2

    Directory of Open Access Journals (Sweden)

    Andrew D. Catling

    2013-02-01

    Full Text Available Extracellular-signal regulated kinase (ERK signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2 as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.

  7. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase.

    Science.gov (United States)

    Takeda, Kotaro; Tsuji, Minoru; Miyagawa, Kazuya; Takeda, Hiroshi

    2017-01-18

    Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The present study examined the involvement of extracellular signal-regulated kinase 1/2 (ERK) signaling on the serotonin (5-HT)7 receptor-mediated fear conditioning. Conditioning was performed in a trial in which a tone was followed by an electrical foot-shock. Context- and tone-dependent fear were examined in tests conducted 24 and 48h after conditioning, respectively. The selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,-tetrahydrobenzo(c,d)indol-2-(1H)-one (DR4004) (5mg/kg), when administered intraperitoneally (i.p.) immediately after conditioning, caused a significant decrease in both context- and tone-dependent fear responses (freezing behavior). A significant increase in ERK activity was observed in the amygdala of mice that displayed context- or tone-dependent fear responses, and these changes were also inhibited by the administration of DR4004 (5mg/kg, i.p.) immediately after conditioning. In contrast, the increase in hippocampal ERK activity in mice that displayed context-dependent fear responses was further enhanced by the administration of DR4004 (5mg/kg, i.p.). These results suggest that 5-HT7 receptor-mediated ERK signaling may play a significant role in the processes of emotional learning and memory.

  8. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-06-17

    Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  9. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  10. Role of reactive oxygen species in extracellular signal-regulated protein kinase phosphorylation and 6-hydroxydopamine cytotoxicity

    Indian Academy of Sciences (India)

    Scott M Kulich; Charleen T Chu

    2003-02-01

    A number of reports indicate the potential for redox signalling via extracellular signal-regulated protein kinases (ERK) during neuronal injury. We have previously found that sustained ERK activation contributes to toxicity elicited by 6-hydroxydopamine (6-OHDA) in the B65 neuronal cell line. To determine whether reactive oxygen species (ROS) play a role in mediating ERK activation and 6-OHDA toxicity, we examined the effects of catalase, superoxide dismutase (SOD1), and metalloporphyrin antioxidants (‘SOD mimetics’) on 6-OHDA-treated cells. We found that catalase and metalloporphyrin antioxidants not only conferred protection against 6-OHDA but also inhibited development of sustained ERK phosphorylation in both differentiated and undifferentiated B65 cells. However, exogenously added SOD1 and heat-inactivated catalase had no effect on either toxicity or sustained ERK phosphorylation. This correlation between antioxidant protection and inhibition of 6-OHDA-induced sustained ERK phosphorylation suggests that redox regulation of ERK signalling cascades may contribute to neuronal toxicity.

  11. A genomics approach to understanding the role of auxin in apple (Malus x domestica fruit size control

    Directory of Open Access Journals (Sweden)

    Devoghalaere Fanny

    2012-01-01

    Full Text Available Abstract Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106. This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3 removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

  12. Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats.

    Science.gov (United States)

    Borges, Gisela; Miguelez, Cristina; Neto, Fani; Mico, Juan Antonio; Ugedo, Luisa; Berrocoso, Esther

    2017-06-01

    There is increasing evidence suggesting that the Locus Coeruleus plays a role in pain-related anxiety. Indeed, we previously found that prolonged arthritis produces anxiety-like behavior in rats, along with enhanced expression of phosphorylated extracellular signal-regulated kinase 1/2 (a marker of plasticity) in the Locus Coeruleus. However, it is unknown how this effect correlates with the electrophysiological activity of Locus Coeruleus neurons or pain-related anxiety. Using the complete Freund's adjuvant model of monoarthritis in male Sprague-Dawley rats, we studied the behavioral attributes of pain and anxiety as well as Locus Coeruleus electrophysiology in vivo 1 (MA1W) and 4 weeks (MA4W) after disease induction. The manifestation of anxiety in MA4W was accompanied by dampened tonic Locus Coeruleus activity, which was coupled to an exacerbated evoked Locus Coeruleus response to noxious stimulation of the inflamed and healthy paw. When a mitogen-activating extracellular kinase inhibitor was administered to the contralateral Locus Coeruleus of MA4W, the phosphorylated extracellular signal-regulated kinase 1/2 levels in the Locus Coeruleus were restored and the exaggerated evoked response was blocked, reversing the anxiogenic-like behavior while pain hypersensitivity remained unaltered. As phosphorylated extracellular signal-regulated kinase 1/2 blockade in the Locus Coeruleus relieved anxiety and counteracted altered LC function, we propose that phosphorylated extracellular signal-regulated kinase 1/2 activation in the Locus Coeruleus plays a crucial role in pain-related anxiety.

  13. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review).

    Science.gov (United States)

    Katoh, Masaru

    2013-10-01

    Angiogenesis is a process of neovascular formation from pre-existing blood vessels, which consists of sequential steps for vascular destabilization, angiogenic sprouting, lumen formation and vascular stabilization. Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin, Notch, transforming growth factor-β (TGF-β), Hedgehog and WNT signaling cascades orchestrate angiogenesis through the direct or indirect regulation of quiescence, migration and the proliferation of endothelial cells. Small-molecule compounds and human/humanized monoclonal antibodies interrupting VEGF signaling have been developed as anti-angiogenic therapeutics for cancer and neovascular age-related macular degeneration (AMD). Gene or protein therapy delivering VEGF, FGF2 or FGF4, as well as cell therapy using endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been developed as pro-angiogenic therapeutics for ischemic heart disease and peripheral vascular disease. Anti-angiogenic therapy for cancer and neovascular AMD is more successful than pro-angiogenic therapy for cardiovascular diseases, as VEGF-signal interruption is technically feasible compared with vascular re-construction. Common and rare genetic variants are detected using array-based technology and personal genome sequencing, respectively. Drug and dosage should be determined based on personal genotypes of VEGF and other genes involved in angiogenesis. As epigenetic alterations give rise to human diseases, polymer-based hydrogel film may be utilized for the delivery of drugs targeting epigenetic processes and angiogenesis as treatment modalities for cardiovascular diseases. Circulating microRNAs (miRNAs) in exosomes and microvesicles are applied as functional biomarkers for diagnostics and prognostics, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. A more profound understanding of the spatio

  14. Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment.

    Science.gov (United States)

    Mignolli, Francesco; Mariotti, Lorenzo; Lombardi, Lara; Vidoz, María Laura; Ceccarelli, Nello; Picciarelli, Piero

    2012-08-15

    In tomato (Solanum lycopersicum Mill.), auxin is believed to play a pivotal role in controlling fruit-set and early ovary growth. In this paper we investigated the effect of the reduced auxin sensitivity exhibited by the diageotropica (dgt) tomato mutant on ovary growth during early stage of fruit development. Here we show that in hand-pollinated ovaries fruit-set was not affected by the dgt lesion while fruit growth was reduced. This reduction was associated with a smaller cell size of mesocarp cells, with a lower mean C values and with a lower gene expression of the expansin gene LeExp2. When a synthetic auxin (4-CPA, chlorophenoxyacetic acid) was applied to the flowers of wild type plants, parthenocarpic ovary growth was induced. On the contrary, auxin application to the flowers of dgt plants failed to induce parthenocarpy. Hand-pollinated ovaries of dgt contained higher levels of IAA compared to wild type and this was not associated with high transcript levels of genes encoding a key regulatory enzyme of IAA biosynthesis (ToFZYs) but with lower expression levels of GH3, a gene involved in the conjugation of IAA to amino acids. The expression of diverse Aux/IAA genes and SAUR (small auxin up-regulated RNA) was also altered in the dgt ovaries. The dgt lesion does not seem to affect specific Aux/IAA genes in terms of transcript occurrence but rather in terms of relative levels of expression. Transcript levels of Aux/IAA genes were up regulated in auxin-treated ovaries of wild-type but not in dgt. Together, our results suggest that dgt ovary cells are not able to sense and/or transduce the external auxin signal, whereas pollinated dgt ovary cells are able to detect the IAA present in fertilized ovules promoting fruit development.

  15. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing

    NARCIS (Netherlands)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-01-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at m

  16. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  17. An auxin transport mechanism restricts positive orthogravitropism in lateral roots.

    Science.gov (United States)

    Rosquete, Michel Ruiz; von Wangenheim, Daniel; Marhavý, Peter; Barbez, Elke; Stelzer, Ernst H K; Benková, Eva; Maizel, Alexis; Kleine-Vehn, Jürgen

    2013-05-01

    As soon as a seed germinates, plant growth relates to gravity to ensure that the root penetrates the soil and the shoot expands aerially. Whereas mechanisms of positive and negative orthogravitropism of primary roots and shoots are relatively well understood, lateral organs often show more complex growth behavior. Lateral roots (LRs) seemingly suppress positive gravitropic growth and show a defined gravitropic set-point angle (GSA) that allows radial expansion of the root system (plagiotropism). Despite its eminent importance for root architecture, it so far remains completely unknown how lateral organs partially suppress positive orthogravitropism. Here we show that the phytohormone auxin steers GSA formation and limits positive orthogravitropism in LR. Low and high auxin levels/signaling lead to radial or axial root systems, respectively. At a cellular level, it is the auxin transport-dependent regulation of asymmetric growth in the elongation zone that determines GSA. Our data suggest that strong repression of PIN4/PIN7 and transient PIN3 expression limit auxin redistribution in young LR columella cells. We conclude that PIN activity, by temporally limiting the asymmetric auxin fluxes in the tip of LRs, induces transient, differential growth responses in the elongation zone and, consequently, controls root architecture.

  18. Simple hormones but complex signalling.

    Science.gov (United States)

    Vogler, Hannes; Kuhlemeier, Cris

    2003-02-01

    It has not been easy to make sense of the pleiotropic effects of plant hormones, especially of auxins; but now, it has become possible to study these effects within the framework of what we know about signal transduction in general. Changes in local auxin concentrations, perhaps even actively maintained auxin gradients, signal to networks of transcription factors, which in turn signal to downstream effectors. Transcription factors can also signal back to hormone biosynthetic pathways.

  19. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  20. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  1. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    Science.gov (United States)

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  2. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control.

    Science.gov (United States)

    Lelièvre, Sophie A

    2009-09-01

    Post-translational modification of histones, ATP-dependent chromatin remodeling, and DNA methylation are interconnected nuclear mechanisms that ultimately lead to the changes in chromatin structure necessary to carry out epigenetic gene expression control. Tissue differentiation is characterized by a specific gene expression profile in association with the acquisition of a defined tissue architecture and function. Elements critical for tissue differentiation, like extracellular stimuli, adhesion and cell shape properties, and transcription factors all contribute to the modulation of gene expression and thus, are likely to impinge on the nuclear mechanisms of epigenetic gene expression control. In this review, we analyze how these elements modify chromatin structure in a hierarchical manner by acting on the nuclear machinery. We discuss how mechanotransduction via the structural continuum of the cell and biochemical signaling to the cell nucleus integrate to provide a comprehensive control of gene expression. The role of nuclear organization in this control is highlighted, with a presentation of differentiation-induced nuclear structure and the concept of nuclear organization as a modulator of the response to incoming signals.

  3. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa.

    Science.gov (United States)

    Awda, Basim J; Buhr, Mary M

    2010-11-01

    The extracellular signal-regulated kinase (ERK) family of the mitogen-activated protein kinase (MAPK) pathway is identified for the first time in boar sperm and is associated with capacitation and tyrosine phosphorylation (tyr-P). Reactive oxygen species (ROS) modulate this signal transduction. Western immunoblotting detected the ERK pathway components RAF1, MEK1/2, and ERK1/2 in extracts from fresh boar spermatozoa and determined that their phosphoprotein profiles differed in a capacitation-dependent fashion. Capacitation was accompanied by appearance of two new ERKs (158 and 161 kDa) and disappearance of others. Capacitation was verified with increased tyr-P, which was inhibited by a 30-min pre-exposure of fresh boar sperm to a xanthine/xanthine oxidase ROS-generating system prior to the capacitating incubation; ROS pre-exposure also affected the phosphorylation of RAF1, MEK1/2, and ERK1/2. Preincubating sperm with inhibitors of the ERK components with or without the ROS generator affected subsequent capacitation. Inhibiting ERK1/2 inhibited tyr-P of capacitated boar spermatozoa proteins of 172, 97, and 66 kDa (P ≤ 0.04); with ROS, this inhibition increased (P influence through crosstalk with different pathways. ROS affect RAF1, MEK1/2, and ERK1/2 and could influence the sequential events of boar sperm capacitation.

  4. [Expression of extracellular signal-regulated protein kinases in the subcutaneous fascia of rats and their changes after acupuncture].

    Science.gov (United States)

    Jiang, Xue-mei; Yang, Chun; Yuan, Lin; Diao, Jian-xin; Zhang, Xue-quan; Huang, Yong; Dai, Jing-xing; Qiu, Xiao-zhong; Yu, Lei

    2009-04-01

    To observe the effect of acupuncture on the expression of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in the subcutaneous fascia of SD rats. Eighteen SD rats were randomly divided into 6 groups (n=3) including 5 acupuncture groups and a control group. The rats in the 5 acupuncture groups received electro-acupuncture therapy in the regions of the inguinal groove, and at 0, 1, 6, 12, and 36 h after the last therapy, the superfacial fascia surrounding the acupuncture point (about 1.5 cm in diameter) were collected. The fascia tissues at the corresponding sites and at the acupoint Zusanli (ST36) were obtained from the control rats. The expression of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the tissues were detected by Western blotting. ERK1/2 and p-ERK1/2 expressions were detected in the tissues harvested from both the acupoint and the non-acupoint in the control rats with similar expression intensities. In the rats of each acupuncture group, ERK1/2 expression was significantly increased on the acupuncture side in comparison with the control side. The normal loose connective tissue may participate in tissue proliferation and differentiation possibly via phosphorylation of ERK. Acupuncture can promote the signal transduction pathway of ERK, which can be a possible mechanism for the effect of acupuncture in modulating the physiopathological conditions.

  5. Repression of the Auxin Response Pathway Increases Arabidopsis Susceptibility to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Francisco Llorente; Paul Muskett; Andrea Sánchez-Vallet; Gemma López; Brisa Ramos; Clara Sánchez-Rodríguez; Lucia Jordá; Jane Parker; Antonio Molina

    2008-01-01

    In plants, resistance to necrotrophic pathogens depends on the interplay between different hormone systems, such as those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene, and abscisic acid. Repression of auxin signaling by the SA pathway was recently shown to contribute to antibacterial resistance. Here, we demonstrate that Arabidopsis auxin signaling mutants axrl, axr2, and axr6 that have defects in the auxin-stimulated SCF (Skpl-Cullin-F-box) ubiquitination pathway exhibit increased susceptibility to the necrotrophic fungi Plectosphaerella cucumerina and Botrytis cinerea. Also, stabilization of the auxin transcriptional repressor AXR3 that is normally targeted for removal by the SCF-ubiquitin/proteasome machinery occurs upon P. cucumerina infection. Pharmacological inhibition of auxin transport or proteasome function each compromise necrotroph resistance of wild-type plants to a similar extent as in non-treated auxin response mutants. These results suggest that auxin signaling is important for resistance to the necrotrophic fungi P. cucumerina and B. cinerea. SGTlb (one of two Arabidopsis SGT1 genes encoding HSP90/HSC70 co-chaperones) promotes the functions of SCF E3-ubiquitin ligase complexes in auxin and JA responses and resistance conditioned by certain Resistance (R) genes to biotrophic pathogens. We find that sgtlb mutants are as resistant to P. cucumerina as wild-type plants. Conversely, auxin/SCF signaling mutants are uncompromised in RPP4-triggered resistance to the obligate biotrophic oomycete, Hyaloperonospora parasitica. Thus, the predominant action of SGTlb in R gene-conditioned resistance to oomycetes appears to be at a site other than assisting SCF E3-ubiquitin ligases. However, genetic additivity of sgtlb axr1 double mutants in susceptibility to H. parasitica suggests that SCF-mediated ubiquitination contributes to limiting biotrophic pathogen colonization once plant-pathogen compatibility is established.

  6. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation.

