WorldWideScience

Sample records for extracellular auxin signaling

  1. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    Science.gov (United States)

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  3. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Science.gov (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  4. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  5. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele; Byrne, Helen; King, John; Bennett, Malcolm

    2013-01-01

    these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation

  6. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling

    Directory of Open Access Journals (Sweden)

    Daniel Vik

    2018-04-01

    Full Text Available Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G, which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack – e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products – to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.

  7. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway

    Science.gov (United States)

    2014-01-01

    Background Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. Results Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 − Cullin − F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root

  8. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  9. Extracellular signaling and multicellularity in Bacillus subtilis.

    Science.gov (United States)

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]...

  11. Sources of extracellular tau and its signaling.

    Science.gov (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  12. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  13. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  14. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  15. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  16. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  17. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development.

    Directory of Open Access Journals (Sweden)

    Lian Jin

    2016-09-01

    Full Text Available The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB protein and an auxin/indole-3-acetic acid (Aux/IAA protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV, a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.

  18. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Péret, Benjamin; Porco, Silvana; Sairanen, Ilkka; Ljung, Karin; Bennett, Malcolm; King, John

    2015-02-07

    Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of NGATHA altered activity in auxin signaling pathways within the Arabidopsis gynoecium

    Directory of Open Access Journals (Sweden)

    Irene eMartinez-Fernandez

    2014-05-01

    Full Text Available The four NGATHA genes (NGA form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium.We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.

  20. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  1. Inter-regulation of the unfolded protein response and auxin signaling

    Czech Academy of Sciences Publication Activity Database

    Chen, Y.N.; Aung, K.; Rolčík, Jakub; Walicki, K.; Friml, J.; Brandizzi, F.

    2014-01-01

    Roč. 77, č. 1 (2014), s. 97-107 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : endoplasmic reticulum stress * unfolded protein response * auxin response Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  2. Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus).

    Science.gov (United States)

    Tamaki, Vívian; Mercier, Helenice

    2007-11-01

    This work aimed at identifying a possible role of phytohormones in long-distance (root-shoot) signaling under nitrogen deficiency. Three-months old pineapple plants were transferred from Murashige and Skoog (MS) medium to nitrogen-free MS (-N). During the first 24h on -N, 20 plants were harvested every 4h. After 30 days in -N, the remaining plants were transferred back to regular MS (+N) and 20 plants harvested every 4h for the first 24h. Following the harvests, endogenous levels of nitrate (NO(3)(-)), indole-3-acetic acid (IAA), isopentenyladenine (iP), isopentenyladenine riboside (iPR), zeatin (Z) and zeatin riboside (ZR) were analyzed in roots and leaves. In N-starved plants, the NO(3)(-) level dropped by 20% in roots between the first (4h) and the second harvest (8h). In leaves a reduction of 20% was found 4h later. Accumulation of IAA peaked in leaves at 16h. In roots, the accumulation of IAA only started at 16h while the leaf content was already in decline, which suggests that the hormone might have traveled from the leaves to the roots, communicating N-shortage. The contents of the four cytokinins were generally low in both, shoot and roots, and remained almost unchanged during the 24h of analysis. After N re-supply, roots showed a NO(3)(-) peak at 8h whereas the foliar concentration increased 4h later. Hormone levels in roots climaxed at 8h, this coinciding with the highest NO(3)(-) concentration. In leaf tissue, a dramatic accumulation was only observed for Z and ZR, and the peak was seen 4h later than in roots, suggesting that Z-type cytokinins might have traveled from the roots to the leaves. These findings provide evidence that there is a signaling pathway for N availability in pineapple plants, communicated upwards through cytokinins (N-supplemented plants) and downwards through auxin (N-starved plants).

  3. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  5. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  6. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  7. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus

    Directory of Open Access Journals (Sweden)

    Hongtao Cheng

    2017-05-01

    Full Text Available Oilseed rape (Brassica napus L. is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.

  8. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    Science.gov (United States)

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  9. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis

    Science.gov (United States)

    Robles, Linda M.; Deslauriers, Stephen D.; Alvarez, Ashley A.; Larsen, Paul B.

    2012-01-01

    As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena. PMID:22238449

  10. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes.

    Science.gov (United States)

    Holalu, Srinidhi V; Finlayson, Scott A

    2017-02-01

    Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Kubeš, Martin; Baster, P.; Robert, S.; Dobrev, Petre; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 200, č. 4 (2013), s. 1034-1048 ISSN 0028-646X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin analogues * auxin signalling * auxin transport Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.545, year: 2013

  12. Regulation of auxin transport during gravitropism

    Science.gov (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  13. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  14. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  15. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  16. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  17. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    OpenAIRE

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The...

  18. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    International Nuclear Information System (INIS)

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-01-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  19. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2014-01-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  20. Lrp4: a novel modulator of extracellular signaling in craniofacial organogenesis

    OpenAIRE

    Ohazama, Atsushi; Porntaveetus, Thantrira; Ota, Masato S.; Herz, Joachim; Sharpe, Paul T.

    2010-01-01

    The low-density lipoprotein (LDL) receptor family is a large evolutionarily conserved group of transmembrane proteins. It has been shown that LDL receptor family members can also function as direct signal transducers or modulators for a broad range of cellular signalling pathways. We have identified a novel mode of signalling pathway integration/coordination that occurs outside cells during development that involves an LDL family member. Physical interaction between an extracellular protein (...

  1. Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Jaeschke, Holger; Mueller, Sandra; Raaka, Bruce M; Neumann, Susanne; Paschke, Ralf; Krause, Gerd

    2008-08-01

    The mechanisms governing transition of the thyroid stimulating hormone (TSH) receptor (TSHR) from basal to active conformations are poorly understood. Considering that constitutively activating mutations (CAMs) and inactivating mutations in each of the extracellular loops (ECLs) trigger only partial TSHR activation or inactivation, respectively, we hypothesized that full signaling occurs via multiple extracellular signal propagation events. Therefore, individual CAMs in the extracellular region were combined to create double and triple mutants. In support of our hypothesis, combinations of mutants in the ECLs are in some cases additive, while in others they are even synergistic, with triple mutant I486A/I568V/V656F exhibiting a 70-fold increase in TSH-independent signaling. The proximity but likely different spatial orientation of the residues of activating and inactivating mutations in each ECL supports a dual functionality to facilitate signal induction and conduction, respectively. This is the first report for G-protein coupled receptors, suggesting that multiple and cooperative signal propagating events at all three ECLs are required for full receptor activation. Our findings provide new insights concerning molecular signal transmission from extracellular domains toward the transmembrane helix bundle of the glycoprotein hormone receptors.

  2. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  3. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-03-01

    The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.

  4. Extracellular ATP acts as a damage associated molecular pattern (DAMP signal in plants

    Directory of Open Access Journals (Sweden)

    Kiwamu eTanaka

    2014-09-01

    Full Text Available As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs. ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling role in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor Kinase, which is plant-specific. P2K1 (DORN1 is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression. Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of the future research of extracellular ATP as a DAMP signal.

  5. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    Science.gov (United States)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  6. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological......ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......, particularly during Ca2+ stress conditions. In conclusion, these studies demonstrate a complex regulation of purinergic signalling in exocrine pancreas. A crucial role for duct cells in mediating extracellular nucleotides homeostasis, involving ATP release, subsequent hydrolysis and conversion via...

  7. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  8. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    Science.gov (United States)

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Auxin Response Factors

    NARCIS (Netherlands)

    Roosjen, Mark; Paque, Sébastien; Weijers, Dolf

    2018-01-01

    The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding

  10. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Schultz, Robbie D; Bennett, Emily E; Ellis, E Ann; Gumienny, Tina L

    2014-01-01

    In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  11. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robbie D Schultz

    Full Text Available In mammals, Bone Morphogenetic Protein (BMP pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  12. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  13. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways.

    Science.gov (United States)

    Shi, Chun-Lin; Park, Hyo-Bee; Lee, Jong Suk; Ryu, Sangryeol; Ryu, Choong-Min

    2010-03-01

    The rhizobacterium Serratia marcescens strain 90-166 was previously reported to promote plant growth and induce resistance in Arabidopsis thaliana. In this study, the influence of strain 90-166 on root development was studied in vitro. We observed inhibition of primary root elongation, enhanced lateral root emergence, and early emergence of second order lateral roots after inoculation with strain 90-166 at a certain distance from the root. Using the DR5::GUS transgenic A. thaliana plant and an auxin transport inhibitor, N-1-naphthylphthalamic acid, the altered root development was still elicited by strain 90-166, indicating that this was not a result of changes in plant auxin levels. Intriguingly, indole-3-acetic acid, a major auxin chemical, was only identified just above the detection limit in liquid culture of strain 90-166 using liquid chromatography-mass spectrometry. Focusing on bacterial determinants of the root alterations, we found that primary root elongation was inhibited in seedlings treated with cell supernatant (secreted compounds), while lateral root formation was induced in seedlings treated with lysate supernatant (intracellular compounds). Further study revealed that the alteration of root development elicited by strain 90-166 involved the jasmonate, ethylene, and salicylic acid signaling pathways. Collectively, our results suggest that strain 90-166 can contribute to plant root development via multiple signaling pathways.

  14. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Science.gov (United States)

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  15. What has been seen cannot be unseen-detecting auxin in vivo

    Czech Academy of Sciences Publication Activity Database

    Pařízková, Barbora; Pernisová, M.; Novák, Ondřej

    2017-01-01

    Roč. 18, č. 12 (2017), č. článku 2736. E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : Auxin * Auxin distribution * Auxin signalling * Auxin transport * Direct visualization * Indirect visualization * Receptor * Sensor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.226, year: 2016

  16. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    Science.gov (United States)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  17. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    Science.gov (United States)

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA

  18. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    Science.gov (United States)

    Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  19. Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-art and Challenges

    Directory of Open Access Journals (Sweden)

    Mufti eMahmud

    2016-06-01

    Full Text Available In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dysfunctions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed. This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semiautomated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc., and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are to be faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data.

  20. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  1. Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice

    Directory of Open Access Journals (Sweden)

    Fenny Wiradjaja

    2013-11-01

    Fras1-related extracellular matrix protein 1 (FREM1 is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane.

  2. The danger signal extracellular ATP is an inducer of Fusobacterium nucleatum biofilm dispersal

    Directory of Open Access Journals (Sweden)

    Qinfeng Ding

    2016-11-01

    Full Text Available Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP is an example of a danger associated molecular pattern (DAMP employed by mammalian cells to elicit inflammatory and damage healing responses. Although the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were significantly more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also exhibited significantly higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a

  3. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    Science.gov (United States)

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Modeling the intra- and extracellular cytokine signaling pathway under heat stroke in the liver.

    Directory of Open Access Journals (Sweden)

    Maria Rodriguez-Fernandez

    Full Text Available Heat stroke (HS is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS. The observation that pro- (e.g., IL-1 and anti-inflammatory (e.g., IL-10 cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation and proteomic (circulating cytokines and receptors data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico.

  5. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  6. Auxins in defense strategies

    Czech Academy of Sciences Publication Activity Database

    Čarná, Mária; Repka, V.; Skůpa, Petr; Šturdík, E.

    2014-01-01

    Roč. 69, č. 10 (2014), s. 1255-1263 ISSN 0006-3088 R&D Projects: GA TA ČR TA01011802 Institutional support: RVO:61389030 Keywords : auxin * defense responses * JA Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.827, year: 2014

  7. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  8. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  9. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  10. The role of auxin in temperature regulated hypocotyl elongation

    Energy Technology Data Exchange (ETDEWEB)

    Estelle, Mark [Univ. of California, San Diego, CA (United States)

    2015-10-02

    The major goal of this project was to determine how auxin mediates the response of Arabidopsis seedlings to increased ambient temperature. Previous studies have shown that the response is due, in part, to increased auxin biosynthesis via the IPA auxin biosynthetic pathway. This effect is related to increased transcription of genes that encode enzymes in this pathway. However, during the last year we have shown that transcription of key auxin regulated genes increases within minutes of a shift to elevated temperature. This response is probably to rapid to be explained by changes in the levels of auxin biosynthetic enzymes. Interestingly, we have recently discovered that temperature shift is associated with a rapid increase in the level of the auxin co-receptor TIR1. This change appears is the result of increased stability of the protein. At the same time, we have discovered that stability of TIR1 is dependent on the chaperone HSP9o and its co-chaperone SGT1. By using the specific HSP90 inhibitor GDA, we show that HSP90 is required for the temperature dependent change in TIR1 levels. We have also shown that HSP90 and SGT1 interact directly with TIR1. Our results also lead us to propose a new model in which the plant responds rapidly to changes in ambient temperature by directly regulating the TIR1/AFB receptor system, thus modulating the auxin signaling pathway.

  11. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2012-11-01

    Full Text Available Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.

  13. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  14. Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule.

    Science.gov (United States)

    Forsyth, M H; Cover, T L

    2000-06-01

    Individual bacteria of numerous species can communicate and coordinate their actions via the production, release, and detection of extracellular signaling molecules. In this study, we used the Vibrio harveyi luminescence bioassay to determine whether Helicobacter pylori produces such a factor. Cell-free conditioned media from H. pylori strains 60190 and 26695 each induced >100-fold-greater luminescence in V. harveyi than did sterile culture medium. The H. pylori signaling molecule had a molecular mass of 100-fold-greater luminescence in the V. harveyi bioassay than did conditioned medium from either mutant strain. Production of the signaling molecule was restored in an H. pylori luxS null mutant strain by complementation with a single intact copy of luxS placed in a heterologous site on the chromosome. In addition, Escherichia coli DH5alpha produced autoinducer activity following the introduction of an intact copy of luxS from H. pylori. Production of the signaling molecule by H. pylori was growth phase dependent, with maximal production occurring in the mid-exponential phase of growth. Transcription of H. pylori vacA also was growth phase dependent, but this phenomenon was not dependent on luxS activity. These data indicate that H. pylori produces an extracellular signaling molecule related to AI-2 from V. harveyi. We speculate that this signaling molecule may play a role in regulating H. pylori gene expression.

  15. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  16. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    Science.gov (United States)

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  17. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  18. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  19. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  20. Auxin Transporters - Why So Many?

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Murphy, A. S.; Yang, H.; Hoyerová, Klára; Hošek, Petr

    2010-01-01

    Roč. 2, č. 3 (2010), s. 1-14 ISSN 1943-0264 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin transporters * auxin carriers * plant development Subject RIV: ED - Physiology Impact factor: 5.371, year: 2010

  1. Patterning of leaf vein networks by convergent auxin transport pathways.

    Science.gov (United States)

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  2. Patterning of leaf vein networks by convergent auxin transport pathways.

    Directory of Open Access Journals (Sweden)

    Megan G Sawchuk

    Full Text Available The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM-localized PIN-FORMED1 (PIN1 intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  3. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in arabidopsis

    NARCIS (Netherlands)

    Simonini, Sara; Deb, Joyita; Moubayidin, Laila; Stephenson, Pauline; Valluru, Manoj; Freire-Rios, Alejandra; Sorefan, Karim; Weijers, Dolf; Friml, Jiří; Østergaard, Lars

    2016-01-01

    Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant’s life cycle. Auxin signaling occurs through

  4. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.

    2007-01-01

    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely

  5. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  6. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Frimurer, Thomas M; Sivertsen, Bjoern

    2012-01-01

    Based on a rare, natural Glu for Ala204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2 (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional....... Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal-ion site stabilizing an a-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment...

  7. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    DEFF Research Database (Denmark)

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E

    2013-01-01

    -to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key...... to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm. DOI: http://dx.doi.org/10.7554/eLife.00806.001....

  8. The Role of Auxin in Cell Wall Expansion.

    Science.gov (United States)

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  9. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution.

    Directory of Open Access Journals (Sweden)

    Ora Hazak

    2010-01-01

    Full Text Available Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning.

  10. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    Full Text Available The hormone thyrotropin (TSH and its receptor (TSHR are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR and lutropin/choriogonadotropin (LHR and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD with the transmembrane helix (TMH 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin, super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  11. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Science.gov (United States)

    Krause, Gerd; Kreuchwig, Annika; Kleinau, Gunnar

    2012-01-01

    The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD) with the transmembrane helix (TMH) 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin), super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  12. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    OpenAIRE

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN s...