    Science.gov (United States)

    Hanlon, Meredith T; Coenen, Catharina

    2011-02-01

    • Formation of arbuscular mycorrhiza (AM) is controlled by a host of small, diffusible signaling molecules, including phytohormones. To test the hypothesis that the plant hormone auxin controls mycorrhiza development, we assessed mycorrhiza formation in two mutants of tomato (Solanum lycopersicum): diageotropica (dgt), an auxin-resistant mutant, and polycotyledon (pct), a mutant with hyperactive polar auxin transport. • Mutant and wild-type (WT) roots were inoculated with spores of the AM fungus Glomus intraradices. Presymbiotic root-fungus interactions were observed in root organ culture (ROC) and internal fungal colonization was quantified both in ROC and in intact seedlings. • In ROC, G. intraradices stimulated presymbiotic root branching in pct but not in dgt roots. pct roots stimulated production of hyphal fans indicative of appressorium formation and were colonized more rapidly than WT roots. By contrast, approaching hyphae reversed direction to grow away from cultured dgt roots and failed to colonize them. In intact seedlings, pct and dgt roots were colonized poorly, but development of hyphae, arbuscules, and vesicles was morphologically normal within roots of both mutants. • We conclude that auxin signaling within host roots is required for the early stages of AM formation, including during presymbiotic signal exchange. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  7. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  8. Cue-elicited reward-seeking requires extracellular signal-regulated kinase activation in the nucleus accumbens.

    Science.gov (United States)

    Shiflett, Michael W; Martini, Ross P; Mauna, Jocelyn C; Foster, Rebecca L; Peet, Eloise; Thiels, Edda

    2008-02-01

    The motivation to seek out rewards can come under the control of stimuli associated with reward delivery. The ability of cues to motivate reward-seeking behavior depends on the nucleus accumbens (NAcc). The molecular mechanisms in the NAcc that underlie the ability of a cue to motivate reward-seeking are not well understood. We examined whether extracellular signal-regulated kinase (ERK), an important intracellular signaling pathway in learning and memory, has a role in these motivational processes. We first examined p42 ERK (ERK2) activation in the NAcc after rats were trained to associate an auditory stimulus with food delivery and found that, as a consequence of training, presentation of the auditory cue itself was sufficient to increase ERK2 activation in the NAcc. To examine whether inhibition of ERK in the NAcc prevents cue-induced reward-seeking, we infused an inhibitor of ERK, U0126, into the NAcc before assessing rats' instrumental responding in the presence versus absence of the conditioned cue. We found that, whereas vehicle-infused rats showed increased instrumental responding during cue presentation, rats infused with U0126 showed a profound impairment in cue-induced instrumental responding. In contrast, intra-NAcc U0126 infusion had no effect on rats' food-reinforced instrumental responding or their ability to execute conditioned approach behavior. Our results demonstrate learning-related changes in ERK signaling in the NAcc, and that disruption of ERK activation in this structure interferes with the incentive-motivational effects of conditioned stimuli. The molecular mechanisms described here may have implications for cue-elicited drug craving after repeated exposure to drugs of abuse.

  9. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    Science.gov (United States)

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  10. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    Science.gov (United States)

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  11. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  12. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling.

    Science.gov (United States)

    Harazono, Yosuke; Kho, Dhong Hyo; Balan, Vitaly; Nakajima, Kosei; Hogan, Victor; Raz, Avraham

    2015-08-14

    Galectin-3 (Gal-3, LGALS3) is a pleotropic versatile, 29-35 kDa chimeric gene product, and involved in diverse physiological and pathological processes, including cell growth, homeostasis, apoptosis, pre-mRNA splicing, cell-cell and cell-matrix adhesion, cellular polarity, motility, adhesion, activation, differentiation, transformation, signaling, regulation of innate/adaptive immunity, and angiogenesis. In multiple diseases, it was found that the level of circulating Gal-3 is markedly elevated, suggesting that Gal-3-dependent function is mediated by specific interaction with yet an unknown ubiquitous cell-surface protein. Recently, we showed that Gal-3 attenuated drug-induced apoptosis, which is one of the mechanisms underlying multidrug resistance (MDR). Here, we document that MDR could be mediated by Gal-3 interaction with the house-keeping gene product e.g., Na+/K+-ATPase, and P-glycoprotein (P-gp). Gal-3 interacts with Na+/K+-ATPase and induces the phosphorylation of P-gp. We also find that Gal-3 binds P-gp and enhances its ATPase activity. Furthermore Gal-3 antagonist suppresses this interaction and results in a decrease of the phosphorylation and the ATPase activity of P-gp, leading to an increased sensitivity to doxorubicin-mediated cell death. Taken together, these findings may explain the reported roles of Gal-3 in diverse diseases and suggest that a combined therapy of inhibitors of Na+/K+-ATPase and Gal-3, and a disease specific drug(s) might be superior to a single therapeutic modality.

  13. Structural Biology of Nuclear Auxin Action.

    Science.gov (United States)

    Dinesh, Dhurvas Chandrasekaran; Villalobos, Luz Irina A Calderón; Abel, Steffen

    2016-04-01

    Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.

  14. Voltage transients elicited by sudden step-up of auxin

    Science.gov (United States)

    Pickard, B. G.

    1984-01-01

    It is hypothesized (i) that the molecular mechanism for the reception of friction and flexure and the mechanism by which auxin enhances ethylene production have in common a release of free calcium into the cytosol, (ii) that elevated cytosolic calcium initiates vesicle exocytosis, and (iii) that the vesicles release a factor or set of factors which depolarizes the plasmalemma and promotes ethylene synthesis. One consequence of such exocytosis should be small, extracellularly observable voltage transients. Transients, ranging in size up to 600 microvolts and possessing risetimes (10-90%) of approximately 200 ms, are known to be elicited in etiolated stems of Pisum sativum L. by friction and are here shown to be elicited by sudden increase of auxin concentration and also by a Ca2+ ionophore.

  15. Activation of extracellular signal-regulated kinase (ERK) signaling in the pedunculopontine tegmental (PPT) cells is involved in the maintenance of sleep in rats

    Science.gov (United States)

    Desarnaud, Frank; Macone, Brian W.; Datta, Subimal

    2010-01-01

    Considerable evidence suggests that receptor-mediated excitation and inhibition of brainstem pedunculopontine tegmental (PPT) neurons are critically involved in the regulation of sleep-wake states. However, the molecular mechanisms operating within the PPT controlling sleep-wake states remain relatively unknown. This study was designed to examine sleep-wake state-associated extracellular-signal-regulated kinase 1 and 2 (ERK1/2) transduction changes in the PPT of freely moving rats. The results of this study demonstrate that the levels of ERK1/2 expression, phosphorylation, and activity in the PPT increased with increased amount of time spent in sleep. The sleep-associated increases in ERK1/2 expression, phosphorylation, and activity were not observed in the cortex, or in the immediately adjacent medial pontine reticular formation. The results of regression analyses revealed significant positive relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in slow-wave sleep, rapid eye movement sleep, and total sleep. Additionally, these regression analyses revealed significant negative relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in wakefulness. Collectively, these results, for the first time, suggest that the increased ERK1/2 signaling in the PPT is associated with maintenance of sleep via suppression of wakefulness. PMID:21166678

  16. Polar auxin transport: models and mechanisms

    NARCIS (Netherlands)

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.

    2013-01-01

    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her

  17. ACTION OF AUXIN ON LEAF ABSCISSION

    Science.gov (United States)

    Experiments have been conducted to investigate a two-stage effect of auxin on abscission. The two stages were demonstrated on greenhouse-grown Black...the second stage - the stage which is stimulated by auxin . Similar experiments were performed with petioles of various lengths and ages. The...implications of these results indicate possible sites of auxin action on leaf abscission. (Author)

  18. Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels.

    Science.gov (United States)

    Gao, Xiang; Yuan, Hong-Mei; Hu, Ye-Qin; Li, Jing; Lu, Ying-Tang

    2014-01-01

    Auxin and H2 O2 play vital roles in plant development and environmental responses; however, it is unclear whether and how H2 O2 modulates auxin levels. Here, we investigate this question using cat2-1 mutant, which exhibits reduced catalase activity and accumulates high levels of H2 O2 under photorespiratory conditions. At a light intensity of 150 μmol m(-2) s(-1) , the mutant exhibited up-curled leaves that have increased H2 O2 contents and decreased auxin levels. At low light intensities (30 μmol m(-2) s(-1)), the leaves of the mutant were normal, but exhibited reduced H2 O2 contents and elevated auxin levels. These findings suggest that H2 O2 modulates auxin levels. When auxin was directly applied to cat2-1 leaves, the up-curled leaves curled downwards. In addition, transformation of cat2-1 plants with pCAT2:iaaM, which increases auxin levels, rescued the hyponastic leaf phenotype. Using qRT-PCR, we demonstrated that the transcription of auxin synthesis-related genes and of genes that regulate leaf curvature is suppressed in cat2-1. Furthermore, application of glutathione rescued the up-curled leaves of cat2-1 and increased auxin levels, but did not change H2 O2 levels. Thus, the hyponastic leaves of cat2-1 reveal crosstalk between H2 O2 and auxin signalling that is mediated by changes in glutathione redox status.

  19. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  20. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway.

    Science.gov (United States)

    Miao, Jiayin; Ding, Minghui; Zhang, Aiwu; Xiao, Zijian; Qi, Weiwei; Luo, Ning; Di, Wei; Tao, Yuqian; Fang, Yannan

    2012-12-01

    Pleiotrophin (PTN) is an effective neuroprotective factor and its expression is strikingly increased in microglia after ischemia/reperfusion injury. However, whether PTN could provide neurotrophic support to neurons by regulating microglia function is not clear. In this study, we demonstrated that the expression of PTN was induced in microglia after oxygen-glucose deprivation/reperfusion. PTN promoted the proliferation of microglia by enhancing the G1 to S phase transition. PTN also stimulated the secretion of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and nerve growth factor (NGF) in microglia, but did not upregulate the expression of proinflammatory factors such as TNF-α, IL-1β and iNOS. Mechanistically, we found that PTN increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in microglia in both concentration-dependent and time-dependent manners. In addition, ERK1/2 inhibitor U0126 abolished the proliferation and G1 to S phase transition of microglia stimulated by PTN, and inhibited the production of BDNF, CNTF and NGF induced by PTN. In conclusion, our results demonstrated that PTN-ERK1/2 pathway plays important role in regulating microglia growth and secretion of neurotrophic factors. These findings provide new insight into the neuroprotective role of PTN and suggest that PTN is a new target for therapeutic intervention of stroke.

  1. Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived from Torreya nucifera

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Amentoflavone is a biflavonoid compound with antioxidant, anticancer, antibacterial, antiviral, anti-inflammatory, and UV-blocking activities that can be isolated from Torreya nucifera, Biophytum sensitivum, and Selaginella tamariscina. In this study, the molecular mechanism underlying amentoflavone’s anti-inflammatory activity was investigated. Amentoflavone dose dependently suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW264.7 cells stimulated with the TLR4 ligand lipopolysaccharide (LPS; derived from Gram-negative bacteria. Amentoflavone suppressed the nuclear translocation of c-Fos, a subunit of activator protein (AP-1, at 60 min after LPS stimulation and inhibited the activity of purified and immunoprecipitated extracellular signal-regulated kinase (ERK, which mediates c-Fos translocation. In agreement with these results, amentoflavone also suppressed the formation of a molecular complex including ERK and c-Fos. Therefore, our data strongly suggest that amentoflavone’s immunopharmacological activities are due to its direct effect on ERK.

  2. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  3. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats.

    Science.gov (United States)

    Wang, X-W; Li, T-T; Zhao, J; Mao-Ying, Q-L; Zhang, H; Hu, S; Li, Q; Mi, W-L; Wu, G-C; Zhang, Y-Q; Wang, Y-Q

    2012-08-16

    Cancer pain, especially cancer-induced bone pain, affects the quality of life of cancer patients, and current treatments for this pain are limited. The present study demonstrates that spinal extracellular signal-regulated kinase (ERK) activation in glial cells plays a crucial role in cancer-induced bone pain. From day 4 to day 21 after the intra-tibia inoculation with Walker 256 mammary gland carcinoma cells, significant mechanical allodynia was observed as indicated by the decrease of mechanical withdrawal thresholds in the von Frey hair test. Intra-tibia inoculation with carcinoma cells induced a vast and persistent (>21 D) activation of ERK in the bilateral L2-L3 and L4-L5 spinal dorsal horn. The increased pERK1/2-immunoreactivity was observed in both Iba-1-expressing microglia and GFAP-expressing astrocytes but not in NeuN-expressing neurons. A single intrathecal injection of the selective MEK (ERK kinase) inhibitors PD98059 (10 μg) on day 12 and U0126 (1.25 and 3 μg) on day 14, attenuated the bilateral mechanical allodynia in the von Frey hair test. Altogether, our results suggest that ERK activation in spinal microglia and astrocytes is correlated with the onset of allodynia and is important for allodynia maintenance in the cancer pain model. This study indicated that inhibition of the ERK pathway may provide a new therapy for cancer-induced bone pain.

  4. NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase

    Science.gov (United States)

    Kuek, Vincent; Yang, Zhifan; Chim, Shek Man; Zhu, Sipin; Xu, Huazi; Chow, Siu To; Tickner, Jennifer; Rosen, Vicki; Erber, Wendy; Li, Xiucheng; An, Qin; Qian, Yu; Xu, Jiake

    2016-01-01

    Angiogenesis plays an important role in bone development and remodeling and is mediated by a plethora of potential angiogenic factors. However, data regarding specific angiogenic factors that are secreted within the bone microenvironment to regulate osteoporosis is lacking. Here, we report that Nephronectin (NPNT), a member of the epidermal growth factor (EGF) repeat superfamily proteins and a homologue of EGFL6, is expressed in osteoblasts. Intriguingly, the gene expression of NPNT is reduced in the bone of C57BL/6J ovariectomised mice and in osteoporosis patients. In addition, the protein levels of NPNT and CD31 are also found to be reduced in the tibias of OVX mice. Exogenous addition of mouse recombinant NPNT on endothelial cells stimulates migration and tube-like structure formation in vitro. Furthermore, NPNT promotes angiogenesis in an ex vivo fetal mouse metatarsal angiogenesis assay. We show that NPNT stimulates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated kinase (MAPK) in endothelial cells. Inhibition of ERK1/2 impaired NPNT-induced endothelial cell migration, tube-like structure formation and angiogenesis. Taken together, these results demonstrate that NPNT is a paracrine angiogenic factor and may play a role in pathological osteoporosis. This may lead to new targets for treatment of bone diseases and injuries. PMID:27782206

  5. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated Kinase activation.

    Science.gov (United States)

    Li, Huifang; Li, Junru; Tang, Yuan; Lin, Lin; Xie, Zhanglian; Zhou, Jia; Zhang, Liyun; Zhang, Xiaoyong; Zhao, Xiaoshan; Chen, Zhengliang; Zuo, Daming

    2017-09-16

    Hepatitis B virus (HBV) infection is a serious public health problem leading to cirrhosis and hepatocellular carcinoma. As the clinical utility of current therapies is limited, the development of new therapeutic approaches for the prevention and treatment of HBV infection is imperative. Fucoidan is a natural sulfated polysaccharide that extracted from different species of brown seaweed, which was reported to exhibit various bioactivities. However, it remains unclear whether fucoidan influences HBV replication or not. The HBV-infected mouse model was established by hydrodynamic injection of HBV replicative plasmid, and the mice were treated with saline or fucoidan respectively. Besides, we also tested the inhibitory effect of fucoidan against HBV infection in HBV-transfected cell lines. The result showed that fucoidan from Fucus vesiculosus decreased serum HBV DNA, HBsAg and HBeAg levels and hepatic HBcAg expression in HBV-infected mice. Moreover, fucoidan treatment also suppressed intracellular HBcAg expression and the secretion of the HBV DNA as well as HBsAg and HBeAg in HBV-expressing cells. Furthermore, we proved that the inhibitory activity by fucoidan was due to the activation of the extracellular signal-regulated kinase (ERK) pathway and the subsequent production of type I interferon. Using specific inhibitor of ERK pathway abrogated the fucoidan-mediated inhibition of HBV replication. This study highlights that fucoidan might be served as an alternative therapeutic approach for the treatment of HBV infection.

  6. Role of extracellular signal-regulated kinase in regulating expression of interleukin 13 in lymphocytes from an asthmatic rat model

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-yuan; LIU Xian-sheng; LIU Chang; XU Yong-jian; XIONG Wei-xing

    2010-01-01

    Background The extracellular signal-regulated kinase (ERK) is widely expressed in mammal cells and involved in airway proliferation and remodeling in asthma. In this study, we intend to explore the role of ERK in the expression of the Th2 cytokine, interleukin 13 (IL-13) in lymphocytes in asthma.Methods Forty Sprague-Dawley rats were randomly divided into two groups: normal control and asthmatic groups. Peripheral blood lymphocytes were isolated and purified from the blood of each rat and divided into five groups: control, asthmatic lymphocytes, asthmatic cells stimulated with ERK activator epidermal growth factor (EGF), or with ERK inhibitor PD98059, or with EGF and PD98059 together. The expression of phosphorylated-ERK (p-ERK) was observed by immunocvtochemical staining, the expression of ERK mRNA was determined by reverse transcriptase-PCR, IL-13 protein in supernatants was measured by ELISA.Results (1) The ERK mRNA level and the percentage of cells with p-ERK in lymphocytes from asthmatic rats were significantly higher than those in normal controls, and were significantly increased by EGF administration. This effect of EGF was significantly inhibited by PD98059 pretreatment. (2) IL-13 protein in supematants of asthmatic lymphocytes was higher than that produced by normal control lymphocytes, and was significantly increased by EGF treatment. This EGF effect was partly blocked by PD98059 pretreatment. (3) There was a significant positive correlation between the percentage of cells with p-ERK in peripheral blood lymphocytes and IL-13 protein in supematants of lymphocytes from asthmatic rats.Conclusions In asthma the ERK expression and activation levels were increased, as was the protein level of IL-13. The ERK signaling pathway may be involved in the increased expression of the Th2 cytokine IL-13 in asthma.

  7. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes.

    Science.gov (United States)

    Krogan, Naden T; Marcos, Danielle; Weiner, Aaron I; Berleth, Thomas

    2016-10-01

    The regulatory effect auxin has on its own transport is critical in numerous self-organizing plant patterning processes. However, our understanding of the molecular mechanisms linking auxin signal transduction and auxin transport is still fragmentary, and important regulatory genes remain to be identified. To track a key link between auxin signaling and auxin transport in development, we established an Arabidopsis thaliana genetic background in which fundamental patterning processes in both shoot and root were essentially abolished and the expression of PIN FORMED (PIN) auxin efflux facilitators was dramatically reduced. In this background, we demonstrate that activating a steroid-inducible variant of the auxin response factor (ARF) MONOPTEROS (MP) is sufficient to restore patterning and PIN gene expression. Further, we show that MP binds to distinct promoter elements of multiple genetically defined PIN genes. Our work identifies a direct regulatory link between central, well-characterized genes involved in auxin signal transduction and auxin transport. The steroid-inducible MP system directly demonstrates the importance of this molecular link in multiple patterning events in embryos, shoots and roots, and provides novel options for interrogating the properties of self-regulated auxin-based patterning in planta. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Science.gov (United States)

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  9. Upregulation of parathyroid VDR expression by extracellular calcium is mediated by ERK1/2-MAPK signaling pathway.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Rocio; Rodriguez-Ortiz, Maria Encarnacion; Martinez-Moreno, Julio Manuel; Estepa, Jose Carlos; Zafra, Rafael; Perez, Jose; Muñoz-Castañeda, Juan Rafael; Canalejo, Antonio; Rodriguez, Mariano; Almaden, Yolanda

    2010-05-01

    We have previously demonstrated that the activation of rat parathyroid calcium-sensing receptor (CaSR) upregulates VDR expression in vivo (Garfia B, Cañadillas S, Luque F, Siendones E, Quesada M, Almadén Y, Aguilera-Tejero E, Rodríguez M. J Am Soc Nephrol 13: 2945-2952, 2002; Rodriguez ME, Almaden Y, Cañadillas S, Canalejo A, Siendones E, Lopez I, Aguilera-Tejero E, Martin D, Rodriguez M. Am J Physiol Renal Physiol 292: F1390-F1395, 2007). The present study was designed to characterize the signaling system that mediates the stimulation of parathyroid VDR gene expression by extracellular calcium. Experiments were performed in vitro by the incubation of rat parathyroid glands and in vivo with normal and uremic (Nx) rats receiving injections of CaCl(2) or EDTA to obtain hypercalcemic or hypocalcemic clamps. A high calcium concentration increased VDR expression. The addition of arachidonic acid (AA) to the low-calcium medium produced an increase in VDR mRNA of the same magnitude as that observed with high calcium. The addition of ionophore to the low-calcium medium also increased VDR mRNA expression. High calcium or the addition of AA to the low-calcium medium induced the activation (phosphorylation) of ERK1/2-MAPK. The specific inhibition of the ERK1/2-MAPK activity prevented the stimulation of VDR expression by high calcium or AA. These results suggest that AA regulates parathyroid VDR gene expression through the activation of the ERK1/2-MAPK. CaSR activation induced the activation of transcription factor Sp1, but not of NF-κB p50 or p65 or activator protein-1. The addition of AA to the low-calcium medium increased specific DNA-binding activity of Sp1 to almost the same level as high calcium, which was prevented by the inhibition of ERK1/2. Furthermore, mithramycin A (a Sp1 inhibitor) prevented the upregulation of VDR mRNA by high calcium. Finally, both sham and Nx hypercalcemic rats showed similar increased levels of VDR mRNA compared with sham and Nx

  10. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  11. OVER-EXPRESSION OF EXTRACELLULAR SIGNAL-REGULATED KINASE IN VASCULAR SMOOTH MUSCLE CELL OF HYPERTENSIVE RATS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate whether extracellular signal-regulated kinase (ERK1/2) was involved in changes of vascular smooth muscle cell (VSMC) under hypertension. Methods Two-kidney one clip Wistar hypertensive rats (WHR) were sacrificed and their right kidneys were harvested 4 weeks after surgery. The spontaneously hypertensive rats (SHR) were divided into 4, 8, and 16 weeks old groups (SHR4w, SHR8w, and SHR16w), respectively. The control group were sham operated age-matched Wistar rats. Immunohistochemical technique and Western blotting were applied to study ERK1/2 protein expression in VSMC of the renal vascular trees in WHR, SHR, and control rats. Results Blood pressure in two-kidney one clip WHR obviously increased at one week after surgery, and reached to 198.00 ± 33.00 mm Hg at the end of experiment, significantly higher than that in the control rats ( P < 0. 01 ). Blood pressure in SHR4w ( 108.00 ± 11.25 mm Hg) was similar to that in the controls. However, it rose to 122.25 ± 21.75 mm Hg in SHR8w, and even up to 201.75 ± 18.00 mm Hg in SHR16w, which were significantly higher than that of both the SHR4w and the controls ( P < 0. 01 ). The rate and degree of glomerular fibrosis in WHR were significantly higher than controls (P < 0. 05 ). Hyaline degeneration of the afferent arterioles was found in WHR. In contrast, either fibrosis of glomerulus or hyaline degeneration of the arterioles or protein casts was not observed in SHR4w, SHR8w,and SHR16w. Immunohistochemical staining results showed expression of ERK1 was similar to that of ERK2. The positive rates of ERK2 staining in VSMC of afferent arterioles, interlobular, interlobar, and arcuate arteries in two-kidney one clip WHR were significantly higher (7. 09% ± 1.75%, 14. 57% ± 4. 58%, 29.44% ± 7. 35%, and 13.63% ±3.85%, respectively) than that of the controls( P < 0. 01 ). The positive rates of ERK2 staining in VSMC at afferent arterioles, interlobular, interlobar, and arcuate arteries in SHR

  12. Parathyroid hormone inhibits TGF-β/Smad signaling and extracellular matrix proteins upregulation in rat mesangial cells.

    Science.gov (United States)

    Peng, Fang-Fang; Xiao, Ze-Ling; Chen, Hong-Min; Chen, Yan; Zhou, Jian; Yu, Hong; Zhang, Bai-Fang

    2016-09-23

    Accumulation of glomerular matrix is a hallmark of diabetic nephropathy. TGF-β1 is a major cytokine mediating the production of various extracellular matrix (ECM) proteins. The aim of this study is to elucidate the effect of parathyroid hormone (PTH) on TGF-β1 and high glucose-induced upregulation of ECM proteins in primary mesangial cells from Sprague-Dawley rat. The results showed that PTH pretreatment prevented TGF-β1 and high glucose-induced Smad2/3 phosphorylation and consequent upregulation of fibronectin and type IV collagen within 4 h. The inhibitory effect of PTH is due to PTH1R activation, because knocking down PTH 1 receptor (PTH1R) by RNA interference reversed the inhibitory effect of PTH on TGF-β1 and high glucose-induced Smad2/3 phosphorylation and ECM upregulation. Furthermore, it is found that PTH1R associated with TGF-β type II receptor (TβR II) and both receptors internalized into the cytoplasm when mesangial cells were stimulated with PTH alone. The internalization of TβR II might reduce the amount of membrane TβR II, attenuate the sensitivity of mesangial cells to TGF-β1, and therefore inhibit Smad activation and ECM upregulation induced by TGF-β1 and high glucose. Further studies are needed to know whether the endocytic receptors are to be degraded or recycled, and evaluate the role of PTH in TGF-β1 signaling more comprehensively.

  13. Expression of Extracellular Signal-regulated Kinase and Angiotensin-converting Enzyme in Human Atria during Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    戴友平; 王祥; 曹林生; 杨杪; 邬堂春

    2004-01-01

    Summary: In order to investigate the changes in the expression of extracellular signal-regulated kinase (ERK1/ERK2) and angiotensin-converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK-activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2-mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P<0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three-fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE-dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.

  14. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes.

    Science.gov (United States)

    Cohen-Matsliah, Sivan Ida; Brosh, Inbar; Rosenblum, Kobi; Barkai, Edi

    2007-11-14

    Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst afterhyperpolarization (AHP), which is generated by repetitive spike firing. AHP reduction is attributable to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that such learning-induced AHP reduction is maintained by PKC activation. However, the molecular machinery underlying such long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the extracellular signal-regulated kinase I/II (ERKI/II) pathway, which is known to be crucial in learning, memory, and synaptic plasticity processes, is instrumental for the long-term maintenance of learning-induced AHP reduction. PD98059 or UO126, which selectively block MEK, the upstream kinase of ERK, increased the AHP in neurons from trained rats but not in neurons from naive and pseudo-trained rats. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls were abolished. This effect was not mediated by modulation of basic membrane properties. In accordance with its effect on neuronal excitability, the level of activated ERK in the membranal fraction was significantly higher in piriform cortex samples taken from trained rats. In addition, the PKC activator OAG (1-oleoyl-20acety-sn-glycerol), which was shown to reduce the AHP in neurons from control rats, had no effect on these neurons in the presence of PD98059. Our data show that ERK has a key role in maintaining long-lasting learning-induced enhancement of neuronal excitability.

  15. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout.

    Directory of Open Access Journals (Sweden)

    Ioannis Mitroulis

    Full Text Available BACKGROUND: Gout is a prevalent inflammatory arthritis affecting 1-2% of adults characterized by activation of innate immune cells by monosodium urate (MSU crystals resulting in the secretion of interleukin-1β (IL-1β. Since neutrophils play a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory neutrophil extracellular traps (NETs in relation to autophagy and IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: Synovial fluid neutrophils from six patients with gout crisis and peripheral blood neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1 supporting their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1β as demonstrated by experiments involving IL-1β and its inhibitor anakinra. CONCLUSIONS/SIGNIFICANCE: These findings document for the first time that activation of neutrophils in gout is associated with the formation of proinflammatory NETs and links this process to both autophagy and IL-1β. Modulation of the autophagic machinery may represent an additional therapeutic study in crystalline arthritides.

  16. Short waves-induced enhancement of proliferation of human chondrocytes: involvement of extracellular signal-regulated map-kinase (erk).

    Science.gov (United States)

    Wang, Jue-Long; Chan, Rai-Chi; Cheng, He-Hsiung; Huang, Chun-Jen; Lu, Yih-Chau; Chen, I-Shu; Liu, Shiuh-Inn; Hsu, Shu-Shong; Chang, Hong-Tai; Huang, Jong-Khing; Chen, Jin-Shyr; Ho, Chin-Man; Jan, Chung-Ren

    2007-07-01

    1. Short-wave diathermy (SWD) is a form of radiofrequency radiation that is used therapeutically by physiotherapists. The cellular mechanisms of SWD are unclear. The present study was performed to explore the effect of different conditions of short-wave exposure on the proliferation of cultured human chondrocytes. 2. Cells exposed to short waves once per day for seven consecutive days exhibited a significant increase in proliferation by 42% compared with the control cells. In cells that were treated with short waves twice per day for seven consecutive days, or only once on Day 1 and then examined for proliferation on Day 7, cell proliferation was greater than the control cells by 40% and 30%, respectively. 3. Given the importance of mitogen-activated protein kinases (MAPK) in the proliferation of different cell types, efforts were extended to explore the role of three major types of MAPK; that is, extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK) and p38. 4. It was found that the level of phosphorylated ERK (phospho-ERK 1 and ERK 2) increased significantly within 5-120 min following consecutive exposure to short waves for 7 days. Exposure to short waves failed to alter the intensity of phosphorylated JNK and p38 within 0-240 min. 5. Cells were exposed to short waves once for seven consecutive days in the presence of 0, 10 micromol/L, 20 micromol/L or 50 micromol/L PD98059 (an ERK inhibitor). PD98059 totally inhibited short waves-induced enhancement of proliferation without altering normal control viability. In the presence of short waves and PD98059, the cell viability was lower than the normal control. Together, the data suggest that short waves could increase proliferation in human chondrocytes through activation of the ERK pathway, which is also involved in maintaining normal cell proliferation under physiological conditions.

  17. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats.

    Directory of Open Access Journals (Sweden)

    Chuan Ma

    Full Text Available OBJECTIVES: To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK pathway in the temporomandibular joint (TMJ of rats subjected to chronic sleep deprivation (CSD. METHODS: Rats were subjected to CSD using the modified multiple platform method (MMPM. The serum levels of corticosterone (CORT and adrenocorticotropic hormone (ACTH were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR and Western blotting. RESULTS: The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE staining and scanning electron microscopy (SEM showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. CONCLUSION: These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.

  18. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    Science.gov (United States)

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  19. Role of phosphatase PTEN in the activation of extracellular signal-regulated kinases induced by estradiol in endometrial carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    张育军; 魏丽惠; 王建六; 孙铁铮

    2003-01-01

    Objectives To study extracellular signal-regulated kinase (ERK) activation in the endometrial carcinoma cell line Ishikawa with stimulation by 17-β-estradiol, and to elucidate the role of phosphatase and tensin homologue (PTEN) and estrogen receptor (ER) subtype on the activation of ERKs.Methods Western blot was used to examine the expression of PTEN and PTEN (G129E) in Ishikawa cells after stable transfection as well as ERK activation in Ishikawa-EGFP, Ishikawa- PTEN and Ishikawa- PTEN (G129E) stimulated with various doses of 17-β-estradiol for different lengths of time. Western blot was also used for examining the expression of ERα and ERβ in NIH3T3 fibroblasts after transient transfection of pCXN2hERα and pCXN2hERβ. Then, ERK activation was examined after stimulation with 17-β-estradiol. Results 17-β-estradiol activated ERK cascades (mainly ERK2) in Ishikawa cells. The activation of ERK increased gradually as concentration of 17-β-estradiol also increased. The maximal activation of ERK2 took place 5 min after stimulation with 17-β-estradiol. The activation of ERK2 was inhibited markedly by PTEN, but not by PTEN (G129E). 17-β-estradiol activated ERK cascades in NIH3T3 fibroblasts after transient transfection of pCXN2hERα.Conclusions 17-β-estradiol activate ERK cascades in Ishikawa cells by integrating with ERα. Lipid phosphatase PTEN has an inhibitory role on the activation of ERK stimulated by 17-β-estradiol in Ishikawa cells.

  20. An experimental study of extracellular signal-regulated kinase and its inter ventional treatments in hepatic ifbrosis

    Institute of Scientific and Technical Information of China (English)

    Ming-De Jiang; Shu-Mei Zheng; Hui Xu; Wei-Zheng Zeng; Yong Zhang; Hao-Ping Sun; Yun-Xia Wang; Jian-Ping Qin; Xiao-Ling Wu

    2008-01-01

    BACKGROUND:The pathogenesis of hepatic ifbrosis and cirrhosis is still not fully understood. The extracellular signal-regulated kinase (ERK) pathway is involved in the regulation of cell proliferation and differentiation. The aim of this study was to investigate the effects of PD98059, a speciifc inhibitor of ERK, on the cell cycle, cell proliferation, secretion of typeⅠcollagen and expression of cyclin D1 mRNA, CDK4 mRNA and transforming growth factor-β1 (TGF-β1) mRNA in rat hepatic stellate cells (HSCs) stimulated by acetaldehyde. METHODS:Rat HSCs stimulated by acetaldehyde were incubated with PD98059 at different concentrations. The cell cycle was analysed by lfow cytometry. Cell proliferation was assessed by the methyl thiazolyl tetrazolium colorimetric assay. The mRNA expression of cyclin D1, CDK4 and TGF-β1 was examined using the reverse transcriptase-polymerase chain reaction. Type Ⅰcollagen in the culture medium was detected by enzyme-linked immunosorbent assay. RESULTS: 20, 50 and 100 μmol/L PD98059 signiifcantly inhibited the proliferation and provoked a G0/G1-phase arrest of acetaldehyde-induced HSCs in a dose-dependent manner. The secretion of typeⅠ collagen and the expression of cyclin D1, CDK4 and TGF-β1 mRNA in acetaldehyde-induced HSCs were markedly inhibited by 50 and 100μmol/L PD98059, respectively. CONCLUSIONS:The ERK pathway regulates the cell proliferation, secretion of type Ⅰ collagen and the expression of TGF-β1 mRNA in rat HSCs stimulated by acetaldehyde, which is likely related to its regulative effect on the cell cycle.