  13. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  14. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1

    Science.gov (United States)

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T.; Hocart, Charles H.; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-01-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation. PMID:26253705

  15. Role of Extracellular RNA and TLR3‐Trif Signaling in Myocardial Ischemia–Reperfusion Injury

    Science.gov (United States)

    Chen, Chan; Feng, Yan; Zou, Lin; Wang, Larry; Chen, Howard H.; Cai, Jia‐Yan; Xu, Jun‐Mei; Sosnovik, David E.; Chao, Wei

    2014-01-01

    Background Toll‐like receptor 3 (TLR3) was originally identified as the receptor for viral RNA and represents a major host antiviral defense mechanism. TLR3 may also recognize extracellular RNA (exRNA) released from injured tissues under certain stress conditions. However, a role for exRNA and TLR3 in the pathogenesis of myocardial ischemic injury has not been tested. This study examined the role of exRNA and TLR3 signaling in myocardial infarction (MI), apoptosis, inflammation, and cardiac dysfunction during ischemia‐reperfusion (I/R) injury. Methods and Results Wild‐type (WT), TLR3−/−, Trif−/−, and interferon (IFN) α/β receptor‐1 deficient (IFNAR1−/−) mice were subjected to 45 minutes of coronary artery occlusion and 24 hours of reperfusion. Compared with WT, TLR3−/− or Trif−/− mice had smaller MI and better preserved cardiac function. Surprisingly, unlike TLR(2/4)‐MyD88 signaling, lack of TLR3‐Trif signaling had no impact on myocardial cytokines or neutrophil recruitment after I/R, but myocardial apoptosis was significantly attenuated in Trif−/− mice. Deletion of the downstream IFNAR1 had no effect on infarct size. Importantly, hypoxia and I/R led to release of RNA including microRNA from injured cardiomyocytes and ischemic heart, respectively. Necrotic cardiomyocytes induced a robust and dose‐dependent cytokine response in cultured cardiomyocytes, which was markedly reduced by RNase but not DNase, and partially blocked in TLR3‐deficient cardiomyocytes. In vivo, RNase administration reduced serum RNA level, attenuated myocardial cytokine production, leukocytes infiltration and apoptosis, and conferred cardiac protection against I/R injury. Conclusion TLR3‐Trif signaling represents an injurious pathway during I/R. Extracellular RNA released during I/R may contribute to myocardial inflammation and infarction. PMID:24390148

  16. Nature of extracellular signal that triggers RhoA/ROCK activation for the basal internal anal sphincter tone in humans

    Science.gov (United States)

    Singh, Jagmohan; Kumar, Sumit; Phillips, Benjamin

    2015-01-01

    The extracellular signal that triggers activation of rho-associated kinase (RhoA/ROCK), the major molecular determinant of basal internal anal sphincter (IAS) smooth muscle tone, is not known. Using human IAS tissues, we identified the presence of the biosynthetic machineries for angiotensin II (ANG II), thromboxane A2 (TXA2), and prostaglandin F2α (PGF2α). These end products of the renin-angiotensin system (RAS) (ANG II) and arachidonic acid (TXA2 and PGF2α) pathways and their effects in human IAS vs. rectal smooth muscle (RSM) were studied. A multipronged approach utilizing immunocytochemistry, Western blot analyses, and force measurements was implemented. Additionally, in a systematic analysis of the effects of respective inhibitors along different steps of biosynthesis and those of antagonists, their end products were evaluated either individually or in combination. To further describe the molecular mechanism for the IAS tone via these pathways, we monitored RhoA/ROCK activation and its signal transduction cascade. Data showed characteristically higher expression of biosynthetic machineries of RAS and AA pathways in the IAS compared with the RSM. Additionally, specific inhibition of the arachidonic acid (AA) pathway caused ∼80% decrease in the IAS tone, whereas that of RAS lead to ∼20% decrease. Signal transduction studies revealed that the end products of both AA and RAS pathways cause increase in the IAS tone via activation of RhoA/ROCK. Both AA and RAS (via the release of their end products TXA2, PGF2α, and ANG II, respectively), provide extracellular signals which activate RhoA/ROCK for the maintenance of the basal tone in human IAS. PMID:25882611

  17. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  18. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-01-01

    Highlights: → Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. → FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. → FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. → FGFR4-ECD reduced tetracycline-induced fatty liver in mice. → FGFR4-ECD partially restored tetracycline-repressed PPARα expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  19. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  20. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    International Nuclear Information System (INIS)

    Curbo, Sophie; Gaudin, Raphael; Carlsten, Mattias; Malmberg, Karl-Johan; Troye-Blomberg, Marita; Ahlborg, Niklas; Karlsson, Anna; Johansson, Magnus; Lundberg, Mathias

    2009-01-01

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4Rα receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  1. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control.

    Science.gov (United States)

    Devoghalaere, Fanny; Doucen, Thomas; Guitton, Baptiste; Keeling, Jeannette; Payne, Wendy; Ling, Toby John; Ross, John James; Hallett, Ian Charles; Gunaseelan, Kularajathevan; Dayatilake, G A; Diak, Robert; Breen, Ken C; Tustin, D Stuart; Costes, Evelyne; Chagné, David; Schaffer, Robert James; David, Karine Myriam

    2012-01-13

    Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

  2. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  3. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  4. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  5. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  6. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  7. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo

    Czech Academy of Sciences Publication Activity Database

    Bryja, Vítězslav; Andersson, E.R.; Schambony, A.; Esner, M.; Bryjová, Lenka; Biris, K.K.; Hall, A.C.; Kraft, B.; Čajánek, L.; Yamaguchi, T.P.; Buckingham, M.; Arenas, E.

    2009-01-01

    Roč. 20, č. 3 (2009), s. 924-936 ISSN 1059-1524 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : non-canonical Wnt signaling * Lrp5/6 * mouse Subject RIV: BO - Biophysics Impact factor: 5.979, year: 2009

  8. Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis

    DEFF Research Database (Denmark)

    Boeglin, Martin; Fuglsang, Anja Thoe; Luu, Doan Trung

    2016-01-01

    seedlings and at the adult stage in stipules of cauline leaves. The atnup62-1 mutant, harbouring a T-DNA insertion in intron 5, was identified as a knock-down mutant. It displayed developmental phenotypes that suggested defects in auxin transport or responsiveness. Atnup62 mutant plantlets were found...... to be hypersensitive to auxin, at the cotyledon and root levels. The phenotype of the AtNUP62-GFP overexpressing line further supported the existence of a link between AtNUP62 and auxin signalling. Furthermore, the atnup62 mutation led to an increase in the activity of the DR5 auxin-responsive promoter, and suppressed...

  9. Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system.

    Science.gov (United States)

    Lerner, Natalie; Avissar, Sofia; Beit-Yannai, Elie

    2017-01-01

    Canonical Wnt signaling is associated with glaucoma pathogenesis and intraocular pressure (IOP) regulation. Our goal was to gain insight into the influence of non-pigmented ciliary epithelium (NPCE)-derived exosomes on Wnt signaling by trabecular meshwork (TM) cells. The potential impact of exosomes on Wnt signaling in the ocular drainage system remains poorly understood. Exosomes isolated from media collected from cultured NPCE cells by differential ultracentrifugation were characterized by dynamic light scattering (DLS), tunable resistive pulse sensing (TRPS), and nanoparticle tracking analysis (NTA), sucrose density gradient migration and transmission electron microscopy (TEM). The cellular target specificity of the NPCE-derived exosomes was investigated by confocal microscopy-based monitoring of the uptake of DiD-labeled exosomes over time, as compared to uptake by various cell lines. Changes in Wnt protein levels in TM cells induced by NPCE exosomes were evaluated by Western blot. Exosomes derived from NPCE cells were purified and detected as small rounded 50-140 nm membrane vesicles, as defined by DLS, NTA, TRPS and TEM. Western blot analysis indicated that the nanovesicles were positive for classic exosome markers, including Tsg101 and Alix. Isolated nanoparticles were found in sucrose density fractions typical of exosomes (1.118-1.188 g/mL sucrose). Using confocal microscopy, we demonstrated time-dependent specific accumulation of the NPCE-derived exosomes in NTM cells. Other cell lines investigated hardly revealed any exosome uptake. We further showed that exosomes induced changes in Wnt signaling protein expression in the TM cells. Western blot analysis further revealed decreased phosphorylation of GKS3β and reduced β-catenin levels. Finally, we found that treatment of NTM cells with exosomes resulted in a greater than 2-fold decrease in the level of β-catenin in the cytosolic fraction. In contrast, no remarkable difference in the amount of

  10. Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

    Science.gov (United States)

    2013-09-05

    to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names...commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or...pathway. Nature Medicine 6: 422–428. 93. Murray PJ (2007) The jak-stat signaling pathway: Input and output intergration . Journal of Immunology 178

  11. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M

    2009-11-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.

  12. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop.

    Science.gov (United States)

    Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine

    2017-12-01

    Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.

  13. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  14. Crosstalk between intracellular and extracellular signals regulating interneuron production migration and integration into the cortex

    Directory of Open Access Journals (Sweden)

    Elise ePeyre

    2015-04-01

    Full Text Available During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: 1/ Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; 2/ Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; 3/ Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

  15. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex.

    Science.gov (United States)

    Peyre, Elise; Silva, Carla G; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

  16. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2

    Science.gov (United States)

    Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2012-01-01

    Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. Results. PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced apoptosis in cultured PECs, while a forced

  17. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis.

    Science.gov (United States)

    Languille, Solène; Davis, Sabrina; Richer, Paulette; Alcacer, Cristina; Laroche, Serge; Hars, Bernard

    2009-11-01

    The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.

  18. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  19. Effects of gelling agent and extracellular signaling molecules on the culturability of marine bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Schmidt Thøgersen, Mariane; Nielsen, Kristian Fog

    2017-01-01

    Only 1 % of marine bacteria are currently culturable using standard laboratory procedures and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of the present study was to invest......Only 1 % of marine bacteria are currently culturable using standard laboratory procedures and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of the present study...... was to investigate if improved cultivation conditions, including the use of an alternative gelling agent, and supplementation with signaling molecules, could improve the culturability of bacteria from seawater. Substituting agar with gellan gum improved viable counts 3 – 40-fold, depending on medium composition...

  20. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz Cuesta, Elena; Olesen, Christina Wilkens

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...

  1. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  2. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  3. Neuronal extracellular signal-regulated kinase (ERK activity as marker and mediator of alcohol and opioid dependence

    Directory of Open Access Journals (Sweden)

    Eva R. Zamora-Martinez

    2014-03-01

    Full Text Available Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.

  4. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  5. Auxin: Harnessing a loose cannon

    NARCIS (Netherlands)

    Weijers, D.

    2015-01-01

    The auxin receptor TIR1 is an F-box protein functioning in a ubiquitin ligase complex to target repressors for degradation. It is itself an unstable protein, but newly identified mutations protect both TIR1 and its substrates from degradation. These mutations could help in identifying the substrates

  6. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Directory of Open Access Journals (Sweden)

    Wim Grunewald

    2009-01-01

    Full Text Available Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  7. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Science.gov (United States)

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  8. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  9. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  10. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  12. Sensory role of actin in auxin-dependent responses of tobacco BY-2.

    Science.gov (United States)

    Huang, Xiang; Maisch, Jan; Nick, Peter

    2017-11-01

    Polar auxin transport depends on the polar localization of auxin-efflux carriers. The cycling of these carriers between cell interior and plasma membrane depends on actin. The dynamic of actin not only affects auxin transport, but also changes the auxin-responsiveness. To study the potential link between auxin responsiveness and actin dynamics, we investigated developmental responses of the non-transformed BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cell line and the transgenic BY-2 strain GF11 (stably transformed BY-2 cells with a GFP-fimbrin actin-binding domain 2 construct). The developmental process was divided into three distinct stages: cell cycling, cell elongation and file disintegration. Several phenotypes were measured to monitor the cellular responses to different concentrations of exogenous natural auxin (Indole-3-acetic acid, IAA). We found that auxin stimulated and prolonged the mitotic activity, and delayed the exit from the proliferation phase. However, both responses were suppressed in the GF11 line. At the stationary phase of the cultivation cycle, auxin strongly accelerated the cell file disintegration. Interestingly, it was not suppressed but progressed to a more complete disintegration in the GF11 line. During the cultivation cycle, we also followed the organization of actin in the GF11 line and did not detect any significant difference in actin organization from untreated control or exogenous IAA treatment. Therefore, our findings indicate that the specific differences observed in the GF11 line must be linked with a function of actin that is not structural. It means that there is a sensory role of actin for auxin signaling. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Changes in auxin level in the course of growth of a sunflower crown-gall suspension culture

    Directory of Open Access Journals (Sweden)

    Zofia Chirek

    2014-01-01

    Full Text Available The auxin level in the cell mass and culture medium was determined by means of the Avena straight caleoptile test in various periods of the suspension culture cycle of the sunflower crown-gall tumour. The investigations were performed in the course of the zero passage (PO and first one (Pl, differing in their time of duration of maximum growth and its intensity. In both passages the intra- and extra-cellular auxin levels reach values of the same order. At the beginning of the maximal growth phase the activity corresponding to IAA in the cells prevails over that of the other auxin-like compounds. This disproportion diminishes with further development of the culture, and with the beginning of the stationary phase the cellular IAA level is lower than that of the remaining auxin-like compounds. The short phase of maximal growth (PO occurs with an auxin level decreasing in the cell mass and increasing in the medium, and towards the end of the cycle these levels become equal. During the long phase of maximal growth (Pl the total amount of auxins in the cells increases and is 2-3 times higher than in the medium, whereas IAA in the cells remains at a constant level. These results suggest that the participation of IAA in the intracellular pool of auxin-like substances is decisive for the mitotic activity of the cells and maintenance of growth in the culture.

  14. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  15. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway.

    Science.gov (United States)

    Cheng, Lihong; Ye, Ying; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua

    2017-01-15

    Neurotrophic factors such as nerve growth factor (NGF) play important roles in nervous system. NGF is a potential therapeutic drug for treatment of neurodegenerative diseases. However, because of physicochemical property, NGF cannot pass through the blood-brain barrier (BBB). Hence, small molecules which exhibit NGF-mimic activity and can pass through the BBB are considered to be promising drug candidates for treatment of such diseases. The present study was designed to isolate NGF-mimic substance from extract of natural products, determine their structures and investigate mechanism of action of the active substance. Extract of Lindernia crustacean was partitioned between water and ethyl acetate to obtain water layer and ethyl acetate layer samples, respectively, and then evaluated their neuritogenic activity in PC12 cells. The active sample was separated by open columns, followed by HPLC purification to obtain active compound. Then, specific inhibitors were used to investigate signaling pathway of neurite outgrowth induced by the active compound. Finally, western blot analysis was performed to confirm the pathway proposed by inhibitor experiments. The ethyl acetate layer sample of extract of Lindernia crustacea exhibited significant neuritogenic activity. Two new compounds, named as linderside A and lindersin B, were isolated; their structures were elucidated by spectroscopic and chemical derivatization methods. Linderside A is a cucurbitane glycoside, whereas lindersin B is a cucurbitane triterpenoid. Each compound has an unusual isopentene unit, namely, a double bond bound to an unmodified isopropyl group at the end of cucurbitane triterpenoid side chain. Among them, lindersin B induced significant neurite outgrowth in PC12 cells, while linderside A was inactive against PC12 cells. Western blotting analysis results showed that lindersin B-induced neuritogenic activity depended on the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal

  16. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Science.gov (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  17. Simvastatin attenuates acrolein-induced mucin production in rats: involvement of the Ras/extracellular signal-regulated kinase pathway.

    Science.gov (United States)

    Chen, Ya-Juan; Chen, Peng; Wang, Hai-Xia; Wang, Tao; Chen, Lei; Wang, Xun; Sun, Bei-Bei; Liu, Dai-Shun; Xu, Dan; An, Jing; Wen, Fu-Qiang

    2010-06-01

    Airway mucus overproduction is a cardinal feature of airway inflammatory diseases, such as chronic obstructive pulmonary disease and cystic fibrosis. Since the small G-protein Ras is known to modulate cellular functions in the lung, we sought to investigate whether the Ras inhibitor simvastatin could attenuate acrolein-induced mucin production in rat airways. Rats were exposed to acrolein for 12 days, after first being pretreated intragastrically for 24 h with either simvastatin alone or simvastatin in combination with mevalonate, which prevents the isoprenylation needed for Ras activation. Lung tissue was analyzed for extracellular signal-regulated kinase (ERK) activity, goblet cell metaplasia and mucin production. To analyze the effect of simvastatin on mucin production in more detail, acrolein-exposed human airway epithelial NCI-H292 cells were pretreated with simvastatin alone or together with mevalonate. Culture medium was collected to detect mucin secretion, and cell lysates were examined for Ras-GTPase activity and epidermal growth factor receptor (EGFR)/ERK phosphorylation. In vivo, simvastatin treatment dose-dependently suppressed acrolein-induced goblet cell hyperplasia and metaplasia in bronchial epithelium and inhibited ERK phosphorylation in rat lung homogenates. Moreover, simvastatin inhibited Muc5AC mucin synthesis at both the mRNA and protein levels in the lung. In vitro, simvastatin pretreatment attenuated the acrolein-induced significant increase in MUC5AC mucin expression, Ras-GTPase activity and EGFR/ERK phosphorylation. These inhibitory effects of simvastatin were neutralized by mevalonate administration both in vitro and in vivo. Our results suggest that simvastatin may attenuate acrolein-induced mucin protein synthesis in the airway and airway inflammation, possibly by blocking ERK activation mediated by Ras protein isoprenylation. Thus, the evidence from the experiment suggests that human trials are warranted to determine the potential

  18. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats.

    Directory of Open Access Journals (Sweden)

    Chuan Ma

    Full Text Available OBJECTIVES: To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK pathway in the temporomandibular joint (TMJ of rats subjected to chronic sleep deprivation (CSD. METHODS: Rats were subjected to CSD using the modified multiple platform method (MMPM. The serum levels of corticosterone (CORT and adrenocorticotropic hormone (ACTH were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR and Western blotting. RESULTS: The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE staining and scanning electron microscopy (SEM showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. CONCLUSION: These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.