  1. Chemical control of xylem differentiation by thermospermine, xylemin, and auxin.

    Science.gov (United States)

    Yoshimoto, Kaori; Takamura, Hiroyoshi; Kadota, Isao; Motose, Hiroyasu; Takahashi, Taku

    2016-02-16

    The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.

  2. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  3. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants

    Science.gov (United States)

    2010-12-01

    II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants Young H. Lee, Ana P. Marquez , Ognoon Mungunsukh, and Regina...L., Gonzalez- Garcia , M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt... Marquez , A. P., and Day, R. M. (2010). Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial

  4. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1.

    Science.gov (United States)

    Parry, G; Delbarre, A; Marchant, A; Swarup, R; Napier, R; Perrot-Rechenmann, C; Bennett, M J

    2001-02-01

    The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.

  5. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  6. Changes in auxin level in the course of growth of a sunflower crown-gall suspension culture

    Directory of Open Access Journals (Sweden)

    Zofia Chirek

    2014-01-01

    Full Text Available The auxin level in the cell mass and culture medium was determined by means of the Avena straight caleoptile test in various periods of the suspension culture cycle of the sunflower crown-gall tumour. The investigations were performed in the course of the zero passage (PO and first one (Pl, differing in their time of duration of maximum growth and its intensity. In both passages the intra- and extra-cellular auxin levels reach values of the same order. At the beginning of the maximal growth phase the activity corresponding to IAA in the cells prevails over that of the other auxin-like compounds. This disproportion diminishes with further development of the culture, and with the beginning of the stationary phase the cellular IAA level is lower than that of the remaining auxin-like compounds. The short phase of maximal growth (PO occurs with an auxin level decreasing in the cell mass and increasing in the medium, and towards the end of the cycle these levels become equal. During the long phase of maximal growth (Pl the total amount of auxins in the cells increases and is 2-3 times higher than in the medium, whereas IAA in the cells remains at a constant level. These results suggest that the participation of IAA in the intracellular pool of auxin-like substances is decisive for the mitotic activity of the cells and maintenance of growth in the culture.

  7. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.

    Science.gov (United States)

    Shimizu-Mitao, Yasushi; Kakimoto, Tatsuo

    2014-08-01

    Auxin plays a key role in regulation of almost all processes of plant growth and development. Different physiological processes are regulated by different ranges of auxin concentrations; however, the underlying mechanisms creating these differences are largely unknown. The first step of auxin signaling is auxin-dependent interaction of an auxin receptor with transcriptional co-repressors (Aux/IAA), which leads to Aux/IAA degradation. Arabidopsis has six homologous auxin receptors (TIR1 and five AFBs), 29 Aux/IAA proteins and two types of active auxins, IAA and phenylacetic acid (PAA). Therefore, a large number of possible combinations between these three factors may contribute to the creation of complex auxin responses. Using a yeast heterologous reconstitution system, we investigated auxin-dependent degradation of all Arabidopsis Aux/IAAs in combination with every TIR or AFB receptor component. We found that TIR1 and AFB2 were effective in mediating Aux/IAA degradation. We confirmed that the Aux/IAA domain II, which binds TIR1, is essential for degradation. IAA and other natural auxins, 4-chloroindole-3-acetic acid (4-Cl-IAA) and PAA, induced Aux/IAA degradation; and IAA and 4-Cl-IAA had higher activity than PAA. Effective auxin concentrations for Aux/IAA degradation depended on both Aux/IAAs and TIR1 or AFB2 receptors, which is consistent with the Aux/IAA-TIR1/AFB co-receptor concept. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Arabidopsis PLC2 is involved in auxin-modulated reproductive development.

    Science.gov (United States)

    Li, Lin; He, Yuqing; Wang, Yarui; Zhao, Shujuan; Chen, Xi; Ye, Tiantian; Wu, Yuxuan; Wu, Yan

    2015-11-01

    Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin-mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2 in reproductive development. Development of both male and female gametophytes was severely perturbed in plc2 mutants. Moreover, elevated auxin levels were observed in plc2 floral tissues, suggesting that the infertility of plc2 plants may be associated with increased auxin concentrations in the reproductive organs. We show that expression levels of the auxin reporters DR5:GUS and DR5:GFP were elevated in plc2 anthers and ovules. In addition, we found that expression of the auxin biosynthetic YUCCA genes was increased in plc2 plants. We conclude that PLC2 is involved in auxin biosynthesis and signaling, thus modulating development of both male and female gametophytes in Arabidopsis.

  9. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Science.gov (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  10. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  11. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  12. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action.

    Science.gov (United States)

    Del Pozo, Juan C; Manzano, Concepción

    2014-06-01

    Plants are sessile organisms that have to adapt their growth to the surrounding environment. Concomitant with this adaptation capability, they have adopted a post-embryonic development characterized by continuous growth and differentiation abilities. Constant growth is based on the potential of stem cells to divide almost incessantly and on a precise balance between cell division and cell differentiation. This balance is influenced by environmental conditions and by the genetic information of the cell. Among the internal cues, the cross-talk between different hormonal signalling pathways is essential to control this division/differentiation equilibrium. Auxin, one of the most important plant hormones, regulates cell division and differentiation, among many other processes. Amazing advances in auxin signal transduction at the molecular level have been reported, but how this signalling is connected to the cell cycle is, so far, not well known. Auxin signalling involves the auxin-dependent degradation of transcription repressors by F-box-containing E3 ligases of ubiquitin. Recently, SKP2A, another F-box protein, was shown to bind auxin and to target cell-cycle repressors for proteolysis, representing a novel mechanism that links auxin to cell division. In this review, a general vision of what is already known and the most recent advances on how auxin signalling connects to cell division and the role of the ubiquitin pathway in plant cell cycle will be covered. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Role of Auxin in orchid development.

    Science.gov (United States)

    Darling-Novak, Stacey; Luna, Lila J; Gamage, Roshan N

    2014-08-25

    Auxin's capacity to regulate aspects of plant development has been well characterized in model plant systems. In contrast, orchids have received considerably less attention, but the realization that many orchid species are endangered has led to culture-based propagation studies which have unveiled some functions for auxin in this system. This mini-review summarizes the many auxin-mediated developmental responses in orchids that are consistent with model systems; however, it also brings to the forefront auxin responses that are unique to orchid development, namely protocorm formation and ovary/ovule maturation. With regard to shoot establishment, we also assess auxin's involvement in orchid germination, PLB formation, and somatic embryogenesis. Further, it makes evident that auxin flow during germination of the undifferentiated, but mature, orchid embryo mirrors late embryogenesis of typical angiosperms. Also discussed is the use of orchid protocorms in future phytohormone studies to better understand the mechanisms behind meristem formation and organogenesis.

  14. Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production.

    Science.gov (United States)

    Li, Ruimei; Tan, Binghe; Yan, Yan; Ma, Xiaobin; Zhang, Na; Zhang, Zhi; Liu, Mingyao; Qian, Min; Du, Bing

    2014-11-01

    Extracellular nucleotides that constitute a "danger signal" play an important role in the regulation of immune responses. However, the function and mechanism of extracellular UDP and P2Y6 in antiviral immunity remain unknown. In this study, we demonstrated the in vitro and in vivo protection of UDP/P2Y6 signaling in vesicular stomatitis virus (VSV) infection. First, we demonstrated that VSV-infected cells secrete UDP from the cytoplasm as a danger signal to arouse surrounding cells. Meanwhile, expression of the UDP-specific receptor P2Y6 also was enhanced by VSV. Consequently, UDP protects RAW 264.7 cells, murine embryonic fibroblasts, bone marrow-derived macrophages, and L929 cells from VSV and GFP lentivirus infection. This protection can be blocked by the P2Y6 selective antagonist MRS2578 or IFN-α/β receptor-blocking Ab. VSV-induced cell death and virus replication were both enhanced significantly by knocking down and knocking out P2Y6 in different cells. Mechanistically, UDP facilitates IFN-β secretion through the p38/JNK- and ATF-2/c-Jun-signaling pathways, which are crucial in promoting antiviral immunity. Interestingly, UDP was released through a caspase-cleaved pannexin-1 channel in VSV-induced apoptotic cells and protected cells from infection through P2Y6 receptor in an autocrine or paracrine manner. Furthermore, UDP also protected mice from VSV infection through P2Y6 receptors in an acute neurotropic infection mouse model. Taken together, these results demonstrate the important role of extracellular UDP and P2Y6 as a danger signal in antiviral immune responses and suggest a potential therapeutic role for UDP/P2Y6 in preventing and controlling viral diseases.

  15. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    during the late phase of infection. Pharmacologic inhibition of ERK phosphorylation reduced virus recovery by >100-fold. Blocking MEK/ERK signaling affected virus DNA replication and mRNA levels only weakly but strongly reduced the amount of viral proteins, independently of the kinases MNK1 and PKR....... Hence, adenovirus induces the oncogenic Raf/MEK/ERK signaling pathway to enhance viral progeny by sustaining the levels of viral proteins. Concerning therapy, our results suggest that the use of Raf/MEK/ERK inhibitors will interfere with the propagation of oncolytic adenoviruses.......The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...

  16. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) is a seven-transmembrane receptor well established to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) by discrete G protein-dependent and beta-arrestin2-dependent pathways. The biological importance of this, however, remains...... that phosphorylates p90 Ribosomal S6 Kinase, a ubiquitous and versatile mediator of ERK1/2 signal transduction. Moreover, the beta-arrestin2-dependent ERK1/2 signal supports intact proliferation of cardiac myocytes. In contrast to G(q)-activated ERK1/2, and in keeping with its failure to translocate to the nucleus......, the beta-arrestin2-scaffolded pool of ERK1/2 does not phosphorylate the transcription factor Elk-1, induces no increased transcription of the immediate-early gene c-Fos, and does not entail myocyte hypertrophy. These results clearly demonstrate the biological significance of differential signalling...

  17. Time-dependent effects of electroacupuncture at the Ren channel on extracellular signal-regulated kinases 1/2 expression in focal cerebral ischemia rats

    Institute of Scientific and Technical Information of China (English)

    Zhuoxin Yang; Lihong Diao; Haibo Yu; Wenshu Luo; Ling Wang; Min Pi; Xiaodan Rao; Junhua Peng

    2008-01-01

    BACKGROUND: The onset of focal cerebral ischemia activates extracellular signal-regulated kinases 1 and 2, regulates cell cycle, promotes cell proliferation and differentiation, and affects the normal stage and function of brain cells.OBJECTIVE: To observe the effects of electroacupuncture at the Ren channel on extracellular signal-regulated kinases 1/2 expression in the lateral cerebral ventricle wall of rats with focal cerebral ischemia. The effects were analyzed at different time points after intervention.DESIGN: Randomized controlled study.SETTING: Department of Anatomy, Sun Yat-Sen University. MATERIALS: A total of 60 healthy adult male Wistar rats weighing (250±10) g were provided by the Experimental Animal Center, Medical College of Sun Yat-Sen University. The animal experiment was conducted with confirmed consent by the local ethics committee. The GB6805-Ⅱ electric acupuncture apparatus was provided by Shanghai Medical Equipment High-techno Company. METHODS: The experiment was performed at the Laboratory of Anatomy, Sun Yat-Sen University, from February to July 2007. All experimental animals were randomly divided into the following groups: normal group (n = 6), sham operation group (n = 18), model group (n = 18), and electroacupuncture group (n = 18). Middle cerebral artery occlusion (MCAO) was performed in the model group and electroacupuncture group. Zea Longa's grading standard was used to assess neurological impairment after reperfusion; animals whose grades were between 1 and 4 were included in this study. The normal control group was not exposed to MCAO. In sham operation animals, the right common carotid artery (CCA) was isolated, and the external carotid artery (ECA) was damaged, but no embolism was induced. The electroacupuncture group was given acupuncture on the second day after surgery. The acupoint locations were chosen according to Experimental Acupuncture (People's Publishing House; 1997; First Edition). The Chengjiang, Qihai, and Guanyuan

  18. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  19. Drosophila tensin plays an essential role in cell migration and planar polarity formation during oogenesis by mediating integrin-dependent extracellular signals to actin organization.

    Science.gov (United States)

    Cha, In Jun; Lee, Jang Ho; Cho, Kyoung Sang; Lee, Sung Bae

    2017-03-11

    Oogenesis in Drosophila involves very dynamic cellular changes such as cell migration and polarity formation inside an ovary during short period. Previous studies identified a number of membrane-bound receptors directly receiving certain types of extracellular inputs as well as intracellular signalings to be involved in the regulation of these dynamic cellular changes. However, yet our understanding on exactly how these receptor-mediated extracellular inputs lead to dynamic cellular changes remains largely unclear. Here, we identified Drosophila tensin encoded by blistery (by) as a novel regulator of cell migration and planar polarity formation and characterized the genetic interaction between tensin and integrin during oogenesis. Eggs from by mutant showed decreased hatching rate and morphological abnormality, a round-shape, compared to the wild-type eggs. Further analyses revealed that obvious cellular defects such as defective border cell migration and planar polarity formation might be primarily associated with the decreased hatching rate and the round-shape phenotype of by mutant eggs, respectively. Moreover, by mutation also induced marked defects in F-actin organization closely associated with both cell migration and planar polarity formation during oogenesis of Drosophila. Notably, all these defective phenotypes observed in by mutant eggs became much severer by reduced level of integrin, indicative of a close functional association between integrin and tensin during oogenesis. Collectively, our findings suggest that tensin acts as a crucial regulator of dynamic cellular changes during oogenesis by bridging integrin-dependent extracellular signals to intracellular cytoskeletal organization.

  20. Crosstalk of HNF4α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids

    Directory of Open Access Journals (Sweden)

    Hong Lu

    2016-09-01

    Full Text Available The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis. Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs, lipids, and glucose provide key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics, metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation, and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and intracellular signaling pathways to regulate genes essential in liver pathophysiology.

  1. The key residue within the second extracellular loop of human EP3 involved in selectively turning down PGE2- and retaining PGE1-mediated signaling in live cells.

    Science.gov (United States)

    Akasaka, Hironari; Thaliachery, Natasha; Zheng, Xianghai; Blumenthal, Marissa; Nikhar, Sameer; Murdoch, Emma E; Ling, Qinglan; Ruan, Ke-He

    2017-02-15

    Key residues and binding mechanisms of PGE1 and PGE2 on prostanoid receptors are poorly understood due to the lack of X-ray structures for the receptors. We constructed a human EP3 (hEP3) model through integrative homology modeling using the X-ray structure of the β2-adrenergic receptor transmembrane domain and NMR structures of the thromboxane A2 receptor extracellular loops. PGE1 and PGE2 docking into the hEP3 model showed differing configurations within the extracellular ligand recognition site. While PGE2 could form possible binding contact with S211, PGE1 is unable to form similar contacts. Therefore, S211 could be the critical residue for PGE2 recognition, but is not a significant for PGE1. This prediction was confirmed using HEK293 cells transfected with hEP3 S211L cDNA. The S211L cells lost PGE2 binding and signaling. Interestingly, the S211L cells retained PGE1-mediated signaling. It indicates that S211 within the second extracellular loop is a key residue involved in turning down PGE2 signaling. Our study provided information that S211L within EP3 is the key residue to distinguish PGE1 and PGE2 binding to mediate diverse biological functions at the initial recognition step. The S211L mutant could be used as a model for studying the binding mechanism and signaling pathway specifically mediated by PGE1. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. RAC/ROP GTPases and Auxin Signaling

    National Research Council Canada - National Science Library

    Hen-ming Wu; Ora Hazak; Alice Y. Cheung; Shaul Yalovsky

    2011-01-01

    .... Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions...

  3. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype.

    Science.gov (United States)

    Effendi, Yunus; Radatz, Katrin; Labusch, Corinna; Rietz, Steffen; Wimalasekera, Rinukshi; Helizon, Hanna; Zeidler, Mathias; Scherer, Günther F E

    2014-07-01

    pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling.

  4. Lateral root development in Arabidopsis: fifty shades of auxin.

    Science.gov (United States)

    Lavenus, Julien; Goh, Tatsuaki; Roberts, Ianto; Guyomarc'h, Soazig; Lucas, Mikaël; De Smet, Ive; Fukaki, Hidehiro; Beeckman, Tom; Bennett, Malcolm; Laplaze, Laurent

    2013-08-01

    The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.

  5. Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development.