  19. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.

    Science.gov (United States)

    Nacry, Philippe; Canivenc, Geneviève; Muller, Bertrand; Azmi, Abdelkrim; Van Onckelen, Harry; Rossignol, Michel; Doumas, Patrick

    2005-08-01

    The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates

  20. Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Liu Ming-Gang

    2012-11-01

    Full Text Available Abstract Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5-extracellular signal-regulated kinase (ERK signaling in this process. Methods Complete Freund’s adjuvant (CFA was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK and mGluR5 in the trigeminal subnucleus caudalis (Vc and upper cervical spinal cord (C1-C2 were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t. route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and

  1. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  3. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  4. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  5. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    Science.gov (United States)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  6. Extracellular pH Regulates Zinc Signaling via an Asp Residue of the Zinc-sensing Receptor (ZnR/GPR39)*

    Science.gov (United States)

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity. PMID:22879599

  7. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).

    Science.gov (United States)

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-09-28

    Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.

  8. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  9. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  10. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  12. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties.

    Science.gov (United States)

    Hu, Yuming; Depaepe, Thomas; Smet, Dajo; Hoyerova, Klara; Klíma, Petr; Cuypers, Ann; Cutler, Sean; Buyst, Dieter; Morreel, Kris; Boerjan, Wout; Martins, José; Petrášek, Jan; Vandenbussche, Filip; Van Der Straeten, Dominique

    2017-07-10

    The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Auxin-BR Interaction Regulates Plant Growth and Development

    Science.gov (United States)

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  14. Caveolin 3-mediated integrin β1 signaling is required for the proliferation of folliculostellate cells in rat anterior pituitary gland under the influence of extracellular matrix.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2011-07-01

    Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology

  15. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin

    2015-01-01

    The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport...... of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...

  17. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    Science.gov (United States)

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  18. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein–Mediated Pathway[W

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F.; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M.

    2009-01-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gβγ dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single β (AGB1) or the two γ (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops. PMID:19948787

  19. Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings

    Science.gov (United States)

    Toyota, Masatsugu; Furuichi, Takuya; Tatsumi, Hitoshi

    2008-01-01

    Plants regulate their growth and morphogenesis in response to gravity field, known as gravitropism. In the early process of gravitropism, changes in the gravity vector (gravistimulation) are transduced into certain intracellular signals, termed gravity perception. The plant hormone auxin is not only a crucial factor to represent gravitropism but also a potential signaling molecule for gravity perception. Another strong candidate for the signaling molecule is calcium ion of which cytoplasmic concentration ([Ca2+]c) is known to increase in response to gravistimulation. However, relationship between these two factors, say which is in the first place, has been controversial. This issue is addressed here mainly based on recent progress including our latest studies. Gravistimulation by turning plants 180° induced a two-peaked [Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings expressing apoaequorin; only the second peak was sensitive to the gravistimulation. Peak amplitudes of the [Ca2+]c-increase were attenuated by the 10 µM auxin transport inhibitor (TIBA) and vesicle trafficking inhibitor (BFA), whereas the onset time and rate of rise of the second peak were not significantly altered. This result indicates that polar auxin transport is not involved in the initial phase of the second [Ca2+]c-increase. It is likely that the gravi-induced [Ca2+]c-increase constitutes an upstream event of the auxin transport, but may positively be modulated by auxin since its peak amplitude is attenuated by the inhibition of auxin transport. PMID:19513245

  20. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Justin Schleede

    2015-10-01

    Full Text Available The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog. However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  1. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Science.gov (United States)

    Schleede, Justin; Blair, Seth S

    2015-10-01

    The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  2. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  3. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  4. Glucose: an Energy Currency and Structural Precursor in Articular Cartilage and Bone with Emerging Roles as an Extracellular Signalling Molecule and Metabolic Regulator

    Directory of Open Access Journals (Sweden)

    Ali eMobasheri

    2012-12-01

    Full Text Available In the musculoskeletal system glucose serves as an essential source of energy for the development, growth and maintenance of bone and articular cartilage. It is particularly needed for skeletal morphogenesis during embryonic growth and foetal development. Glucose is vital for osteogenesis and chondrogenesis, and is used as a precursor for the synthesis of glycosaminoglycans, glycoproteins and glycolipids. Glucose sensors are present in tissues and organs that carry out bulk glucose fluxes (i.e. intestine, kidney and liver. The beta cells of the pancreatic islets of Langerhans respond to changes in glucose concentration by varying the rate of insulin synthesis and secretion. Neuronal cells in the hypothalamus are also capable of sensing extracellular glucose. Glucosensing neurons use glucose as a signalling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Skeletal muscle and adipose tissue can respond to changes in circulating glucose but much less is known about glucosensing in bone and cartilage. Recent research suggests that bone cells can influence (and be influenced by systemic glucose metabolism. This focused review article discusses what we know about glucose transport and metabolism in bone and cartilage and highlights recent studies that have linked glucose metabolism, insulin signalling and osteocalcin activity in bone and cartilage. These new findings in bone cells raise important questions about nutrient sensing, uptake, storage and processing mechanisms and how they might contribute to overall energy homeostasis in health and disease. The role of glucose in modulating anabolic and catabolic gene expression in normal and osteoarthritic chondrocytes is also discussed. In summary, cartilage and bone cells are sensitive to extracellular glucose and adjust their gene expression and metabolism in response to varying extracellular glucose concentrations.

  5. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses.

    Science.gov (United States)

    Raya-González, Javier; López-Bucio, Jesús Salvador; Prado-Rodríguez, José Carlos; Ruiz-Herrera, León Francisco; Guevara-García, Ángel Arturo; López-Bucio, José

    2017-09-01

    Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.

  6. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    P2X7 nucleotide receptors modulate a spectrum of cellular events in various cells including epithelia, such as exocrine pancreas. Although the pharmacology and channel properties of the P2X7 receptors have been studied intensively, signal transduction pathways are relatively unknown. In this study...... we applied a heterologous expression system of rat P2X7 receptors in HEK-293 cells. We followed the receptor expression and function using the enhanced green fluorescent protein (EGFP) tag, activation of intracellular proteins and increases in cellular Ca2+. EGFP-P2X7 receptors localized...... to the plasma membrane, clusters within the membrane and intracellularly. Stimulation of P2X7 receptors in HEK-293 cells led to an activation of extracellular signal-regulated kinases ERK1 and ERK2 and this activation was seen after just 1 min of stimulation with ATP. Using C- and N-terminal P2X7-receptor...

  7. Curcumin protects cortical neurons against oxygen and glucose deprivation/reoxygenation injury through flotillin-1 and extracellular signal-regulated kinase1/2 pathway.

    Science.gov (United States)

    Lu, Zhengyu; Liu, Yanping; Shi, Yang; Shi, Xinjie; Wang, Xin; Xu, Chuan; Zhao, Hong; Dong, Qiang

    2018-02-05

    In this study, we provided evidence that curcumin could be a promising therapeutic agent for ischemic stroke by activating neuroprotective signaling pathways. Post oxygen and glucose deprivation/reoxygenation (OGD/R), primary mouse cortical neurons treated with curcumin exhibited a significant decrease in cell death, LDH release and enzyme caspase-3 activity under OGD/R circumstances, which were abolished by flotillin-1 downregulation or extracellular signal-regulated kinase (ERK) inhibitor. Moreover, flotillin-1 knockdown led to suppression of curcumin-mediated ERK phosphorylation under OGD/R condition. Based on these findings, we concluded that curcumin could confer neuroprotection against OGD/R injury through a novel flotillin-1 and ERK1/2 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  9. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  10. A Standardized Method to Assess Infection Rates of Root-Knot and Cyst Nematodes in Arabidopsis thaliana Mutants with Alterations in Root Development Related to Auxin and Cytokinin Signaling.

    Science.gov (United States)

    Olmo, Rocío; Silva, Ana Cláudia; Díaz-Manzano, Fernando E; Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Plant parasitic nematodes cause a great impact in agricultural systems. The search for effective control methods is partly based on the understanding of underlying molecular mechanisms leading to the formation of nematode feeding sites. In this respect, crosstalk of hormones such as auxins and cytokinins (IAA, CK) between the plant and the nematode seems to be crucial. Thence, the study of loss of function or overexpressing lines with altered IAA and CK functioning is entailed. Those lines frequently show developmental defects in the number, position and/or length of the lateral roots what could generate a bias in the interpretation of the nematode infection parameters. Here we present a protocol to assess differences in nematode infectivity with the lowest interference of root architecture phenotypes in the results. Thus, tailored growth conditions and normalization parameters facilitate the standardized phenotyping of nematode infection.

  11. Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis

    Science.gov (United States)

    To clarify the roles of CO, NO and auxin in the plant response to iron deficiency and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO...

  12. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy)

  13. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana.

    Science.gov (United States)

    Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June

    2015-07-01

    In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2

    Directory of Open Access Journals (Sweden)

    Min Ni

    2017-11-01

    Full Text Available S-nitrosoglutathione reductase (GSNOR1 is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.

  15. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  16. Agrobacterium T-DNA-encoded protein Atu6002 interferes with the host auxin response

    Science.gov (United States)

    Lacroix, Benoît; Gizatullina, Diana I.; Babst, Benjamin A.; Gifford, Andrew N.; Citovsky, Vitaly

    2013-01-01

    Summary Several genes in the Agrobacterium tumefaciens transferred (T) DNA encode proteins that are involved in developmental alterations leading to the formation of tumors in infected plants. We investigated the role of the protein encoded by the Atu6002 gene, the function of which is completely unknown. The Atu6002 expression occurs in Agrobacterium-induced tumors, and is also activated upon activation of plant cell division by growth hormones. Within the expressing plant cells, the Atu6002 protein is targeted to the plasma membrane. Interestingly, constitutive ectopic expression of Atu6002 in transgenic tobacco plants lead to a severe developmental phenotype characterized by stunted growth, shorter internodes, lanceolate leaves, increased branching, and modified flower morphology. These Atu6002-expressing plants also displayed impaired response to auxin. However, auxin cellular uptake and polar transport were not significantly inhibited in these plants, suggesting that Atu6002 interferes with auxin perception or signaling pathways. PMID:24128370

  17. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Post-guidance signaling by extracellular matrix-associated Slit/Slit-N maintains fasciculation and position of axon tracts in the nerve cord.

    Directory of Open Access Journals (Sweden)

    Krishna Moorthi Bhat

    2017-11-01

    Full Text Available Axon-guidance by Slit-Roundabout (Robo signaling at the midline initially guides growth cones to synaptic targets and positions longitudinal axon tracts in discrete bundles on either side of the midline. Following the formation of commissural tracts, Slit is found also in tracts of the commissures and longitudinal connectives, the purpose of which is not clear. The Slit protein is processed into a larger N-terminal peptide and a smaller C-terminal peptide. Here, I show that Slit and Slit-N in tracts interact with Robo to maintain the fasciculation, the inter-tract spacing between tracts and their position relative to the midline. Thus, in the absence of Slit in post-guidance tracts, tracts de-fasciculate, merge with one another and shift their position towards the midline. The Slit protein is proposed to function as a gradient. However, I show that Slit and Slit-N are not freely present in the extracellular milieu but associated with the extracellular matrix (ECM and both interact with Robo1. Slit-C is tightly associated with the ECM requiring collagenase treatment to release it, and it does not interact with Robo1. These results define a role for Slit and Slit-N in tracts for the maintenance and fasciculation of tracts, thus the maintenance of the hardwiring of the CNS.

  19. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Asma Begum

    Full Text Available Cancer stem cells (CSCs play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC. A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.

  20. Localization of active, dually phosphorylated extracellular signal-regulated kinase 1 and 2 in colorectal cancer with or without activating BRAF and KRAS mutations

    DEFF Research Database (Denmark)

    Holck, Susanne; Bonde, Jesper; Pedersen, Helle

    2016-01-01

    Colorectal cancers (CRC) often show activating mutations of the KRAS or BRAF genes, which stimulate the extracellular signal-regulated kinase (ERK) pathway, thus increasing cell proliferation and inhibiting apoptosis. However, immunohistochemical results on ERK activation in such tumors differ...... detectable increases in phosphorylation of ERK (pERK), we stained biopsies from 36 CRC patients with activating mutations in the BRAF gene (BRAFV600E: BRAF(m)), the KRAS gene (KRAS(m)) or in neither (BRAF/KRAS(n)) with this optimized method. Staining was scored in blind-coded specimens by two observers....... Staining of stromal cells was used as a positive control. BRAF(m) or KRAS(m) tumors did not show higher staining scores than BRAF/KRAS(n) tumors. Although BRAFV600E staining occurred in over 90% of cancer cells in all 9 BRAF(m) tumors, 3 only showed staining for pERK in less than 10% of cancer cell nuclei...

  1. Sex differences in social interaction behaviors in rats are mediated by extracellular signal-regulated kinase 2 expression in the medial prefrontal cortex

    Science.gov (United States)

    Carrier, Nicole; Kabbaj, Mohamed

    2012-01-01

    Considerable sex differences occur in the incidence and prevalence of anxiety disorders where women are more anxious than men, particularly in situations where social interaction is required. In preclinical studies, the social interaction test represents a valid animal model to study sex differences in social anxiety. Indeed, female rats engage less in conspecific interactions than their male counterparts, which are behaviors indicative of higher social anxiety in female rats. In this work, we implicated extracellular signal regulated kinase 2 (ERK2) in the medial prefrontal cortex (mPFC) in mediating social interaction. Indeed, female rats’ had lower ERK2 expression compared to male rats, and overexpression of ERK2 in the mPFC increases their social interaction to the level seen in their male counterparts. These data indicate that the sexually dimorphic expression of ERK2 mediates social anxiety-like behaviors. PMID:22521590

  2. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets.

    Science.gov (United States)

    Bekhouche, Mourad; Leduc, Cedric; Dupont, Laura; Janssen, Lauriane; Delolme, Frederic; Vadon-Le Goff, Sandrine; Smargiasso, Nicolas; Baiwir, Dominique; Mazzucchelli, Gabriel; Zanella-Cleon, Isabelle; Dubail, Johanne; De Pauw, Edwin; Nusgens, Betty; Hulmes, David J S; Moali, Catherine; Colige, Alain

    2016-05-01

    A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2, 3, and 14 are collectively named procollagen N-proteinases (pNPs) because of their specific ability to cleave the aminopropeptide of fibrillar procollagens. Several reports also indicate that they could be involved in other biological processes, such as blood coagulation, development, and male fertility, but the potential substrates associated with these activities remain unknown. Using the recently described N-terminal amine isotopic labeling of substrate approach, we analyzed the secretomes of human fibroblasts and identified 8, 17, and 22 candidate substrates for ADAMTS2, 3, and 14, respectively. Among these newly identified substrates, many are components of the extracellular matrix and/or proteins related to cell signaling such as latent TGF-β binding protein 1, TGF-β RIII, and dickkopf-related protein 3. Candidate substrates for the 3 ADAMTS have been biochemically validated in different contexts, and the implication of ADAMTS2 in the control of TGF-β activity has been further demonstrated in human fibroblasts. Finally, the cleavage site specificity was assessed showing a clear and unique preference for nonpolar or slightly hydrophobic amino acids. This work shows that the activities of the pNPs extend far beyond the classically reported processing of the aminopropeptide of fibrillar collagens and that they should now be considered as multilevel regulators of matrix deposition and remodeling.-Bekhouche, M., Leduc, C., Dupont, L., Janssen, L., Delolme, F., Vadon-Le Goff, S., Smargiasso, N., Baiwir, D., Mazzucchelli, G., Zanella-Cleon, I., Dubail, J., De Pauw, E., Nusgens, B., Hulmes, D. J. S., Moali, C., Colige, A. Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets. © FASEB.

  3. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  5. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  6. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  7. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the

  8. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  9. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    Science.gov (United States)

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  10. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    International Nuclear Information System (INIS)

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-01

    Research highlights: → We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. → Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. → This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  11. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    International Nuclear Information System (INIS)

    Jin, Yonghui; Kato, Tomohisa; Furu, Moritoshi; Nasu, Akira; Kajita, Yoichiro; Mitsui, Hiroto; Ueda, Michiko; Aoyama, Tomoki; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2010-01-01

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO 2 ) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO 2 ) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  12. Hydrogen sulfide potentiates interleukin-1β-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg

    2006-01-01

    Hydrogen sulfide (H 2 S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H 2 S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1β (IL-1β). Although H 2 S by itself showed no effect on NO production, it augmented IL-β-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-κB. IL-1β activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H 2 S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1β-induced NF-κB activation, iNOS expression, and NO production either in the absence or presence of H 2 S. Our findings suggest that H 2 S enhances NO production and iNOS expression by potentiating IL-1β-induced NF-κB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs

  13. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Kubeš, Martin; Rolčík, Jakub; Béziat, Ch.; Pěnčík, Aleš; Wang, B.; Rosquete, M. R.; Zhu, J.; Dobrev, Petre; Lee, Y.; Zažímalová, Eva; Petrášek, Jan; Geisler, M.; Friml, J.; Kleine-Vehn, J.

    2012-01-01

    Roč. 485, č. 7396 (2012), s. 119-124 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin homeostasis * PILS (PIN-likes) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 38.597, year: 2012

  14. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery.

    Science.gov (United States)

    Savaldi-Goldstein, Sigal; Baiga, Thomas J; Pojer, Florence; Dabi, Tsegeye; Butterfield, Cristina; Parry, Geraint; Santner, Aaron; Dharmasiri, Nihal; Tao, Yi; Estelle, Mark; Noel, Joseph P; Chory, Joanne

    2008-09-30

    Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.

  15. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  16. Lateral root formation and the multiple roles of auxin.

    Science.gov (United States)

    Du, Yujuan; Scheres, Ben

    2018-01-04

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  18. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  19. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Science.gov (United States)

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  20. QSpike Tools: a Generic Framework for Parallel Batch Preprocessing of Extracellular Neuronal Signals Recorded by Substrate Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Mufti eMahmud

    2014-03-01

    Full Text Available Micro-Electrode Arrays (MEAs have emerged as a mature technique to investigate brain (dysfunctions in vivo and in in vitro animal models. Often referred to as smart Petri dishes, MEAs has demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are often employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20kHz sampling rate: ~8GB/MEA,h uncompressed. Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc., are decomposed and batch-queued to a multi-core architecture or to computer cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and possibly inspire the creation of community-supported cloud-computing facilities for MEAs users.

  1. QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays.

    Science.gov (United States)

    Mahmud, Mufti; Pulizzi, Rocco; Vasilaki, Eleni; Giugliano, Michele

    2014-01-01

    Micro-Electrode Arrays (MEAs) have emerged as a mature technique to investigate brain (dys)functions in vivo and in in vitro animal models. Often referred to as "smart" Petri dishes, MEAs have demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20 kHz sampling rate: approximately 8 GB/MEA,h uncompressed). Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc.), are decomposed and batch-queued to a multi-core architecture or to a computers cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and inspire the creation of community-supported cloud-computing facilities for MEAs users.

  2. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  3. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    Science.gov (United States)

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  4. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    -dependent manner suggests that calcium/CaM regulate ZmSAUR1 at the post-translational level. Our data provide the first direct evidence for the involvement of calcium/CaM-mediated signaling in auxin-mediated signal transduction.

  5. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade.

    Science.gov (United States)

    Jiang, Xue; Yang, Jingwen; Shen, Zhangfei; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-08-01

    Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Telocinobufagin inhibits the epithelial-mesenchymal transition of breast cancer cells through the phosphoinositide 3-kinase/protein kinase B/extracellular signal-regulated kinase/Snail signaling pathway.

    Science.gov (United States)

    Gao, Yuxue; Shi, Lihong; Cao, Zhen; Zhu, Xuetao; Li, Feng; Wang, Ruyan; Xu, Jinyuan; Zhong, Jinyi; Zhang, Baogang; Lu, Shijun

    2018-05-01

    Telocinobufagin (TBG), an active ingredient of Venenumbufonis , exhibits an immunomodulatory activity. However, its antimetastatic activity in breast cancer remains unknown. The present study investigated whether TBG prevents breast cancer metastasis and evaluated its regulatory mechanism. TBG inhibited the migration and invasion of 4T1 breast cancer cells. Furthermore, TBG triggered the collapse of F-actin filaments in breast cancer. The epithelial-mesenchymal transition (EMT) markers, vimentin and fibronectin, were downregulated following TBG treatment. However, E-cadherin was upregulated following TBG treatment. Snail, a crucial transcriptional factor of EMT, was downregulated following TBG treatment. Signaling pathway markers, including phosphorylated protein kinase B (P-Akt), p-mechanistic target of rapamycin (mTOR) and p-extracellular signal-regulated kinase (ERK), were decreased following TBG treatment. The same results were obtained from in vivo experiments. In conclusion, in vitro and in vivo experiments reveal that TBG inhibited migration, invasion and EMT via the phosphoinositide 3-kinase (PI3K)/Akt/ERK/Snail signaling pathway in breast cancer.

  7. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  8. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling

    Directory of Open Access Journals (Sweden)

    Hou G

    2015-04-01

    Full Text Available Gang Hou, Yan Yin, Dan Han, Qiu-yue Wang, Jian Kang Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China Objective: We investigated how rosiglitazone attenuated cigarette smoke (CS-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP and anti-MMP activity, mitogen-activated protein kinase (MAPK phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB signaling pathway over-activation.Methods: A total of 36 Wistar rats were divided into three groups (n=12 each: animals were exposed to CS for 12 weeks in the absence (the CS group or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group; a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ, MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα phosphorylation in lung tissue was examined by Western blotting.Results: Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats.Conclusion: Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways

  9. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.

    Science.gov (United States)

    Shiju, T M; Rajkumar, R; Rajesh, N G; Viswanathan, Pragasam

    2013-02-01

    To investigate the nephroprotective effect of garlic and elucidate the mechanism by which it prevents the progression of diabetic nephropathy in diabetic rats, diabetes was induced by a single ip injection of streptozotocin (45 mg/kg body weight). Garlic extract (500 mg/kg body weight) and aminoguanidine (1 g/L) were supplemented in the treatment groups. Histopathological examination using H&E, PAS staining and the immunohistochemical analysis of vascular endothelial growth factor (VEGF) and extracellular signal-regulated kinase-1 (ERK-1) expression were performed on kidney sections at the end of 12 weeks. Significant change in both, the urine and serum biochemistry confirmed kidney damage in diabetic animals which was further confirmed by the histological changes such as mesangial expansion, glomerular basement membrane thickening, glycosuria and proteinuria. However, the diabetic animals treated with garlic extract showed a significant change in urine and serum biochemical parameters such as albumin, urea nitrogen and creatinine compared to that of diabetic rats. Further, the garlic supplemented diabetic rats showed a significant decrease in the expression of VEGF and ERK-1 compared to diabetic rats, attenuating mesangial expansion and glomerulosclerosis. Thus, garlic extract rendered nephroprotection in diabetic rats.

  10. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    Science.gov (United States)

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  11. Extracellular Signal-Regulated Kinase 5 is Required for Low-Concentration H2O2-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Jiang, Shan; Zhang, Dongxin; Huang, Hong; Lei, Yonghong; Han, Yan; Han, Weidong

    2017-01-01

    Background . The aim of this study was to assess the effects of low concentrations of H 2 O 2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods . HUVECs were cultured and stimulated with different concentrations of H 2 O 2 . Flow cytometric analysis was used to select an optimal concentration of H 2 O 2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results . We found that low concentrations of H 2 O 2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H 2 O 2 . Enhanced ERK5 activity significantly amplified the proangiogenic effects of H 2 O 2 ; in contrast, ERK5 knock-down abrogated the effects of H 2 O 2 . Conclusions . Our results confirmed that low concentrations of H 2 O 2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.

  12. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  13. Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration.

    Science.gov (United States)

    Pyakurel, Aswin; Balmer, Delphine; Saba-El-Leil, Marc K; Kizilyaprak, Caroline; Daraspe, Jean; Humbel, Bruno M; Voisin, Laure; Le, Yun Z; von Lintig, Johannes; Meloche, Sylvain; Roduit, Raphaël

    2017-12-15

    Recent work suggested that the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) is increased in the retinal pigment epithelium (RPE) of age-related macular degeneration (ARMD) patients and therefore could be an attractive therapeutic target. Notably, ERK1/2 pathway inhibitors are used in cancer therapy, with severe and noncharacterized ocular side effects. To decipher the role of ERK1/2 in RPE cells, we conditionally disrupted the Erk1 and Erk2 genes in mouse RPE. The loss of ERK1/2 activity resulted in a significant decrease in the level of RPE65 expression, a decrease in ocular retinoid levels concomitant with low visual function, and a rapid disorganization of RPE cells, ultimately leading to retinal degeneration. Our results identify the ERK1/2 pathway as a direct regulator of the visual cycle and a critical component of the viability of RPE and photoreceptor cells. Moreover, our results caution about the need for a very fine adjustment of kinase inhibition in cancer or ARMD treatment in order to avoid ocular side effects. Copyright © 2017 Pyakurel et al.

  14. Multi-tasking Sulf1/Sulf2 enzymes do not only facilitate extracellular cell signalling but also participate in cell cycle related nuclear events.

    Science.gov (United States)

    Krishnakumar, Kavithanjali; Chakravorty, Ishani; Foy, Wendy; Allen, Steve; Justo, Tiago; Mukherjee, Abir; Dhoot, Gurtej K

    2018-03-01

    This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  15. Physalis peruviana L. inhibits airway inflammation induced by cigarette smoke and lipopolysaccharide through inhibition of extracellular signal-regulated kinase and induction of heme oxygenase-1.

    Science.gov (United States)

    Park, Hyun Ah; Lee, Jae-Won; Kwon, Ok-Kyoung; Lee, Gilhye; Lim, Yourim; Kim, Jung Hee; Paik, Jin-Hyub; Choi, Sangho; Paryanto, Imam; Yuniato, Prasetyawan; Kim, Doo-Young; Ryu, Hyung Won; Oh, Sei-Ryang; Lee, Seung Jin; Ahn, Kyung-Seop

    2017-11-01

    Physalis peruviana L. (PP) is a medicinal herb that has been confirmed to have several biological activities, including anticancer, antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of PP on cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with PP significantly reduced the influx of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung of mice with CS- and LPS-induced pulmonary inflammation. PP also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF. PP effectively attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and the activation of extracellular signal-regulated kinase (ERK) in the lung. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression were increased by PP treatment. In an in vitro experiment, PP reduced the mRNA expression of TNF-α and MCP-1, and the activation of ERK in CS extract-stimulated A549 epithelial cells. Furthermore, PP increased the activation of Nrf2 and the expression of HO-1 in A549 cells. These findings suggest that PP has a therapeutic potential for the treatment of pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease.

  16. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    Science.gov (United States)

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  17. Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Čudejková, Mária; Zalabák, David; Hlobilová, Marta; Rolčík, Jakub; Pěnčík, Aleš; Bergougnoux, Véronique; Fellner, Martin

    2012-01-01

    Roč. 90, č. 10 (2012), s. 990-1006 ISSN 1916-2790 R&D Projects: GA MŠk(CZ) 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth Subject RIV: EF - Botanics Impact factor: 1.225, year: 2012

  18. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  19. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development

    OpenAIRE

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-01-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stre...

  20. [Aerobic methylobacteria are capable of synthesizing auxins].

    Science.gov (United States)

    Ivanova, E G; Doronina, N V; Trotsenko, Iu A

    2001-01-01

    Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3-100 micrograms/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism, Methylobacterium mesophilicum and Aminobacter aminovorans. The production of auxins by methylobacteria was stimulated by the addition of tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.

  1. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  2. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries

    Directory of Open Access Journals (Sweden)

    Massimiliano eCorso

    2016-02-01

    Full Text Available In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigour. This study investigates the effect of M4 on Cabernet Sauvignon (CS berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behaviour of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  3. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  4. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    Science.gov (United States)

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  5. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    Science.gov (United States)

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  6. Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF gene family in Eucalyptus grandis.

    Directory of Open Access Journals (Sweden)

    Hong Yu

    Full Text Available Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation.

  7. Points of regulation for auxin action

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Napier, R. M.

    2003-01-01

    Roč. 21, č. 7 (2003), s. 625-634 ISSN 0721-7714 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Plant hormone * Homeostasis * Auxin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.423, year: 2003

  8. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    Science.gov (United States)

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  9. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  10. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    Science.gov (United States)

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  11. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  12. Plant development, auxin, and the subsystem incompleteness theorem.

    Science.gov (United States)

    Niklas, Karl J; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the "subsystem incompleteness theorem," which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective.

  13. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Directory of Open Access Journals (Sweden)

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  14. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  16. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  17. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  18. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  19. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation.

    Science.gov (United States)

    Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H

    1992-01-01

    Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603

  20. Cytokinins and polar transport of auxin in axillary pea buds

    Directory of Open Access Journals (Sweden)

    Petr Kalousek

    2010-01-01

    Full Text Available The influence of cytokinin on auxin transport during release of axillary buds from apical dominance was studied. Expression of auxin-carrier coding genes PsAUX1 (AUXIN RESISTANT 1 and PsPIN1 (PIN-FORMED 1 was explored in axillary buds of the 2nd node of 7-day pea plants (Pisum sativum L. cv. Vladan after decapitation or after exogenous application of benzyladenine (6-benzylaminopurine onto axillary buds of intact plants. Localization of the PsPIN1 protein, the key factor for polar transport of auxin in axillary buds, was visualised by immunohistochemistry. After exogenous application of cytokinin the expression of PsAUX1 and PsPIN1 rapidly increased with a simultaneous rapid decrease in PsDRM1 and PsAD1 expression – genes related to bud dormancy. The same changes in expression were observed after decapitation, however they were markedly slower. The PsPIN1 auxin efflux carrier in the inhibited axillary buds of intact plants was localised in a non-polar manner. After exogenous application of cytokinin gradual polarisation of the PsPIN1 protein occurred on the basal pole of polar auxin transport competent cells. Despite the fact that direct auxin application to buds of intact plants led to an increase in PsAUX1 and PsPIN1 expression, the buds remained dormant (non-growing what was accompanied by persistent expression of the dormancy markers PsDRM1 and PsAD1. The results indicate a possible effect of cytokinins on biosynthesis, and/or transport of auxin in axillary buds and they highlight the importance of auxin-cytokinin crosstalk in the regulation of bud outgrowth after breaking of apical dominance.

  1. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.

    Science.gov (United States)

    Roque, Telma; Boncoeur, Emilie; Saint-Criq, Vinciane; Bonvin, Elise; Clement, Annick; Tabary, Olivier; Jacquot, Jacky

    2008-09-01

    Sodium 4-phenylbutyrate (4-PBA) has attracted a great deal of attention in cystic fibrosis (CF) pathology due to its capacity to traffic DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) to the cell membrane and restore CFTR chloride function at the plasma membrane of CF lung cells in vitro and in vivo. Using two different DeltaF508-CFTR lung epithelial cell lines (CFBE41o- and IB3-1 cells, characterized with DeltaF508-homozygous and heterozygous genotype, respectively) in vitro, 4-PBA induced an increase of proinflammatory cytokine interleukin (IL)-8 production in a concentration-dependent manner. This 4-PBA-induced IL-8 production was associated with a strong reduction of proteasome and nuclear factor-kappaB transcriptional activities in the two DeltaF508-CFTR lung cells either in a resting state or after tumor necrosis factor-alpha stimulation. In contrast, a strong increase of activator protein-1 transcriptional activity was observed. The inhibition of extracellular signal-regulated protein kinase 1/2 (ERK1/2) by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) and c-Jun-NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) by anthra[1,9-cd] pyrazol-6 (2H)-one (SP600125), respectively, was associated with a reduction (2-3.5-fold) of IL-8 production in both DeltaF508-CFTR lung cell lines treated with 4-PBA. No significant change of IL-8 production was observed after an inhibition of p38 MAPK with 4-[4-(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190). Therefore, we suggest that inhibition of both ERK1/2 and JNK signaling may be a means to strongly reduce 4-PBA-induced IL-8 production in combination with 4-PBA treatment to restore CFTR Cl(-) channel function in lung epithelial cells of patients with CF.

  2. Overexpression of the Auxin Binding PROTEIN1 Modulates PIN-Dependent Auxin Transport in Tobacco Cells

    Czech Academy of Sciences Publication Activity Database

    Čovanová, Milada; Sauer, M.; Rychtář, J.; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 8, č. 7 (2013) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GPP501/12/P951 Institutional research plan: CEZ:AV0Z50380511 Keywords : ZEA - MAYS -L * PLANT HORMONE AUXIN * MEMBRANE H+-ATPASE Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  3. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  4. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  6. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  7. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    The phytohormone auxin is crucial for plant growth and development. ... genome, which are similar in number with that of monocotyledonous plant Oryza sativa. ... are much closer to Sorghum bicolor and O. sativa PIN genes of the grass family.

  8. Auxin transport in the evolution of branching forms.

    Science.gov (United States)

    Harrison, C Jill

    2017-07-01

    Contents 545 I. 545 II. 546 III. 546 IV. 548 V. 548 VI. 549 VII. 549 Acknowledgements 549 References 549 SUMMARY: Branching is one of the most striking aspects of land plant architecture, affecting resource acquisition and yield. Polar auxin transport by PIN proteins is a primary determinant of flowering plant branching patterns regulating both branch initiation and branch outgrowth. Several lines of experimental evidence suggest that PIN-mediated polar auxin transport is a conserved regulator of branching in vascular plant sporophytes. However, the mechanisms of branching and auxin transport and relationships between the two are not well known outside the flowering plants, and the paradigm for PIN-regulated branching in flowering plants does not fit bryophyte gametophytes. The evidence reviewed here suggests that divergent auxin transport routes contributed to the diversification of branching forms in distinct land plant lineages. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  10. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    Science.gov (United States)

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  11. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  12. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development

    Czech Academy of Sciences Publication Activity Database

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Norbaek, R.; Astot, C.; Doležal, Karel; Sandberg, G.