    Science.gov (United States)

    Moubayidin, Laila; Ostergaard, Lars

    2014-11-17

    Symmetry formation is a remarkable feature of biological life forms associated with evolutionary advantages and often with great beauty. Several examples exist in which organisms undergo a transition in symmetry during development. Such transitions are almost exclusively in the direction from radial to bilateral symmetry. Here, we describe the dynamics of symmetry establishment during development of the Arabidopsis gynoecium. We show that the apical style region undergoes an unusual transition from a bilaterally symmetric stage ingrained in the gynoecium due to its evolutionary origin to a radially symmetric structure. We also identify two transcription factors, INDEHISCENT and SPATULA, that are both necessary and sufficient for the radialization process. Our work furthermore shows that these two transcription factors control style symmetry by directly regulating auxin distribution. Establishment of specific auxin-signaling foci and the subsequent development of a radially symmetric auxin ring at the style are required for the transition to radial symmetry, because genetic manipulations of auxin transport can either cause loss of radialization in a wild-type background or rescue mutants with radialization defects. Whereas many examples have described how auxin provides polarity and specific identity to cells in a range of developmental contexts, our data presented here demonstrate that auxin can also be recruited to impose uniform identity to a group of cells that are otherwise differentially programmed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis.

    Science.gov (United States)

    Li, Li; Xu, Jian; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-10-01

    Brassinosteroids (BRs) are important plant growth regulators in multiple developmental processes. Previous studies have indicated that BR treatment enhanced auxin-related responses, but the underlying mechanisms remain unknown. Using (14)C-labeled indole-3-acetic acid and Arabidopsis thaliana plants harboring an auxin-responsive reporter construct, we show that the BR brassinolide (BL) stimulates polar auxin transport capacities and modifies the distribution of endogenous auxin. In plants treated with BL or defective in BR biosynthesis or signaling, the transcription of PIN genes, which facilitate functional auxin transport in plants, was differentially regulated. In addition, BL enhanced plant tropistic responses by promoting the accumulation of the PIN2 protein from the root tip to the elongation zone and stimulating the expression and dispersed localization of ROP2 during tropistic responses. Constitutive overexpression of ROP2 results in enhanced polar accumulation of PIN2 protein in the root elongation region and increased gravitropism, which is significantly affected by latrunculin B, an inhibitor of F-actin assembly. The ROP2 dominant negative mutants (35S-ROP2-DA/DN) show delayed tropistic responses, and this delay cannot be reversed by BL addition, strongly supporting the idea that ROP2 modulates the functional localization of PIN2 through regulation of the assembly/reassembly of F-actins, thereby mediating the BR effects on polar auxin transport and tropistic responses.

  7. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis.

    Science.gov (United States)

    Willige, Björn C; Ahlers, Siv; Zourelidou, Melina; Barbosa, Inês C R; Demarsy, Emilie; Trevisan, Martine; Davis, Philip A; Roelfsema, M Rob G; Hangarter, Roger; Fankhauser, Christian; Schwechheimer, Claus

    2013-05-01

    Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.

  8. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Kun-Xiao; Wang, Wen-Shu; Gong, Wen; Liu, Wen-Cheng; Chen, Hong-Guo; Xu, Heng-Hao; Lu, Ying-Tang

    2015-04-01

    Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

  9. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system.

    Science.gov (United States)

    Park, Jin-Young; Kim, Hye-Joung; Kim, Jungmook

    2002-12-01

    Most of Aux/IAA genes are rapidly induced by auxin. The Aux/IAA proteins are short-lived nuclear proteins sharing the four conserved domains. Domain II is critical for rapid degradation of Aux/IAA proteins. Among these gene family members, IAA1 is one of the earliest auxin-inducible genes. We used a steroid hormone-inducible system to reveal putative roles and downstream signaling of IAA1 in auxin response. Arabidopsis transgenic plants were generated expressing fusion protein of IAA1 (IAA1-GR) or IAA1 with a mutation in domain II (iaa1-GR) and the glucocorticoid hormone-binding domain (GR). IAA1-GR transgenic plants did not exhibit any discernable phenotypic differences by DEX treatment that allows nuclear translocation of the fusion protein. In contrast, diverse auxin-related physiological processes including gravitropism and phototropism were impaired by DEX treatment in roots, hypocotyls, stems, and leaves in iaa1-GR transgenic plants. Auxin induction of seven Aux/IAA mRNAs including IAA1 itself was repressed by DEX treatment, suggesting that IAA1 functions in the nucleus by mediating auxin response and might act as a negative feedback regulator for the expression of Aux/IAA genes including IAA1 itself. Auxin induction of Aux/IAA genes in the presence of cycloheximide can be repressed by DEX treatment, showing that the repression of transcription of the Aux/IAAs by the iaa1 mutant protein is primary. Wild-type IAA1-GR could not suppress auxin induction of IAA1 and IAA2. These results indicate that inhibition of auxin-activated transcription of Aux/IAA genes by the iaa1 mutant protein might be responsible for alteration of various auxin responses.

  10. A Division in PIN-Mediated Auxin Patterning during Organ Initiation in Grasses

    Science.gov (United States)

    O'Connor, Devin L.; Runions, Adam; Sluis, Aaron; Bragg, Jennifer; Vogel, John P.

    2014-01-01

    The hormone auxin plays a crucial role in plant morphogenesis. In the shoot apical meristem, the PIN-FORMED1 (PIN1) efflux carrier concentrates auxin into local maxima in the epidermis, which position incipient leaf or floral primordia. From these maxima, PIN1 transports auxin into internal tissues along emergent paths that pattern leaf and stem vasculature. In Arabidopsis thaliana, these functions are attributed to a single PIN1 protein. Using phylogenetic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed Sister-of-PIN1 (SoPIN1), which is present in all sampled angiosperms except for Brassicaceae, including Arabidopsis. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In Brachypodium distachyon, SoPIN1 is highly expressed in the epidermis and is consistently polarized toward regions of high expression of the DR5 auxin-signaling reporter, which suggests that SoPIN1 functions in the localization of new primordia. In contrast, PIN1a and PIN1b are highly expressed in internal tissues, suggesting a role in vascular patterning. PIN1b is expressed in broad regions spanning the space between new primordia and previously formed vasculature, suggesting a role in connecting new organs to auxin sinks in the older tissues. Within these regions, PIN1a forms narrow canals that likely pattern future veins. Using a computer model, we reproduced the observed spatio-temporal expression and localization patterns of these proteins by assuming that SoPIN1 is polarized up the auxin gradient, and PIN1a and PIN1b are polarized to different degrees with the auxin flux. Our results suggest that examination and modeling of PIN dynamics in plants outside of Brassicaceae will offer insights into auxin-driven patterning obscured by the loss of the SoPIN1 clade in Brassicaceae. PMID:24499933

  11. NCP1/AtMOB1A Plays Key Roles in Auxin-Mediated Arabidopsis Development.

    Science.gov (United States)

    Cui, Xiaona; Guo, Zhiai; Song, Lizhen; Wang, Yanli; Cheng, Youfa

    2016-03-01

    MOB1 protein is a core component of the Hippo signaling pathway in animals where it is involved in controlling tissue growth and tumor suppression. Plant MOB1 proteins display high sequence homology to animal MOB1 proteins, but little is known regarding their role in plant growth and development. Herein we report the critical roles of Arabidopsis MOB1 (AtMOB1A) in auxin-mediated development in Arabidopsis. We found that loss-of-function mutations in AtMOB1A completely eliminated the formation of cotyledons when combined with mutations in PINOID (PID), which encodes a Ser/Thr protein kinase that participates in auxin signaling and transport. We showed that atmob1a was fully rescued by its Drosophila counterpart, suggesting functional conservation. The atmob1a pid double mutants phenocopied several well-characterized mutant combinations that are defective in auxin biosynthesis or transport. Moreover, we demonstrated that atmob1a greatly enhanced several other known auxin mutants, suggesting that AtMOB1A plays a key role in auxin-mediated plant development. The atmob1a single mutant displayed defects in early embryogenesis and had shorter root and smaller flowers than wild type plants. AtMOB1A is uniformly expressed in embryos and suspensor cells during embryogenesis, consistent with its role in embryo development. AtMOB1A protein is localized to nucleus, cytoplasm, and associated to plasma membrane, suggesting that it plays roles in these subcellular localizations. Furthermore, we showed that disruption of AtMOB1A led to a reduced sensitivity to exogenous auxin. Our results demonstrated that AtMOB1A plays an important role in Arabidopsis development by promoting auxin signaling.

  12. Down regulation of NO signaling in Trypanosoma cruzi upon parasite-extracellular matrix interaction: changes in protein modification by nitrosylation and nitration.

    Directory of Open Access Journals (Sweden)

    Milton Pereira

    2015-04-01

    Full Text Available Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling.Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins or by the biotin switch method (S-nitrosylated proteins and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation.For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite, probably an essential move for the ensuing invasion step.

  13. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    OpenAIRE

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF express...

  14. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Huang Z

    2015-03-01

    Full Text Available Zheyong Huang,1,* Chenguang Li,1,* Shan Yang,2 Jianfeng Xu,1 Yunli Shen,3 Xinxing Xie,4 Yuxiang Dai,1 Hao Lu,1 Hui Gong,5 Aijun Sun,1 Juying Qian,1 Junbo Ge1 1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China; 4Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China; 5Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: The long-lasting hypointensities in cardiac magnetic resonance (CMR were believed to originate from superparamagnetic iron oxide (SPIO-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals.Methods and results: Male swine mesenchymal stem cells (MSCs were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×107 male SPIO-labeled MSCs (n=5 or unlabeled MSCs (n=5 were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64% of the 50 injection sites, where massive Prussian blue-positive iron

  15. Something old, something new: auxin and strigolactone interact in the ancient mycorrhizal symbiosis.

    Science.gov (United States)

    Foo, Eloise

    2013-04-01

    Arbuscular mycorrhizal symbiosis, formed between more than 80% of land plants and fungi from the phylum Glomeromycota, is an ancient association that is believed to have evolved as plants moved onto land more than 400 mya. Similarly ancient, the plant hormones auxin and strigolactone are thought to have been present in the plant lineage since before the divergence of the bryophytes in the case of auxin and before the colonisation of land in the case of strigolactones. The discovery of auxin in the 1930s predates the discovery of strigolactones as a plant hormone in 2008 by over 70 y. Recent studies in pea suggest that these two signals may interact to regulate mycorrhizal symbiosis. Furthermore, the first quantitative studies are presented that show that low auxin content of the root is correlated with low strigolactone production, an interaction that has implications for how these plant hormones regulate several developmental programs including shoot branching, secondary growth and root development. With recent advances in our understanding of auxin and strigolactone biosynthesis, together with the discovery of the fungal signals that activate the plant host, the stage is set for real breakthroughs in our understanding of the interactions between plant and fungal signals in mycorrhizal symbiosis.

  16. Research Progresses on Auxin Response Factors

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin Wei; Bai-Ming Cui; Yan-Li Ren; Juan-Hua Li; Wei-Bin Liao; Nan-Fei Xu; Ming Peng

    2006-01-01

    Auxin response factors (ARFs), a family of transcription factors, have been discovered recently. The ARFs bind specifically to the auxin response elements (AuxREs) within promoters of primary auxin responsive genes and function as activators or repressors. The ARFs contain three domains, namely a conserved Nterminal DNA-binding domain, a non-conserved middle region, and a conserved C-terminal dirnerization domain. The ARFs can form a protein complex with auxin/indoleacetic acid through homodimerization or heterodimerization. The particular protein-protein interaction may play a key role in modulating the expression of early auxin responsive genes. The identification of ARF mutations in Arabidopsis helps to demonstrate/dissect the function of ARFs in the normal growth and development of plants. Phylogenetic analysis also reveals some interesting protein evolution points in the ARF family.

  17. Auxin activity: Past, present, and future.

    Science.gov (United States)

    Enders, Tara A; Strader, Lucia C

    2015-02-01

    Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.

  18. Composite structure of auxin response elements.

    Science.gov (United States)

    Ulmasov, T; Liu, Z B; Hagen, G; Guilfoyle, T J

    1995-10-01

    The auxin-responsive soybean GH3 gene promoter is composed of multiple auxin response elements (AuxREs), and each AuxRE contributes incrementally to the strong auxin inducibility to the promoter. Two independent AuxREs of 25 bp (D1) and 32 bp (D4) contain the sequence TGTCTC. Results presented here show that the TGTCTC element in D1 and D4 is required but not sufficient for auxin inducibility in carrot protoplast transient expression assays. Additional nucleotides upstream of TGTCTC are also required for auxin inducibility. These upstream sequences showed constitutive activity and no auxin inducibility when part or all of the TGTCTC element was mutated or deleted. In D1, the constitutive element overlaps the 5' portion of TGTCTC; in D4, the constitutive element is separated from TGTCTC. An 11-bp element in D1, CCTCGTGTCTC, conferred auxin inducibility to a minimal cauliflower mosaic virus 35S promoter in transgenic tobacco seedlings as well as in carrot protoplasts (i.e., transient expression assays). Both constitutive elements bound specifically to plant nuclear proteins, and the constitutive element in D1 bound to a recombinant soybean basic leucine zipper transcription factor with G-box specificity. To demonstrate further the composite nature of AuxREs and the ability of the TGTCTC element to confer auxin inducibility, we created a novel AuxRE by placing a yeast GAL4 DNA binding site adjacent to the TGTCTC element. Expression of a GAL4-c-Rel transactivator in the presence of this novel AuxRE resulted in auxin-inducible expression. Our results indicate that at least some AuxREs have a composite structure consisting of a constitutive element adjacent to a conserved TGTCTC element that confers auxin inducibility.

  19. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation.

    Science.gov (United States)

    Furutani, Masahiko; Nakano, Yasukazu; Tasaka, Masao

    2014-01-21

    In Arabidopsis, leaves and flowers form cyclically in the shoot meristem periphery and are triggered by local accumulations of the plant hormone auxin. Auxin maxima are established by the auxin efflux carrier PIN-formed1 (PIN1). During organ formation, two distinct types of PIN1 polarization occur. First, convergence of PIN1 polarity in the surface of the meristem creates local auxin peaks. Second, basipetal PIN1 polarization causes auxin to move away from the surface in the middle of an incipient organ primordium, thought to contribute to vascular formation. Several mathematical models have been developed in attempts to explain the PIN1 localization pattern. However, the molecular mechanisms that control these dynamic changes are unknown. Here, we show that loss-of-function in the MACCHI-BOU 4 (MAB4) family genes, which encode nonphototropic hypocotyl 3-like proteins and regulate PIN endocytosis, cause deletion of basipetal PIN1 polarization, resulting in extensive auxin accumulation all over the meristem surface from lack of a sink for auxin. These results indicate that the MAB4 family genes establish inward auxin transport from the L1 surface of incipient organ primordia by basipetal PIN1 polarization, and that this behavior is essential for the progression of organ development. Furthermore, the expression of the MAB4 family genes depends on auxin response. Our results define two distinct molecular mechanisms for PIN1 polarization during organ development and indicate that an auxin response triggers the switching between these two mechanisms.

  20. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Justin Schleede

    2015-10-01

    Full Text Available The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog. However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  1. Characterization of a region of the lutropin receptor extracellular domain near transmembrane helix 1 that is important in ligand-mediated signaling.

    Science.gov (United States)

    Alvarez, C A; Narayan, P; Huang, J; Puett, D

    1999-04-01

    The lutropin receptor (LHR), a member of the G protein-coupled receptor family, contains a relatively large N-terminal extracellular domain, accounting for about half of the receptor and responsible for high affinity ligand binding, and a standard heptahelical portion with connecting loops and a C-terminal tail. LHR and the other two glycoprotein hormone receptors, i.e. the follitropin and TSH receptors, contain an invariant 10-amino acid residue sequence, FNPCEDIMGY (residues 328-337 in rat LHR), in the extracellular domain separated by only a few amino acid residues from the beginning of transmembrane helix 1. In view of the invariant nature of this region in the three glycoprotein hormone receptors and preliminary data in the literature on the importance of Glu332 and Asp333 in signal transduction, we undertook a systematic investigation of all 10 amino acid residues because this region may function as a switch or trigger for communicating ligand binding to the extracellular domain with a conformational change of the membrane-embedded C-terminal half of the receptor to activate G proteins, particularly Gs. A total of 36 single, double, and multiple replacements, as well as two deletions, of LHR were prepared and characterized in transiently transfected COS-7 cells. Of these mutants LHRs, 26 expressed on the cell surface in sufficient numbers that quantitative assessments could be made of human choriogonadotropin binding and ligand-mediated cAMP production. Replacements of Cys331 abolished ligand binding to intact cells, although binding could be detected after solubilization of the cells. Replacements of the other nine amino acid residues that did not interfere with receptor folding or trafficking had no significant effect on ligand binding affinity; however, replacements of Pro330, Glu332, and Asp333 resulted in diminished signaling, especially for the two acidic residues. An interesting observation was made in which replacement of Tyr337 with Ala or Asp, while

  2. The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Dong Qin

    2015-01-01

    Full Text Available Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR. Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.