    2004-01-01

    Roč. 101, č. 21 (2004), s. 8039-8044 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis * auxin * cytokinin * biosynthesis Subject RIV: EF - Botanics Impact factor: 10.452, year: 2004

  13. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  14. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  15. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    Science.gov (United States)

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  16. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    that phosphorylates p90 Ribosomal S6 Kinase, a ubiquitous and versatile mediator of ERK1/2 signal transduction. Moreover, the beta-arrestin2-dependent ERK1/2 signal supports intact proliferation of cardiac myocytes. In contrast to G(q)-activated ERK1/2, and in keeping with its failure to translocate to the nucleus...

  17. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates

    Czech Academy of Sciences Publication Activity Database

    Hoyerová, Klára; Hošek, Petr; Quareshy, M.; Li, J.; Klíma, Petr; Kubeš, Martin; Yemm, A. A.; Neve, P.; Tripathi, A.; Bennett, M.J.; Napier, R. M.

    2018-01-01

    Roč. 217, č. 4 (2018), s. 1625-1639 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA16-19557S; GA MŠk LD15137 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin transport * cheminformatics * herbicide * herbicide resistance * molecular field maps * pharmacophore * structure–activity relationship * uptake carrier Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  18. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Drdová, Edita; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Žárský, Viktor

    2013-01-01

    Roč. 73, č. 5 (2013), s. 709-719 ISSN 0960-7412 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629; GA MŠk(CZ) LC06034; GA AV ČR KJB600380802 Grant - others:GA MŠk(CZ) ME10033 Institutional research plan: CEZ:AV0Z50380511 Keywords : exocyst * polar auxin transport * PIN recycling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.815, year: 2013

  19. Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

    Directory of Open Access Journals (Sweden)

    Xuenan Chen

    2017-07-01

    Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

  20. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    OpenAIRE

    Ding Zhaojun; Galván-Ampudia Carlos S; Demarsy Emilie; Langowski Lukasz; Kleine-Vehn Jürgen; Fan Yuanwei; Morita Miyo T; Tasaka Masao; Fankhauser Christian; Offringa Remko; Friml Jirí

    2011-01-01

    Phototropism is an adaptation response through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells resulting in changes in auxin distribution and d...

  1. Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization

    Directory of Open Access Journals (Sweden)

    Emma Larsson

    2017-10-01

    Full Text Available The plant hormone auxin is a vital component for plant reproduction as it regulates the development of both male and female reproductive organs, including ovules and gynoecia. Furthermore, auxin plays important roles in the development and growth of seeds and fruits. Auxin responses can be detected in ovules shortly after fertilization, and it has been suggested that this accumulation is a prerequisite for the developmental reprogramming of the ovules to seeds, and of the gynoecium to a fruit. However, the roles of auxin at the final stages of ovule development, and the sources of auxin leading to the observed responses in ovules after fertilization have remained elusive. Here we have characterized the auxin readout in Arabidopsis ovules, at the pre-anthesis, anthesis and in the immediate post-fertilization stages, using the R2D2 auxin sensor. In addition we have mapped the expression of auxin biosynthesis and conjugation genes, as well as that of auxin transporting proteins, during the same developmental stages. These analyses reveal specific spatiotemporal patterns of the different auxin homeostasis regulators. Auxin biosynthesis genes and auxin transport proteins define a pre-patterning of vascular cell identity in the pre-anthesis funiculus. Furthermore, our data suggests that auxin efflux from the ovule is restricted in an anther-dependent manner, presumably to synchronize reproductive organ development and thereby optimizing the chances of successful fertilization. Finally, de novo auxin biosynthesis together with reduced auxin conjugation and transport result in an enhanced auxin readout throughout the sporophytic tissues of the ovules soon after fertilization. Together, our results suggest a sophisticated set of regulatory cascades that allow successful fertilization and the subsequent transition of the female reproductive structures into seeds and fruits.

  2. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  3. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants.

    Science.gov (United States)

    Dory, Magdalena; Hatzimasoura, Elizabeth; Kállai, Brigitta M; Nagy, Szilvia K; Jäger, Katalin; Darula, Zsuzsanna; Nádai, Tímea V; Mészáros, Tamás; López-Juez, Enrique; Barnabás, Beáta; Palme, Klaus; Bögre, László; Ditengou, Franck A; Dóczi, Róbert

    2018-01-01

    Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth. The conserved sites of PIN1 are phosphorylated in vitro by two environmentally activated MAPKs, MPK4 and MPK6. In contrast to AGC kinases, MAPK-mediated phosphorylation of PIN1 at adjacent sites leads to a partial loss of the plasma membrane localisation of PIN1. MAPK-mediated modulation of PIN trafficking may participate in environmental adjustment of plant growth. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  4. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  5. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport

    NARCIS (Netherlands)

    Huang, F.; Kemel Zago, M.; Abas, L.; van Marion, A.; Galván-Ampudia, C.S.; Offringa, R.

    2010-01-01

    Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of

  6. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells

    Czech Academy of Sciences Publication Activity Database

    Seifertová, Daniela; Skůpa, Petr; Rychtář, J.; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-01-01

    Roč. 171, č. 6 (2014), s. 429-437 ISSN 0176-1617 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : Auxin influx * Auxin efflux * Auxin metabolic profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.557, year: 2014

  7. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yae Jin Yoon

    Full Text Available Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs, also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1 activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.

  8. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    Science.gov (United States)

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.

  9. Effects of auxins and cytokinins on tomato callus from anthers

    Directory of Open Access Journals (Sweden)

    Janina H. Rogozińska

    2015-01-01

    Full Text Available An investigation was carried out on growth substance requirements of tomato callus derived from anthers for culture in vitro. Linsmaier and Skoog (1965 medium was used with various levels of auxins (IAA and NAA and cytokinins (K and BAP. The results show that cytokinin is an absolute requirement for callus growth irrespective of the auxin level. The optimum concentration of auxin in combination with cytokinin was found to be 5 μM of NAA or 25 μM of IAA, with 5 μM of K or BAP. Callus growth on media with NAA and cytokinin was superior to that on IAA, amounting to 6.05 g per piece on medium with 5 μM of NAA and BAP. Tissues grown on this medium have the highest water content. At the onset of culture the tissue is characterized by weak growth and attains its maximal increase in fresh weight after 6 weeks.

  10. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  11. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway.

    Science.gov (United States)

    Zhang, Xiao-Jun; Chen, Hong-Li; Li, Zhi; Zhang, Hong-Qi; Xu, Hong-Xi; Sung, Joseph J Y; Bian, Zhao-Xiang

    2009-11-01

    Paeoniflorin (PF), a chief active ingredient in the root of Paeonia lactiflora Pall (family Ranunculaceae), is effective in relieving colorectal distention (CRD)-induced visceral pain in rats with visceral hyperalgesia induced by neonatal maternal separation (NMS). This study aimed at exploring the underlying mechanisms of PF's analgesic effect on CRD-evoked nociceptive signaling in the central nervous system (CNS) and investigating whether the adenosine A(1) receptor is involved in PF's anti-nociception. CRD-induced visceral pain as well as phosphorylated-extracellular signal-regulated protein kinase (p-ERK) and phospho-cAMP response element-binding protein (p-CREB) expression in the CNS structures of NMS rats were suppressed by NMDA receptor antagonist dizocilpine (MK-801) and ERK phosphorylation inhibitor U0126. PF could similarly inhibit CRD-evoked p-ERK and c-Fos expression in laminae I-II of the lumbosacral dorsal horn and anterior cingulate cortex (ACC). PF could also reverse the CRD-evoked increased glutamate concentration by CRD as shown by dynamic microdialysis monitoring in ACC, whereas, DPCPX, an antagonist of adenosine A(1) receptor, significantly blocked the analgesic effect of PF and PF's inhibition on CRD-induced p-ERK and p-CREB expression. These results suggest that PF's analgesic effect is possibly mediated by adenosine A(1) receptor by inhibiting CRD-evoked glutamate release and the NMDA receptor dependent ERK signaling.

  12. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    Science.gov (United States)

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  13. Extracellular Glycoproteins in Embryogenic Culture of Pumpkin (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Hana Čipčić Paljetak

    2011-01-01

    Full Text Available The extracellular proteins in three distinctly induced embryogenic lines of pumpkin (Cucurbita pepo L. cultivated in four MS media modified regarding the nitrogen composition or auxin presence/absence have been analyzed. Extracellular glycoproteins containing α-D-mannose were specifically detected by the lectine concavalin A. During the cultivation of embryogenic tissue in the medium supplemented with reduced nitrogen, the embryos were mostly arrested at preglobular and globular developmental stages, which coincide with the absence of protein secretion. Secreted glycoproteins of 76, 68, 37 and 34 kDa were detected only if any of the three lines were cultivated in the medium that stimulates embryo development, irrespectively of the addition of 2,4-dichlorophenoxyacetic acid or tunicamycin. The glycoprotein of 64 kDa was detected in all lines cultivated in hormone-free MS medium with conventional nitrogen sources and it appears to be associated with embryo maturation. Tunicamycin treatment did not influence embryogenesis, although it specifically affected glycosylation of proteins in the investigated lines. Our results show that besides auxin, the source of nitrate is of great importance for proper protein glycosylation, excretion and developmental transition of pumpkin somatic embryos.

  14. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    Science.gov (United States)

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low

  15. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells

    Directory of Open Access Journals (Sweden)

    David A. Turner

    2014-06-01

    Full Text Available Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.

  16. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  17. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis

    Science.gov (United States)

    Brown, D. E.; Rashotte, A. M.; Murphy, A. S.; Normanly, J.; Tague, B. W.; Peer, W. A.; Taiz, L.; Muday, G. K.

    2001-01-01

    Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.

  18. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2

    Directory of Open Access Journals (Sweden)

    Maggie K.S. Tang

    2010-02-01

    Full Text Available Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis, which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications.

  19. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  1. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  2. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  3. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    ufuoma

    2014-01-08

    Jan 8, 2014 ... PIN proteins of Arabidopsis viz., PIN1,PIN4 and PIN7 show plasma membrane .... The central hydrophilic loop is dynamic in nature and differs from each other in terms ... research of this plant at the molecular level. Auxin efflux.

  4. The role of auxins in somatic embryogenesis of Abies alba

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Fischerová, Lucie; Vágner, Martin

    2011-01-01

    Roč. 6, č. 4 (2011), s. 587-596 ISSN 1895-104X R&D Projects: GA MŠk OC 158 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin inhibitor * Fir * Phytohormone Subject RIV: EF - Botanics Impact factor: 1.000, year: 2011

  5. Auxin inhibits endocytosis and promotes its own efflux from cells

    Czech Academy of Sciences Publication Activity Database

    Paciorek, T.; Zažímalová, Eva; Ruthardt, N.; Petrášek, Jan; Stierhof, Y. D.; Kleine-Vehn, J.; Morris, David; Emans, N.; Jürgens, G.; Geldner, N.; Friml, J.

    2005-01-01

    Roč. 435, č. 7046 (2005), s. 1251-1256 ISSN 0028-0836 R&D Projects: GA AV ČR IAA6038303 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phytohormones * polar auxin transport * plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.273, year: 2005

  6. Identification and expression analysis of primary auxin-responsive ...

    Indian Academy of Sciences (India)

    2013-12-09

    Dec 9, 2013 ... Previous research has demonstrated that auxin induces and regulates the .... three main-stem nodes stage seedlings were prepared for the. IAA treatment ... For semi- quantitative RT-PCR analysis, first-strand cDNA was syn-.

  7. Lateral root formation and the multiple roles of auxin

    NARCIS (Netherlands)

    Du, Yujuan; Scheres, Ben

    2018-01-01

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles

  8. Effects of auxins on in vitro reserve compounds of Phalaenopsis ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... division rate, which is related to auxin induction of cell proliferation (Hartig and ..... to support plant respiration and growth through the night, and several projects ... Four basic carbon partitioning strategies may occur in CAM species: ME ... their cellular and temporal expression patterns must be defined.

  9. Why plants need more than one type of auxin

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Petrášek, Jan

    2011-01-01

    Roč. 180, č. 3 (2011), s. 454-460 ISSN 0168-9452 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin * IAA * 4-Cl-IAA * IBA * PAA Subject RIV: ED - Physiology Impact factor: 2.945, year: 2011

  10. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  11. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  12. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related

    International Nuclear Information System (INIS)

    Beggs, Kevin M.; Maiuri, Ashley R.; Fullerton, Aaron M.; Poulsen, Kyle L.; Breier, Anna B.; Ganey, Patricia E.; Roth, Robert A.

    2015-01-01

    Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress

  13. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    Science.gov (United States)

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  14. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Simon, S.; Skůpa, Petr; Viaene, T.; Zwiewka, M.; Tejos, R.; Klíma, Petr; Čarná, Mária; Rolčík, J.; De Rycke, R.; Moreno, I.; Dobrev, Petre; Orellana, A.; Zažímalová, Eva; Friml, J.

    2016-01-01

    Roč. 211, č. 1 (2016), s. 65-74 ISSN 0028-646X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA16-10948S Institutional support: RVO:61389030 Keywords : auxin * endoplasmic reticulum (ER) * lateral root Subject RIV: ED - Physiology Impact factor: 7.330, year: 2016

  15. Overexpression of extracellular superoxide dismutase reduces severity of radiation-induced lung toxicity through downregulation of the TGF-β signal transduction pathway

    International Nuclear Information System (INIS)

    Rabbani, Z.N.; Anscher, M.S.; Archer, E.; Chen, L.; Samulski, T.V.; Folz, R.J.; Dewhirst, M.W.; Vujaskovic, Z.

    2003-01-01

    The objective of this study is to determine whether overexpression of ECSOD, ameliorates acute radiation induced lung injury by inhibiting activation of TGF-β and down regulating phosphorylation of (p)Smad 3 signal transduction protein. Transgenic (TG) B6C3 mice that overexpress human EC-SOD (hEC-SOD) and wild-type (WT) littermates received single dose of 15 Gy to the whole thorax and sacrificed at 1day, 1wk, 2wk, 3wk, 6wk, 10 and 14 weeks. Different endpoints were assessed to look for lung damage. Starting at 3rd week after radiation, there was significant increase in breathing rates, right lung wet weights and lung tissue damage score of XRT-WT vs. XRT-TG (p<0.05). In BALF, total cell counts per ml were significantly increased in XRT-WT whereas XRT-TG animals did not show any significant increase except at 14 weeks after irradiation (p<0.05). Macrophages and lymphocytes were the predominant inflammatory cells in BALF of XRT-WT compared to XRT-TG (p<0.05). XRT-WT group had a significantly higher percentage of activated TGF-β1 than the XRT-TG (p=0.04) at 14 weeks. There was a mild immunoreactivity of pSmad3 in bronchial epithelium and type II pneumocytes of control animals. In XRT-WT pSmad3 immunostaining was moderate at 1 week and moderate to strong at 3, 6 and 10 weeks whereas in XRT-TG mice immmunostaining was mild to moderate. This study shows that, the overexpression of ECSOD in transgenic animals is radioprotective in acute phase of radiation induced lung injury. Fewer inflammatory cells in XRT-TG group confirms the deprivation of important source for free radicals and TGF-β cytokine. Significant reduction in TGF-β activation in ECSOD overexpressing animals, followed by downregulation of pSmad3 indicates important role of reactive oxygen species in activation of TGF-β signal transduction pathway

  16. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    International Nuclear Information System (INIS)

    Kumari, Gita; Mahalingam, S.

    2009-01-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  17. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  18. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Directory of Open Access Journals (Sweden)

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  19. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    Science.gov (United States)

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  20. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt

    Science.gov (United States)

    Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  1. Prelimbic cortex extracellular signal-regulated kinase 1/2 activation is required for memory retrieval of long-term inhibitory avoidance.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang

    2017-04-15

    Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABA A -receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls

    Science.gov (United States)

    Rorabaugh, P. A.; Salisbury, F. B.

    1989-01-01

    Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10(-8) to 10(-2) molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.

  4. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  5. Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2016-03-01

    Full Text Available Adventitious root (AR formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF- and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis and signaling via ERFs and early

  6. Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue

    2017-07-01

    N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the

  7. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  8. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  9. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties

    Czech Academy of Sciences Publication Activity Database

    Hu, Y.; Depaepe, T.; Smet, D.; Hoyerová, Klára; Klíma, Petr; Cuypers, J.; Cutler, S.; Buyst, D.; Morreel, K.; Boerjan, W.; Martins, J.; Petrášek, Jan; Vandenbussche, F.; Van Der Straeten, D.

    2017-01-01

    Roč. 68, č. 15 (2017), s. 4185-4203 ISSN 0022-0957 R&D Projects: GA MŠk LD15137 Institutional support: RVO:61389030 Keywords : apical hook development * root hair development * arabidopsis-thaliana seedlings * ethylene biosynthesis * shoot gravitropism * cell elongation * abiotic stress * abscisic-acid * plant-growth * gene family * Arabidopsis * auxin homeostasis * chemical genetics * ethylene signaling * herbicide * quinoline carboxamide * reactive oxygen species * triple response Subject RIV: EA - Cell Biology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  10. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological...... effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] Ang......II) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains...