  3. Involvement of heterotrimeric G protein in signal transduc-tion of extracellular calmodu-lin in regulating rbcS expres-sion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulating rbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhanced rbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibited rbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin on rbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum on rbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by hetero-trimeric G proteins antagonist pertussis toxin and nonhy-drolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulate rbcS gene expression.

  4. Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response.

    Science.gov (United States)

    Cheng, Ning-Hui; Liu, Jian-Zhong; Liu, Xing; Wu, Qingyu; Thompson, Sean M; Lin, Julie; Chang, Joyce; Whitham, Steven A; Park, Sunghun; Cohen, Jerry D; Hirschi, Kendal D

    2011-06-10

    Global environmental temperature changes threaten innumerable plant species. Although various signaling networks regulate plant responses to temperature fluctuations, the mechanisms unifying these diverse processes are largely unknown. Here, we demonstrate that an Arabidopsis monothiol glutaredoxin, AtGRXS17 (At4g04950), plays a critical role in redox homeostasis and hormone perception to mediate temperature-dependent postembryonic growth. AtGRXS17 expression was induced by elevated temperatures. Lines altered in AtGRXS17 expression were hypersensitive to elevated temperatures and phenocopied mutants altered in the perception of the phytohormone auxin. We show that auxin sensitivity and polar auxin transport were perturbed in these mutants, whereas auxin biosynthesis was not altered. In addition, atgrxs17 plants displayed phenotypes consistent with defects in proliferation and/or cell cycle control while accumulating higher levels of reactive oxygen species and cellular membrane damage under high temperature. Together, our findings provide a nexus between reactive oxygen species homeostasis, auxin signaling, and temperature responses.

  5. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  6. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    Science.gov (United States)

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  7. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  8. POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis.

    Science.gov (United States)

    Xiang, Daoquan; Yang, Hui; Venglat, Prakash; Cao, Yongguo; Wen, Rui; Ren, Maozhi; Stone, Sandra; Wang, Edwin; Wang, Hong; Xiao, Wei; Weijers, Dolf; Berleth, Thomas; Laux, Thomas; Selvaraj, Gopalan; Datla, Raju

    2011-12-01

    The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-β-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.

  9. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana.

    Science.gov (United States)

    Krishnamurthy, Aparna; Rathinasabapathi, Bala

    2013-10-01

    The role of auxin in plant development is well known; however, its possible function in root response to abiotic stress is poorly understood. In this study, we demonstrate a novel role of auxin transport in plant tolerance to oxidative stress caused by arsenite. Plant response to arsenite [As(III)] was evaluated by measuring root growth and markers for stress on seedlings treated with control or As(III)-containing medium. Auxin transporter mutants aux1, pin1 and pin2 were significantly more sensitive to As(III) than the wild type (WT). Auxin transport inhibitors significantly reduced plant tolerance to As(III) in the WT, while exogenous supply of indole-3-acetic acid improved As(III) tolerance of aux1 and not that of WT. Uptake assays using H(3) -IAA showed As(III) affected auxin transport in WT roots. As(III) increased the levels of H2 O2 in WT but not in aux1, suggesting a positive role for auxin transport through AUX1 on plant tolerance to As(III) stress via reactive oxygen species (ROS)-mediated signalling. Compared to the WT, the mutant aux1 was significantly more sensitive to high-temperature stress and salinity, also suggesting auxin transport influences a common element shared by plant tolerance to arsenite, salinity and high-temperature stress.

  10. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin.

    Science.gov (United States)

    Tang, Ning; Deng, Wei; Hu, Guojian; Hu, Nan; Li, Zhengguo

    2015-01-01

    Fruit set is a key process for crop production in tomato which occurs after successful pollination and fertilization naturally. However, parthenocarpic fruit development can be uncoupled from fertilization triggered by exogenous auxin or gibberellins (GAs). Global transcriptome knowledge during fruit initiation would help to characterize the molecular mechanisms by which these two hormones regulate pollination-dependent and -independent fruit set. In this work, digital gene expression tag profiling (DGE) technology was applied to compare the transcriptomes from pollinated and 2, 4-D/GA3-treated ovaries. Activation of carbohydrate metabolism, cell division and expansion as well as the down-regulation of MADS-box is a comprehensive regulatory pathway during pollination-dependent and parthenocarpic fruit set. The signaling cascades of auxin and GA are significantly modulated. The feedback regulations of Aux/IAAs and DELLA genes which functioned to fine-tune auxin and GA response respectively play fundamental roles in triggering fruit initiation. In addition, auxin regulates GA synthesis via up-regulation of GA20ox1 and down-regulation of KNOX. Accordingly, the effect of auxin on fruit set is mediated by GA via ARF2 and IAA9 down-regulation, suggesting that both pollination-dependent and parthenocarpic fruit set depend on the crosstalk between auxin and GA. This study characterizes the transcriptomic features of ovary development and more importantly unravels the integral roles of auxin and GA on pollination-dependent and parthenocarpic fruit set.

  11. Auxin physiology of the tomato mutant diageotropica

    Science.gov (United States)

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  12. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin;

    2015-01-01

    of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...... and to an increase in their width. Phyllotaxis was transiently affected after midvein ablations, but readjusted after two plastochrons. These results indicate that the developing midvein is involved in the basipetal transport of auxin through young primordia, which contributes to phyllotactic spacing and stability...

  13. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation.

    Science.gov (United States)

    El Asmar, Zeina; Terrand, Jérome; Jenty, Marion; Host, Lionel; Mlih, Mohamed; Zerr, Aurélie; Justiniano, Hélène; Matz, Rachel L; Boudier, Christian; Scholler, Estelle; Garnier, Jean-Marie; Bertaccini, Diego; Thiersé, Danièle; Schaeffer, Christine; Van Dorsselaer, Alain; Herz, Joachim; Bruban, Véronique; Boucher, Philippe

    2016-03-04

    The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.

  14. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia.

    Science.gov (United States)

    Leal-Lasarte, María M; Franco, Jaime M; Labrador-Garrido, Adahir; Pozo, David; Roodveldt, Cintia

    2017-07-01

    Dysregulated microglial responses are central in neurodegenerative proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar disease (FTLD). Pathologic TDP-43, which is typically found in intracellular inclusions, is a misfolding protein with emerging roles in ALS and FTLD. Recently, TDP-43 species have been found in extracellular fluids of patients; however, the overall implications of TDP-43-mediated signaling linked to neuroinflammation are poorly understood. Our work-the first, to our knowledge, to focus on innate immunity responses to TDP-43 aggregates-shows that such species are internalized by microglia and cause abnormal mobilization of endogenous TDP-43. Exposure to TDP-43 aggregates elicited not only IL-1β, but also NLRP3-dependent and noncanonical IL-18 processing. Moreover, we report a link between TDP-43 and neuronal loss via the apoptosis-independent emerging roles of caspase-3 in neurotoxic inflammation. Our results further support the view of noncell autonomous neurodegenerative mechanisms in ALS. Remarkably, we demonstrate that TDP-43 aggregates bind to and colocalize with MAPK/MAK/MRK overlapping kinase (MOK) and show that its phosphorylation status is disrupted. Finally, we show that this TDP-43-caused activation state can be altered by exogenous Hsp27 and Hsp70 chaperones. Our study provides new insight into the immune phenotype, mechanisms, and signaling pathways that operate in microglial neurotoxic activation in ALS.-Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D., Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. © FASEB.

  15. Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells.

    Science.gov (United States)

    Lipschutz, Joshua H; Li, Shixiong; Arisco, Amy; Balkovetz, Daniel F

    2005-02-01

    The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.

  16. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    Science.gov (United States)

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  17. Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.

    Science.gov (United States)

    Bhatia, Neha; Bozorg, Behruz; Larsson, André; Ohno, Carolyn; Jönsson, Henrik; Heisler, Marcus G

    2016-12-05

    The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.

  18. Molecular regulation of somatic embryogenesis in potato: an auxin led perspective.

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Millam, Steve; Hedley, Peter E; McNicol, Jim; Bryan, Glenn J

    2008-09-01

    Potato internodal segments (INS) treated with the auxin 2,4-dichlorophenoxyacetic acid can be induced to develop somatic embryos upon their transfer to an auxin-free medium, while the continuous presence of auxin in the medium suppresses the progression of embryogenically-induced somatic cells to embryos. We have employed these contrasting pathways, in combination with potato microarrays representing circa 10,000 genes, to profile global gene expression patterns during the progression of somatic embryogenesis in potato. The induction phase, characterised by the presence of auxin, was analysed by the direct comparison of RNA isolated from freshly excised (0 days) and embryogenically induced (14 days) INS explants. RNAs from embryo-forming (withdrawal of auxin after 14 days) and embryo-inhibitory (continuous presence of auxin) conditions, isolated over a range of time-points until the emergence of somatic embryos, were compared in a loop design to identify auxin responsive genes putatively involved in the process of somatic embryogenesis. A total of 402 transcripts were found to be showing significant differential expression patterns during somatic embryogenesis 'induction' phase, 524 during 'embryo-transition' phase, while 44 transcripts were common to both phases. Functional classification of these transcripts, using Gene Ontology vocabularies (molecular and biological), revealed that a significant proportion of transcripts were involved in processes which are more relevant to somatic embryogenesis such as apoptosis, development, reproduction, stress and signal transduction. This is the first study profiling global gene expression patterns during true somatic embryogenesis initiated from mature and completely differentiated explants and has enabled the description of stage-specific expression patterns of a large number of genes during potato somatic embryogenesis (PSE). The significance of the key identified genes during critical stages of somatic embryogenesis is

  19. Auxin level and regeneration of Begonia leaves.

    Science.gov (United States)

    Heide, O M

    1968-06-01

    As previously found, both the level of ether-extractable auxin (presumably indole-3-acetic acid) and the root-forming ability of B.xcheimantha leaves are increased under long-day conditions by high temperature, whereas the capacity for adventitious bud formation is reduced. However, this relation is present under relatively high light intensity only. Under the low light intensities in late fall neither auxin level nor regeneration ability were significantly affected by temperature.Dark treatment of detached leaves for 2 to 16 days greatly counteracted the inhibitory effect of high temperature on bud formation and reduced both the auxin level and the root-forming ability of the leaves.The great seasonal changes in the regeneration ability of Begonia leaves seem to be the result of a complex interaction of temperature, day-length, and daily light energy on the level of endogenous auxin and other growth regulators.

  20. Grape seed extract triggers apoptosis in Caco-2 human colon cancer cells through reactive oxygen species and calcium increase: extracellular signal-regulated kinase involvement.

    Science.gov (United States)

    Dinicola, Simona; Mariggiò, Maria Addolorata; Morabito, Caterina; Guarnieri, Simone; Cucina, Alessandra; Pasqualato, Alessia; D'Anselmi, Fabrizio; Proietti, Sara; Coluccia, Pierpaolo; Bizzarri, Mariano

    2013-09-14

    Grape seed extract (GSE) from Italia, Palieri and Red Globe cultivars inhibits cell growth and induces apoptosis in Caco-2 human colon cancer cells in a dose-dependent manner. In order to investigate the mechanism(s) supporting the apoptotic process, we analysed reactive oxygen species (ROS) production, intracellular Ca2+ handling and extracellular signal-regulated kinase (ERK) activation. Upon exposure to GSE, ROS and intracellular Ca2+ levels increased in Caco-2 cells, concomitantly with ERK inactivation. As ERK activity is thought to be essential for promoting survival pathways, inhibition of this kinase is likely to play a relevant role in GSE-mediated anticancer effects. Indeed, pretreatment with N-acetyl cysteine, a ROS scavenger, reversed GSE-induced apoptosis, and promoted ERK phosphorylation. This effect was strengthened by ethylene glycol tetraacetic acid-mediated inhibition of extracellular Ca2+ influx. ROS and Ca2+ influx inhibition, in turn, increased ERK phosphorylation, and hence almost entirely suppressed GSE-mediated apoptosis. These data suggested that GSE triggers a previously unrecognised ERK-based mechanism, involving both ROS production and intracellular Ca2+ increase, eventually leading to apoptosis in cancer cells.

  1. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.

  2. Auxin at the shoot apical meristem

    OpenAIRE

    Vernoux, Teva; Besnard, Fabrice; Traas, Jan

    2010-01-01

    Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression...

  3. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  4. Polysaccharides of St. John's Wort Herb Stimulate NHDF Proliferation and NEHK Differentiation via Influence on Extracellular Structures and Signal Pathways.

    Science.gov (United States)

    Abakuks, S; Deters, A M

    2012-01-01

    St. John's Wort herb extracts often contain undesirable or volitional polysaccharides. As polysaccharides exhibit structure-dependent biological functions in the present study water-soluble polysaccharides were extracted from herb material, fractionated by anion exchange chromatography into four main polysaccharide fractions (denominated as Hp1, Hp2, Hp3 and Hp4) and characterized by HPAEC-PAD, CE, IR and GC-MS. Biological activity on human skin keratinocytes and fibroblasts was assessed by investigation of their effect on proliferation, metabolism, cytotoxicity, apoptosis and differentiation. The underlying mechanisms were investigated in gene expression studies. Polysaccharide fraction Hp1 was mainly composed of β-D-glucose. Hp2, Hp3 and Hp4 contained pectic structures and arabinogalactan proteins varying in composition and quantity. Polysaccharides of Hp1 induced the keratinocyte differentiation by inhibiting the gene expression of the epidermal growth factor and insulin receptor. While the collagen secretion of fibroblasts was stimulated by each polysaccharide fraction only Hp1 stimulated the synthesis. The fibroblast proliferation was reduced by Hp1 and increased by Hp4. This effect was related to the influence on genes that referred to oxidative stress, metabolism, transcription processes and extracellular proteins. In conclusion polysaccharides have been shown as biologically active ingredients of aqueous St. John's Wort extracts with a relation between their structural characteristics and function.

  5. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy) isobutyr

  6. Auxin-induced degradation dynamics set the pace for lateral root development

    Science.gov (United States)

    Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unr...

  7. Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis

    Science.gov (United States)

    To clarify the roles of CO, NO and auxin in the plant response to iron deficiency and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO...

  8. Plant AGC protein kinases orient auxin-mediated differential growth and organogenesis

    NARCIS (Netherlands)

    Galván Ampudia, Carlos Samuel

    2009-01-01

    In view of their predominant sessile lifestyle, plants need to be able to adapt to changes in their environment. Environmental signals such as light and gravity modulate plant growth and architecture by redirecting polar cell-to-cell transport of auxin, thus causing changes in the distribution of th

  9. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy)

  10. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy) isobutyr

  11. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    DEFF Research Database (Denmark)

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E;

    2013-01-01

    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentia...

  12. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry.

    Science.gov (United States)

    Liu, Hong; Xie, Wei-Fa; Zhang, Ling; Valpuesta, Victoriano; Ye, Zheng-Wen; Gao, Qing-Hua; Duan, Ke

    2014-04-01

    Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry.

  13. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana.

    Science.gov (United States)

    Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June

    2015-07-01

    In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.

  14. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity

    Directory of Open Access Journals (Sweden)

    Anastasia A. Kirpichnikova

    2014-03-01

    Full Text Available Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1 is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca2+ cytosolic concentration, which is suggested to be dependent on the activation of Ca2+ influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca2+ efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C3-(5. The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth the magnitude of Ca2+ efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca2+ efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10−8 to 10−6 M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10−6 M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca2+ and that ABP1 is involved in modulation of this reaction.

  15. Auxin asymmetry during gravitropism by tomato hypocotyls

    Science.gov (United States)

    Harrison, M. A.; Pickard, B. G.

    1989-01-01

    Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin.

  16. Short-term anesthesia inhibits formalin-induced extracellular signal-regulated kinase (ERK) activation in the rostral anterior cingulate cortex but not in the spinal cord.

    Science.gov (United States)

    Tochiki, Keri K; Maiarù, Maria; Miller, James R C; Hunt, Stephen P; Géranton, Sandrine M

    2015-08-14

    The rostral anterior cingulate cortex (rACC) has been implicated in the negative affective response to injury, and importantly, it has been shown that activation of extracellular signal-regulated kinase (ERK) signaling in the rACC contributes to the full expression of the affective component of pain in rodents. In this study, we investigated whether administration of anesthesia at the time of injury could reduce phosphorylated-ERK (PERK) expression in the rACC, which might eliminate the negative affective component of noxious stimulation. Intraplantar hindpaw formalin stimulation, an aversive event in the awake animal, was given with or without general isoflurane anesthesia, and PERK expression was subsequently quantified in the rACC using immunohistochemistry. Furthermore, as numerous studies have demonstrated the importance of spinal ERK signaling in the regulation of nociceptive behaviour, we also examined PERK in the superficial dorsal horn of the spinal cord. Formalin injection with and without short-term (anesthesia induced the same level of PERK expression in spinal cord laminae I-II. However, PERK expression was significantly inhibited across all laminae of the rACC in animals anesthetized during formalin injection. The effect of anesthesia was such that levels of PERK were the same in formalin and sham treated anesthesized animals. This study is the first to demonstrate that isoflurane anesthesia can inhibit formalin-induced PERK in the rACC and therefore might eliminate the unpleasantness of restraint associated with awake hindpaw injection.

  17. Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification.

    Science.gov (United States)

    Hong, Charles C; Kume, Tsutomu; Peterson, Randall T

    2008-09-12

    Functional and structural differences between arteries and veins lie at the core of the circulatory system, both in health and disease. Therefore, understanding how artery and vein cell identities are established is a fundamental biological challenge with significant clinical implications. Molecular genetic studies in zebrafish and other vertebrates in the past decade have begun to reveal in detail the complex network of molecular pathways that specify artery and vein cell fates during embryonic development. Recently, a chemical genetic approach has revealed evidence that artery-vein specification is governed by cross talk between phosphoinositide 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in artery-vein specification. We discuss recent findings on the signaling pathways involved in artery-vein specification during zebrafish development and compare and contrast these results to those from mammalian systems. It is anticipated that the complementary approaches of genetics and chemical biology, involving a variety of model organisms and systems, will lead to a better understanding of artery-vein specification and possibly to novel therapeutic approaches to treat vascular diseases.

  18. Dynamic regulation of extracellular signal-regulated kinase (ERK by protein phosphatase 2A regulatory subunit B56γ1 in nuclei induces cell migration.

    Directory of Open Access Journals (Sweden)

    Ei Kawahara

    Full Text Available Extracellular signal-regulated kinase (ERK signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A regulatory subunits, B56γ1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56α1 and B56β1 did not. B56γ1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56γ1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK are determined at least in part by modulation of the phosphatase activity of PP2A-B56γ1 through two independent pathways.

  19. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhengyu [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Yang, Qi; Cui, Mei; Liu, Yanping [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Wang, Tao; Zhao, Hong [Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Dong, Qiang, E-mail: qiang_dong163@163.com [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China)

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  20. Genetic basis of cytokinin and auxin functions during root nodule development

    Directory of Open Access Journals (Sweden)

    Takuya eSuzaki

    2013-03-01

    Full Text Available The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS HISTIDINE KINASE 1 and M. truncatula CYTOKININ RESPONSE 1 have brought a greater understanding of how activation of cytokinin signaling is crucial to the initiation of nodule primordia. Recent studies have also started to shed light on the roles of auxin in the regulation of nodule development. Here, we review the history and recent progress of research into the roles of cytokinin and auxin, and their possible interactions, in nodule development.

  1. Polar auxin transport: controlling where and how much

    Science.gov (United States)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  2. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    Science.gov (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  3. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  4. Mechanism of Auxin Interaction with Auxin Binding Protein (ABP1): A Molecular Dynamics Simulation Study

    Science.gov (United States)

    Bertoša, Branimir; Kojić-Prodić, Biserka; Wade, Rebecca C.; Tomić, Sanja

    2008-01-01

    Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site. PMID:17766341

  5. Cytokinin is required for escape but not release from auxin mediated apical dominance

    Science.gov (United States)

    Müller, Dörte; Waldie, Tanya; Miyawaki, Kaori; To, Jennifer PC; Melnyk, Charles W; Kieber, Joseph J; Kakimoto, Tatsuo; Leyser, Ottoline

    2015-01-01

    Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability. Significance Statement It has been proposed that the release of buds from auxin-mediated apical dominance following decapitation requires increased cytokinin biosynthesis and consequent increases in cytokinin supply to buds. Here we show that in Arabidopsis, increases in cytokinin appear to be unnecessary for the release of buds from apical dominance, but rather allow buds to escape the inhibitory effect of apical auxin, thereby promoting bud activation in favourable growth conditions. PMID:25904120

  6. Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Bethany B.Stone; Emily L.Stowe-Evans; Reneé M.Harper; R.Brandon Celaya; Karin Ljung; G(o)ran Sandberg; Emmanuel Liscum

    2008-01-01

    Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling,leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if coirradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations-map1 ((m)odifier of (a)rf7 (p)henotypes (1))-was found to represent a missense allele of AUX1-a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmocological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.

  7. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  8. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    Science.gov (United States)

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  9. Activation of extracellular signal-regulated kinase but not of p38 mitogen-activated protein kinase pathways in lymphocytes requires allosteric activation of SOS.

    Science.gov (United States)

    Jun, Jesse E; Yang, Ming; Chen, Hang; Chakraborty, Arup K; Roose, Jeroen P

    2013-06-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.

  10. Inhibition of Adipocyte Differentiation by Phytoestrogen Genistein Through a Potential Downregulation of Extracellular Signal-Regulated Kinases 1/2 Activity

    Science.gov (United States)

    Liao, Qing-Chuan; Li, Ya-Lin; Qin, Yan-Fang; Quarles, L. Darryl; Xu, Kang-Kang; Li, Rong; Zhou, Hong-Hao; Xiao, Zhou-Sheng

    2016-01-01

    In the current study, we investigated the effects of genistein on adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cell (BMSC) cultures and its potential signaling pathway. The terminal adipogenic differentiation was assessed by western-blotting analysis of adipogenic-specific proteins such as PPARγ, C/EBPα, and aP2 and the formation of adipocytes. Treatment of mouse BMSC cultures with adipogenic cocktail resulted in sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family, at the early phase of adipogenesis (from days 3 to 9). Inhibition of ERK1/2 activation by PD98059, a specific MEK inhibitor, reversed the induced adipogenic differentiation. Genistein dose-dependently decreased the phosphorylation of ERK1/2 in mouse BMSC cultures. Genistein incubation for the entire culture period, as well as that applied during the early phase of the culture period, significantly inhibited the adipogenic differentiation of mouse BMSC cultures. While genistein was incubated at the late stage (after day 9), no inhibitory effect on adipogenic differentiation was observed. BMSC cultures treated with genistein in the presence of fibroblast growth factor-2 (FGF-2), an activator of the ERK1/2 signaling pathway, expressed normal levels of ERK1/2 activity, and, in so doing, are capable of undergoing adipogenesis. Our results suggest that activation of the ERK1/2 signaling pathway during the early phase of adipogenesis (from days 3 to 9) is essential to adipogenic differentiation of BMSC cultures, and that genistein inhibits the adipogenic differentiation through a potential downregulation of ERK1/2 activity at this early phase of adipogenesis. PMID:18384126

  11. Morphometric Analysis of Auxin-Mediated Development

    Science.gov (United States)

    Lewis, Daniel

    Auxin controls many aspects of plant development through its effects on growth. Its distribution is controlled by specific tissue and organ level polar transport streams. The responses to environmental cues such as gravity light, nutrient availability are largely controlled by coordinated regulation of distinct auxin transport streams. Many plant responses to the environment involve changes in shape. Much can be learned about the underlying processes controlling plant form if the response is measured with sufficient resolution. Computer-aided analysis of digital images or 'machine vision' can be used to greatly increase the speed and consistency of data from a morphometric study of plant form. Advances in image acquisition and analysis pioneered at UW-Madison have allowed unprecedented resolution of the growth and gravitropism of Arabidopsis. A reverse genetic analysis was used to determine if the MDR-like ABC transporters influence auxin distribution important for plant development and the response to environmental cues in Arabidopsis. Mutations in MDR1 (At3g28860) reduce acropetal auxin transport in the root. This is correlated with deviation from the vertical axis. Mutations in MDR4 (At2g47000) reduce basipetal auxin transport in the root. This is correlated with hypergravitropism. It was theorized that reduced transport whithin the elongation zone is responsible for the increased curvature. Flavanols were found to regulate gravitropism upstream of MDR4. The mdr1 mdr4 double mutant showed additive but not synergistic phenotypes, suggesting that the two auxin transport streams are more independent than interdependent. MDR proteins seem to enhance auxin transport in situations where PIN-type effux alone is insufficient.

  12. Troglitazone induced cytosolic acidification via extracellular signal-response kinase activation and mitochondrial depolarization: complex I proton pumping regulates ammoniagenesis in proximal tubule-like LLC-PK1 cells.

    Science.gov (United States)

    Oliver, Robert; Friday, Ellen; Turturro, Francesco; Welbourne, Tomas

    2008-01-01

    To determined the mechanism(s) through which troglitazone induces cytosolic acidification and glutamine-dependent ammoniagenesis in pig kidney derived LLC-PK1 cells. Acute experiments measured acid extrusion, acid production and simultaneous Extracellular Signal-Regulated Kinase activation. TRO-enhanced acid production was correlated with mitochondrial membrane potential and rotenone and 5-(N-ethyl-N-isopropyl) amiloride, were employed to test specifically the role of Complex I proton pumping. Chronic experiments correlated inhibitors of Complex I with prevention of TRO-increased ammoniagenesis and affects on glutamine metabolism. Exposure to TRO acutely activated Extracellular Signal-Regulated Kinase in a dose dependent manner associated with a fall in spontaneous cytosolic pH. Cytosolic acidosis was associated with both an increase in acid production and inhibition of sodium/hydrogen ion exchanger -mediated acid extrusion. Preventing TRO-induced Extracellular Signal-Regulated Kinase activation with Mitogen Activated Protein Kinase Kinase inhibitors blocked the increase in acid production, restored sodium/hydrogen ion exchanger-activity and prevented cytosolic acidification. Mechanistically, increased acid production was associated with a rapid mitochondrial depolarization and Complex I proton pumping. Blocking Extracellular Signal-Regulated Kinase activation prevented both the fall in Psim and the increased acid production suggesting that the former underlies the accelerated mitochondrial 'acid production'. Mitochondrial Complex I inhibitors EIPA and rotenone prevented increased acid production despite Extracellular Response Kinase activation and reduced sodium/hydrogen ion activity. Inhibition of Complex I prevented TRO's effects on glutamine metabolism. TRO induces cellular acidosis through Extracellular Signal-Regulated Kinase activation-associated acid production and impaired acid extrusion. Acutely, increased acid production reflects mitochondrial Complex I

  13. Novel insights into CB1 cannabinoid receptor signaling: a key interaction identified between the extracellular-3 loop and transmembrane helix 2.

    Science.gov (United States)

    Marcu, Jahan; Shore, Derek M; Kapur, Ankur; Trznadel, Megan; Makriyannis, Alexandros; Reggio, Patricia H; Abood, Mary E

    2013-05-01

    Activation of the cannabinoid CB1 receptor (CB1) is modulated by aspartate residue D2.63(176) in transmembrane helix (TMH) 2. Interestingly, D2.63 does not affect the affinity for ligand binding at the CB1 receptor. Studies in class A G protein-coupled receptors have suggested an ionic interaction between residues of TMH2 and 7. In this report, modeling studies identified residue K373 in the extracellular-3 (EC-3) loop in charged interactions with D2.63. We investigated this possibility by performing reciprocal mutations and biochemical studies. D2.63(176)A, K373A, D2.63(176)A-K373A, and the reciprocal mutant with the interacting residues juxtaposed D2.63(176)K-K373D were characterized using radioligand binding and guanosine 5'-3-O-(thio)triphosphate functional assays. None of the mutations resulted in a significant change in the binding affinity of N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A) or (-)-3cis -[2-hydroxyl-4-(1,1-dimethyl-heptyl)phenyl]-trans-4-[3-hydroxyl-propyl] cyclohexan-1-ol (CP55,940). Modeling studies indicated that binding-site interactions and energies of interaction for CP55,940 were similar between wild-type and mutant receptors. However, the signaling of CP55,940, and (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)-methanone mesylate (WIN55,212-2) was impaired at the D2.63(176)A-K373A and the single-alanine mutants. In contrast, the reciprocal D2.63(176)K-K373D mutant regained function for both CP55,940 and WIN55,212-2. Computational results indicate that the D2.63(176)-K373 ionic interaction strongly influences the conformation(s) of the EC-3 loop, providing a structure-based rationale for the importance of the EC-3 loop to signal transduction in CB1. The putative ionic interaction results in the EC-3 loop pulling over the top (extracellular side) of the receptor; this EC-3 loop conformation may serve

  14. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Yan [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi' an 710032 (China); Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Guo, Xiao-Zhong, E-mail: guoxiaozhong1962@163.com [Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Wang, Hua, E-mail: wanghua@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  15. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    Science.gov (United States)

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  16. Gonadotropin-releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Bing Yao; Hai-Yan Liu; Yu-Chun Gu; Shan-Shan Shi; Xiao-Qian Tao; Xiao-Jun Li; Yi-Feng Ge; Ying-Xia Cui; Guo-Bin Yang

    2011-01-01

    Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L-1 after 24 h, activation of ERK1/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERK1/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSDgene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.

  17. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-01-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  18. D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis[C][W

    Science.gov (United States)

    Willige, Björn C.; Ahlers, Siv; Zourelidou, Melina; Barbosa, Inês C.R.; Demarsy, Emilie; Trevisan, Martine; Davis, Philip A.; Roelfsema, M. Rob G.; Hangarter, Roger; Fankhauser, Christian; Schwechheimer, Claus

    2013-01-01

    Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending. PMID:23709629

  19. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development.

    Science.gov (United States)

    Nizampatnam, Narasimha Rao; Schreier, Spencer John; Damodaran, Suresh; Adhikari, Sajag; Subramanian, Senthil

    2015-10-01

    Legume nodules result from coordinated interactions between the plant and nitrogen-fixing rhizobia. The phytohormone cytokinin promotes nodule formation, and recent findings suggest that the phytohormone auxin inhibits nodule formation. Here we show that microRNA160 (miR160) is a key signaling element that determines the auxin/cytokinin balance during nodule development in soybean (Glycine max). miR160 appears to promote auxin activity by suppressing the levels of the ARF10/16/17 family of repressor ARF transcription factors. Using quantitative PCR assays and a fluorescence miRNA sensor, we show that miR160 levels are relatively low early during nodule formation and high in mature nodules. We had previously shown that ectopic expression of miR160 in soybean roots led to a severe reduction in nodule formation, coupled with enhanced sensitivity to auxin and reduced sensitivity to cytokinin. Here we show that exogenous cytokinin restores nodule formation in miR160 over-expressing roots. Therefore, low miR160 levels early during nodule development favor cytokinin activity required for nodule formation. Suppression of miR160 levels using a short tandem target mimic (STTM160) resulted in reduced sensitivity to auxin and enhanced sensitivity to cytokinin. In contrast to miR160 over-expressing roots, STTM160 roots had increased nodule formation, but nodule maturation was significantly delayed. Exogenous auxin partially restored proper nodule formation and maturation in STTM160 roots, suggesting that high miR160 activity later during nodule development favors auxin activity and promotes nodule maturation. Therefore, miR160 dictates developmental stage-specific sensitivities to auxin and cytokinin to direct proper nodule formation and maturation in soybean.

  20. Auxin conjugated to fluorescent dyes--a tool for the analysis of auxin transport pathways.

    Science.gov (United States)

    Sokołowska, K; Kizińska, J; Szewczuk, Z; Banasiak, A

    2014-09-01

    Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin-like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.

  1. Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Qiannan Wang

    2016-12-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship between melatonin and auxin as well as underlying mechanisms are still unclear. In this study, we found high concentration of melatonin remarkably inhibited root growth in Arabidopsis by reducing root meristem size. Further studies showed that melatonin negatively regulated auxin biosynthesis, the expression of PINFORMED (PIN proteins as well as auxin response in Arabidopsis. Moreover, the root growth of the triple mutant pin1pin3pin7 was more tolerant than that of wild type in response to melatonin treatment, suggesting the essential role of PIN1/3/7 in melatonin-mediated root growth. Combination treatment of melatonin and 5-Triiodobenzoic acid (TIBA did not enhance melatonin-mediated reduction of root meristem size, indicating that polar auxin transport (PAT may be necessary for the regulation of root meristem size by melatonin treatment. Taken together, this study indicates that melatonin regulates root growth in Arabidopsis, through auxin synthesis and polar auxin transport, at least partially.

  2. Melatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Wei, Yunxie; Reiter, Russel J; Shi, Haitao; Luo, Hongli; He, Chaozu

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan) for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship between melatonin and auxin as well as underlying mechanisms are still unclear. In this study, we found high concentration of melatonin remarkably inhibited root growth in Arabidopsis by reducing root meristem size. Further studies showed that melatonin negatively regulated auxin biosynthesis, the expression of PINFORMED (PIN) proteins as well as auxin response in Arabidopsis. Moreover, the root growth of the triple mutant pin1pin3pin7 was more tolerant than that of wild-type in response to melatonin treatment, suggesting the essential role of PIN1/3/7 in melatonin-mediated root growth. Combination treatment of melatonin and 5-Triiodobenzoic acid (TIBA) did not enhance melatonin-mediated reduction of root meristem size, indicating that polar auxin transport (PAT) may be necessary for the regulation of root meristem size by melatonin treatment. Taken together, this study indicates that melatonin regulates root growth in Arabidopsis, through auxin synthesis and polar auxin transport, at least partially.

  3. The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops.

    Directory of Open Access Journals (Sweden)

    Mauricio Menacho-Márquez

    2013-07-01

    Full Text Available The catalytic activity of GDP/GTP exchange factors (GEFs is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.

  4. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  5. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    Science.gov (United States)

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  6. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Naoki Shinohara

    Full Text Available Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive properties. In particular, a positive feedback mechanism termed auxin transport canalization, which establishes auxin flow from active shoot meristems (auxin sources to the roots (auxin sinks, has been proposed to mediate competition between shoot meristems and to balance shoot and root growth. Here we provide strong support for this hypothesis by demonstrating that a second hormone, strigolactone, regulates growth redistribution in the shoot by rapidly modulating auxin transport. A computational model in which strigolactone action is represented as an increase in the rate of removal of the auxin export protein, PIN1, from the plasma membrane can reproduce both the auxin transport and shoot branching phenotypes observed in various mutant combinations and strigolactone treatments, including the counterintuitive ability of strigolactones either to promote or inhibit shoot branching, depending on the auxin transport status of the plant. Consistent with this predicted mode of action, strigolactone signalling was found to trigger PIN1 depletion from the plasma membrane of xylem parenchyma cells in the stem. This effect could be detected within 10 minutes of strigolactone treatment and was independent of protein synthesis but dependent on clathrin-mediated membrane trafficking. Together these results support the hypothesis that growth across the plant shoot system is balanced by competition between shoot apices for a common auxin transport path to the root and that strigolactones regulate shoot branching by modulating this competition.

  7. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  8. Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation.

    Science.gov (United States)

    Liu, Xiangyuan; Chen, Min; Li, Long; Gong, Liyan; Zhou, Hu; Gao, Daming

    2017-03-10

    Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. QSpike Tools: a Generic Framework for Parallel Batch Preprocessing of Extracellular Neuronal Signals Recorded by Substrate Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Mufti eMahmud

    2014-03-01

    Full Text Available Micro-Electrode Arrays (MEAs have emerged as a mature technique to investigate brain (dysfunctions in vivo and in in vitro animal models. Often referred to as smart Petri dishes, MEAs has demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are often employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20kHz sampling rate: ~8GB/MEA,h uncompressed. Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc., are decomposed and batch-queued to a multi-core architecture or to computer cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and possibly inspire the creation of community-supported cloud-computing facilities for MEAs users.

  10. QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays.

    Science.gov (United States)

    Mahmud, Mufti; Pulizzi, Rocco; Vasilaki, Eleni; Giugliano, Michele

    2014-01-01

    Micro-Electrode Arrays (MEAs) have emerged as a mature technique to investigate brain (dys)functions in vivo and in in vitro animal models. Often referred to as "smart" Petri dishes, MEAs have demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20 kHz sampling rate: approximately 8 GB/MEA,h uncompressed). Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc.), are decomposed and batch-queued to a multi-core architecture or to a computers cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and inspire the creation of community-supported cloud-computing facilities for MEAs users.

  11. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    Science.gov (United States)

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*

    Science.gov (United States)

    Young, Christian D.; Zimmerman, Lisa J.; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B.; Gatza, Michael L.; Morrison, Meghan M.; Moore, Preston D.; Whitwell, Corbin A.; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E.; Silva, Grace O.; Patel, Premal; Brantley-Sieders, Dana M.; Levin, Maren; Horiates, Marina; Palma, Norma A.; Wang, Kai; Stephens, Philip J.; Perou, Charles M.; Weaver, Alissa M.; O'Shaughnessy, Joyce A.; Chang, Jenny C.; Park, Ben Ho; Liebler, Daniel C.; Cook, Rebecca S.; Arteaga, Carlos L.

    2015-01-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. PMID:25953087

  13. Cytokinin is required for escape but not release from auxin mediated apical dominance.

    Science.gov (United States)

    Müller, Dörte; Waldie, Tanya; Miyawaki, Kaori; To, Jennifer P C; Melnyk, Charles W; Kieber, Joseph J; Kakimoto, Tatsuo; Leyser, Ottoline

    2015-06-01

    Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  14. Black Soybean Seed Coat Extract Prevents Hydrogen Peroxide-Mediated Cell Death via Extracellular Signal-Related Kinase Signalling in HepG2 Cells.

    Science.gov (United States)

    Hashimoto, Naoto; Oki, Tomoyuki; Sasaki, Kazunori; Suda, Ikuo; Okuno, Shigenori

    2015-01-01

    Oxidative stress reduces cell viability and contributes to disease processes. Flavonoids including anthocyanins and proanthocyanidins reportedly induce intracellular antioxidant defence systems. Thus, in this study, we examined the antioxidant effects of a commercial extract from black soybean seed coats (BE), which are rich in anthocyanin and proanthocyanidin, and investigated the associated intracellular mechanisms in HepG2 cells. HepG2 cells treated with hydrogen peroxide (HPO) showed 60% viability, whereas pretreatment with BE-containing media for 2 h ameliorated HPO-mediated cell death by up to 90%. Pretreatment with BE for 2 h partially blocked HPO-mediated activation of ERK in HepG2 cells, and that for 1 h led to a 20% increase in intracellular total protein phosphatase (PP) activity, which is known to deactivate protein kinases. These results indicate that BE prevents HPO-mediated cell damage by inhibiting ERK signalling, potentially via PPs.

  15. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling

    Directory of Open Access Journals (Sweden)

    Hou G

    2015-04-01

    Full Text Available Gang Hou, Yan Yin, Dan Han, Qiu-yue Wang, Jian Kang Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China Objective: We investigated how rosiglitazone attenuated cigarette smoke (CS-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP and anti-MMP activity, mitogen-activated protein kinase (MAPK phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB signaling pathway over-activation.Methods: A total of 36 Wistar rats were divided into three groups (n=12 each: animals were exposed to CS for 12 weeks in the absence (the CS group or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group; a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ, MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα phosphorylation in lung tissue was examined by Western blotting.Results: Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats.Conclusion: Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways

  16. Exendin-4 Promotes Survival of Mouse Pancreatic β-Cell Line in Lipotoxic Conditions, through the Extracellular Signal-Related Kinase 1/2 Pathway

    Directory of Open Access Journals (Sweden)

    Jianqiu Gu

    2016-01-01

    Full Text Available Type 2 diabetes is a heterogeneous disorder that develops as a result of relatively inappropriate insulin secretion and insulin resistance. Increased levels of free fatty acids (FFAs are one of the important factors for the pathogenesis of type 2 diabetes and contribute to defective β-cell proliferation and increased β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1 receptor agonists have been shown to possess an antiapoptotic effect, by increasing β-cell mass and improving β-cell function. However, their effects on β-cells in vitro against lipotoxicity have not been elucidated completely. In this study, we investigated whether the GLP-1 receptor agonist exendin-4 displays prosurvival effects in pancreatic β-cells exposed to chronic elevated FFAs. Results showed that exendin-4 inhibited apoptosis induced by palmitate in MIN6 cells. After 24 h of incubation, exendin-4 caused rapid activation of extracellular signal-related kinase 1/2 (ERK1/2 under lipotoxic conditions. The ERK1/2 inhibitor PD98059 blocked the antilipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis. This inhibition is associated with upregulation of BCL-2. Our findings suggested that exendin-4 may exert cytoprotective effects through activation of ERK1/2 and inhibition of the mitochondrial apoptosis pathway.

  17. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus.

    Science.gov (United States)

    Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio

    2017-05-15

    Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate ((C18),) a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Bjoern F Kraemer

    2011-11-01

    Full Text Available Human β-defensins (hBD are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus, forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET formation by target polymorphonuclear leukocytes (PMNs, which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria.

  19. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  20. Role of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways in regulating replication of Penicillium marneffei in human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Li, Xiqing; Lu, Sha; Ma, Tuan; Huang, Xiaowen; Mylonakis, Eleftherios; Liang, Yuheng; Xi, Liyan

    2014-05-01

    Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome-lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms.

  1. Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation▿ †

    Science.gov (United States)

    Artero-Castro, Ana; Callejas, Francisco B.; Castellvi, Josep; Kondoh, Hiroshi; Carnero, Amancio; Fernández-Marcos, Pablo J.; Serrano, Manuel; Ramón y Cajal, Santiago; Lleonart, Matilde E.

    2009-01-01

    Embryonic stem cells are immortalized cells whose proliferation rate is comparable to that of carcinogenic cells. To study the expression of embryonic stem cell genes in primary cells, genetic screening was performed by infecting mouse embryonic fibroblasts (MEFs) with a cDNA library from embryonic stem cells. Cold-inducible RNA-binding protein (CIRP) was identified due to its ability to bypass replicative senescence in primary cells. CIRP enhanced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, and treatment with an MEK inhibitor decreased the proliferation caused by CIRP. In contrast to CIRP upregulation, CIRP downregulation decreased cell proliferation and resulted in inhibition of phosphorylated ERK1/2 inhibition. This is the first evidence that ERK1/2 activation, through the same mechanism as that described for a Val12 mutant K-ras to induce premature senescence, is able to bypass senescence in the absence of p16INK4a, p21WAF1, and p19ARF upregulation. Moreover, these results show that CIRP functions by stimulating general protein synthesis with the involvement of the S6 and 4E-BP1 proteins. The overall effect is an increase in kinase activity of the cyclin D1-CDK4 complex, which is in accordance with the proliferative capacity of CIRP MEFs. Interestingly, CIRP mRNA and protein were upregulated in a subgroup of cancer patients, a finding that may be of relevance for cancer research. PMID:19158277

  2. Study on Effects of Extracts from Salvia Miltiorrhiza and Curcuma Longa in Inhibiting Phosphorylated Extracellular Signal Regulated Kinase Expression in Rat's Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    CHENG Yang; PING Jian; LIU Cheng; TAN Ying-zi; CHEN Gao-feng

    2006-01-01

    Objective: To study the effect of salvianolic acid B (SAB) and curcumin, the extracts of Salvia Miltiorrhiza and Curcuma Longa, on the proliferation and activation of hepatic stellate cell (HSC), and the extracellular signal regulated kinase (ERK) expression in it. Methods: Rat's HSC-T6 were cultured and treated by SAB or curcumin. The inhibitory effect on cell proliferation was determined by 3-(4,5-dimthyl-2-2thiazoly)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetry, and the expression levels of α smooth actin (α-SMA), collagen type Ⅰ , and ERK were determined by Western blot. Results: SAB and curcumin inhibited the proliferation and activation of rat's HSC-T6 in dose-dependent fashion and significantly reduced the expression level of α-SMA ( P<0.01 ). Curcumin significantly reduced the expression of collagen type Ⅰ( P<0.05). Both SAB and curcumin showed insignificant effect on the ERK expression level, but they could significantly reduce the level of phosphorylated-ERK expression, showing significant difference as compared with that in the control group ( P<0.01 and P<0.05 respectively). Conclusion: SAB and curcumin could significantly inhibit the proliferation, activation of HSC, and the production of type Ⅰ collagen in HSC, the mechanism may be associated with their inhibition on ERK phosphorylation.

  3. Phosphorylated extracellular signal-regulated kinase up-regulated p53 expression in shikonin-induced HeLa cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    WU Zhen; WU Li-jun; TASHIRO Shinichi; ONODERA Satoshi; IKEJIMA Takashi

    2005-01-01

    Background The role of extracellular signal-regulated kinase 1/2 (ERK1/2) in shikonin-induced HeLa cells apoptosis remains vague. This study was to investigate the activation of caspase pathways and the role of ERK1/2 in human cervical cancer cells, HeLa, by shikonin.Methods The inhibitory effect of shikonin on the growth of HeLa cells was measured by MTT assay. Fluorescent microscopic analysis of apoptotic cells stained with 4’,6’-oliiamiclino-2-phenylindole C (DAPI) and Hoechst 33258 was carried out. Caspase-3 and -8 activities were detected using caspase-3 substrate and caspase-8 substrate as substrates, respectively. The protein levels of ERK, p53 and p-ERK were determined by Western blot analysis.Results Shikonin inhibited cell growth in a time- and dose-dependent manner. Caspase-3 and caspase-8 were activated in the apoptotic process and caspase inhibitors effectively reversed shikonin-induced apoptosis. Phosphorylation of ERK resulted in up-regulation of p53 expression, which was blocked by mitogen-activated protein kinase (MEK), inhibitor PD 98059.Conclusion Shikonin induces HeLa cell apoptosis through the ERK, p53 and caspase pathways.

  4. Matrine-induced apoptosis of human nasopharyngeal carcinoma cells via in vitro vascular endothelial growth factor-A/extracellular signal-regulated kinase1/2 pathway inactivation.

    Science.gov (United States)

    Xie, M; He, G; Wang, R; Shi, S; Chen, J; Ye, Y; Xie, L; Yi, X; Tang, A

    2014-07-01

    Matrine, a main active extract from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines, such as malignant melanoma, breast cancer, and lung cancer. However, it is currently unclear whether matrine could also elicit an inhibitory effect on growth of nasopharyngeal carcinoma (NPC), let alone the possible molecular mechanisms. Therefore, in a previous study, we investigated matrine-induced proliferation inhibition and apoptosis in NPC cells. It was shown that proliferation of human NPC cells (CNE1 and CNE2) was significantly diminished by matrine in a dose- and time-dependent manner, and apoptosis was induced in both 2 NPC cells, particularly in CNE2 cells. Moreover, the increased apoptosis rate in matrine-treated CNE2 cells confirmed the proapoptotic activity of matrine. We further found that matrine treatment dose- and time-dependently reduced the levels of vascular endothelial growth factor-A (VEGF-A), and inactivated extracellular signal-regulated kinase1/2 (ERK1/2), followed by increased expression of downstream target caspase-3. Overall, we conclude that matrine could induce apoptosis of human NPC cells via VEGF-A/ERK1/2 pathway, which supports the potential use of matrine in clinically treating NPC.

  5. Hwanggunchungyitang prevents cadmium-induced ototoxicity through suppression of the activation of caspase-9 and extracellular signal-related kinase in auditory HEI-OC1 cells.

    Science.gov (United States)

    Kim, Su-Jin; Shin, Bong-Gi; Choi, In-Young; Kim, Dong-Hyun; Kim, Min-Cheol; Myung, Noh-Yil; Moon, Phil-Dong; Lee, Jeong-Han; An, Hyo-Jin; Kim, Na-Hyung; Lee, Joo-Young; So, Hong-Seob; Park, Rae-Kil; Jeong, Hyun-Ja; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2009-02-01

    Hwanggunchungyitang (HGCYT) is a newly designed herbal drug formula for the purpose of treating auditory diseases. A number of heavy metals have been associated with toxic effects to the peripheral or central auditory system. Cadmium (Cd(2+)) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. However, the auditory effect of Cd(2+) is not poorly understood. The purpose of the present study was to investigate whether HGCYT prevent the ototoxic effects induced by Cd(2+) in auditory cell line, HEI-OC1. HGCYT inhibited the cell death, reactive oxygen species generation (ROS), activation of caspase-9, and extracellular signal-related kinase (ERK) induced by Cd(2+). In addition, we observed that cochlear hair cells in middle turn were damaged by Cd(2+). However, HGCYT prevented the destruction of hair cell arrays of the rat primary organ of Corti explants in the presence of Cd(2+). These results support the notion that ROS are involved in Cd(2+) ototoxicity and suggest HGCYT therapeutic usefulness, against Cd(2+)-induced activation of caspase-9 and ERK.

  6. Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2(+) Breast Cancer.

    Science.gov (United States)

    Hanker, Ariella B; Estrada, Mónica Valeria; Bianchini, Giampaolo; Moore, Preston D; Zhao, Junfei; Cheng, Feixiong; Koch, James P; Gianni, Luca; Tyson, Darren R; Sánchez, Violeta; Rexer, Brent N; Sanders, Melinda E; Zhao, Zhongming; Stricker, Thomas P; Arteaga, Carlos L

    2017-06-15

    PIK3CA mutations are associated with resistance to HER2-targeted therapies. We previously showed that HER2(+)/PIK3CA(H1047R) transgenic mammary tumors are resistant to the HER2 antibodies trastuzumab and pertuzumab but respond to PI3K inhibitor buparlisib (TPB). In this study, we identified mechanisms of resistance to combined inhibition of HER2 and PI3K. TPB-resistant tumors were generated by treating HER2(+)/PIK3CA(H1047R) tumor-