  11. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  12. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    Science.gov (United States)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  13. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  14. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  15. Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory.

    Science.gov (United States)

    Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J

    2014-03-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    Science.gov (United States)

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type

  17. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon

    2014-10-01

    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  18. Auxin transport at cellular level: new insights supported by mathematical modelling

    Czech Academy of Sciences Publication Activity Database

    Hošek, Petr; Kubeš, Martin; Laňková, Martina; Dobrev, Petre; Klíma, Petr; Kohoutová, M.; Petrášek, Jan; Hoyerová, Klára; Jiřina, M.; Zažímalová, Eva

    2012-01-01

    Roč. 63, č. 10 (2012), s. 3815-3827 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LC06034; GA ČR GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin metabolism * auxin transport * auxin transport inhibitors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.242, year: 2012

  19. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation

    Directory of Open Access Journals (Sweden)

    Jason L. P. Ng

    2018-02-01

    Full Text Available Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely

  20. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Smith, R. S.; Pešek, Bedřich; Kubeš, Martin; Zažímalová, Eva; Petrášek, Jan; Hoyerová, Klára

    2010-01-01

    Roč. 61, č. 13 (2010), s. 3589-3598 ISSN 0022-0957 R&D Projects: GA AV ČR KJB600380702; GA MŠk(CZ) LC06034 Grant - others:_(CZ) CZ.2.16/3.1.00/21159 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin efflux carrier * auxin influx carrier * auxin transport Subject RIV: EF - Botanics Impact factor: 4.818, year: 2010

  1. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Yamamoto, R.; Masuda, Y.

    1984-01-01

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  2. Do Phytotropins Inhibit Auxin Efflux by Impairing Vesicle Traffic?

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Černá, A.; Schwarzerová, K.; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2003-01-01

    Roč. 131, č. 1 (2003), s. 254-263 ISSN 0032-0889 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : 1-N-naphthylphthalamic acid * BY-2 tobacco * auxin efflux Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  3. The allelochemical MDCA inhibits lignification and affects auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Steenackers, W.; Cesarino, I.; Klíma, Petr; Quareshy, M.; Vanholme, R.; Corneillie, S.; Kumpf, R. P.; Van De Wouwer, D.; Ljung, K.; Goeminne, G.; Novák, Ondřej; Zažímalová, Eva; Napier, R.; Boerjan, W.; Vanholme, B.

    2016-01-01

    Roč. 172, č. 2 (2016), s. 874-888 ISSN 0032-0889 R&D Projects: GA ČR(CZ) GA16-10948S; GA MŠk(CZ) LO1204 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin biosynthesis * lignification * Asparagus officinalis Subject RIV: ED - Physiology Impact factor: 6.456, year: 2016

  4. Computational Modeling of Auxin: A Foundation for Plant Engineering.

    Science.gov (United States)

    Morales-Tapia, Alejandro; Cruz-Ramírez, Alfredo

    2016-01-01

    Since the development of agriculture, humans have relied on the cultivation of plants to satisfy our increasing demand for food, natural products, and other raw materials. As we understand more about plant development, we can better manipulate plants to fulfill our particular needs. Auxins are a class of simple metabolites that coordinate many developmental activities like growth and the appearance of functional structures in plants. Computational modeling of auxin has proven to be an excellent tool in elucidating many mechanisms that underlie these developmental events. Due to the complexity of these mechanisms, current modeling efforts are concerned only with single phenomena focused on narrow spatial and developmental contexts; but a general model of plant development could be assembled by integrating the insights from all of them. In this perspective, we summarize the current collection of auxin-driven computational models, focusing on how they could come together into a single model for plant development. A model of this nature would allow researchers to test hypotheses in silico and yield accurate predictions about the behavior of a plant under a given set of physical and biochemical constraints. It would also provide a solid foundation toward the establishment of plant engineering, a proposed discipline intended to enable the design and production of plants that exhibit an arbitrarily defined set of features.

  5. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  6. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    NARCIS (Netherlands)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca|info:eu-repo/dai/nl/112675735; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information

  7. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Science.gov (United States)

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  8. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  9. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  10. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  11. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles

    Czech Academy of Sciences Publication Activity Database

    Grones, P.; Chen, X.; Simon, S.; Kaufmann, W.A.; De Rycke, R.; Nodzyński, T.; Zažímalová, Eva; Friml, J.

    2015-01-01

    Roč. 66, č. 16 (2015), s. 5055-5065 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Auxin * ABP1 * Auxin binding Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  12. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  14. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    International Nuclear Information System (INIS)

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-01-01

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  15. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yihui [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Xue, Huaming [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Francis, Wendy [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Davies, Andrew P. [Department of Orthopaedics and Trauma, Moriston Hospital, Swansea (United Kingdom); Pallister, Ian; Kanamarlapudi, Venkateswarlu [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Xia, Zhidao, E-mail: zhidao.xia@gmail.com [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom)

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  16. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  17. A recovery principle provides insight into auxin pattern control in the Arabidopsis root

    Science.gov (United States)

    Moore, Simon; Liu, Junli; Zhang, Xiaoxian; Lindsey, Keith

    2017-01-01

    Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combinations of interlinked levels and localisation of influx and efflux carriers. We demonstrate that (1) when efflux carriers maintain polarity but change levels, maintaining the same auxin pattern requires non-uniform and polar distribution of influx carriers; (2) the emergence of the same auxin pattern, from different levels of influx carriers with the same nonpolar localisation, requires simultaneous modulation of efflux carrier level and polarity; and (3) multiple patterns of influx and efflux carriers for maintaining an auxin pattern do not have spatially proportional correlation. This reveals that auxin pattern formation requires coordination between influx and efflux carriers. We further show that the model makes various predictions that can be experimentally validated. PMID:28220889

  18. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Laňková, Martina; Pařezová, Markéta; Maizel, A.; Zažímalová, Eva; Petrášek, Jan; Friml, J.; Kleine-Vehn, J.

    2013-01-01

    Roč. 13, FEB 4 (2013) ISSN 1471-2229 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GAP305/11/2476 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin homeostasis * DR5 * Auxin carrier Subject RIV: ED - Physiology Impact factor: 3.942, year: 2013

  19. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  20. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  1. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative prot...

  2. Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues

    International Nuclear Information System (INIS)

    Perez, L.; Aguilar, R.; Mendez, A.P.; de Jimenez, E.S.

    1990-01-01

    The effect of auxin on ribosomal protein phosphorylation of germinating maize (Zea mays) tissues was investigated. Two-dimensional gel electrophoresis and autoradiography of [ 32 P] ribosomal protein patterns for natural and synthetic auxin-treated tissues were performed. Both the rate of 32 P incorporation and the electrophoretic patterns were dependent on 32 P pulse length, suggesting that active protein phosphorylation-dephosphorylation occurred in small and large subunit proteins, in control as well as in auxin-treated tissues. The effect of ribosomal protein phosphorylation on in vitro translation was tested. Measurements of poly(U) translation rates as a function of ribosome concentration provided apparent K m values significantly different for auxin-treated and nontreated tissues. These findings suggest that auxin might exert some kind of translational control by regulating the phosphorylated status of ribosomal proteins

  3. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  4. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  5. Auxin and plant morphogenesis - a model of regulation

    Directory of Open Access Journals (Sweden)

    Stefan Zajączkowski

    2015-01-01

    Full Text Available In the presented model cells of the plant body form a spatial medium in which three-dimensional morphogenic waves of auxin are propagated. Points in the same phase of oscillation form isophasic surfaces and the vectors of wave propagation form a three-dimensional vector field. The vectors in the case of local inhomogeneities of the medium deviate from organ polarity, providing positional information recognized by cells. Models of functioning of such a supracellular oscillatory system in regulation of tissue differentiation, tropic responses and plant form are discussed.

  6. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  7. Shaping Synapses by the Neural Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Maura Ferrer-Ferrer

    2018-05-01

    Full Text Available Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs, neuronal pentraxins (NPs and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.

  8. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

    Science.gov (United States)

    Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger

    2010-04-01

    In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.

  9. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  10. Effects of L-cysteine on reinstatement of ethanol-seeking behavior and on reinstatement-elicited extracellular signal-regulated kinase phosphorylation in the rat nucleus accumbens shell.

    Science.gov (United States)

    Peana, Alessandra T; Giugliano, Valentina; Rosas, Michela; Sabariego, Marta; Acquas, Elio

    2013-01-01

    Alcoholism is a neuroadaptive disorder, and the understanding of the mechanisms of the high rates of relapse, which characterize it, represents one of the most demanding challenges in alcoholism and addiction research. The extracellular signal-regulated kinase (ERK) is an intracellular kinase, critical for neuroplasticity in the adult brain that is suggested to play a fundamental role in the molecular mechanisms underlying drug addiction and relapse. We previously observed that a nonessential amino acid, L-cysteine, significantly decreases oral ethanol (EtOH) self-administration, reinstatement of EtOH-drinking behavior, and EtOH self-administration break point. Here, we tested whether L-cysteine can affect the ability of EtOH priming to induce reinstatement of EtOH-seeking behavior. In addition, we determined the ability of EtOH priming to induce ERK phosphorylation as well as the ability of L-cysteine to affect reinstatement-elicited ERK activation. To these purposes, Wistar rats were trained to nose-poke for a 10% v/v EtOH solution. After stable drug-taking behavior was obtained, nose-poking for EtOH was extinguished, and reinstatement of drug seeking, as well as reinstatement-elicited pERK, was determined after an oral, noncontingent, priming of EtOH (0.08 g/kg). Rats were pretreated with either saline or L-cysteine (80 to 120 mg/kg) 30 minutes before testing for reinstatement. The findings of this study confirm that the noncontingent delivery of a nonpharmacologically active dose of EtOH to rats, whose previous self-administration behavior had been extinguished, results in significant reinstatement into EtOH-seeking behavior. In addition, the results indicate that reinstatement selectively activates ERK phosphorylation in the shell of the nucleus accumbens (Acb) and that pretreatment with L-cysteine reduces either reinstatement of EtOH seeking and reinstatement-elicited pERK in the AcbSh. Altogether, these results indicate that L-cysteine could be an effective

  11. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  12. Effects of auxin and copper on growth of saffron

    Directory of Open Access Journals (Sweden)

    Mozafar Sharifi

    2014-03-01

    Full Text Available Saffron is known as one of the most common spices and medicinal plant in the world. Little information is available on the effects of copper and growth regulators on morphological characteristics of saffron. The aim of this study was to evaluate the influence of different concentrations of copper and auxin on morphological properties of root and leaf of saffron. This study was arranged as a factorial experiment in greenhouse condition and in hydroponic system. Copper was used in copper sulfate (CuSO4 form (0, 0.02, 0.1 and 0.2 mg/L and auxin in naphthalene acetic acid (NAA form (0, 1 and 2 g/L. Results showed that interaction of Naphthalene acetic acid 1 g/L and copper sulfate 0.1 mg/L increased root number, as well as root and leaf dry weight. Furthermore, naphthalene acetic acid 1 and 2 g/L in most treatments reduced the number of buds. Copper concentration of corm was increased in 0.2 mg/L copper sulfate.

  13. Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments

    Directory of Open Access Journals (Sweden)

    Chenliang Yu

    2017-12-01

    Full Text Available Auxin response factors (ARFs play important roles in regulating plant growth and development and response to environmental stress. An exhaustive analysis of the CaARF family was performed using the latest publicly available genome for pepper (Capsicum annuum L.. In total, 22 non-redundant CaARF gene family members in six classes were analyzed, including chromosome locations, gene structures, conserved motifs of proteins, phylogenetic relationships and Subcellular localization. Phylogenetic analysis of the ARFs from pepper (Capsicum annuum L., tomato (Solanum lycopersicum L., Arabidopsis and rice (Oryza sativa L. revealed both similarity and divergence between the four ARF families, and aided in predicting biological functions of the CaARFs. Furthermore, expression profiling of CaARFs was obtained in various organs and tissues using quantitative real-time RT-PCR (qRT-PCR. Expression analysis of these genes was also conducted with various hormones and abiotic treatments using qRT-PCR. Most CaARF genes were regulated by exogenous hormone treatments at the transcriptional level, and many CaARF genes were altered by abiotic stress. Systematic analysis of CaARF genes is imperative to elucidate the roles of CaARF family members in mediating auxin signaling in the adaptation of pepper to a challenging environment.

  14. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants.

    Science.gov (United States)

    Pashkovskiy, Pavel P; Kartashov, Alexander V; Zlobin, Ilya E; Pogosyan, Sergei I; Kuznetsov, Vladimir V

    2016-07-01

    The effect of blue LED (450 nm) on the photomorphogenesis of Arabidopsis thaliana Col-0 plants and the transcript levels of several genes, including miRNAs, photoreceptors and auxin response factors (ARF) was investigated. It was observed that blue light accelerated the generative development, reduced the rosette leaf number, significantly reduced the leaf area, dry biomass and led to the disruption of conductive tissue formation. The blue LED differentially influenced the transcript levels of several phytochromes (PHY a, b, c, d, and e), cryptochromes (CRY 1 and 2) and phototropins (PHOT 1 and 2). At the same time, the blue LED significantly increased miR167 expression compared to a fluorescent lamp or white LEDs. This increase likely resulted in the enhanced transcription of the auxin response factor genes ARF4 and ARF8, which are regulated by this miRNA. These findings support the hypothesis that the effects of blue light on A. thaliana are mediated by auxin signalling pathway involving miRNA-dependent regulation of ARF gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  16. Integrins and extracellular matrix in mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ramage L

    2011-12-01

    Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction

  17. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Science.gov (United States)

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  18. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  19. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  20. Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Yi-Li Li

    2017-11-01

    Full Text Available The phytohormone auxin regulates various developmental programs in plants, including cell growth, cell division and cell differentiation. The auxin efflux carriers are essential for the auxin transport. To show an involvement of auxin transporters in the coordination of fruit development in bitter gourd, a juicy fruit, we isolated novel cDNAs (referred as McPIN encoding putative auxin efflux carriers, including McPIN1, McPIN2 (allele of McPIN1 and McPIN3, from developing fruits of bitter gourd. Both McPIN1 and McPIN3 genes possess six exons and five introns. Hydropathy analysis revealed that both polypeptides have two hydrophobic regions with five transmembrane segments and a predominantly hydrophilic core. Phylogenetic analyses revealed that McPIN1 shared the highest homology to the group of Arabidopsis, cucumber and tomato PIN1, while McPIN3 belonged to another group, including Arabidopsis and tomato PIN3 as well as PIN4. This suggests different roles for McPIN1 and McPIN3 in auxin transport involved in the fruit development of bitter gourd. Maximum mRNA levels for both genes were detected in staminate and pistillate flowers. McPIN1 is expressed in a particular period of early fruit development but McPIN3 continues to be expressed until the last stage of fruit ripening. Moreover, these two genes are auxin-inducible and qualified as early auxin-response genes. Their expression patterns suggest that these two auxin transporter genes play a pivotal role in fruit setting and development.

  1. Breast cancer metastasis suppressor 1 (BRMS1) suppresses attachment and spreading of breast cancer cells on 2D and 3D extracellular matrix components by altering focal adhesion-associated signaling

    Science.gov (United States)

    Metastatic dissemination of cancer cells from primary tumor to secondary sites is a multi-step process that depends heavily on the ability of cancer cells to respond to the microenvironmental cues, such as changes in composition of surrounding extracellular matrix (ECM), by adapting their adhesion a...

  2. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  3. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

    Science.gov (United States)

    Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng

    2016-01-01

    Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.

  4. Genes co-regulated with LBD16 in nematode feeding sites inferred from in silico analysis show similarities to regulatory circuits mediated by the auxin/cytokinin balance in Arabidopsis.

    Science.gov (United States)

    Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2015-01-01

    Plant endoparasitic nematodes, root-knot and cyst nematodes (RKNs and CNs) induce within the root vascular cylinder transfer cells used for nourishing, termed giant cells (GCs) and syncytia. Understanding the molecular mechanisms behind this process is essential to develop tools for nematode control. Based on the crucial role in gall development of LBD16, also a key component of the auxin pathway leading to the divisions in the xylem pole pericycle during lateral root (LR) formation, we investigated genes co-regulated with LBD16 in different transcriptomes and analyzed their similarities and differences with those of RKNs and CNs feeding sites (FS). This analysis confirmed LBD16 and its co-regulated genes, integrated in signaling cascades mediated by auxins during LR and callus formation, as a particular feature of RKN-FS distinct to CNs. However, LBD16, and its positively co-regulated genes, were repressed in syncytia, suggesting a selective down- regulation of the LBD16 auxin mediated pathways in CNs-FS. Interestingly, cytokinin-induced genes are enriched in syncytia and we encountered similarities between the transcriptome of shoot regeneration from callus, modulated by cytokinins, and that of syncytia. These findings establish differences in the regulatory networks leading to both FS formation, probably modulated by the auxin/cytokinin balance.

  5. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  6. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  7. Comparison of auxin activty in tumourous and normal callus cultures from sunflower and tobacco plants

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available In normal and tumourous calluses of sunflower and tobacco the level of extractable auxins was determined by Avena coleoptile straight growth test. Auxin activity was detected practically in two zones: I - at position with Rf 0.2-0.4 and II - at position with Rf 0.6-0.9. The tumour tissues of sunflower and tobacco plants, representing different types of neoplastic growth exhibit a 3 times higher auxin activity as compared with that of the corresponding normal tissues. Tobacco tissues, on the other hand, had a higher auxin level than the corresponding sunflower tissues and they exhibited different proportions in the activity of zones I and II, which points to a dominance of genetic regulation of hormone metabolism in these plants.

  8. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2010-01-01

    , cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower

  9. Influence of time of auxin application on wheat haploid embrio formation

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2005-01-01

    Full Text Available A hybrid interspecies zygote appears after crosses between wheat and maize Zygote derived after usual self-fertilization in wheat is dividing by mitotic divisions into embryo. However, interspecies zygote aborts soon. Auxin treatment is widely used to promote its development. Growth hormones auxins have stimulative ortoxic effects on plant tissue sin relation to its concentration and the time of application. In this paper the effect of time of auxin dicamba application on embryo in wheat x maize crosses was investigated. Chromosomes of pollen donor parent are eliminated quickly in cells of such embryos and they become haploid. It was concluded that for the production of haploid embryos the best time for auxin application is one day after pollination with maize.

  10. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  11. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation.

    Science.gov (United States)

    Nguyen, Hoai Nguyen; Kim, Jun Hyeok; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2013-10-01

    Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.

  12. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  13. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development...... gadolinium-based agent (3-7% versus 0-1% per injection) in patients with reduced renal function. Prevalence after exposure to two gadodiamide injections is as high as 36% in patients with chronic kidney disease (CKD) stage 5. No report of NSF after the most stable agents has been reported in the peer...

  14. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.

    Science.gov (United States)

    Ishibashi, Misaki; Yoshikawa, Hiroki; Uno, Yuichi

    2017-06-02

    Strawberry fruit contain the allergenic Fra a proteins, members of the pathogenesis-related 10 protein family that causes oral allergic syndrome symptoms. Fra a proteins are involved in the flavonoid biosynthesis pathway, which might be important for color development in fruits. Auxin is an important plant hormone in strawberry fruit that controls fruit fleshiness and ripening. In this study, we treated strawberry fruits with exogenous auxin or auxin inhibitors at pre- and post-harvest stages, and analyzed Fra a transcriptional and translational expression levels during fruit development by real-time PCR and immunoblotting. Pre-harvest treatment with 1-naphthaleneacetic acid (NAA) alone did not affect Fra a expression, but applied in conjunction with achene removal NAA promoted fruit pigmentation and Fra a protein accumulation. The response was developmental stage-specific: Fra a 1 was highly expressed in immature fruit, whereas Fra a 2 was expressed in young to ripe fruit. In post-harvest treatments, auxin did not contribute to Fra a induction. Auxin inhibitors delayed fruit ripening; as a result, they seemed to influence Fra a 1 expression. Thus, Fra a expression was not directly regulated by auxin, but might be associated with the ripening process and/or external factors in a paralog-specific manner.

  15. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    Science.gov (United States)

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  16. Autoradiographic studies with the 14C-IAA in relation to synergism between auxin and non-auxin chemicals in the rooting of bean (Phaseolus vulgaris L.) cuttings

    International Nuclear Information System (INIS)

    Chaudhury, K.G.; Basu, R.N.

    1980-01-01

    Indole and α-naphthol significantly synergized the IAA-induced rooting of P. vulqaris cuttings. The pattern of incorporation of radiocarbon of IAA-I- 14 C and IAA-2- 14 C supplied to the base of the cuttings was, however, not altered by the synergists and the same radioactive metabolites were located on the radioautograms of ethanolic extracts of the hypocotyls of cuttings under the different treatments. The results thereby discount the possibility of formation of bioactive complexes between auxins and synergists as the mechanism of synergism in rooting. The synergists, however, influenced the extent of incorporation of radiocarbon of the labelled auxin molecules into some of the radioactive metabolites. (auth.)

  17. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  18. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems1[W][OA

    Science.gov (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva

    2008-01-01

    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737

  19. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.

    Science.gov (United States)

    Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M

    2017-01-01

    The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.

  20. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    2008-10-01

    Full Text Available Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.

  1. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms1

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu

    2016-01-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  3. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance.

    Science.gov (United States)

    Cline, Morris G; Oh, Choonseok

    2006-10-01

    Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.

  4. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  5. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  6. AUXIN BINDING PROTEIN 4 is involved in the Ca2+/auxin-regulated expression of ZCAX3 gene in maize (Zea mays)

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Bergougnoux, Véronique; Milde, D.; Fellner, Martin

    2014-01-01

    Roč. 92, č. 5 (2014), s. 332-339 ISSN 1916-2790 R&D Projects: GA MŠk 1P05ME792 Institutional support: RVO:61389030 Keywords : auxin-binding protein * ABP4 * AtCAX1 Subject RIV: EF - Botanics Impact factor: 1.278, year: 2014

  7. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  8. Syndecans as receptors and organizers of the extracellular matrix

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Gopal, Sandeep; Couchman, John

    2009-01-01

    , the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins...... and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles...

  9. Pengaruh penambahan auxin terhadap pertunasan dan perakaran kopi arabika perbanyakan Somatic Embryogenesis (The effects of shooting and rooting of arabica coffee propagation through Embryogenesis Somatic auxin uses.

    Directory of Open Access Journals (Sweden)

    Rina Arimarsetiowati

    2012-08-01

    Full Text Available Plantlet that has developed shoots and roots will have a high level adaptation in the field. The objective of this experiment was to improve the ability of planlet in shooting and rooting so that it is ready for acclimatization in the field. The increase ability in shooting and rooting of the planlet were conducted by adding various types of auxin in the media. The arabica coffee embryo of clone AS 2K which has entered the phase of the cotyledons was transfered into the treatment media containing half-strength of MS (Murashige & Skoog macro and micro nutrient, vitamin B5, 30 g/L glucose, 100 ml/L coconut water, 50 mg/L AgNO3 added with the combination of IAA, IBA and NAA. The research was conducted by using completely randomized design with seven combined treatment i.e. 0.1 mg/L IBA, 0.1 mg/L NAA, 0.1 mg/L IAA; 0 , 1 mg/L IBA + 0.1 mg/L NAA, 0.1 mg/L IBA + 0.1 mg/L IAA, 0.1 mg/L NAA + 0.1 mg/L IAA; without auxin. There were 12 replications in every treatment and each replication consisted of five cotyledonary embryos. The parameters of observation were the root length, leaf number, leaf area, stem diameter, and height of plantlets. The observations were conducted in eighth weeks after cotyledonary embryo had shoots. The results showed that in the number of leaves and height of planlet parameters, the treatment without auxin was the best result compared to planlet with auxin addition. The addition of auxin varians and their combination did not significantly influent leaf area, root length and stem diameter parameters. The medium tested was optimum for the growth of shoots and roots of AS 2K arabica coffee.

  10. Cross-talk in abscisic acid signaling

    Science.gov (United States)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  11. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  12. Excessive extracellular ATP desensitizes P2Y2 and P2X4 ATP receptors provoking surfactant impairment ending in ventilation-induced lung injury

    NARCIS (Netherlands)

    D. Hasan (Djo); Satalin, J. (Joshua); van der Zee, P. (Philip); Kollisch-Singule, M. (Michaela); P. Blankman (Paul); Shono, A. (Atsuko); P. Somhorst (Peter); C.A. den Uil (Corstiaan); H.J. Meeder (Han); Kotani, T. (Toru); G.F. Nieman (Gary F.)

    2018-01-01

    textabstractStretching the alveolar epithelial type I (AT I) cells controls the intercellular signaling for the exocytosis of surfactant by the AT II cells through the extracellular release of adenosine triphosphate (ATP) (purinergic signaling). Extracellular ATP is cleared by extracellular ATPases,

  13. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.

    Science.gov (United States)

    Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki

    2017-09-01

    Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant - Jatropha curcas

    Energy Technology Data Exchange (ETDEWEB)

    Kochhar, Sunita; Singh, S.P.; Kochhar, V.K. [National Botanical Research Institute, Lucknow 226001 (India)

    2008-12-15

    Rooting and sprouting behaviour of stem cuttings of biofuel plant Jatropha curcas and their performance under field conditions have been studied in relation to auxin application. Pretreatment with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) increased both the rooting and sprouting. Sprouting of buds on the cuttings preceded rooting. The rooting and sprouting in J. curcas was more with IBA than NAA. The endogenous auxin contents were found to increase almost 15 days prior to rooting, indicating that mobilization of auxin rather than the absolute contents of auxin may be involved in root initiation. Indole acetic acid oxidase (IAA-oxidase) seems to be involved for triggering and initiating the roots/root primordia, whereas peroxidase is involved in both root initiation and the elongation processes as supported by the peroxidase and IAA-oxidase isoenzyme analysis in the cuttings. The clonally propagated plants (cutting-raised plants) performed better in the field as compared to those raised from the seeds. The plants produced from auxin-treated cuttings produced fruits and seeds in the same year as compared to the plants raised from seeds or from untreated or control cuttings that did not produce any seeds in 1 year of this study. Jatropha plants in general produce seeds after 2-3 years. (author)

  15. Influence of External Nitrogen on Nitrogenase Enzyme Activity and Auxin Production in Herbaspirillum seropedicae (Z78).

    Science.gov (United States)

    Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad

    2015-04-01

    The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.

  16. Morphophysiology, Phenotypic and Molecular Diversity of Auxin-induced Passiflora mucronata Lam. (Passifloraceae).

    Science.gov (United States)

    França, Juliany M; Venial, Lucimara R; Costa, Eloá B; Schmildt, Edilson R; Schmildt, Omar; Bernardes, Paula M; Tatagiba, Sandro D; Lopes, José C; Ferreira, Marcia F S; Alexandre, Rodrigo S

    2018-01-01

    Genetic diversity allows identification of potential intraspecific genotypes in the genus Passiflora. The objective of this study was to examine the morphological and genetic diversity of auxin-induced Passiflora mucronata. The experiments were arranged in a complete randomized block design, with a 9 x 2 factorial arrangement (nine genotypes x presence and absence of auxin, indole-3-butyric acid (IBA)), with four replicates of 16 cuttings. The rooting and vegetative growth responses were variable. Genotype 5 was more responsive in the absence of IBA and genotypes 3, 8 and 9 were more responsive in the presence of IBA. Auxin increased rooting rate and percentage, reducing the average time of root protrusion in eight days. IBA also contributed to increase photosynthesis and dry root and shoot mass in 55.55 and 44.44% of the genotypes, respectively. The highest relative contribution to phenotypic diversity in the absence of auxin was rate (38.75%) and percentage (20.27%) of rooting, whereas in the presence of auxin was stomatal conductance (23.19%) and root dry mass (20.91%). Similarity was found for phenotypic and molecular divergence in the presence of IBA, in which genotypes 1 and 6; genotypes 5, 8 and 9; and genotype 3 were clustered in distinct groups.

  17. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  18. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  19. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis

    DEFF Research Database (Denmark)

    Elhiti, Mohamed; Hebelstrup, Kim; Wang, Aiming

    2013-01-01

    Suppression of the Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2 -/-) polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the ...

  20. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    NARCIS (Netherlands)

    Ivanchenko, Maria G.; den Os, Desiree; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednarova, Andrea; Krishnan, Natraj

    2013-01-01

    The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Wild-type and

  1. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  2. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae1[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; McAdam, Erin L.

    2015-01-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. PMID:25971549

  4. Auxin uptake, transport and accumulation in relation to rooting and ageing of mung bean cuttings

    International Nuclear Information System (INIS)

    Jarvis, B.C.; Shaheed, A.I.

    1986-01-01

    The rooting response of mung bean cuttings (Phaseolus aureus Roxb. cv. Berkin) to indoleacetic acid (IAA) progressively declined when they were aged in water prior to auxin treatment. With increased duration of the ageing period the uptake of basally-supplied auxin by cuttings decreased. This correlated with diminished transpiration. Notwithstanding this decline in the uptake of IAA, a decreasing proportion of the acquired auxin was transported acropetally out of the hypocotyl with increasing age of the cuttings. Recovery of 14 C from cuttings 24 h after the foliar application of 14 C-IAA declined with increasing age of the cuttings. Furthermore, the total amount of radioactivity recovered in the hypocotyl diminished as a function of the increasing age of cuttings, as did the proportion of radioactivity located in the hypocotyl. (author)

  5. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    Science.gov (United States)

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  6. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2018-04-01

    Full Text Available Small auxin-upregulated RNAs (SAURs are genes regulated by auxin and environmental factors. In this study, we identified a SAUR gene in wheat, TaSAUR75. Under salt stress, TaSAUR75 is downregulated in wheat roots. Subcellular localization revealed that TaSAUR75 was localized in both the cytoplasm and nucleus. Overexpression of TaSAUR75 increased drought and salt tolerance in Arabidopsis. Transgenic lines showed higher root length and survival rate and higher expression of some stress-responsive genes than control plants under salt and drought stress. Less H2O2 accumulated in transgenic lines than in control plants under drought stress. Our findings reveal a positive regulatory role of the auxin-responsive gene TaSAUR75 in plant responses to drought and salt stress and provide a candidate gene for improvement of abiotic stress tolerance in crop breeding.

  7. The diageotropica mutant of tomato lacks high specific activity auxin sites

    International Nuclear Information System (INIS)

    Hicks, G.R.; Lomax, T.L.; Rayle, D.L.

    1989-01-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue 3 H-5N 3 -IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant

  8. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  9. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  10. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  12. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  13. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  14. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  15. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    to small volumes and chromatographed in CHCl3 or CCl4 solvent systems separating the chlorinated auxin from indoleacetonitrile and the methyl or ethyl esters of indoleacetic acid. Colour reaction was carried out with some of the Salkowski FeCl3 sprays of which Ehmann's FeCl3/dimethylaminobenzaldehyde......One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  16. Inflammation leads to distinct populations of extracellular vesicles from microglia

    DEFF Research Database (Denmark)

    Yang, Yiyi; Boza-Serrano, Antonio; Dunning, Christopher J.R.

    2018-01-01

    Background: Activated microglia play an essential role in inflammatory responses elicited in the central nervous system (CNS). Microglia-derived extracellular vesicles (EVs) are suggested to be involved in propagation of inflammatory signals and in the modulation of cell-to-cell communication...

  17. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  18. Dermal extracellular lipid in birds.

    Science.gov (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  19. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  20. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im; Murphy, Angus S.; Baek, Dongwon; Lee, Shin-Woo; Yun, Dae-Jin; Bressan, Ray A.; Narasimhan, Meena L.

    2011-01-01

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical

  1. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin

    Directory of Open Access Journals (Sweden)

    Siva K. Malka

    2017-12-01

    Full Text Available Glucosinolates (GLS are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase, and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx and indole-3-acetonitrile (IAN. IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.

  2. PIN proteins perform a rate-limiting function in cellular auxin efflux

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Mravec, J.; Bouchard, R.; Blakeslee, J.J.; Abas, M.; Seifertová, Daniela; Wisniewska, J.; Tadele, Z.; Kubeš, Martin; Čovanová, Milada; Dhonukshe, P.; Skůpa, Petr; Benková, E.; Perry, Lucie; Křeček, Pavel; Lee, O.R.; Fink, G.R.; Geisler, M.; Murphy, A.S.; Luschnig, C.; Zažímalová, Eva; Friml, J.

    2006-01-01

    Roč. 312, č. 5775 (2006), s. 914-918 ISSN 0036-8075 R&D Projects: GA AV ČR IAA6038303; GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin transport * PIN proteins * PGP transporters * MDR Subject RIV: ED - Physiology Impact factor: 30.028, year: 2006

  3. Influence of the origin of stem cutting, season of collection and auxin ...

    African Journals Online (AJOL)

    Influence of the origin of stem cutting, season of collection and auxin application on the vegetative propagation of African Sandalwood ( Osyris lanceolata ) in Tanzania: scientific paper. ... The high nutrition status and low nitrogen content of basal portions may play a role in enhancing their performance. Thus when raising O.

  4. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation

    DEFF Research Database (Denmark)

    Henrichs, Sina; Wang, Bangjun; Fukao, Yoichiro

    2012-01-01

    Polar transport of the plant hormone auxin is controlled by PIN-and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co-I...

  5. Biochemical activity of auxins in dependence of their structures in Wolffia arrhiza (L. Wimm.

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available Wolffia arrhiza (L. Wimm. (Lemnaceae as a mixotrophic plant reacts considerably weaker to used auxins with different chemical structures than typical photosynthetic vascular plants and algae especially from Chlorophyta. Among used auxin compounds, the highest stimulative activity on W. arrhiza growth and biochemical parameters which were analysed in biomass, can be attributed to phenylacetic acid (PAA, a somewhat smaller to indole-3-acetic acid (IAA and the smallest to 2-naphthaleneacetic acid (NAA used in optimal concentration of 10-6 M, in comparison with the control culture, devoid of exogenous auxins. The investigated auxins, especially PAA and IAA, were found to have the most powerful stimulative activity (prevailingly between the 10th and the 15th day of cultivation on the content of reducing sugars between 127 and 169%, chlorophyll a and b from 117 to 125%, total carotenoids from 115 to 132% and net photosynthetic rate from 127 to 144% in comparison with the control culture, which was treated as 100% for reference. However, the content of water-soluble proteins as well as nucleic acids (DNA and RNA in the biomass of W. arrhiza was less effectively stimulated, hardly from 110 to 116% when compared to the control culture (100%.

  6. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.

    Directory of Open Access Journals (Sweden)

    Graeme Mitchison

    2015-10-01

    Full Text Available Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this 'spreading rate' is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is 'dragged along' by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin.

  7. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin

    Directory of Open Access Journals (Sweden)

    Birgit eAbsmanner

    2013-07-01

    Full Text Available Sedentary plant parasitic nematodes such as root-knot nematodes and cyst nematodes induce giant cells or syncytia, respectively, in their host plant’s roots. These highly specialized structures serve as feeding sites from which exclusively the nematodes withdraw nutrients. While giant cells are symplastically isolated and obtain assimilates by transporter-mediated processes syncytia are massively connected to the phloem by plasmodesmata. To support the feeding sites and the nematode during their development, phloem is induced around syncytia and giant cells. In the case of syncytia the unloading phloem consists of sieve elements and companion cells and in the case of root knots it consists exclusively of sieve elements. We applied immunohistochemistry to identify the cells within the developing phloem that responded to auxin and cytokinin. Both feeding sites themselves did not respond to either hormone. We were able to show that in root knots an auxin response precedes the differentiation of these auxin responsive cells into phloem elements. This process appears to be independent of B-type Arabidopsis response regulators. Using additional markers for tissue identity we provide evidence that around giant cells protophloem is formed and proliferates dramatically. In contrast, the phloem around syncytia responded to both hormones. The presence of companion cells as well as hormone-responsive sieve elements suggests that metaphloem development occurs. The implication of auxin and cytokinin in the further development of the metaphloem is discussed.

  8. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marie; Motyka, Václav; Dobrev, Petre; Malbeck, Jiří; Gaudinová, Alena

    2005-01-01

    Roč. 56, č. 421 (2005), s. 2877-2883 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxin * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.336, year: 2005

  9. Evolution and structural diversification of PILS putative auxin carriers in plants

    Czech Academy of Sciences Publication Activity Database

    Feraru, E.; Vosolsobě, S.; Feraru, M.; Petrášek, Jan; Kleine-Vehn, J.

    2012-01-01

    Roč. 3, č. 227 (2012) ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP305/11/2476 Institutional support: RVO:61389030 Keywords : PILS proteins * auxin * evolution Subject RIV: EB - Genetics ; Molecular Biology http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470039/pdf/fpls-03-00227.pdf

  10. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Stirk, W. A.; Arthur, G. D.; Lourens, A. F.; Novák, Ondřej; Strnad, Miroslav; van Staden, J.

    2004-01-01

    Roč. 16, č. 1 (2004), s. 31-39 ISSN 0022-3646 R&D Projects: GA ČR GA522/03/0323 Institutional research plan: CEZ:AV0Z5038910 Keywords : accelerated storage * auxins * cytokinins Subject RIV: EF - Botanics Impact factor: 2.490, year: 2004

  11. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil

    Czech Academy of Sciences Publication Activity Database

    Yokoya, N. S.; Stirk, W. A.; van Staden, J.; Novák, Ondřej; Turečková, Veronika; Pěnčík, Aleš; Strnad, Miroslav

    2010-01-01

    Roč. 46, č. 6 (2010), s. 1198-1205 ISSN 0022-3646 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : ENDOGENOUS * CYTOKININS * AUXINS * ABSCISIC ACID * RED * ALGAE * BRAZIL Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  12. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development

    Czech Academy of Sciences Publication Activity Database

    Kuhn, B.M.; Errafi, S.; Bucher, R.; Dobrev, Petre; Geisler, M.; Bigler, L.; Zažímalová, Eva; Ringli, Ch.

    2016-01-01

    Roč. 291, č. 10 (2016), s. 5385-5395 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * flavonoid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.125, year: 2016

  13. Endogenous auxin regulates the sensitivity of Dendrobium (cv. Miss Teen) flower pedicel abscission to ethylene

    NARCIS (Netherlands)

    Rungruchkanont, K.; Ketsa, S.; Chatchawankanphanich, O.; Doorn, van W.G.

    2007-01-01

    Dendrobium flower buds and flowers have an abscission zone at the base of the pedicel (flower stalk). Ethylene treatment of cv. Miss Teen inflorescences induced high rates of abscission in flower buds but did not affect abscission once the flowers had opened. It is not known if auxin is a regulator

  14. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis

    Czech Academy of Sciences Publication Activity Database

    Šimura, Jan; Spíchal, Lukáš; Adamec, Lubomír; Pěnčík, A.; Rolčík, Jakub; Novák, Ondřej; Strnad, Miroslav

    2016-01-01

    Roč. 117, č. 6 (2016), s. 1037-1044 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : Auxin * Aldrovanda vesiculosa * cytokinin Subject RIV: EF - Botanics Impact factor: 4.041, year: 2016

  15. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, Aleš; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, Asta; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, Ondřej

    2018-01-01

    Roč. 69, č. 10 (2018), s. 2569-2579 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GJ17-21581Y Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * metabolite profiling * multivariate data analysis * mutant * screening Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  16. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells

    Science.gov (United States)

    Baluska, F.; Barlow, P. W.; Volkmann, D.

    1996-01-01

    The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.

  17. Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices.

    NARCIS (Netherlands)

    Bulow, H.E.; Tjoe, N.; Townley, R.A.; Didiano, D.; Kuppevelt, A.H.M.S.M. van; Hobert, O.

    2008-01-01

    Heparan sulfates (HSs) are extraordinarily complex extracellular sugar molecules that are critical components of multiple signaling systems controlling neuronal development. The molecular complexity of HSs arises through a series of specific modifications, including sulfations of sugar residues and

  18. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules

    NARCIS (Netherlands)

    Kohlen, W.; Ng, Jason Liang Pin; Deinum, E.E.; Mathesius, Ulrike

    2018-01-01

    Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules.

  19. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Directory of Open Access Journals (Sweden)

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  20. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    Science.gov (United States)

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866

  2. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  3. Proliferation-stimulating effect of colony stimulating factor 2 on porcine trophectoderm cells is mediated by activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wooyoung Jeong

    Full Text Available Colony-stimulating factor 2 (CSF2, also known as granulocyte macrophage colony-stimulating factor, facilitates mammalian embryonic development and implantation. However, biological functions and regulatory mechanisms of action of porcine endometrial CSF2 in peri-implantation events have not been elucidated. The aim of present study was to determine changes in cellular activities induced by CSFs and to access CSF2-induced intracellular signaling in porcine primary trophectoderm (pTr cells. Differences in expression of CSF2 mRNA in endometrium from cyclic and pregnant gilts were evaluated. Endometrial CSF2 mRNA expression increases during the peri-implantation period, Days 10 to 14 of pregnancy, as compared to the estrous cycle. pTr cells obtained in Day 12 of pregnancy were cultured in the presence or absence of CSF2 (20 ng/ml and LY294002 (20 µM, U0126 (20 µM, rapamycin (20 nM, and SB203580 (20 µM. CSF2 in pTr cell culture medium at 20 ng/ml significantly induced phosphorylation of AKT1, ERK1/2, MTOR, p70RSK and RPS6 protein, but not STAT3 protein. Also, the PI3K specific inhibitor (LY294002 abolished CSF2-induced increases in p-ERK1/2 and p-MTOR proteins, as well as CSF2-induced phosphorylation of AKT1. Changes in proliferation and migration of pTr cells in response to CSF2 were examined in dose- and time-response experiments. CSF2 significantly stimulated pTr cell proliferation and, U0126, rapamycin and LY294002 blocked this CSF2-induced proliferation of pTr cells. Collectively, during the peri-implantation phase of pregnancy in pigs, endometrial CSF2 stimulates proliferation of trophectoderm cells by activation of the PI3K-and ERK1/2 MAPK-dependent MTOR signal transduction cascades.

  4. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-06-01

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants

    Czech Academy of Sciences Publication Activity Database

    D'Ippolito, S.; Vaňková, Radomíra; Joosten, M.H.A.J.; Casalongue, C.A.; Fiol, D.F.

    2016-01-01

    Roč. 253, DEC (2016), s. 31-39 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : Auxin * Biotic stress * Cladosporium fulvum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.437, year: 2016

  6. Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick.

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2014-01-01

    Full Text Available Research concerning the influence of auxins and cytokinins on the content of carotenoids in Chlorella pyrenoidosa (Chlorophyceae has been conducted. The strongest stimulating effect on carotenoids content in Ch. pyrenoidosa biomass was exerted by cytokinins (N-6-benzylaminopurine and N-6-furfurylaminopurine and allantoin, weaker by auxins and their chemical analogues, and the weakest by tryptamine and 2,4-dichlorophenoxyacetic acid compared to the control. Under the influence of cytokinins the content of α- and β-carotene have been stimulated several times stronger than by auxins, and especially 2,4- dichlorophenoxyacetic acid and tryptamine. However, oxygen-rich xanthophylls content was most strongly reduced by cytokinins (60-70% in relation to the control in the 20 day lasting of Ch. pyrenoidosa cultivation, similarly to auxins: 1-naphthaleneacetic acid, indole-3-butyric acid, 2,4- dichlorophenoxyacetic acid.

  7. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans.

    Science.gov (United States)

    Eigenheer, Richard A; Jin Lee, Young; Blumwald, Eduardo; Phinney, Brett S; Gelli, Angie

    2007-06-01

    Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or beta-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography-mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans.

  8. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  9. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  10. [Identification of an auxin response factor-like protein cDNA from mango cotyledon section].

    Science.gov (United States)

    Xiao, Jie-Ning; Huang, Xue-Lin; Huang, Xia; Li, Xiao-Ju

    2004-01-01

    Auxin-responsive elements (AuxRE) interact with a new class of plant-specific transcription factors, auxin response factors (ARFs). Some of ARFs have been shown to repress or activate expression of genes with an AuxRE promotor element. In Arabidopsis, ARFs play important roles in early embryo development and vascular strand formation (ARF5), floral patterning (ARF3) and photo- and gravitropic responses (ARF7). Two cut surfaces (distal and proximal) of mango (Mangifera indica L. var. Zi-Hua) cotyledon showed different patterns of adventitious root formation, with only the proximal cut surface, but not the distal one, could be induced to form the roots. Thus, the mango cotyledon is a good system for studying adventitious root formation. A cDNA fragment homologous to the Arabidopsis auxin response factor-like protein and relates to adventitious root formation from the cut sections were isolated using suppressive subtractive hybridization (SSH). Two cDNA clones, designated as MiARF1 (mango auxin response factor 1 gene, GenBank accession number AY255705) and MiARF2 (mango auxin response factor 2 gene, GenBank accession number is AY300808), were identified by 3'RACE. MiARF1, 3 272bp long, contains an open reading frame (ORF) of 2 523bp, 5'UTR of 285bp and 3'UTR of 464bp, MiARF2, 1 474bp long, contains an ORF of 981bp, 5' UTR of 285bp and 3'UTR of 208bp. The deduced MiARF1 and MiARF2 are homologues of auxin response factor (ARF) family of transcriptional regulators, and show high similarity to ARF of Arabidopsis in conserved domains. The motifs of MiARF1 EL-WHACAGPL in DBD (DNA binding domain) and GDDPW in IV domain are identical to that of ARF-like protein of Arabidopsis. MiARF2 is identical to MiARF1 in a large part of DBD, but lacks a carboxyl-terminal domain containing conserved motifs III and IV. Virtual Northern blot showed that the expression of MiARF2 was high in rooting tissue of cultured cotyledon sections but low in non-rooting tissue, and the MiARF1 was

  11. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Goto, Shingo; Kasai, Kouji; Seki, Hikaru; Suzuki, Masashi; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-05-01

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.

  12. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    NARCIS (Netherlands)

    Xuan, Wei; Band, Leah R.; Kumpf, Robert P.; Rybel, De Bert

    2016-01-01

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that

  13. Prohibitin (PHB) inhibits apoptosis in rat granulosa cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins.

    Science.gov (United States)

    Chowdhury, Indrajit; Thompson, Winston E; Welch, Crystal; Thomas, Kelwyn; Matthews, Roland

    2013-12-01

    Mammalian ovarian follicular development is tightly regulated by crosstalk between cell death and survival signals, which include both endocrine and intra-ovarian regulators. Whether the follicle ultimately ovulates or undergoes atresia is dependent on the expression and actions of factors promoting follicular cell proliferation, differentiation or apoptosis. Prohibitin (PHB) is a highly conserved, ubiquitous protein that is abundantly expressed in granulosa cells (GCs) and associated with GC differentiation and apoptosis. The current study was designed to characterize the regulation of anti-apoptotic and pro-apoptotic factors in undifferentiated rat GCs (gonadotropin independent phase) governed by PHB. Microarray technology was initially employed to identify potential apoptosis-related genes, whose expression levels within GCs were altered by either staurosporine (STS) alone or STS in presence of ectopically over-expressed PHB. Next, immunoblot studies were performed to examine the expression patterns of selective Bcl-2 family members identified by the microarray analysis, which are commonly regulated in the intrinsic-apoptotic pathway. These studies were designed to measure protein levels of Bcl2 family in relation to expression of the acidic isoform (phosphorylated) PHB and the components of MEK-Erk1/2 pathway. These studies indicated that over-expression of PHB in undifferentiated GCs inhibit apoptosis which concomitantly results in an increased level of the anti-apoptotic proteins Bcl2 and Bclxl, reduced release of cytochrome c from mitochondria and inhibition of caspase-3 activity. In contrast, silencing of PHB expression resulted in change of mitochondrial morphology from the regular reticular network to a fragmented form, which enhanced sensitization of these GCs to the induction of apoptosis. Collectively, these studies have provided new insights on the PHB-mediated anti-apoptotic mechanism, which occurs in undifferentiated GCs through a PHB → Mek-Erk1

  14. Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel.

    Science.gov (United States)

    Taherian, Aliakbar; Mazoochi, Tahereh

    2012-01-01

    Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk1/2 and phospho-ERK was compared in MDA-MB-231 (ER-) and MCF-7 (ER+) cell lines after treatment with doxorubicin (DOX) or docetaxel (DOCT). Cell cytotoxicity of DOX or DOCT was calculated using MTT assay. Immonofluorescent technique was used to show MDR-1 protein in MDA-MB-231 and MCF-7 cells after treatment with DOX or DOCT. The expression of ERK1/2 and phpspho-ERK was assayed with immunoblotting. Comparing IC50 values showed that MDA-MB-231 cells are more sensitive than MCF-7 cells to DOX or DOCT. Immonofluorescent results confirmed the expression of MDR-1 in these two cell lines after DOX or DOCT treatment. In MDA-MB-231 cells the expression of ERK1/2 and phospho-ERK was decreased after DOX treatment in a dose-dependent manner. In contrast in MCF-7 cells the expression of ERK1/2 and phospho-ERK was increased after DOX treatment. DOCT treatment demonstrated the same result with less significant differences than DOX. The heterogeneity seen in cell lines actually reflects the heterogeneity of breast cancers. That is why, patients categorized in one group respond differently to a single treatment. These results emphasize the importance of a more accurate classification and a more specific treatment of breast cancer subtypes.

  15. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  16. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  17. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  18. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  19. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  20. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  1. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    Science.gov (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  2. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  3. A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2017-11-01

    Full Text Available An assembled suite of flow-based transformations have been used to rapidly scale-up the production of a novel auxin mimic-based herbicide which was required for preliminary field trials. The overall synthetic approach and optimisation studies are described along with a full description of the final reactor configurations employed for the synthesis as well as the downstream processing of the reaction streams.

  4. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlović, I.; Pěnčík, Aleš; Novák, Ondřej; Vujčić, V.; Radić Brkanac, S.; Lepeduš, H.; Strnad, Miroslav; Salopek-Sondi, B.

    2018-01-01

    Roč. 125, APR (2018), s. 74-84 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : Auxin metabolism * Brassica rapa ssp. pekinensis * Growth inhibition * Principal component analysis * Reactive oxygen species * Short-term salinity stress * Stress hormones Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.724, year: 2016

  5. Paracrine signaling in a bacterium.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-07-15

    Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.

  6. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Science.gov (United States)

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  7. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae.

    Science.gov (United States)

    Lam, Hong Kiat; McAdam, Scott A M; McAdam, Erin L; Ross, John J

    2015-07-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.

    Science.gov (United States)

    Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří

    2016-11-07

    Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence.

    Science.gov (United States)

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-10-22

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial