WorldWideScience

Sample records for extracellular atp released

  1. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  2. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  3. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    DEFF Research Database (Denmark)

    Jensen, Frank B; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout...... heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco(2) showed negligible hemolysis (ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than...... in its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O(2) saturation did not lead to additional ATP release. An elevation of Pco(2) was also without influence on erythrocyte ATP release. In the saline...

  4. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout...... heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco2 showed negligible hemolysis (ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than...... in its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O2 saturation did not lead to additional ATP release. An elevation of Pco2 was also without influence on erythrocyte ATP release. In the saline...

  5. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout...... heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco2 showed negligible hemolysis (ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than...... in its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O2 saturation did not lead to additional ATP release. An elevation of Pco2 was also without influence on erythrocyte ATP release. In the saline...

  6. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release.

    Science.gov (United States)

    Zimmermann, Herbert

    2016-03-01

    Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.

  7. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    Science.gov (United States)

    1986-01-01

    ATP may mediate contraction in the urinary bladder of the rat and guinea-pig (53,63,99,238), relaxation in taenia coli (17,63,87,173,380,381) and...receptors. This uncertainty has been generated because of findings in rabbit anococcygeus muscle (405) and guinea-pig taenia coli (457), in which, as...and Holmberg, B. The effects of extracellularly -~ applied ATP and related compounds on electrical and mechanical activity of the smooth muscle taenia

  8. Optogenetic control of ATP release

    Science.gov (United States)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  9. Release of ATP from marginal cells in the cochlea of neonatal rats can be induced by changes in extracellular and intracellular ion concentrations.

    Directory of Open Access Journals (Sweden)

    Yating Peng

    Full Text Available BACKGROUND: Adenosine triphosphate (ATP plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. METHODS: Sprague-Dawley rats aged 1-3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. RESULTS: Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K(+ and intra- and extracellular Ca(2+. Furthermore, changes in the concentration of intracellular Ca(2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. CONCLUSION: We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K(+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A(2.

  10. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury.

    Science.gov (United States)

    Lindoso, Rafael S; Collino, Federica; Bruno, Stefania; Araujo, Dayana S; Sant'Anna, Julliana F; Tetta, Ciro; Provero, Paolo; Quesenberry, Peter J; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Camussi, Giovanni

    2014-08-01

    The mechanisms involved in renal repair by mesenchymal stromal cells (MSCs) are not entirely elucidated. The paracrine secretion of bioactive molecules has been implicated in the protective effects. Besides soluble mediators, MSCs have been shown to release extracellular vesicles (EVs), involved in renal repair process for different injury models. EVs have been shown to mediate communication between cells through the transference of several molecules, like protein, bioactive lipids, mRNA, and microRNAs (miRNAs). The miRNAs are noncoding RNAs that posttranscriptionally modulate gene expression and are involved in the regulation of several cellular processes, including those related to repair. The aim of the present study was to investigate the role of MSC-EVs in the modulation of miRNAs inside renal proximal tubular epithelial cells (PTECs) in an in vitro model of ischemia-reperfusion injury induced by ATP depletion. In this model we evaluated whether changes in miRNA expression were dependent on direct miRNA transfer or on transcription induction by MSC-EVs. The obtained results showed an enhanced incorporation of MSC-EVs in injured PTECs with protection from cell death. This biological effect was associated with EV-mediated miRNA transfer and with transcriptional modulation of miRNAs expressed by injured PTECs. Prediction of miRNA targets showed that miRNAs modulated in PTECs are involved in process of renal recovery with downregulation of coding-mRNAs associated with apoptosis, cytoskeleton reorganization, and hypoxia, such as CASP3 and 7, SHC1 and SMAD4. In conclusion, these results indicate that MSC-EVs may transfer and modulate the expression of several miRNAs involved in the repair and recovery process in PTECs.

  11. Detecting ATP release by a biosensor method.

    Science.gov (United States)

    Hayashi, Seiji; Hazama, Akihiro; Dutta, Amal K; Sabirov, Ravshan Z; Okada, Yasunobu

    2004-11-09

    Cells release adenosine 5'-triphosphate (ATP) into the extracellular space in response to various stimuli. This released ATP plays an important physiological role in cell-to-cell signal transduction. The bulk ATP concentration can be detected using a conventional luciferin-luciferase assay. However, the ATP concentration in the vicinity of the cell surface is often different from the bulk concentration because of its rapid degradation by ecto-ATPases and because of delayed diffusion due to unstirred layer effects. Here, we describe a simple biosensor method to measure the local ATP concentration on the cell surface in real time. The method is based on the ATP-dependent opening of ligand-gated cation channels of purinergic P2X receptors expressed in undifferentiated pheochromocytoma (PC12) cells or in human embryonic kidney 293 (HEK293) cells stably transfected with recombinant P2X2 purinergic receptors. Under the whole-cell configuration of patch-clamp, a sensor PC12 cell or HEK293 is positioned within the proximity of a target cell, and the P2X-mediated currents induced by ATP released from a given site on the target cell surface is measured. The ATP release is quantified by a calibration procedure utilizing local puff applications of ATP at preset concentrations.

  12. Real-time luminescence imaging of cellular ATP release.

    Science.gov (United States)

    Furuya, Kishio; Sokabe, Masahiro; Grygorczyk, Ryszard

    2014-03-15

    Extracellular ATP and other purines are ubiquitous mediators of local intercellular signaling within the body. While the last two decades have witnessed enormous progress in uncovering and characterizing purinergic receptors and extracellular enzymes controlling purinergic signals, our understanding of the initiating step in this cascade, i.e., ATP release, is still obscure. Imaging of extracellular ATP by luciferin-luciferase bioluminescence offers the advantage of studying ATP release and distribution dynamics in real time. However, low-light signal generated by bioluminescence reactions remains the major obstacle to imaging such rapid processes, imposing substantial constraints on its spatial and temporal resolution. We have developed an improved microscopy system for real-time ATP imaging, which detects ATP-dependent luciferin-luciferase luminescence at ∼10 frames/s, sufficient to follow rapid ATP release with sensitivity of ∼10 nM and dynamic range up to 100 μM. In addition, simultaneous differential interference contrast cell images are acquired with infra-red optics. Our imaging method: (1) identifies ATP-releasing cells or sites, (2) determines absolute ATP concentration and its spreading manner at release sites, and (3) permits analysis of ATP release kinetics from single cells. We provide instrumental details of our approach and give several examples of ATP-release imaging at cellular and tissue levels, to illustrate its potential utility.

  13. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    Science.gov (United States)

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  14. Extracellular ATP and P2X7 receptors in neurodegeneration.

    Science.gov (United States)

    Le Feuvre, Rosalind; Brough, David; Rothwell, Nancy

    2002-07-05

    Neuronal injury and cell death in the central nervous system (CNS) are underlying features of neurodegenerative disorders. However, our understanding of the fundamental mechanisms involved is still limited. Inflammatory processes mediated by cytokines, and interleukin-1 (IL-1) in particular, play a significant role in neuronal death following pathological insults. Despite this growing area of research, very little is known about the factors regulating the expression, cleavage and release of interleukin-1 in the brain. Recent studies on immune cells demonstrate that extracellular ATP can act as a potent stimulus for the maturation and release of interleukin-1beta, via activation of P2X7 receptors. Stimulation of P2X7 receptors with ATP has dramatic cytotoxic properties and a wider role in neurodegenerative processes is possible. This review discusses the potential involvement of extracellular ATP and P2X7 receptors as regulators of interleukin-1-mediated neuropathologies and thus as a mediator of cell death following pathological insults.

  15. Extracellular ATP induces the release of calcium from intracellular stores without the activation of protein kinase C in Swiss 3T6 mouse fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, F.A.; Rozengurt, E.; Heppel, L.A. (Cornell Univ., Ithaca, NY (USA))

    1989-06-01

    Exposure of Swiss 3T6 mouse fibroblasts to extracellular ATP stimulated the formation of inositol phosphates and mobilized intracellular calcium. The mobilization of intracellular calcium was verified by imaging of fura-2 fluorescence in individual cells and by monitoring the efflux of {sup 45}Ca{sup 2+} from preloaded cells. However, the authors found no activation of protein kinase C as measured by phosphorylation of an 80-kDa acidic protein and by transmodulation of the receptor for epidermal growth factor. A careful examination of the kinetics of the phosphorylation reaction (from 30 sec to 10 min) revealed no activation of protein kinase C by extracellular ATP at any time. The lack of activation of protein kinase C was demonstrated even when a concentration of ATP 10-fold higher than that required to give a strong Ca{sup 2+} signal was used. Extracellular ATP did not inhibit protein kinase C activation by fetal bovine serum, platelet-derived growth factor, or phorbol esters. The effects of ATP were also produced by UTP but not by ADP, AMP, or adenosine. These findings demonstrate that it is possible to induce the mobilization of intracellular calcium by an inositol phosphate-mediated pathway without the activation of protein kinase C.

  16. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our...... aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan......-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient...

  17. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU).

    Science.gov (United States)

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  18. External Dentin Stimulation Induces ATP Release in Human Teeth.

    Science.gov (United States)

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  19. Cellular ATP release in the lung and airway

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2016-11-01

    Full Text Available Adenosine triphosphate (ATP is a universal energy source synthesized by mitochondrial oxidative phosphorylation and cytosolic glycolysis and transported by the vesicular nucleotide transporter for storage in secretory vesicles. Extracellular ATP regulates physiological functions and homeostasis of the respiratory system and is associated with pathogenesis of respiratory diseases. Thus, modulation of ATP and purinergic signaling may be a novel therapeutic approach to pulmonary disease. ATP is released from alveolar epithelial cells, airway epithelial cells, airway smooth muscle cells, fibroblasts and endothelial cells in response to various chemical and mechanical stimuli. In addition to conductive pathways such as connexins and pannexins, vesicular exocytosis is involved in the mechanisms of ATP release from the cells. Imaging approaches enable us to visualize ATP release from not only cultured cells but also lung tissue ex vivo. Extracellular vesicles, exosomes and membrane-derived microvesicles, containing cytoplasmic proteins, mRNA and microRNA, represent important mediators of cell-to-cell communication and the intercellular microenvironment. However, it is not known whether extracellular vesicles contain ATP as an intercellular messenger. Future studies are necessary to elucidate the mechanisms of cellular ATP release and purinergic signaling in the respiratory system.

  20. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    ATP and other nucleotides are released from various cells, but the pathway and physiological stimulus for ATP release are often unclear. The focus of our studies is the understanding of ATP release and signaling in rat exocrine pancreas. In acinar suspension mechanical stimulation, hypotonic shock...... and, most importantly, cholinergic stimulation released 5-20nM ATP into the medium, as monitored by luminescence of the luciferin/luciferase reaction. ATP release was visualized at the single acinus level as luciferin consumption detected by confocal laser scanning microscopy (CLSM). The estimated ATP...... concentrations were higher, about 10µM, around acinar cells after cholinergic stimulation. Fluorescence of quinacrine and MANT-ATP indicated that some ATP is stored in secretory granules. Pancreatic acini have transcripts for P2X1, P2X4, P2Y2, and P2Y4 receptors, but measurements of Ca2+ signals in isolated...

  1. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  2. The P2X7 receptor is an important regulator of extracellular ATP levels

    Directory of Open Access Journals (Sweden)

    Andrea eBrandao-Burch

    2012-03-01

    Full Text Available Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signalling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we demonstrate that mouse osteoclasts and their precursors constitutively release ATP into their extracellular environment. Levels were highest at day 2 (precursor cells, possibly reflecting the high number of red blood cells and accessory cells present. Mature osteoclasts constitutively released ATP in the range 0.05-0.5pmol/ml/cell. Both osteoclasts and osteoblasts express mRNA and protein for the P2X7 receptor. We found that in osteoclasts, expression levels are 4-fold higher in mature cells relative to precursors, whilst in osteoblasts expression remains relatively constant during differentiation. Selective antagonists (0.1-100µM AZ10606120, A438079 and KN-62 were used to determine whether this release was mediated via P2X7 receptors. AZ10606120, A438079 and KN-62, at 0.1-10µM, decreased ATP release by mature osteoclasts by up to 70%, 60% and 80%, respectively. No differences in cell viability were observed. ATP release also occurs via vesicular exocytosis; inhibitors of this process (1-100µM NEM or brefeldin A had no effect on ATP release from osteoclasts. P2X7 receptor antagonists (0.1-10µM also decreased ATP release from primary rat osteoblasts by up to 80%. These data show that ATP release via the P2X7 receptor contributes to extracellular ATP levels in osteoclast and osteoblast cultures, suggesting an important additional role for this receptor in autocrine/paracrine purinergic signalling in bone.

  3. Extracellular ATP and adenosine : The Yin and Yang in immune responses?

    NARCIS (Netherlands)

    Faas, M. M.; Saez, T.; de Vos, P.

    Extracellular adenosine 50-triphosphate (ATP) and adenosine molecules are intimately involved in immune responses. ATP is mostly a pro-inflammatory molecule and is released during hypoxic condition and by necrotic cells, as well as by activated immune cells and endothelial cells. However, under

  4. Extracellular ATP induces albuminuria in pregnant rats

    NARCIS (Netherlands)

    Faas, M.M.; van der Schaaf, G.; Borghuis, T.; Jongman, R.M.; van Pampus, Maria; de Vos, P.; van Goor, Harry; Bakker, W.W.

    2010-01-01

    BACKGROUND: As circulating plasma ATP concentrations are increased in pre-eclampsia, we tested whether increased plasma ATP is able to induce albuminuria during pregnancy. METHODS: Pregnant (day 14) and non-pregnant rats were infused with ATP (3000 microg/kg bw) via a permanent jugular vein cannula.

  5. Microglial migration mediated by ATP-induced ATP release from lysosomes

    Institute of Scientific and Technical Information of China (English)

    Ying Dou; Qing-ming Luo; Shumin Duan; Hang-jun Wu; Hui-quan Li; Song Qin; Yin-er Wang; Jing Li; Hui-fang Lou; Zhong Chen; Xiao-ming Li

    2012-01-01

    Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system.Attracted by factors released from damaged cells,microglia are recruited towards the damaged or infected site,where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris.ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury.However,the mechanisms of the long-range migration of microglia remain to be clarified.Here,we found that lysosomes in microglia contain abundant ATP and exhibit Ca2+-dependent exocytosis in response to various stimuli.By establishing an efficient in vitro chemotaxis assay,we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia,a response that was significantly inhibited in microglia treated with an agent inducing iysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice),a small GTPase required for the trafficking and exocytosis of secretory iysosomes.These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis,thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.

  6. Extracellular ATP acts as a damage associated molecular pattern (DAMP signal in plants

    Directory of Open Access Journals (Sweden)

    Kiwamu eTanaka

    2014-09-01

    Full Text Available As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs. ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling role in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor Kinase, which is plant-specific. P2K1 (DORN1 is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression. Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of the future research of extracellular ATP as a DAMP signal.

  7. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    Science.gov (United States)

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  8. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Cora Lilia Alvarez

    Full Text Available In human erythrocytes (h-RBCs various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages. A "3V" mixture containing isoproterenol (β-adrenergic agonist, forskolin (adenylate kinase activator and papaverine (phosphodiesterase inhibitor was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs, t-RBCs (trophozoite-infected RBCs and s-RBCs (schizont-infected RBCs showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe] increased nonlinearly with parasitemia (from 2 to 12.5%. Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an

  9. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    M Florencia Leal Denis

    Full Text Available The peptide mastoparan 7 (MST7 triggered in human erythrocytes (rbcs the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe, interacting with P (purinergic receptors, can affect cell volume (Vr, we explored the dynamic regulation between Vr and ATPe.We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors.In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40-50% and swelling by 40-60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%.Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.

  10. ATP, an extracellular signaling molecule in red blood cells: A messenger for malaria?

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2014-10-01

    Full Text Available Adenosine 5′ triphosphate (ATP, discovered in 1929 by Karl Lohmannest, is described as an essential energy source for cells. In the biochemistry of all living organisms, ATP hydrolysis provides the energy required for the chemical reactions of metabolism. It is the precursor of a number of essential enzyme cofactors, such as nicotinamide adenine dinucleotide (NAD + and coenzyme A [NAD + , flavin adenine dinucleotide (FAD, and is ATP coenzyme A are all formed from ATP] and is the source of the phosphoryl group in most kinase-mediated phosphorylation reactions. Another essential, but less known function is that ATP plays a very important role as an extracellular signaling molecule, allowing cells and tissues to communicate. ATP is converted into cAMP, a major second messenger involved in many cellular processes, by adenylyl cyclase, a membrane-associated enzyme. In this review, we describe the role of ATP as a beneficial extracellular molecule released by healthy red blood cells (RBCs in response to hypoxia to mediate a vasodilator signal, by oxidatively stressed RBCs, and by Plasmodium falciparum-infected RBCs (iRBCs, and its similarity with released ATP that by the combined action of the ectonucleotidases CD39 and CD73 is converted to adenosine that mediates sickling in sickle cell disease (SCD.

  11. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    Science.gov (United States)

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. © 2011 Séror et al.

  12. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung.

    Science.gov (United States)

    Furuya, Kishio; Tan, Ju Jing; Boudreault, Francis; Sokabe, Masahiro; Berthiaume, Yves; Grygorczyk, Ryszard

    2016-11-01

    Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function. Copyright © 2016 the American Physiological Society.

  13. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal

    Science.gov (United States)

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach

  14. Modulation of Extracellular ATP Content of Mast Cells and DRG Neurons by Irradiation: Studies on Underlying Mechanism of Low-Level-Laser Therapy

    Directory of Open Access Journals (Sweden)

    Lina Wang

    2015-01-01

    Full Text Available Low-level-laser therapy (LLLT is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca2+]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.

  15. Involvement of connexin43 hemichannel in ATP release after γ-irradiation

    Science.gov (United States)

    Ohshima, Yasuhiro; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Kojima, Shuji

    2012-01-01

    Ionizing radiation induces biological effects not only in irradiated cells but also in non-irradiated cells, which is called the bystander effect. Recently, in vivo and in vitro experiments have suggested that both gap junction hemichannel connexin43 (Cx43) and extracellular adenosine triphosphate (ATP) released from cells play a role in the bystander effect. We have reported that γ-irradiation induces ATP release from B16 melanoma cells, which is dependent on the P2X7 receptor. However, the mechanism of ATP release caused by irradiation remains unclear. We here show the involvement of Cx43 in P2X7 receptor-dependent ATP release after 0.5 Gy γ-irradiation. Inhibitors of gap junction hemichannels and an inhibitory peptide for Cx43 (gap26), but not an inhibitory peptide for pannexin1 (Panx1), significantly blocked γ-irradiation-induced ATP release from B16 melanoma cells. We confirmed high expression of Cx43 mRNA in B16 melanoma cells. These results suggest involvement of Cx43 in radiation-induced ATP release. We found that after 0.5 Gy γ-irradiation tyrosine phosphorylation was significantly blocked by P2X7 receptor antagonist, but not gap26, suggesting that tyrosine phosphorylation is a downstream event from the P2X7 receptor. Since tyrosine kinase inhibitor significantly suppressed radiation-induced ATP release, tyrosine phosphorylation appears to play an important role in the Cx43-mediated ATP release downstream of the P2X7 receptor. In conclusion, the Cx43 hemichannel, which lies downstream of the P2X7 receptor, is involved in ATP release in response to radiation. Our results suggest a novel mechanism for radiation-induced biological effects mediated by both ATP and Cx43. PMID:22843620

  16. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Leigh A. Swayne

    2017-08-01

    Full Text Available Pannexin 1 (Panx1 channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs. Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.

  17. Inflammasome activation in bovine monocytes by extracellular ATP does not require the purinergic receptor P2X7.

    Science.gov (United States)

    Hussen, Jamal; Düvel, Anna; Koy, Mirja; Schuberth, Hans-Joachim

    2012-10-01

    Extracellular adenosine triphosphate (ATP) is a second signal for the assembly of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome, which form a framework to activate caspase 1, leading to the processing and secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β). The aim of the present study was to investigate the role of the ATP-gated ion channel subtype P2X7 receptor in the inflammasome activation of bovine monocytes. ATP-induced inflammasome assembly in bovine monocytes was shown by caspase-1 activation and the release of IL-1β by LPS/ATP-stimulated bovine cells. The IL-1β release depended on potassium efflux but was independent of reactive oxygen generation of bovine monocytes. Unlike in the human system, a P2X7 receptor antagonist did not block the ATP-induced release of IL-1β of LPS-primed bovine cells. P2X7 mediated pore formation was observed in subsets of bovine T lymphocytes (CD4+>CD8+) but not in monocytes. In addition, ATP and 2-MeSATP but not the high affinity P2X7 agonist BzATP induced calcium influx in bovine monocytes. The data indicate that ROS generation plays no role in the ATP-induced activation of inflammasome in bovine monocytes and that P2X7-mediated pore formation is not necessary for the release of Interleukin-1β.

  18. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  19. Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Novak, Ivana

    2001-01-01

    The energy providing substrate ATP can be released from various cells and act extracellularly to regulate the same cells or neighboring cells. However, the pathway for ATP release and the eliciting physiological stimulus are unclear. Recently, we showed that ATP activates P2X and P2Y purinergic...... overlapping with those marked by acridine orange and LysoTracker Red. In functional studies we show that native pancreatic acini release ATP in response to various stimuli but most importantly to cholinergic stimulation, a very likely physiological stimulus in this epithelium. In a close vicinity of acini we...

  20. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  1. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors.

    Science.gov (United States)

    Jun, Dong-Jae; Kim, Jaeyoon; Jung, Sang-Yong; Song, Ran; Noh, Ji-Hyun; Park, Yong-Soo; Ryu, Sung-Ho; Kim, Joung-Hun; Kong, Young-Yun; Chung, Jun-Mo; Kim, Kyong-Tai

    2007-12-28

    Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity, the formation of many large cytoplasmic vacuoles, and subsequent cytolysis and DNA release. In addition, the cleavage of caspase-3, a hallmark of apoptosis, is induced by ATP treatment. However, caspase inhibitors do not overcome ATP-induced cell death, indicating that both necrosis and apoptosis are associated with ATP-induced cell death and suggesting that a necrotic event might override the apoptotic process. In this study we also found that P2X(7) receptors (P2X(7)Rs) are abundantly expressed in SN4741 cells, and both ATP-induced swelling and cell death are reversed by pretreatment with the P2X(7)Rs antagonist, KN62, or by knock-down of P2X(7)Rs with small interfering RNAs. Therefore, extracellular ATP release from injured tissues may act as an accelerating factor in necrotic SN4741 dopaminergic cell death via P2X(7)Rs.

  2. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  3. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca2+ signaling through gap junctions seems more effective.

  4. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro.

    Science.gov (United States)

    Brisevac, Dusica; Adzic, Marija; Laketa, Danijela; Parabucki, Ana; Milosevic, Milena; Lavrnja, Irena; Bjelobaba, Ivana; Sévigny, Jean; Kipp, Markus; Nedeljkovic, Nadezda

    2015-11-01

    Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.

  5. Extracellular adenosine 5'-triphosphate and lipopolysaccharide induce interleukin-1β release in canine blood.

    Science.gov (United States)

    Spildrejorde, Mari; Curtis, Stephen J; Curtis, Belinda L; Sluyter, Ronald

    2014-01-15

    Binding of extracellular adenosine 5'-triphosphate (ATP) or lipopolysaccharide (LPS) to the damage-associated molecular pattern receptor P2X7 or the pathogen-associated molecular pattern receptor Toll-like receptor (TLR)4, respectively, can induce the release of the pleiotropic cytokine interleukin (IL)-1β in humans and mice. However, the release of IL-1β in dogs remains poorly defined. Using a canine IL-1β enzyme-linked immunosorbent assay, this study investigated whether ATP or LPS could induce IL-1β release in a canine blood-based assay. Short-term incubations (30 min) with ATP induced IL-1β release in LPS-primed canine blood, and this process could be near-completely impaired by the P2X7 antagonist, A438079. In contrast, ATP failed to induce IL-1β release from blood not primed with LPS. ATP-induced IL-1β release was observed with LPS-primed blood from eight different pedigrees or cross breeds. Long-term incubations (24h) with LPS induced IL-1β release in canine blood in a concentration-dependent manner. This process was not altered by co-incubation with A438079. LPS-induced IL-1β release was observed with blood from 10 different pedigrees or cross breeds. These results demonstrate that both extracellular ATP and LPS can induce IL-1β release in dogs, and that ATP- but not LPS-induced IL-1β release in blood is dependent on P2X7 activation. These findings support the role of both P2X7 and TLR4 in IL-1β release in dogs.

  6. A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro.

    OpenAIRE

    Thomas, S A; Zawisa, M. J.; X. Lin; Hume, R. I.

    1991-01-01

    1. Extracellular adenosine 5'-triphosphate (ATP) activated an early excitatory conductance followed by a late potassium conductance in developing chick skeletal muscle. A series of ATP analogues were tested for their ability to activate these two conductances. All compounds tested were either agonists for both responses or for neither. Furthermore, the potency of agonists was similar for the two responses. 2. The order of potency for agonists was ATP approximately adenosine 5'-O-(3-thiotripho...

  7. Effects of Extracellular ATP and Its Receptors on Peripheral Nerve Regeneration in SD Rats

    Institute of Scientific and Technical Information of China (English)

    王栓科; 张致英; 洪光祥; 王同光; 王发斌; 康皓

    2003-01-01

    To explore the effect of the extracellular ATP and its receptors on axon regeneration in the sciatic nerve defect in rats, 0. 5 cm defect of the sciatic nerve was made and repaired with long arm silicon tube like a "Y" type. The single arm of the silicon tube was sutured to proximal of the sciatic nerve. 10μl 1 mmol/L ATP in physiological saline was injected into the left chamber of the silicon tube (experimental group) and physiological saline injected into another silicon tube as a control group. In another model 1 mmol/L 10 μl ATP and 1 mmol/L 10μl ATP+0.2 mg/ml suramin were injected respectively into two arms of the silicon tube. After 4 and 8 weeks the specimens were obtained from the silicon tube for examining the axon regeneration histologically and image analysis. All the regeneration axons grew into the silicon tube containing the ATP, but there was no axon regeneration in the silicon tube containing the ATP+Suramin or physiological saline. It was demonstrated that extracellular ATP had a powerful attraction to the regenerated axon of peripheral nerve. The suramin inhibited the axon induction of the extracellular ATP completely via the ATP receptors.

  8. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    Science.gov (United States)

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  9. Stimulation-dependent release, breakdown, and action of endogenous ATP in mouse hemidiaphragm preparation: the possible role of ATP in neuromuscular transmission.

    Science.gov (United States)

    Vizi, E S; Nitahara, K; Sato, K; Sperlágh, B

    2000-07-01

    In this study the in vitro mouse phrenic nerve- hemidiaphragm preparation was utilized to study the release and extracellular catabolism of endogenous ATP and its action on the postsynaptic site, i.e. on the contraction force evoked by nerve stimulation. ATP, measured by the luciferin-luciferase assay, was released stimulation-dependently from the mouse hemidiaphragm in response to electrical field stimulation at 10 Hz. Blockade of the Na(+) channel activity by tetrodotoxin inhibited the majority of the release of ATP in response to stimulation, showing that it is related to neuronal activity. The nicotinic receptor antagonists d-tubocurarine, and alpha-bungarotoxin and cooling the bath temperature to 7 degrees C also reduced stimulation-induced ATP outflow, suggesting that nicotinic receptors are responsible for the part of the release of ATP that is released from postsynaptic sites in a carrier-mediated manner. Exogenous ATP (20-500 microM) added to the bath was degraded to ADP and AMP by the action of ectoATPase and ectoATPdiphosphohydrolase; the K(m) and v(max) values of these enzymes were 185.8 microM and 55.16 nmol/min.g respectively. However, the total amount of nucleotides ([ATP+ADP+AMP]) was increased after the addition of ATP, indicating that ATP itself promoted further adenine nucleotide release. Twitch contractions of the rat hemidiaphragm preparation evoked by low frequency electrical stimulation was blocked concentration-dependently by the non-depolarizing muscle relaxants d-tubocurarine and pancuronium. Suramin (100 microM-1 mM) reversed neuromuscular blockade by d-tubocurarine and pancuronium; i.e., it shifted their concentration-response curves to the right Taken together our data, that endogenous ATP is released by stimulation and subsequently catabolized in the hemidiaphragm preparation and that suramin inhibits ecto-ATPase activity could be interpreted as meaning that suramin prolongs the action of endogenous ATP to elicit twitch contraction

  10. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youn Ho; Lee, Seo Jin [Department of Anatomy, College of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701 (Korea, Republic of); Jung, Junyang, E-mail: jjung@khu.ac.kr [Department of Anatomy, College of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer ATP-treated sciatic explants shows the decreased expression of p75NGFR. Black-Right-Pointing-Pointer Extracellular ATP inhibits the expression of phospho-ERK1/2. Black-Right-Pointing-Pointer Lysosomal exocytosis is involved in Schwann cell dedifferentiation. Black-Right-Pointing-Pointer Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  11. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage.

    Directory of Open Access Journals (Sweden)

    Shoji Notomi

    Full Text Available Photoreceptor degeneration is the most critical cause of visual impairment in age-related macular degeneration (AMD. In neovascular form of AMD, severe photoreceptor loss develops with subretinal hemorrhage due to choroidal neovascularization (CNV, growth of abnormal blood vessels from choroidal circulation. However, the detailed mechanisms of this process remain elusive. Here we demonstrate that neovascular AMD with subretinal hemorrhage accompanies a significant increase in extracellular ATP, and that extracellular ATP initiates neurodegenerative processes through specific ligation of Purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7; P2X7 receptor. Increased extracellular ATP levels were found in the vitreous samples of AMD patients with subretinal hemorrhage compared to control vitreous samples. Extravascular blood induced a massive release of ATP and photoreceptor cell apoptosis in co-culture with primary retinal cells. Photoreceptor cell apoptosis accompanied mitochondrial apoptotic pathways, namely activation of caspase-9 and translocation of apoptosis-inducing factor (AIF from mitochondria to nuclei, as well as TUNEL-detectable DNA fragmentation. These hallmarks of photoreceptor cell apoptosis were prevented by brilliant blue G (BBG, a selective P2RX7 antagonist, which is an approved adjuvant in ocular surgery. Finally, in a mouse model of subretinal hemorrhage, photoreceptor cells degenerated through BBG-inhibitable apoptosis, suggesting that ligation of P2RX7 by extracellular ATP may accelerate photoreceptor cell apoptosis in AMD with subretinal hemorrhage. Our results indicate a novel mechanism that could involve neuronal cell death not only in AMD but also in hemorrhagic disorders in the CNS and encourage the potential application of BBG as a neuroprotective therapy.

  12. Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors.

    Science.gov (United States)

    Xia, Jingsheng; Lim, Jason C; Lu, Wennan; Beckel, Jonathan M; Macarak, Edward J; Laties, Alan M; Mitchell, Claire H

    2012-05-15

    Mechanical deformation produces complex effects on neuronal systems, some of which can lead to dysfunction and neuronal death. While astrocytes are known to respond to mechanical forces, it is not clear whether neurons can also respond directly. We examined mechanosensitive ATP release and the physiological response to this release in isolated retinal ganglion cells. Purified ganglion cells released ATP upon swelling. Release was blocked by carbenoxolone, probenecid or peptide (10)panx, implicating pannexin channels as conduits. Mechanical stretch of retinal ganglion cells also triggered a pannexin-dependent ATP release. Whole cell patch clamp recording demonstrated that mild swelling induced the activation of an Ohmic cation current with linear kinetics. The current was inhibited by removal of extracellular ATP with apyrase, by inhibition of the P2X(7) receptor with A438079, zinc, or AZ 10606120, and by pannexin blockers carbenoxolone and probenecid. Probenecid also inhibited the regulatory volume decrease observed after swelling isolated neurons. Together, these observations indicate mechanical strain triggers ATP release directly from retinal ganglion cells and that this released ATP autostimulates P2X(7) receptors. Since extracellular ATP levels in the retina increase with elevated intraocular pressure, and stimulation of P2X(7) receptors on retinal ganglion cells can be lethal, this autocrine response may impact ganglion cells in glaucoma. It remains to be determined whether the autocrine stimulation of purinergic receptors is a general response to a mechanical deformation in neurons, or whether preventing ATP release through pannexin channels and blocking activation of the P2X(7) receptor, is neuroprotective for stretched neurons.

  13. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations

    Directory of Open Access Journals (Sweden)

    Junnan Xu

    2014-01-01

    Full Text Available This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+ after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  14. Role of Glycogenolysis in Stimulation of ATP Release from Cultured Mouse Astrocytes by Transmitters and High K+ Concentrations

    Directory of Open Access Journals (Sweden)

    Junnan Xu

    2013-12-01

    Full Text Available This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+ after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+ -dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  15. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Zhou, Lijun; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-01-13

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  16. In vivo imaging demonstrates ATP release from murine keratinocytes and its involvement in cutaneous inflammation after tape stripping.

    Science.gov (United States)

    Takahashi, Toshiya; Kimura, Yutaka; Niwa, Kazuki; Ohmiya, Yoshihiro; Fujimura, Taku; Yamasaki, Kenshi; Aiba, Setsuya

    2013-10-01

    Adenosine 5'-triphosphate (ATP) release from keratinocytes has been observed in various stress models in vitro, but studies demonstrating epidermal ATP release in vivo are limited. To visualize extracellular ATP (eATP) in vivo, we developed enhanced green-emitting luciferase immobilized on agarose beads (Eluc-agarose). Subcutaneous injection of Eluc-agarose together with ATP into the dorsal skin of BALB/c mice following intraperitoneal luciferin injection produced detectable and measurable bioluminescence using an in vivo imaging system. Using Eluc-agarose, we demonstrated in vivo that bright bioluminescence was observed from 1 to 20 minutes after repeated tape stripping of murine skin. This bioluminescence was suppressed by the local administration of apyrase. Eluc-agarose bioluminescence was observed only in tape-stripped skin with transepidermal water loss (TEWL) between 100 and 140 g m(2) h(-1), indicating a loss of bioluminescence with excessive tape stripping (TEWL>140 g m(-2) h(-1)). Histologically, tape-stripped skin with detectable eATP had a viable epidermis and a subepidermal neutrophil infiltrate, and administration of apyrase reduced the inflammatory infiltrate. Neither a viable epidermis nor an upper dermal neutrophil infiltrate was observed after excessive tape stripping. These results suggest that tape stripping prompts ATP release from viable keratinocytes, which facilitates inflammatory cell migration. Eluc-agarose may be useful in the in vivo detection of eATP in murine models of skin diseases.

  17. Honing in on the ATP Release Channel in Taste Cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells.

  18. Macula densa cell signaling involves ATP release through a maxi anion channel.

    Science.gov (United States)

    Bell, Phillip Darwin; Lapointe, Jean-Yves; Sabirov, Ravshan; Hayashi, Seiji; Peti-Peterdi, Janos; Manabe, Ken-Ichi; Kovacs, Gergely; Okada, Yasunobu

    2003-04-01

    Macula densa cells are unique renal biosensor cells that detect changes in luminal NaCl concentration ([NaCl](L)) and transmit signals to the mesangial cellafferent arteriolar complex. They are the critical link between renal salt and water excretion and glomerular hemodynamics, thus playing a key role in regulation of body fluid volume. Since identification of these cells in the early 1900s, the nature of the signaling process from macula densa cells to the glomerular contractile elements has remained unknown. In patch-clamp studies of macula densa cells, we identified an [NaCl](L)-sensitive ATP-permeable large-conductance (380 pS) anion channel. Also, we directly demonstrated the release of ATP (up to 10 microM) at the basolateral membrane of macula densa cells, in a manner dependent on [NaCl](L), by using an ATP bioassay technique. Furthermore, we found that glomerular mesangial cells respond with elevations in cytosolic Ca(2+) concentration to extracellular application of ATP (EC(50) 0.8 microM). Importantly, we also found increases in cytosolic Ca(2+) concentration with elevations in [NaCl](L), when fura-2-loaded mesangial cells were placed close to the basolateral membrane of macula densa cells. Thus, cell-to-cell communication between macula densa cells and mesangial cells, which express P2Y(2) receptors, involves the release of ATP from macula densa cells via maxi anion channels at the basolateral membrane. This mechanism may represent a new paradigm in cell-to-cell signal transduction mediated by ATP.

  19. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    Science.gov (United States)

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.

  20. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.

    Science.gov (United States)

    Giniatullin, A; Petrov, A; Giniatullin, R

    2015-01-29

    Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular

  1. Effects of Extracellular ATP on Survival of Sensory Neurons in the Dorsal Root Ganglia of Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    ATP was added to the cultured sensory neurons obtained from the dorsal root ganglia of the neonatal rats and PBS was added to serve as control. MTT assays were conducted to evaluate the survival and activity of the cultured neurons. And the silicone regenerative chamber was used after the sciatic nerve incision of the mature SD rat. 1 mmol/L ATP was injected into the left chamber and 0.09 % natrium chloride was injected into the right chamber as controls. The changes of nitric oxide synthase (NOS) activity in the corresponding dorsal root ganglia were measured histochemically and image analysis was also performed 4 days after the sciatic nerve injury. The results showed that extracellular ATP could enhance the survival of the neurons and the number of NOS positive neurons were significantly different between the ATP and control groups (P<0.05). It was suggested that extracellular ATP had neurotrophic effect on neurons survival and could inhibit the NOS activity of the sensory neurons after the peripheral nerve incision, hence exerting the protective effect on the neurons, which was valuable for nerve regeneration after nerve injury.

  2. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Elizabeth eMedina-Castellanos

    2014-11-01

    Full Text Available The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation. During this response, reactive oxygen species (ROS are produced by the NADPH oxidase (Nox1/NoxR complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK pathways by eATP, Ca2+ and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP. Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.

  3. Hemolysis is a primary ATP-release mechanism in human erythrocytes

    Science.gov (United States)

    Sikora, Jacek; Orlov, Sergei N.; Furuya, Kishio

    2014-01-01

    The hypothesis that regulated ATP release from red blood cells (RBCs) contributes to nitric oxide-dependent control of local blood flow has sparked much interest in underlying release mechanisms. Several stimuli, including shear stress and hypoxia, have been found to induce significant RBC ATP release attributed to activation of ATP-conducting channels. In the present study, we first evaluated different experimental approaches investigating stimulated RBC ATP release and quantifying hemolysis. We then measured ATP and free hemoglobin in each and every RBC supernatant sample to directly assess the contribution of hemolysis to ATP release. Hypotonic shock, shear stress, and hypoxia, but not cyclic adenosine monophosphate agonists, significantly enhanced ATP release. It tightly correlated, however, with free hemoglobin in RBC supernatants, indicating that lysis was responsible for most, if not all, ATP release. Luminescence ATP imaging combined with simultaneous infrared cell imaging showed that ATP was released exclusively from lysing cells with no contribution from intact cells. In summary, with all stimuli tested, we found no evidence of regulated ATP release from intact RBCs other than by cell lysis. Such a release mechanism might be physiologically relevant in vivo, eg, during exercise and hypoxia where intravascular hemolysis, predominantly of senescent cells, is augmented. PMID:25097178

  4. Extracellular ATP Promotes Stomatal Opening of Arabidopsis thaliana through Heterotrimeric G Protein Subunit and Reactive Oxygen Species

    Institute of Scientific and Technical Information of China (English)

    Li-Hua Hao; Wei-Xia Wang; Chen Chen; Yu-Fang Wang; Ting Liu; Xia Li; Zhong-Lin Shang

    2012-01-01

    In recent years,adenosine tri-phosphate(ATP)has been reported to exist in apoplasts of plant cells as a signal molecule.Extracellular ATP(eATP)plays important roles in plant growth,development,and stress tolerance.Here,extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness.ADP,GTP,and weakly hydrolyzable ATP analogs(ATPγS,Bz-ATP,and 2meATP)showed similar effects,whereas AMP and adenosine did not affect stomatal movement.Apyrase inhibited stomatal opening.ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor(diphenylene iodonium)or deoxidizer(dithiothreitol),and was impaired in null mutant of NADPH oxidase(atrbohD/F).Added ATP triggered ROS generation in guard cells via NADPH oxidase.ATP also induced Ca2+ influx and H+ efflux in guard cells.In atrbohD/F,ATP-induced ion flux was strongly suppressed.In null mutants of the heterotrimeric G protein α subunit,ATP-promoted stomatal opening,cytoplasmic ROS generation,Ca2+ influx,and H+ efflux were all suppressed.These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein,ROS,cytosolic Ca2+,and plasma membrane H+-ATPase.

  5. Respiratory infections cause the release of extracellular vesicles: implications in exacerbation of asthma/COPD.

    Directory of Open Access Journals (Sweden)

    Suffwan Eltom

    Full Text Available Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations.To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis.Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1β/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia.This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.

  6. Extracellular ATP in the lymphohematopoietic system: P2Z purinoceptors and membrane permeabilization

    Directory of Open Access Journals (Sweden)

    Persechini P.M.

    1998-01-01

    Full Text Available The effects of extracellular nucleosides and nucleotides on many organs and systems have been recognized for almost 50 years. The effects of extracellular ATP (ATPo, UTPo, ADPo, and other agonists are mediated by P2 purinoceptors. One of the most dramatic effects of ATPo is the permeabilization of plasma membranes to low molecular mass solutes of up to 900 Da. This effect is evident in several cells of the lymphohematopoietic system and is supposed to be mediated by P2Z, an ATP4--activated purinoceptor. Here, we review some basic information concerning P2 purinoceptors and focus our attention on P2Z-associated phenomena displayed by macrophages. Using fluorescent dye uptake, measurement of free intracellular Ca2+ concentration and electrophysiological recordings, we elucidate some of the events that follow the application of ATP to the extracellular surface of macrophages. We propose a regulatory mechanism for the P2Z-associated permeabilization pore. The presence of P2 purinoceptors in cells of the lymphohematopoietic system makes them potential candidates to mediate immunoregulatory events

  7. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors.

    Directory of Open Access Journals (Sweden)

    Ayumi Kawano

    Full Text Available Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2, and ATP release and interleukin (IL-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors.

  8. Extracellular ATP decreases trophoblast invasion, spiral artery remodeling and immune cells in the mesometrial triangle in pregnant rats

    NARCIS (Netherlands)

    Spaans, F.; Melgert, B. N.; Chiang, C.; Borghuis, T.; Klok, P. A.; de Vos, P.; van Goor, H.; Bakker, W.W.; Faas, M. M.

    2014-01-01

    Introduction: Preeclampsia is characterized by deficient trophoblast invasion and spiral artery remodeling, a process governed by inflammatory cells. High levels of the danger signal extracellular adenosine triphosphate (ATP) have been found in women with preeclampsia and infusion of ATP in pregnant

  9. Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Thaning, Pia; Nyberg, Michael Permin

    2011-01-01

    Intraluminal ATP could play an important role in the local regulation of skeletal muscle blood flow, but the stimuli that cause ATP release and the levels of plasma ATP in vessels supplying and draining human skeletal muscle remain unclear. To gain insight into the mechanisms by which ATP...... is released into plasma, we measured plasma [ATP] with the intravascular microdialysis technique at rest and during dynamic exercise (normoxia and hypoxia), passive exercise, thigh compressions and arterial ATP, tyramine and ACh infusion in a total of 16 healthy young men. Femoral arterial and venous[ATP...

  10. Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots

    Science.gov (United States)

    Wu, Shu-Jing; Wu, Jian-Yong

    2008-01-01

    Extracellular ATP (eATP) is a novel signalling agent, and nitric oxide (NO) is a well-established signal molecule with diverse functions in plant growth and development. This study characterizes NO production induced by exogenous ATP and examines its relationship with other important signalling agents, Ca2+ and H2O2 in Salvia miltiorrhiza hairy root culture. Exogenous ATP was applied at 10–500 μM to the hairy root cultures and stimulated NO production was detectable within 30 min. The NO level increased with ATP dose from 10–100 μM but decreased from 100–200 μM or higher. The ATP-induced NO production was mimicked by a non-hydrolysable ATP analogue ATPγS, but only weakly by ADP, AMP or adenosine. The ATP-induced NO production was blocked by Ca2+ antagonists, but not affected by a protein kinase inhibitor. ATP also induced H2O2 production, which was dependent on both Ca2+ and protein kinases, and also on NO biosynthesis. On the other hand, ATP induced a rapid increase in the intracellular Ca2+ level, which was dependent on NO but not H2O2. The results suggest that NO is implicated in ATP-induced responses and signal transduction in plant cells, and ATP signalling is closely related to Ca2+ and ROS signalling. PMID:18977749

  11. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake.

    Science.gov (United States)

    Komlosi, Peter; Peti-Peterdi, Janos; Fuson, Amanda L; Fintha, Attila; Rosivall, Laszlo; Bell, Phillip Darwin

    2004-06-01

    One component of the macula densa (MD) tubuloglomerular feedback (TGF) signaling pathway may involve basolateral release of ATP through a maxi-anion channel. Release of ATP has previously been studied during a maximal luminal NaCl concentration ([NaCl](L)) stimulus (20-150 mmol/l). Whether MD ATP release occurs during changes in [NaCl](L) within the physiological range (20-60 mmol/l) has not been examined. Also, because TGF is known to be enhanced by low dietary salt intake, we examined the pattern of MD ATP release from salt-restricted rabbits. Fluorescence microscopy, with fura 2-loaded cultured mouse mesangial cells as biosensors, was used to assess ATP release from the isolated, perfused thick ascending limb containing the MD segment. The mesangial biosensor cells, which contain purinergic receptors and elevate intracellular Ca(2+) concentration ([Ca(2+)](i)) on ATP binding, were placed adjacent to the MD basolateral membrane. Elevations in [NaCl](L) between 0 and 80 mmol/l, in 20-mmol/l increments, caused stepwise increases in [Ca(2+)](i), with the highest increase at [NaCl](L) of approximately 60 mmol/l. Luminal furosemide at 10(-4) mol/l blocked ATP release, which suggests that the efflux of ATP required MD Na-2Cl-K cotransport. A low-salt diet for 1 wk increased the magnitude of [NaCl](L)-dependent elevations in biosensor [Ca(2+)](i) by twofold, whereas high-salt intake had no effect. In summary, ATP release occurs over the same range of [NaCl](L) (20-60 mmol/l) previously reported for TGF responses, and, similar to TGF, ATP release was enhanced by dietary salt restriction. Thus these two findings are consistent with the role of MD ATP release as a signaling component of the TGF pathway.

  12. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  13. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells.

    Science.gov (United States)

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Hein, Martina; Petersen, Frank; Thon, Lutz; Adam, Dieter; Bulfone-Paus, Silvia

    2005-04-01

    Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.

  14. ATP released by injured neurons activates Schwann cells

    Directory of Open Access Journals (Sweden)

    Samuele eNegro

    2016-05-01

    Full Text Available Injured nerve terminals of neuromuscular junctions (NMJs can regenerate. This remarkable and complex response is governed by molecular signals that are exchanged among the cellular components of this synapse: motor axon nerve terminal (MAT, perisynaptic Schwann cells (PSCs, and muscle fibre. The nature of signals that govern MAT regeneration is ill-known. In the present study the spider toxin α-Latrotoxin has been used as tool to investigate the mechanisms underlying peripheral neuroregeneration. Indeed this neurotoxin induces an acute, specific, localized and fully reversible damage of the presynaptic nerve terminal, and its action mimics the cascade of events that leads to nerve terminal degeneration in injured patients and in many neurodegenerative conditions. Here we provide evidence of an early release by degenerating neurons of ATP as alarm messenger, that contributes to the activation of a series of intracellular pathways within SCs that are crucial for nerve regeneration: Ca2+, cAMP, ERK1/2, and CREB. These results contribute to define the cross-talk taking place among degenerating nerve terminals and PSCs, involved in the functional recovery of the NMJ.

  15. Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis.

    Science.gov (United States)

    Neary, J T

    2000-07-01

    In addition to Professor Burnstock's work on the short-term signaling actions of extracellular nucleotides and nucleosides, Geoff has had a long-standing interest in trophic actions of purines in development and in pathophysiological conditions which has been instrumental in encouraging my work in this area. The trophic actions of extracellular ATP, alone or in combination with polypeptide growth factors, may play an important role in brain development and may contribute to the reactive gliosis that accompanies brain injury and neurodegeneration. P2Y receptors in astrocytes are coupled to the ERK/MAPK cascade, a signal transduction mechanism crucial for cellular proliferation and differentiation. The mitogenic signaling pathway from P2Y receptors to ERK involves phospholipase D and a calcium-independent PKC isoform, PKCdelta. DNA array analysis reveals a number of changes in gene expression after P2Y receptor occupancy, indicating that this methodology will be a powerful tool in understanding the mechanisms underlying the trophic actions of extracellular nucleotides and nucleosides.

  16. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    Science.gov (United States)

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  17. Extracellular ATP activates NFAT-dependent gene expression in neuronal PC12 cells via P2X receptors

    Directory of Open Access Journals (Sweden)

    Becker Walter

    2011-09-01

    Full Text Available Abstract Background Treatment of neuronal PC12 cells with ATP induces depolarisation and increases intracellular calcium levels via purinergic receptors. In many cell types, sustained elevation of intracellular calcium levels cause changes in gene expression via activation of the transcription factor NFAT (nuclear factor of activated T cells. We have therefore characterised the signalling pathway by which ATP regulates NFAT-dependent gene expression in PC12 cells. Results The activation of NFAT transcriptional activity by extracellular ATP was characterised with the help of reporter gene assays. Treatment of PC12 cells with ATP elicited a dose-dependent increase in luciferase activity (EC50 = 78 μM. UTP, 4-benzoylbenzoyl ATP and α,β-methylene ATP did not mimic the effect of ATP, which was abolished by treatment with the P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS. This pharmacological characterisation provides evidence for a critical role of ionotropic P2X receptors. Blockade of L-type voltage-dependent calcium channels by nifedipine reduced the response of NFAT to ATP, indicating that a depolarisation-mediated calcium influx was required for maximal NFAT activation. Inhibition of store-operated calcium entry by the pyrazole derivative BTP2 also diminished ATP-dependent NFAT activation. Furthermore, ATP-induced NFAT activation was associated with the activation of the mitogen-activated protein kinases ERK1/2. Finally, treatment with ATP increased the levels of the NFAT target transcripts, RCAN1-4 (regulator of calcineurin and BDNF (brain derived neurotrophic factor. Conclusion The present data show that ATP induces NFAT-dependent changes in gene expression in PC12 cells by acting on P2X receptors. Maximal NFAT activation depends on both depolarisation-induced calcium influx and store-operated calcium entry and requires the activity of the protein phosphatase calcineurin and the mitogen-activated protein

  18. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana

    2014-01-01

    that ATP is released load-dependently from osteocytes from the onset of mechanical stimulation. Therefore, the aim of the present study was to investigate whether and how ATP release can be evoked in osteocytes via purinergic receptor activation. ATP release was quantified by real-time determination using...... responses to P2 receptor agonists. These investigations demonstrated that MLO-Y4 osteocytes express functional P2Y2, P2Y4, P2Y12 and P2Y13 receptors in addition to the previously reported P2X receptors. Further, we found that osteocytes respond to nucleotides such as ATP, UTP and ADP by increasing...... the intracellular calcium concentration and that they release ATP dose-dependently upon stimulation with 1-10 μM UTP. In addition to this, osteocytes release large amounts of ATP upon cell rupture, which might also be a source for other nucleotides, such as UTP. These findings indicate that mechanically induced ATP...

  19. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  20. Dependence of Immunoglobulin Class Switch Recombination in B Cells on Vesicular Release of ATP and CD73 Ectonucleotidase Activity

    Directory of Open Access Journals (Sweden)

    Francesca Schena

    2013-06-01

    Full Text Available Immunoglobulin (Ig isotype diversification by class switch recombination (CSR is an essential process for mounting a protective humoral immune response. Ig CSR deficiencies in humans can result from an intrinsic B cell defect; however, most of these deficiencies are still molecularly undefined and diagnosed as common variable immunodeficiency (CVID. Here, we show that extracellular adenosine critically contributes to CSR in human naive and IgM memory B cells. In these cells, coordinate stimulation of B cell receptor and toll-like receptors results in the release of ATP stored in Ca2+-sensitive secretory vesicles. Plasma membrane ectonucleoside triphosphate diphosphohydrolase 1 CD39 and ecto-5′-nucleotidase CD73 hydrolyze ATP to adenosine, which induces CSR in B cells in an autonomous fashion. Notably, CVID patients with impaired class-switched antibody responses are selectively deficient in CD73 expression in B cells, suggesting that CD73-dependent adenosine generation contributes to the pathogenesis of this disease.

  1. Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation.

    Science.gov (United States)

    Okubo, Koshu; Kamiya, Mako; Urano, Yasuteru; Nishi, Hiroshi; Herter, Jan M; Mayadas, Tanya; Hirohama, Daigoro; Suzuki, Kazuo; Kawakami, Hiroshi; Tanaka, Mototsugu; Kurosawa, Miho; Kagaya, Shinji; Hishikawa, Keiichi; Nangaku, Masaomi; Fujita, Toshiro; Hayashi, Matsuhiko; Hirahashi, Junichi

    2016-08-01

    Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs), which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.

  2. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca(2+) signals, but could stimulate Na(+)/Ca(2+) exchange in some conditions. CONCLUSIONS: CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn...... signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. RESULTS: Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  3. Towards a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks

    Directory of Open Access Journals (Sweden)

    Daniel eGoldman

    2012-07-01

    Full Text Available Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2. The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by

  4. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice.

    Science.gov (United States)

    Kawamura, Masahito; Gachet, Christian; Inoue, Kazuhide; Kato, Fusao

    2004-12-01

    ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.

  5. Ionizing Radiation Induces HMGB1 Cytoplasmic Translocation and Extracellular Release

    Institute of Scientific and Technical Information of China (English)

    Lili Wang; Li He; Guoqiang Bao; Xin He; Saijun Fan; Haichao Wang

    2016-01-01

    Objective A nucleosomal protein,HMGBI,can be secreted by activated immune cells or passively released by dying cells,thereby amplifying rigorous inflammatory responses.In this study we aimed to test the possibility that radiation similarly induces cytoplasmic HMGB1 translocation and release.Methods Human skin fibroblast (GM0639) and bronchial epithelial (16HBE) cells and rats were exposed to X-ray radiation,and HMGB1 translocation and release were then assessed by immunocytochemistry and immunoassay,respectively.Results At a wide dose range(4.0-12.0 Gy),X-ray radiation induced a dramatic cytoplasmic HMGB1 translocation,and triggered a time-and dose-dependent HMGB1 release both in vitro and in vivo.The radiation-mediated HMGB1 release was also associated with noticeable chromosomal DNA damage and loss of cell viability.Conclusions Radiation induces HMGB1 cytoplasmic translocation and extracellular release through active secretion and passive leakage processes.

  6. ATP as a signaling molecule: the exocrine focus

    DEFF Research Database (Denmark)

    Novak, Ivana

    2003-01-01

    Why and how do cells release ATP? It is not spilled energy. ATP becomes an extracellular regulator. Various cellular responses are initiated by purinergic receptors and signaling processes and are terminated by breakdown of ATP by ectonucleotidases. In epithelia, ATP regulates salt and water...

  7. ATP as a signaling molecule: the exocrine focus

    DEFF Research Database (Denmark)

    Novak, Ivana

    2003-01-01

    Why and how do cells release ATP? It is not spilled energy. ATP becomes an extracellular regulator. Various cellular responses are initiated by purinergic receptors and signaling processes and are terminated by breakdown of ATP by ectonucleotidases. In epithelia, ATP regulates salt and water tran...

  8. [Identification of a new pro-invasion factor in tumor microenvironment: progress in function and mechanism of extracellular ATP].

    Science.gov (United States)

    Fang, W G; Tian, X X

    2017-04-18

    Up to 90% of all cancer related morbidity and mortality can be attributed to metastasis. In recent years the study of tumor microenvironment, its cellular and molecular components, and how they can affect neoplastic progression toward metastasis, has become a hot focus in cancer research. Accumulated evidence shows that the formation of metastasis is a multi-step sequential process, in which, the tumor cells continuously interact with the host microenvironment. Host derived factors, i.e. growth factors/inhibitors, angiogenic factors, chemokines, etc. together with different types of host cells, play important roles in the tumor progression towards metastasis. The interaction between the tumor cells and host microenvironment determines the fate of metastasis. The reveal of this interaction mechanism provides us an opportunity to find effective mode of interference and develop novel anti-metastasis drugs. In this review, we have summarized our work on a new pro-invasion factor identified in tumor microenvironment and how it affects tumor invasion and metastass. Adenosine triphosphate (ATP), the key intracellular energy currency, accumulates within the tumor microenvironment and is closely involved in cancer cell metabolism and in antitumor immunity. The established role of ATP as a growth modulator and a proinflammatory mediator endues ATP and other purines with potential players in host-tumor interaction. Our study demonstrated that extracellular ATP stimulated human cancer invasion in in vitro tests. Increased migration and invasive ability across Matrigel was observed in some human carcinoma cell lines, including the prostate, breast, colon, melanoma and lung, when stimulated with ATP or its analogues. ATP enhanced the motility of cancer cells via increasing the amount and length of lamellipodia and filopodia, which were necessary for the cell motility. Significant increase in Rac1 and Cdc42 activities was observed. Using cDNA microarray we found that the

  9. Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation

    Directory of Open Access Journals (Sweden)

    Koshu Okubo

    2016-08-01

    Full Text Available Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs, which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.

  10. Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2017-07-01

    Full Text Available Microbubbles-assisted ultrasound (USMB has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs. USMB was performed on a monolayer of head-and-neck cancer cells (FaDu with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30–1200 nm. Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells.

  11. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  12. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.

    Science.gov (United States)

    Sipos, Arnold; Vargas, Sarah L; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus; Peti-Peterdi, János

    2009-08-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na(+) excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel-dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption.

  13. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct

    DEFF Research Database (Denmark)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30...

  14. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels.

    Science.gov (United States)

    Richter, Katrin; Kiefer, Kevin P; Grzesik, Benno A; Clauss, Wolfgang G; Fronius, Martin

    2014-01-01

    Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; Plung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.

  15. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L; Kirk, Kevin L

    2016-03-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.

  16. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP

    Directory of Open Access Journals (Sweden)

    Lisa Perruzza

    2017-03-01

    Full Text Available The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh cell abundance in the Peyer’s patches (PPs of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help.

  17. A computational model of a microfluidic device to measure the dynamics of oxygen-dependent ATP release from erythrocytes.

    Directory of Open Access Journals (Sweden)

    Richard J Sove

    Full Text Available Erythrocytes are proposed to be involved in blood flow regulation through both shear- and oxygen-dependent mechanisms for the release of adenosine triphosphate (ATP, a potent vasodilator. In a recent study, the dynamics of shear-dependent ATP release from erythrocytes was measured using a microfluidic device with a constriction in the channel to increase shear stress. The brief period of increased shear stress resulted in ATP release within 25 to 75 milliseconds downstream of the constriction. The long-term goal of our research is to apply a similar approach to determine the dynamics of oxygen-dependent ATP release. In the place of the constriction, an oxygen permeable membrane would be used to decrease the hemoglobin oxygen saturation of erythrocytes flowing through the channel. This paper describes the first stage in achieving that goal, the development of a computational model of the proposed experimental system to determine the feasibility of altering oxygen saturation rapidly enough to measure ATP release dynamics. The computational model was constructed based on hemodynamics, molecular transport of oxygen and ATP, kinetics of luciferin/luciferase reaction for reporting ATP concentrations, light absorption by hemoglobin, and sensor characteristics. A linear model of oxygen saturation-dependent ATP release with variable time delay was used in this study. The computational results demonstrate that a microfluidic device with a 100 µm deep channel will cause a rapid decrease in oxygen saturation over the oxygen permeable membrane that yields a measurable light intensity profile for a change in rate of ATP release from erythrocytes on a timescale as short as 25 milliseconds. The simulation also demonstrates that the complex dynamics of ATP release from erythrocytes combined with the consumption by luciferin/luciferase in a flowing system results in light intensity values that do not simply correlate with ATP concentrations. A computational

  18. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation.

    Science.gov (United States)

    Riteau, N; Baron, L; Villeret, B; Guillou, N; Savigny, F; Ryffel, B; Rassendren, F; Le Bert, M; Gombault, A; Couillin, I

    2012-10-11

    Deposition of uric acid crystals in joints causes the acute and chronic inflammatory disease known as gout and prolonged airway exposure to silica crystals leads to the development of silicosis, an irreversible fibrotic pulmonary disease. Aluminum salt (Alum) crystals are frequently used as vaccine adjuvant. The mechanisms by which crystals activate innate immunity through the Nlrp3 inflammasome are not well understood. Here, we show that uric acid, silica and Alum crystals trigger the extracellular delivery of endogenous ATP, which just precedes the secretion of mature interleukin-1β (IL-1β) by macrophages, both events depending on purinergic receptors and connexin/pannexin channels. Interestingly, not only ATP but also ADP and UTP are involved in IL-1β production upon these Nlrp3 inflammasome activators through multiple purinergic receptor signaling. These findings support a pivotal role for nucleotides as danger signals and provide a new molecular mechanism to explain how chemically and structurally diverse stimuli can activate the Nlrp3 inflammasome.

  19. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    OpenAIRE

    Haqqani Arsalan S; Delaney Christie E; Tremblay Tammy-Lynn; Sodja Caroline; Sandhu Jagdeep K; Stanimirovic Danica B

    2013-01-01

    Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain ...

  20. Production of adenosine from extracellular ATP at the striatal cholinergic synapse.

    Science.gov (United States)

    James, S; Richardson, P J

    1993-01-01

    The components of the ectonucleotidase pathway at the immunoaffinity-purified striatal cholinergic synapse have been studied. The ecto-ATPase (EC 3.6.1.15) had a Km of 131 microM, whereas the ecto-ADPase (EC 3.6.1.6) had a Km of 58 microM, was Ca(2+)-dependent, and was inhibited by the ATP analogue 5'-adenylylimidodiphosphate (AMPPNP). The ecto-5'-nucleotidase (EC 3.1.3.5) had a Km of 21 microM, was inhibited by AMPPNP and alpha,beta-methylene ADP, and by a specific antiserum. The Vmax values of the ATPase, ADPase, and 5'-nucleotidase enzymes present at this synapse were in a ratio of 30:14:1. Very little ecto-adenylate kinase activity was detected on these purified synapses. The intraterminal 5'-nucleotidase enzyme, which amounted to 40% of the total 5'-nucleotidase activity, was inhibited by AMPPNP, alpha,beta-methylene ADP, and the antiserum, and also had the same kinetic properties as the ectoenzyme. The time course of ATP degradation to adenosine outside the nerve terminals showed a delay, followed by a period of sustained adenosine production. The delay in adenosine production was proportional to the initial ATP concentration, was a consequence of feedforward inhibition of the ADPase and 5'-nucleotidase, and was inversely proportional to the ecto-5'-nucleotidase activity. The function and characteristics of this pathway and the central role of 5'-nucleotidase in the regulation of extraterminal adenosine concentrations are discussed.

  1. Piperine Suppresses Pyroptosis and Interleukin-1β Release upon ATP Triggering and Bacterial Infection

    Science.gov (United States)

    Liang, Yi-Dan; Bai, Wen-Jing; Li, Chen-Guang; Xu, Li-Hui; Wei, Hong-Xia; Pan, Hao; He, Xian-Hui; Ouyang, Dong-Yun

    2016-01-01

    Piperine is a phytochemical present in black pepper (Piper nigrum Linn) and other related herbs, possessing a wide array of pharmacological activities including anti-inflammatory effects. Previously, we demonstrated that piperine has therapeutic effects on bacterial sepsis in mice, but the underlying mechanism has not been fully elucidated. In this study, we aimed to investigate the influences of piperine on pyroptosis in murine macrophages. The results showed that piperine dose-dependently inhibited ATP-induced pyroptosis, thereby suppressing interleukin-1β (IL-1β) or high mobility group box-1 protein (HMGB1) release in LPS-primed bone marrow-derived macrophages and J774A.1 cells. Accompanying this, ATP-induced AMP-activated protein kinase (AMPK) activation was greatly suppressed by piperine, whereas AMPK agonist metformin counteracted piperine’s inhibitory effects on pyroptosis. Moreover, piperine administration greatly reduced both peritoneal and serum IL-1β levels in the mouse model intraperitoneally infected with Escherichia coli, suggestive of suppressing systemic inflammation and pyroptosis. Our data indicated that piperine could protect macrophages from pyroptosis and reduced IL-1β and HMGB1 release by suppressing ATP-induced AMPK activation, suggesting that piperine may become a potential therapeutic agent against bacterial sepsis. PMID:27812336

  2. Piperine suppresses pyroptosis and interleukin-1β release upon ATP triggering and bacterial infection

    Directory of Open Access Journals (Sweden)

    Yi-Dan Liang

    2016-10-01

    Full Text Available Piperine is a phytochemical present in black pepper (Piper nigrum Linn and other related herbs, possessing a wide array of pharmacological activities including anti-inflammatory effects. Previously, we demonstrated that piperine has therapeutic effects on bacterial sepsis in mice, but the underlying mechanism has not been fully elucidated. In this study, we aimed to investigate the influences of piperine on pyroptosis in murine macrophages. The results showed that piperine dose-dependently inhibited ATP-induced pyroptosis, thereby suppressing interleukin-1β (IL-1β or high mobility group box-1 protein (HMGB1 release in LPS-primed bone marrow-derived macrophages (BMDMs and J774A.1 cells. Accompanying this, ATP-induced AMP-activated protein kinase (AMPK activation was greatly suppressed by piperine, whereas AMPK agonist metformin counteracted piperine’s inhibitory effects on pyroptosis. Moreover, piperine administration greatly reduced both peritoneal and serum IL-1β levels in the mouse model intraperitoneally infected with Escherichia coli, suggestive of suppressing systemic inflammation and pyroptosis. Our data indicated that piperine could protect macrophages from pyroptosis and reduced IL-1β and HMGB1 release by suppressing ATP-induced AMPK activation, suggesting that piperine may become a potential therapeutic agent against bacterial sepsis.

  3. Mechanism of ATP release from cultured marginal cells of stria vascularis in neonatal rat%新生大鼠耳蜗血管纹缘细胞释放ATP的机制

    Institute of Scientific and Technical Information of China (English)

    彭娅婷; 杨军

    2012-01-01

    目的 证实体外培养的新生大鼠耳蜗血管纹缘细胞能够释放ATP,并进一步探讨缘细胞释放ATP的机制.方法 分离、培养新生大鼠耳蜗血管纹缘细胞,采用生物发光法分别检测巴佛洛霉素A1、己二酸二癸酯( didecyl adipate,DDA)、细胞外K+、毒胡萝卜素、细胞外Ca2、U73122及马兜铃酸钠对细胞外液中缘细胞ATP释放的影响.结果 随着巴佛洛霉素A1浓度的增加,细胞外液中ATP的浓度明显下降;当DDA浓度增加时,细胞外液中ATP的浓度几乎呈线性增加.随着细胞外液中的K+浓度的增高,缘细胞释放的ATP浓度呈现上升趋势,当细胞外液中的K+浓度为9.15 mmol/L时,ATP的释放量达到峰值,之后随着K+浓度的继续升高ATP的释放量呈下降趋势.随着毒胡萝卜素浓度的增加,缘细胞释放的ATP浓度呈现明显下降的趋势.当细胞外Ca2+浓度为0 mmol/L时,缘细胞仍然释放ATP;Ca2+浓度增加与ATP的释放呈负相关,但当细胞外的Ca2+浓度达到1.25 mmol/L以上时,ATP的释放量维持在一个较稳定的水平.U73122的浓度在0.25~1.25 μmol/L时,其与缘细胞释放的ATP浓度呈负相关.当马兜铃酸钠的浓度为12.5 ~ 100.0 μmol/L,缘细胞ATP释放呈明显下降的趋势;当其浓度>100.0 μmol/L时,ATP释放浓度趋于平稳.结论 体外培养的新生大鼠耳蜗血管纹缘细胞能够释放ATP,其释放量与钙泵、K+通道状态以及细胞内信号传导通路相关酶的活性有关.%Objective To further confirm release of adenosine triphosphate (ATP) from cultured marginal cells in vitro of stria vascularis in neonatal rat,and to explore the mechanism of ATP release from marginal cells.Methods Isolation and in vitro culture of marginal cells of neonatal rats' cochlea.ATP released by marginal cells in extracellular fluid were detected using bioluminescence assay when add regants separately as follow:bafilomycin At,didecyl adipate (DDA),extracellular K+,thapsigargin,extracellular

  4. Influence of complement on neutrophil extracellular trap release induced by bacteria

    DEFF Research Database (Denmark)

    Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle;

    2016-01-01

    Background and Objectives Neutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induce...

  5. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymor......Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages......), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide...

  6. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    Science.gov (United States)

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  7. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    Science.gov (United States)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.

  8. Chemokines (CCL3, CCL4, and CCL5 Inhibit ATP-Induced Release of IL-1β by Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Anca-Laura Amati

    2017-01-01

    Full Text Available Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1β, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1β may cause life-threatening systemic inflammation. Here, we hypothesize that chemokines control ATP-dependent secretion of monocytic IL-1β. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with the P2X7 agonist BzATP for 30 min to induce IL-1β release. CCL3, CCL4, and CCL5 dose dependently inhibited BzATP-stimulated release of IL-1β, whereas CXCL16 was ineffective. The effect of CCL3 was confirmed for primary mononuclear leukocytes. It was blunted after silencing CCR1 or calcium-independent phospholipase A2 (iPLA2 by siRNA and was sensitive to antagonists of nicotinic acetylcholine receptors containing subunits α7 and α9. U937 cells secreted small factors in response to CCL3 that mediated the inhibition of IL-1β release. We suggest that CCL chemokines inhibit ATP-induced release of IL-1β from U937 cells by a triple-membrane-passing mechanism involving CCR, iPLA2, release of small mediators, and nicotinic acetylcholine receptor subunits α7 and α9. We speculate that whenever chemokines and ATP enter the circulation concomitantly, systemic release of IL-1β is minimized.

  9. Effect of extracellular adenosine 5'-triphosphate on cryopreserved epididymal cat sperm intracellular ATP concentration, sperm quality, and in vitro fertilizing ability.

    Science.gov (United States)

    Thuwanut, Paweena; Arya, Nlin; Comizzoli, Pierre; Chatdarong, Kaywalee

    2015-09-15

    Intracellular adenosine 5'-triphosphate (ATP) is essential for supporting sperm function in the fertilization process. During cryopreservation, damage of sperm mitochondrial membrane usually leads to compromised production of intracellular ATP. Recently, extracellular ATP (ATPe) was introduced as a potent activator of sperm motility and fertilizing ability. This study aimed to evaluate (1) levels of intracellular ATP in frozen-thawed epididymal cat sperm after incubation with ATPe and (2) effects of ATPe on epididymal cat sperm parameters after freezing and thawing. Eighteen male cats were included. For each replicate, epididymal sperm from two cats were pooled to one sample (N = 9). Each pooled sample was cryopreserved with the Tris-egg yolk extender into three straws. After thawing, the first and second straws were incubated with 0-, 1.0-, or 2.5-mM ATPe for 10 minutes and evaluated for sperm quality at 10 minutes, 1, 3, and 6 hours after thawing and fertilizing ability. The third straw was evaluated for intracellular ATP concentration in control and with 2.5-mM ATPe treatment. Higher concentration of intracellular sperm ATP was observed in the samples treated with 2.5-mM ATPe compared to the controls (0.339 ± 0.06 μg/2 × 10(6) sperm vs. 0.002 ± 0.003 μg/2 × 10(6) sperm, P ≤ 0.05). In addition, incubation with 2.5-mM ATPe for 10 minutes promoted sperm motility (56.7 ± 5.0 vs. 53.3 ± 4.4%, P ≤ 0.05) and progressive motility (3.1 ± 0.2 vs. 2.8 ± 0.4, P ≤ 0.05), mitochondrial membrane potential (36.4 ± 5.5 vs. 28.7 ± 4.8%, P ≤ 0.05), and blastocyst rate (36.1 ± 7.0 and 28.8 ± 7.4%, P ≤ 0.05) compared with the controls. In contrast, ATPe remarkably interfered acrosome integrity after 6 hours of postthawed incubation. In sum, the present finding that optimal incubation time of postthaw epididymal cat sperm under proper ATPe condition might constitute a rationale for the studies on other endangered wild felids regarding sperm quality and embryo

  10. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors.

    Science.gov (United States)

    Sun, Dahui; Junger, Wolfgang G; Yuan, Changji; Zhang, Wenyan; Bao, Yi; Qin, Daming; Wang, Chengxue; Tan, Lei; Qi, Baochang; Zhu, Dong; Zhang, Xizheng; Yu, Tiecheng

    2013-06-01

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.

  11. Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine

    Institute of Scientific and Technical Information of China (English)

    Ming-xia WANG; Lei-ming REN

    2006-01-01

    receptors. Conclusion: Extracellular ATP and ADO reduced the cell viability, arrested cell cycle and induced apoptosis in HGC-27 cell line by intracellular uptake of ADO. One of the main routes of ATP-induced apoptosis in HGC-27 cells is through the breakdown to adenosine.

  12. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    Directory of Open Access Journals (Sweden)

    Per eSvenningsen

    2013-10-01

    Full Text Available ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC and AQP2. Recently, we have shown that connexin (Cx 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30-/- mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i signaling in the CD. Cortical CDs (CCDs from wild type and Cx30-/- mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30-/- CCDs ([Ca2+]i increased only 1.2-fold, p

  13. Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Liu; Abduqodir H Toychiev; Nobuyuki Takahashi; Ravshan Z Sabirov; Yasunobu Okada

    2008-01-01

    In the present study,we aimed to evaluate the pathways contributing to ATP release from mouse astrocytes during hypoosmotic stress.We first examined the expression of mRNAs for proteins constituting possible ATPreleasing pathways that have been suggested over the past several years.In RT-PCR analysis using both control and osmotically swollen astrocytes,amplification of cDNA fragments of expected size was seen for connexins (Cx32,Cx37,Cx43),pannexin 1 (Pxl),the P2X7 receptor,MRP1 and MDRI,but not CFTR.Inhibitors of exocytotie vesicular release,gap junction hemi-channels,CFTR,MRPI,MDR1,the P2X7 receptor,and volume-sensitive outwardly rectifying chloride channels had no significant effects on the massive ATP release from astrocytes.In contrast,the hypotonicity-induced ATP release from astrocytes was most effectively inhibited by gadolinium release from several other cell types.Thus,we propose that the maxi-anion channel constitutes a major pathway for swelling-induced ATP release from cultured mouse astrocytes as well.

  14. An extracellular proteasome releases endostatin from human collagen XVIII.

    Science.gov (United States)

    Reiss-Pistilli, Maria L V; Schuppan, Detlef; Barroso, Madalena M S; Assunção-Miranda, Iranaia; Farias, Shirley; Lery, Letícia; Bauer, Michael; Juliano, Luiz; Juliano, Maria A; Coelho-Sampaio, Tatiana

    2017-02-01

    Endostatin is a potent anti-angiogenic and anti-tumor protein capable of regressing tumors without inducing acquired resistance. Since it is a fragment of the parental molecule, collagen XVIII, its endogenous production depends on the activity of a specific proteolytic enzyme. While such an enzyme has been described in mice, a human counterpart has not been identified so far. Here, we searched for this enzyme by using a fluorescence resonance energy transfer peptide containing the cleavage site of human collagen XVIII. We found that the cleavage activity was present in various murine and human tumor cells but not in untransformed cells. It was ascribed to a large protein complex identified as an extracellular form of proteasome 20S. Since circulating proteasome 20S has recently emerged as an important marker of tumor progression, the possibility of proteasomes controlling the production of angiostatic endostatin may inspire the development of new anticancer therapies.

  15. Ethacrynic acid inhibition of histamine release from rat mast cells: effect on cellular ATP levels and thiol groups

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    The experiments concerned the effect of ethacrynic acid (0.5 mM) on the adenosine triphosphate (ATP) content of rat mast cells and the effect on histamine release induced by the ionophore A23187 (10 microM). Ethacrynic acid decreased the ATP level of the cells in presence of antimycin A and glucose...... as well as in presence of 2-deoxyglucose. A23187-induced histamine release was inhibited by ethacrynic acid, and this inhibition was completely reversed by dithiothreitol. These observations may indicate that ethacrynic acid inhibits glycolytic and respiratory energy production in rat mast cells...

  16. Involvement of ATP in noxious stimulus-evoked release of glutamate in rat medullary dorsal horn: a microdialysis study.

    Science.gov (United States)

    Kumar, Naresh; Cherkas, Pavel S; Chiang, C Y; Dostrovsky, Jonathan O; Sessle, Barry J; Coderre, Terence J

    2012-12-01

    Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The effect of clindamycin and amoxicillin on neutrophil extracellular trap (NET) release.

    Science.gov (United States)

    Bystrzycka, Weronika; Moskalik, Aneta; Sieczkowska, Sandra; Manda-Handzlik, Aneta; Demkow, Urszula; Ciepiela, Olga

    2016-01-01

    Neutrophil extracellular traps (NETs) are threads of nuclear DNA complexed with antimicrobial proteins released by neutrophils to extracellular matrix to bind, immobilise, and kill different pathogens. NET formation is triggered by different physiological and non-physiological stimulants. It is also suggested that antibiotics could be non-physiological compounds that influence NET release. The aim of the study was to investigate the effect of clindamycin and amoxicillin on NET release and the phagocyte function of neutrophils. Neutrophils isolated from healthy donors by density centrifugation method were incubated with amoxicillin or clindamycin for two hours, and then NET release was stimulated with phorbol 12-myristate 13-acetate (PMA). After three hours of incubation with PMA NETs were quantified as amount of extracellular DNA by fluorometry and visualised by immunofluorescent microscopy. The percent of phagocyting cells was measured by flow cytometry. We showed that amoxicillin induces NET formation (increase of extracellular DNA fluorescence, p = 0.03), while clindamycin had no influence on NET release (p > 0.05), as confirmed by quantitative measurement and fluorescent microscopy. Regarding phagocyte function, both antibiotics increased bacterial uptake (43.3% and 61.6% median increase for amoxicillin and clindamycin, respectively). We concluded that the ability of antibiotics to modulate NET release depends on the antibiotic used and is not associated with their ability to influence phagocytosis.

  18. Controlled growth factor release from synthetic extracellular matrices

    Science.gov (United States)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  19. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou (NCSU)

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  20. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations

    OpenAIRE

    Junnan Xu; Dan Song; Qiufang Bai; Lijun Zhou; Liping Cai; Leif Hertz; Liang Peng

    2014-01-01

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosp...

  1. Human beta-defensin-2 and -3 enhance pro-inflammatory cytokine expression induced by TLR ligands via ATP-release in a P2X7R dependent manner.

    Science.gov (United States)

    Wanke, Daniela; Mauch-Mücke, Katrin; Holler, Ernst; Hehlgans, Thomas

    2016-11-01

    Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses.

  2. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...... that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes...

  3. Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages

    Directory of Open Access Journals (Sweden)

    Takato Takenouchi

    2014-01-01

    Full Text Available The P2X7 receptor (P2X7R is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca2+ influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa. In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1. However, extracellular ATP did not induce P2X7R-dependent sustained Ca2+ influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.

  4. TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity.

    Science.gov (United States)

    Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A

    2012-06-15

    In several tissues, transient receptor potential vanilloid 4 (TRPV4) channels are involved in the response to hyposmotic challenge. Here we report TRPV4 protein in porcine lens epithelium and show that TRPV4 activation is an important step in the response of the lens to hyposmotic stress. Hyposmotic solution (200 mosM) elicited ATP release from intact lenses and TRPV4 antagonists HC 067047 and RN 1734 prevented the release. In isosmotic solution, the TRPV4 agonist GSK1016790A (GSK) elicited ATP release. When propidium iodide (PI) (MW 668) was present in the bathing medium, GSK and hyposmotic solution both increased PI entry into the epithelium of intact lenses. Increased PI uptake and ATP release in response to GSK and hyposmotic solution were abolished by a mixture of agents that block connexin and pannexin hemichannels, 18α-glycyrrhetinic acid and probenecid. Increased Na-K-ATPase activity occurred in the epithelium of lenses exposed to GSK and 18α-glycyrrhetinic acid + probenecid prevented the response. Hyposmotic solution caused activation of Src family kinase and increased Na-K-ATPase activity in the lens epithelium and TRPV4 antagonists prevented the response. Ionomycin, which is known to increase cytoplasmic calcium, elicited ATP release, the magnitude of which was no greater when lenses were exposed simultaneously to ionomycin and hyposmotic solution. Ionomycin-induced ATP release was significantly reduced in calcium-free medium. TRPV4-mediated calcium entry was examined in Fura-2-loaded cultured lens epithelium. Hyposmotic solution and GSK both increased cytoplasmic calcium that was prevented by TRPV4 antagonists. The cytoplasmic calcium rise in response to hyposmotic solution or GSK was abolished when calcium was removed from the bathing solution. The findings are consistent with hyposmotic shock-induced TRPV4 channel activation which triggers hemichannel-mediated ATP release. The results point to TRPV4-mediated calcium entry that causes a cytoplasmic

  5. Extracellular ATP induces spikes in cytosolic free Ca(2+) but not in NADPH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca(2+) concentration, we simultaneously measured Ca(2+) oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  6. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  7. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  8. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    Science.gov (United States)

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  9. A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field.

    Science.gov (United States)

    Roux, David; Faure, Catherine; Bonnet, Pierre; Girard, Sébastien; Ledoigt, Gérard; Davies, Eric; Gendraud, Michel; Paladian, Françoise; Vian, Alain

    2008-06-01

    In parallel to evoking the accumulation of stress-related transcripts, exposure to low level 900 MHz EMF affected the levels of ATP, the main energy molecule of the cell. Its concentration dropped rapidly (27% after 30 min) in response to EMF exposure, along with a 18% decrease in the adenylate energy charge (AEC), a good marker of cell energy status. One could interpret this decrease in ATP and AEC in a classical way, i.e., as the result of an increase in cellular energy usage, but recent work brings exciting new insights in pointing out a signalling function for ATP, especially in the stress physiology context where it could trigger both reactive oxygen species and calcium movement (this latter being involved in plant responses to EMF exposure). In this addendum, we discuss our results within this new perspective for ATP function.

  10. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  11. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized Cd

  12. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter.

    Science.gov (United States)

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-07-03

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment.

  13. The Role of ATP in the Regulation of NCAM Function

    DEFF Research Database (Denmark)

    Hübschmann, Martin; Skladchikova, Galina

    2008-01-01

    Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a direct...... ATP-NCAM interaction and discuss its functional implications. The ectodomain of NCAM contains the ATP binding Walker motif A and has intrinsic ATPase activity, which could modulate NCAM-dependent signaling processes. NCAM interacts directly with and signals through FGFR. The NCAM binding site to ATP...... overlaps with the site of NCAM-FGFR interaction, and ATP is capable of disrupting NCAM-FGFR binding. This implies that NCAM signaling through FGFR can be regulated by ATP, which is supported by the observation that ATP can abrogate NCAM-induced neurite outgrowth. Finally, ATP can induce NCAM ectodomain...

  14. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chia-Lin Ho

    Full Text Available Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.

  15. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps.

    Science.gov (United States)

    Jenne, Craig N; Wong, Connie H Y; Zemp, Franz J; McDonald, Braedon; Rahman, Masmudur M; Forsyth, Peter A; McFadden, Grant; Kubes, Paul

    2013-02-13

    Neutrophils mediate bacterial clearance through various mechanisms, including the release of mesh-like DNA structures or neutrophil extracellular traps (NETs) that capture bacteria. Although neutrophils are also recruited to sites of viral infection, their role in antiviral innate immunity is less clear. We show that systemic administration of virus analogs or poxvirus infection induces neutrophil recruitment to the liver microvasculature and the release of NETs that protect host cells from virus infection. After systemic intravenous poxvirus challenge, mice exhibit thrombocytopenia and the recruitment of both neutrophils and platelets to the liver vasculature. Circulating platelets interact with, roll along, and adhere to the surface of adherent neutrophils, forming large, dynamic aggregates. These interactions facilitate the release of NETs within the liver vasculature that are able to protect host cells from poxvirus infection. These findings highlight the role of NETs and early tissue-wide responses in preventing viral infection.

  16. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  17. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells.

    Science.gov (United States)

    Haqqani, Arsalan S; Delaney, Christie E; Tremblay, Tammy-Lynn; Sodja, Caroline; Sandhu, Jagdeep K; Stanimirovic, Danica B

    2013-01-10

    In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood-brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in 'externalizing' brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons

  18. Action of Al-ATP on the isolated working rat heart.

    Science.gov (United States)

    Korchazhkina, O; Wright, G; Exley, C

    1998-02-15

    ATP is an important extracellular messenger in the coronary vasculature of the heart. To be effective its extracellular concentration must be tightly controlled and this is achieved via ectonucleotidases located in the luminal surface of the coronary endothelium. Al-ATP is a potent inhibitor of the hydrolysis of ATP and we speculated that Al-ATP released by cells into the blood would disrupt the signalling function of extracellular ATP. We tested this hypothesis by perfusing isolated working Wistar rat hearts with buffers containing either ATP or Al-ATP. The functional parameters measured were, coronary flow, heart rate and pulsatile power. A number of control perfusions including adenosine, ATP-gamma-S and Al were used to identify those effects which might be specific to ATP and Al-ATP. Al-ATP did not appear to inhibit the function of the endothelial ectonucleotidases. Both ATP and Al-ATP produced a significant increase in coronary flow and this could be attributed to a coronary vasodilation. Interestingly, whilst the effect of ATP was reversible that of Al-ATP was not. ATP caused a reduction in heart rate which was potentiated by aluminium. The negatively chronotropic effect of Al-ATP was mediated via a mechanism which was either distinct from or in addition to the similar response known to be caused by adenosine. We have demonstrated for the first time an influence of Al-ATP on heart function. Perhaps more pertinently we present the first evidence that Al-ATP may influence the function of ATP-specific receptors.

  19. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    Science.gov (United States)

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  20. Participation of dectin-1 receptor on NETs release against Paracoccidioides brasiliensis: Role on extracellular killing.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Dias-Melicio, Luciane Alarcão; Fernandes, Reginaldo Keller; de Almeida Balderramas, Helanderson; Rodrigues, Daniela Ramos; Ximenes, Valdecir Farias; de Campos Soares, Ângela Maria Victoriano

    2016-02-01

    Paracoccidioides brasiliensis is a dimorphic fungus from the Paracoccidioides genus, which is the causative agent of paracoccidioidomycosis, a chronic, subacute or acute mycosis, with visceral and cutaneous involvement. This disease that is acquired through inhalation primarily attacks the lungs but, can spread to other organs. Phagocytic cells as neutrophils play an important role during innate immune response against this fungus, but studies on antifungal activities of these cells are scarce. In addition to their ability to eliminate pathogens by phagocytosis and antimicrobial secretions, neutrophils can trap and kill microorganisms by release of extracellular structures composed by DNA and antimicrobial proteins, called neutrophil extracellular traps (NETs). Here, we provide evidence that P. brasiliensis virulent strain (P. brasiliensis 18) induces NETs release. These structures were well evidenced by scanning electron microscopy, and specific NETs compounds such as histone, elastase and DNA were shown by confocal microscopy. In addition, we have shown that dectin-1 receptor is the main PRR to which fungus binds to induce NETS release. Fungi were ensnared by NETs, denoting the role of these structures in confining the fungus, avoiding dissemination. NETs were also shown to be involved in fungus killing, since fungicidal activity detected before and mainly after neutrophils activation with TNF-α, IFN-γ and GM-CSF was significantly inhibited by cocultures treatment with DNAse.

  1. Physical exercise induces rapid release of small extracellular vesicles into the circulation

    Directory of Open Access Journals (Sweden)

    Carsten Frühbeis

    2015-07-01

    Full Text Available Cells secrete extracellular vesicles (EVs by default and in response to diverse stimuli for the purpose of cell communication and tissue homeostasis. EVs are present in all body fluids including peripheral blood, and their appearance correlates with specific physiological and pathological conditions. Here, we show that physical activity is associated with the release of nano-sized EVs into the circulation. Healthy individuals were subjected to an incremental exercise protocol of cycling or running until exhaustion, and EVs were isolated from blood plasma samples taken before, immediately after and 90 min after exercise. Small EVs with the size of 100–130 nm, that carried proteins characteristic of exosomes, were significantly increased immediately after cycling exercise and declined again within 90 min at rest. In response to treadmill running, elevation of small EVs was moderate but appeared more sustained. To delineate EV release kinetics, plasma samples were additionally taken at the end of each increment of the cycling exercise protocol. Release of small EVs into the circulation was initiated in an early phase of exercise, before the individual anaerobic threshold, which is marked by the rise of lactate. Taken together, our study revealed that exercise triggers a rapid release of EVs with the characteristic size of exosomes into the circulation, initiated in the aerobic phase of exercise. We hypothesize that EVs released during physical activity may participate in cell communication during exercise-mediated adaptation processes that involve signalling across tissues and organs.

  2. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication.

    Science.gov (United States)

    Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M

    2014-03-03

    Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. TLR-Activated Gap Junction Channels Protect Mice against Bacterial Infection through Extracellular UDP Release.

    Science.gov (United States)

    Qin, Juliang; Zhang, Guangxu; Zhang, Xiaoyu; Tan, Binghe; Lv, Zhangsheng; Liu, Mingyao; Ren, Hua; Qian, Min; Du, Bing

    2016-02-15

    Extracellular UDP (eUDP), released as a danger signal by stressed or apoptotic cells, plays an important role in a series of physiological processes. Although the mechanism of eUDP release in apoptotic cells has been well defined, how the eUDP is released in innate immune responses remains unknown. In this study, we demonstrated that UDP was released in both Escherichia coli-infected mice and LPS- or Pam3CSK4-treated macrophages. Also, LPS-induced UDP release could be significantly blocked by selective TLR4 inhibitor Atractylenolide I and selective gap junction inhibitors carbenoxolone and flufenamic acid (FFA), suggesting the key role of TLR signaling and gap junction channels in this process. Meanwhile, eUDP protected mice from peritonitis by reducing invaded bacteria that could be rescued by MRS2578 (selective P2Y6 receptor inhibitor) and FFA. Then, connexin 43, as one of the gap junction proteins, was found to be clearly increased by LPS in a dose- and time-dependent manner. Furthermore, if we blocked LPS-induced ERK signaling by U0126, the expression of connexin 43 and UDP release was also inhibited dramatically. In addition, UDP-induced MCP-1 secretion was significantly reduced by MRS2578, FFA, and P2Y6 mutation. Accordingly, pretreating mice with U0126 and Gap26 increased invaded bacteria and aggravated mice death. Taken together, our study reveals an internal relationship between danger signals and TLR signaling in innate immune responses, which suggests a potential therapeutic significance of gap junction channel-mediated UDP release in infectious diseases. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels.

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-10-15

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K(+) (K(ATP)) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP](c)) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K(ATP) channels in GR neurons, glucose (3 or 15 mM) caused no detectable increase in [ATP](c), monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25-luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mM) with a significant increase in [ATP](c). Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mM glucose with increases in [ATP](c). Further implicating an ATP-independent mechanism of K(ATP) channel closure in hypothalamic neurons, removal of extracellular glucose (10 mM) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mM) of intracellular ATP. Neurons from both brain regions responded to 5 mM lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP](c). High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K(ATP) channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.

  5. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Directory of Open Access Journals (Sweden)

    Oscarsson Jan

    2008-01-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S and in its spontaneous laboratory variant (D7SS resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm, AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.

  6. Uptake and caffeine-induced release of calcium in fast muscle fibers of Xenopus laevis: effects of MgATP and P(i).

    Science.gov (United States)

    Stienen, G J; van Graas, I A; Elzinga, G

    1993-09-01

    To elucidate the origin of the reduction in force during prolonged muscle fatigue, the dependency of Ca2+ uptake and release on MgATP and P(i) concentration was studied in saponin-skinned fast skeletal muscle fibers of the iliofibularis muscle of Xenopus laevis at 3 degrees C. The sarcoplasmic reticulum was loaded with Ca2+ for 5 min at pCa 7.0. The amount of Ca2+ released was derived from the area of the caffeine-induced force response. Ca2+ uptake increased with the MgATP concentration present during loading. It was half maximal at 20 microM and saturated at higher concentrations. The kinetics of Ca2+ release were affected for MgATP concentrations between 0.1 and 0.5 mM or less, but the amount of Ca2+ released by caffeine in ATP-free solutions was substantial. Phosphate (15 mM) only slightly reduced Ca2+ uptake when the loading period was short (1 min). It is unlikely, therefore, that the reduction in MgATP concentration contributes to the depression of Ca2+ released from the sarcoplasmic reticulum during fatigue. The increase in P(i) concentration could play a small role by reducing Ca2+ uptake.

  7. ATP induced MUC5AC release from human airways in vitro

    Directory of Open Access Journals (Sweden)

    Patricia Roger

    2000-01-01

    Full Text Available Background: Chronic airway diseases are often associated with marked mucus production, however, little is known about the regulation of secretory activity by locally released endogenous mediators.

  8. Time-dependent release of extracellular vesicle subpopulations in tumor CABA I cells.

    Science.gov (United States)

    Giusti, Ilaria; Di Francesco, Marianna; Cantone, Laura; D'Ascenzo, Sandra; Bollati, Valentina; Carta, Gaspare; Dolo, Vincenza

    2015-11-01

    Investigations into extracellular vesicles (EVs) have significantly increased since their role in physiological and pathological processes has become more clearly understood. Furthermore, it has become increasingly clear that several subpopulations of EVs exist, such as exosomes (EXOs) and microvesicles (MVs). Various methods and techniques used to identify and isolate the specific EVs subpopulations exist. However, these methods should be further elucidated. A deep understanding of the different factors that affect the EVs release may therefore be useful for the standardization of protocols and to establish guidelines for a more adequate analysis and correct inter‑laboratory comparison. In the present study, we investigated whether composition and molecular features of EVs altered over time following a trigger stimulus. Starved CABA I cells were stimulated with FBS and conditioned medium was collected after different time intervals (30 min and 4, 8 and 18 h). The dynamic of EVs release was time-dependent, as shown by the results of scanning electron microscopy. Additionally, the time elapsed from the stimulus affected the size distribution (as highlighted by transmission electron microscopy and NanoSight assay), amount (in terms of the number of particles and protein amount) and molecular composition (CD63, HLA, Ago-2, gelatinases, and plasminogen activators) suggesting that, different EVs subpopulations were released at different time intervals following cell stimulation. Collectively, the results suggested that, parameters useful to standardize procedures for EVs isolation, including stimulation time should be considered.

  9. Schwann cells are activated by ATP released from neurons in an in vitro cellular model of Miller Fisher syndrome

    Directory of Open Access Journals (Sweden)

    Umberto Rodella

    2017-05-01

    Full Text Available The neuromuscular junction is exposed to different types of insult, including mechanical trauma, toxins and autoimmune antibodies and, accordingly, has retained through evolution a remarkable ability to regenerate. Regeneration is driven by multiple signals that are exchanged among the cellular components of the junction. These signals are largely unknown. Miller Fisher syndrome is a variant of Guillain–Barré syndrome caused by autoimmune antibodies specific for epitopes of peripheral axon terminals. Using an animal model of Miller Fisher syndrome, we recently reported that a monoclonal anti-polysialoganglioside GQ1b antibody plus complement damages nerve terminals with production of mitochondrial hydrogen peroxide, which activates Schwann cells. Several additional signaling molecules are likely to be involved in the activation of the regeneration program in these cells. Using an in vitro cellular model consisting of co-cultured primary neurons and Schwann cells, we found that ATP is released by neurons injured by the anti-GQ1b antibody plus complement. Neuron-derived ATP acts as an alarm messenger for Schwann cells, where it induces the activation of intracellular pathways, including calcium signaling, cAMP and CREB, which, in turn, produce signals that promote nerve regeneration. These results contribute to defining the cross-talk taking place at the neuromuscular junction when it is attacked by anti-gangliosides autoantibodies plus complement, which is crucial for nerve regeneration and is also likely to be important in other peripheral neuropathies.

  10. Histone deacetylases inhibitor trichostatin A modulates the extracellular release of APE1/Ref-1.

    Science.gov (United States)

    Choi, Sunga; Lee, Yu Ran; Park, Myoung Soo; Joo, Hee Kyoung; Cho, Eun Jung; Kim, Hyo Shin; Kim, Cuk Seong; Park, Jin Bong; Irani, Kaikobad; Jeon, Byeong Hwa

    2013-06-01

    Apurinic/apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) can be acetylated via post-translational modification. We investigated the effect of an inhibitor of histone deacetylases on the extracellular release of APE1/Ref-1 in HEK293 cells. Trichostatin A (TSA), an inhibitor of histone deacetylases, induced APE1/Ref-1 secretion without changing cell viability. In a fluorescence quantitative assay, the secreted APE1/Ref-1 was estimated to be about 10 ng/mL in response to TSA (1 μM). However, TSA did not induce the secretion of lysine-mutated APE1/Ref-1 (K6R/K7R). TSA also caused nuclear to cytoplasmic translocation of APE1/Ref-1. Taken together, these findings suggest that APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation.

  11. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  12. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream.

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    Full Text Available In the past few years, skeletal muscle has emerged as an important secretory organ producing soluble factors, called myokines, that exert either autocrine, paracrine or endocrine effects. Moreover, recent studies have shown that muscle releases microRNAs into the bloodstream in response to physical exercise. These microRNAs affect target cells, such as hormones and cytokines. The mechanisms underlying microRNA secretion are poorly characterized at present. Here, we investigated whether muscle tissue releases extracellular vesicles (EVs, which carry microRNAs in the bloodstream under physiological conditions such as physical exercise. Using density gradient separation of plasma from sedentary and physically fit young men we found EVs positive for TSG101 and alpha-sarcoglycan (SGCA, and enriched for miR-206. Cytometric analysis showed that the SGCA+ EVs account for 1-5% of the total and that 60-65% of these EVs were also positive for the exosomal marker CD81. Furthermore, the SGCA-immuno captured sub-population of EVs exhibited higher levels of the miR-206/miR16 ratio compared to total plasma EVs. Finally, a significant positive correlation was found between the aerobic fitness and muscle-specific miRNAs and EV miR-133b and -181a-5p were significantly up-regulated after acute exercise. Thus, our study proposes EVs as a novel means of muscle communication potentially involved in muscle remodeling and homeostasis.

  13. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations.

    Science.gov (United States)

    Bewicke-Copley, Findlay; Mulcahy, Laura Ann; Jacobs, Laura Ann; Samuel, Priya; Akbar, Naveed; Pink, Ryan Charles; Carter, David Raul Francisco

    2017-01-01

    Cells naïve to stress can display the effects of stress, such as DNA damage and apoptosis, when they are exposed to signals from stressed cells; this phenomenon is known as the bystander effect. We previously showed that bystander effect induced by ionising radiation are mediated by extracellular vesicles (EVs). Bystander effect can also be induced by other types of stress, including heat shock, but it is unclear whether EVs are involved. Here we show that EVs released from heat shocked cells are also able to induce bystander damage in unstressed populations. Naïve cells treated with media conditioned by heat shocked cells showed higher levels of DNA damage and apoptosis than cells treated with media from control cells. Treating naïve cells with EVs derived from media conditioned by heat shocked cells also induced a bystander effect when compared to control, with DNA damage and apoptosis increasing whilst the level of cell viability was reduced. We demonstrate that treatment of naïve cells with heat shocked cell-derived EVs leads to greater invasiveness in a trans-well Matrigel assay. Finally, we show that naïve cells treated with EVs from heat-shocked cells are more likely to survive a subsequent heat shock, suggesting that these EVs mediate an adaptive response. We propose that EVs released following stress mediate an intercellular response that leads to apparent stress in neighbouring cells but also greater robustness in the face of a subsequent insult.

  14. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rappa, Germana [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Mercapide, Javier; Anzanello, Fabio [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Le, Thuc T. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Johlfs, Mary G. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Fiscus, Ronald R. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Wilsch-Bräuninger, Michaela [Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden (Germany); Corbeil, Denis [Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Tatzberg 47–49, 01307 Dresden, Germany Technische Universitat Dresden, Dresden (Germany); Lorico, Aurelio, E-mail: alorico@roseman.edu [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States)

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  15. ATP inhibits Ins(1,4,5)P3-evoked Ca2+ release in smooth muscle via P2Y1 receptors.

    Science.gov (United States)

    MacMillan, D; Kennedy, C; McCarron, J G

    2012-11-01

    Adenosine 5'-triphosphate (ATP) mediates a variety of biological functions following nerve-evoked release, via activation of either G-protein-coupled P2Y- or ligand-gated P2X receptors. In smooth muscle, ATP, acting via P2Y receptors (P2YR), may act as an inhibitory neurotransmitter. The underlying mechanism(s) remain unclear, but have been proposed to involve the production of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] by phospholipase C (PLC), to evoke Ca(2+) release from the internal store and stimulation of Ca(2+)-activated potassium (K(Ca)) channels to cause membrane hyperpolarization. This mechanism requires Ca(2+) release from the store. However, in the present study, ATP evoked transient Ca(2+) increases in only ∼10% of voltage-clamped single smooth muscle cells. These results do not support activation of K(Ca) as the major mechanism underlying inhibition of smooth muscle activity. Interestingly, ATP inhibited Ins(1,4,5)P(3)-evoked Ca(2+) release in cells that did not show a Ca(2+) rise in response to purinergic activation. The reduction in Ins(1,4,5)P(3)-evoked Ca(2+) release was not mimicked by adenosine and therefore, cannot be explained by hydrolysis of ATP to adenosine. The reduction in Ins(1,4,5)P(3)-evoked Ca(2+) release was, however, also observed with its primary metabolite, ADP, and blocked by the P2Y(1)R antagonist, MRS2179, and the G protein inhibitor, GDPβS, but not by PLC inhibition. The present study demonstrates a novel inhibitory effect of P2Y(1)R activation on Ins(1,4,5)P(3)-evoked Ca(2+) release, such that purinergic stimulation acts to prevent Ins(1,4,5)P(3)-mediated increases in excitability in smooth muscle and promote relaxation.

  16. Effect of ATP on the release of hsp 70 and hsp 40 from the nucleus in heat-shocked HeLa cells.

    Science.gov (United States)

    Ohtsuka, K; Utsumi, K R; Kaneda, T; Hattori, H

    1993-12-01

    We have recently found a novel 40-kDa heat-shock protein (hsp 40) in mammalian and avian cells and reported that the N-terminal amino acid sequence of mammalian hsp 40 has homology with the bacterial DnaJ heat-shock protein. Also, hsp 40 has been shown to be translocated from the cytoplasm into the nuclei/nucleoli by heat shock and colocalized with hsc 70 (p73) in the nucleoli of exactly the same cells. We here investigated the effect of ATP on the release of hsp 70 (both constitutive p73 and inducible p72) and hsp 40 from the nuclei/nucleoli of heat-shocked HeLa cells which were permeabilized with Nonidet-P40 using immunofluorescence and immunoblotting. Hsp 70 in the nucleoli was released by the addition of ATP but not by ADP, GTP, nonhydrolyzable ATP, nor high salt buffer. In contrast, hsp 40 was not released from the nucleoli with any of these treatments or any combination of these treatments. Thus, hsp 40 might dissociate spontaneously from the nucleoli after hsp 70 has been released in an ATP-dependent manner. Using cell fractionation methods, we showed that while the majority of hsp 40 is localized in the cytoplasm, a small portion of it is located in the microsome fraction in non-heat-shocked control cells and in cells which recovered from heat shock.

  17. Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release.

    Directory of Open Access Journals (Sweden)

    Ciaran J McCoy

    2017-01-01

    Full Text Available Wuchereria bancrofti, Brugia malayi and Brugia timori infect over 100 million people worldwide and are the causative agents of lymphatic filariasis. Some parasite carriers are amicrofilaremic whilst others facilitate mosquito-based disease transmission through blood-circulating microfilariae (Mf. Recent findings, obtained largely from animal model systems, suggest that polymorphonuclear leukocytes (PMNs contribute to parasitic nematode-directed type 2 immune responses. When exposed to certain pathogens PMNs release extracellular traps (NETs in the form of chromatin loaded with various antimicrobial molecules and proteases.In vitro, PMNs expel large amounts of NETs that capture but do not kill B. malayi Mf. NET morphology was confirmed by fluorescence imaging of worm-NET aggregates labelled with DAPI and antibodies to human neutrophil elastase, myeloperoxidase and citrullinated histone H4. A fluorescent, extracellular DNA release assay was used to quantify and observe Mf induced NETosis over time. Blinded video analyses of PMN-to-worm attachment and worm survival during Mf-leukocyte co-culture demonstrated that DNase treatment eliminates PMN attachment in the absence of serum, autologous serum bolsters both PMN attachment and PMN plus peripheral blood mononuclear cell (PBMC mediated Mf killing, and serum heat inactivation inhibits both PMN attachment and Mf killing. Despite the effects of heat inactivation, the complement inhibitor compstatin did not impede Mf killing and had little effect on PMN attachment. Both human PMNs and monocytes, but not lymphocytes, are able to kill B. malayi Mf in vitro and NETosis does not significantly contribute to this killing. Leukocytes derived from presumably parasite-naïve U.S. resident donors vary in their ability to kill Mf in vitro, which may reflect the pathological heterogeneity associated with filarial parasitic infections.Human innate immune cells are able to recognize, attach to and kill B. malayi

  18. Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release

    Science.gov (United States)

    McCoy, Ciaran J.; Reaves, Barbara J.; Giguère, Steeve; Coates, Ruby; Rada, Balázs

    2017-01-01

    Background Wuchereria bancrofti, Brugia malayi and Brugia timori infect over 100 million people worldwide and are the causative agents of lymphatic filariasis. Some parasite carriers are amicrofilaremic whilst others facilitate mosquito-based disease transmission through blood-circulating microfilariae (Mf). Recent findings, obtained largely from animal model systems, suggest that polymorphonuclear leukocytes (PMNs) contribute to parasitic nematode-directed type 2 immune responses. When exposed to certain pathogens PMNs release extracellular traps (NETs) in the form of chromatin loaded with various antimicrobial molecules and proteases. Principal findings In vitro, PMNs expel large amounts of NETs that capture but do not kill B. malayi Mf. NET morphology was confirmed by fluorescence imaging of worm-NET aggregates labelled with DAPI and antibodies to human neutrophil elastase, myeloperoxidase and citrullinated histone H4. A fluorescent, extracellular DNA release assay was used to quantify and observe Mf induced NETosis over time. Blinded video analyses of PMN-to-worm attachment and worm survival during Mf-leukocyte co-culture demonstrated that DNase treatment eliminates PMN attachment in the absence of serum, autologous serum bolsters both PMN attachment and PMN plus peripheral blood mononuclear cell (PBMC) mediated Mf killing, and serum heat inactivation inhibits both PMN attachment and Mf killing. Despite the effects of heat inactivation, the complement inhibitor compstatin did not impede Mf killing and had little effect on PMN attachment. Both human PMNs and monocytes, but not lymphocytes, are able to kill B. malayi Mf in vitro and NETosis does not significantly contribute to this killing. Leukocytes derived from presumably parasite-naïve U.S. resident donors vary in their ability to kill Mf in vitro, which may reflect the pathological heterogeneity associated with filarial parasitic infections. Conclusions/Significance Human innate immune cells are able to

  19. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  20. Histone deacetylases inhibitor trichostatin A modulates the extracellular release of APE1/Ref-1

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunga; Lee, Yu Ran; Park, Myoung Soo; Joo, Hee Kyoung; Cho, Eun Jung; Kim, Hyo Shin; Kim, Cuk Seong; Park, Jin Bong [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Irani, Kaikobad [Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Jeon, Byeong Hwa, E-mail: bhjeon@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2013-06-07

    Highlights: •Trichostatin A (TSA) increased APE1/Ref-1 secretion in HEK293 cells. •Lysine-mutated APE1/Ref-1 (K6R/K7R) was not secreted by TSA. •TSA induced cytoplasmic translocation of APE1/Ref-1. •APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation. -- Abstract: Apurinic/apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) can be acetylated via post-translational modification. We investigated the effect of an inhibitor of histone deacetylases on the extracellular release of APE1/Ref-1 in HEK293 cells. Trichostatin A (TSA), an inhibitor of histone deacetylases, induced APE1/Ref-1 secretion without changing cell viability. In a fluorescence quantitative assay, the secreted APE1/Ref-1 was estimated to be about 10 ng/mL in response to TSA (1 μM). However, TSA did not induce the secretion of lysine-mutated APE1/Ref-1 (K6R/K7R). TSA also caused nuclear to cytoplasmic translocation of APE1/Ref-1. Taken together, these findings suggest that APE1/Ref-1 is a protein whose secretion is governed by lysine acetylation.

  1. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps.

    Science.gov (United States)

    Raftery, Martin J; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H; Schönrich, Günther

    2014-06-30

    Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin-mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage.

  2. KCl -Permeabilized Pancreatic Islets: An Experimental Model to Explore the Messenger Role of ATP in the Mechanism of Insulin Secretion.

    Directory of Open Access Journals (Sweden)

    Javier Pizarro-Delgado

    Full Text Available Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS-1 cells. Taking advantage of hemicannels'opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1. ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering and second (amplifying phases of glucose-induced insulin secretion.

  3. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria.

    Science.gov (United States)

    Kennedy, H J; Pouli, A E; Ainscow, E K; Jouaville, L S; Rizzuto, R; Rutter, G A

    1999-05-01

    Increases in the concentration of free ATP within the islet beta-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+ (KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary beta-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar ( approximately 1 mM). Elevations in extracellular glucose concentration (3-30 mM) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration.

  4. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans

    Science.gov (United States)

    Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine

    2017-01-01

    Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459

  5. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release

    OpenAIRE

    Bernardi, H; de Weille, J.R.; Epelbaum, J; Mourre, C; Amoroso, S.; Slama, A; Fosset, M; Lazdunski, M

    1993-01-01

    The adenohypophysis contains high-affinity binding sites for antidiabetic sulfonylureas that are specific blockers of ATP-sensitive K+ channels. The binding protein has a M(r) of 145,000 +/- 5000. The presence of ATP-sensitive K+ channels (26 pS) has been demonstrated by electrophysiological techniques. Intracellular perfusion of adenohypophysis cells with an ATP-free medium to activate ATP-sensitive K+ channels induces a large hyperpolarization (approximately 30 mV) that is antagonized by an...

  6. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette transporters gene enrichment in typhoid fever-infected Nigerian children

    Directory of Open Access Journals (Sweden)

    Resau James H

    2011-09-01

    bacterial invasion. Distinct gene expression profiles can also be obtained from acute vs. convalescent phase during typhoid fever infection. We found novel down-regulation of ABC (ATP-binding cassette transporters genes such as ABCA7, ABCC5, and ABCD4 and ATPase activity as the highest enriched pathway. Conclusions We identified unique extracellular components and ABC transporters gene enrichments in typhoid fever-infected Nigerian children, which have never been reported. These enriched gene clusters may represent novel targeted pathways to improve diagnostic, prognostic, therapeutic and next-generation vaccine strategies for typhoid fever in Africa.

  7. PML-RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells.

    Science.gov (United States)

    Fang, Yi; Garnier, Delphine; Lee, Tae Hoon; D'Asti, Esterina; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2016-01-01

    Oncogenic transformation is believed to impact the vascular phenotype and microenvironment in cancer, at least in part, through mechanisms involving extracellular vesicles (EVs). We explored these questions in the context of acute promyelocytic leukemia cells (NB4) expressing oncogenic fusion protein, PML-RARa and exquisitely sensitive to its clinically used antagonist, the all-trans retinoic acid (ATRA). We report that NB4 cells produce considerable numbers of EVs, which are readily taken up by cultured endothelial cells triggering their increased survival. NB4 EVs contain PML-RARa transcript, but no detectable protein, which is also absent in endothelial cells upon the vesicle uptake, thereby precluding an active intercellular trafficking of this oncogene in this setting. ATRA treatment changes the emission profile of NB4-related EVs resulting in preponderance of smaller vesicles, an effect that occurs in parallel with the onset of cellular differentiation. ATRA also increases IL-8 mRNA and protein content in NB4 cells and their EVs, while decreasing the levels of VEGF and tissue factor (TF). Endothelial cell uptake of NB4-derived EVs renders these cells more TF-positive and procoagulant, and this effect is diminished by pre-treatment of EV donor cells with ATRA. Profiling angiogenesis-related transcripts in intact and ATRA-treated APL cells and their EVs reveals multiple differences attributable to cellular responses and EV molecular packaging. These observations point to the potential significance of changes in the angiogenic signature and activity associated with EVs released from tumor cells subjected to targeted therapy.

  8. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis

    Directory of Open Access Journals (Sweden)

    Katherine D. Connolly

    2015-11-01

    Full Text Available Extracellular vesicles (EVs are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA. EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.

  9. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-01-01

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K+ (KATP) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP]c) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of KATP channels in GR neurons, glucose (3 or 15 mm) caused no detectable increase in [ATP]c, monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mm) with a significant increase in [ATP]c. Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mm glucose with increases in [ATP]c. Further implicating an ATP-independent mechanism of KATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 mm) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mm) of intracellular ATP. Neurons from both brain regions responded to 5 mm lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP]c. High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed KATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells. PMID:12381816

  10. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  11. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    Science.gov (United States)

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  12. Ligation of Signal Inhibitory Receptor on Leukocytes-1 Suppresses the Release of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus

    OpenAIRE

    Kristof Van Avondt; Ruth Fritsch-Stork; Derksen, Ronald H W M; Linde Meyaard

    2013-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leuk...

  13. ATP and potassium ions: a deadly combination for astrocytes

    Science.gov (United States)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  14. The Role of Extracellular Ca2+Influx, Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied. Ca2+ chelator, ethylen glycol-bis-(2-aminoethyl)-tetracetic acid (EGTA) ,and calmodulin (CaM) antagonist,trifluoperzaine (TFP) ,inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verapamil ,did not have any effect. When intracellular Ca2+ release was blocked by 8-(N, N-diethylamino) octy1-3,4,5-trimethoxy- benzonate (TMB-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-AT- Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased. In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization. The results sugest that both extracellular influx,intracellu- lar Ca2+ release and CaM activation are required for normal fertilization. However ,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 are not the only pathways for producing Ca2+ transients in moue eggs.

  15. The Role of Extracellular Ca2+ Influx,Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    SunQing-yuan; TanJing-he; 等

    1999-01-01

    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied.Ca2+ chelator,ethylen glycol-bis-(2-aminoethyl)-tetracetic acid(EGTA),and calmodulin(CaM) antagonist,trifluoperzaine (TFP),inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verspamil,did not have any effect.When intracellular Ca2+ release was blocked by 8-(N,N-diethylamino) octy 1-3,4,5-trimethoxy-benzonate(TME-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-At-Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased.In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization.The results sugest that both extracellular influx,intracellular Ca2+ release and CaM activation are required for mormal fertilization.However,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 and not the only pathways for producing Ca2+ transients in moue eggs.

  16. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    Energy Technology Data Exchange (ETDEWEB)

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.; Alspaugh, J. Andrew

    2016-03-30

    ABSTRACT

    Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion.

    IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a

  17. Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley.

    Science.gov (United States)

    Chand, Ramesh; Kumar, Manoj; Kushwaha, Chanda; Shah, Kavita; Joshi, Arun K

    2014-08-01

    Eighteen barley isolates of Bipolaris sorokiniana belonging to wild and clonal type of black, mixed and white subpopulations were quantitatively assayed for their melanin content and aggressiveness with respect to production of some of the extracellular enzymes such as cellulase, pectinase, amylase and protease. Cellulase and pectinase constituted major portion of the enzymes recovered from the black, mixed and white isolates. Enzyme production and aggressiveness were relatively higher in melanin devoid or low melanin isolates. The melanin deficient isolates were also differentiated from black and mixed isolates on the basis of variation in internal transcribed spacer region of the ribosomal DNA. Higher enzyme productions positively correlated with area under disease progress curve (AUDPC) and lesion development. Melanin content was negatively correlated with extracellular enzymes and aggressiveness of the isolates. Based on melanin content, lesion size, AUDPC and extracellular enzymes, the isolates were grouped in two major clusters (I and II) with further division of cluster II into two sub-clusters (II-A and II-B). The results appears to indicate a possible role of melanin in release of extracellular enzymes and hence in evolution and selection of aggressive isolates of B. sorokiniana in barley.

  18. ATP release mechanism from the supporting cells in the K(o)lliker organ in vitro in the cochlea of newborn rat%新生大鼠耳蜗K(o)lliker器支持细胞ATP释放的机制

    Institute of Scientific and Technical Information of China (English)

    何圆圆; 杨军

    2015-01-01

    used to observe the cochlear membranous labyrinth and supporting cells.the bioluminescence assay was chosen to explore the release ATP from supporting cells in the K(o)lliker organ,when the ATP metabolism of the cells was influenced,the intracellular or extracellular Ca2 + concentration changed,the hemichannels blocked,and the phospholipase signaling pathways inhibited.Results There were intensely numerous starlike green spots of quinacrine staining in the cytoplasm of supporting cells.There was a strong log-linear relationship in the ATP standard curve generated by the bioluminescence assay.With increasing concentrations of bafilomycin Al,the ATP concentration in the culture medium of the supporting cells in the K(o)lliker organ decreased,while with adipic acid didecyl,it increased.In a certain concentration range,with increasing extracellular Ca2+ concentration,the supporting cells in the K(o)lliker organ releasing ATP decreased,while the intracellular Ca2+ concentration increased,the results showed the elevation of the amount of ATP release.Adding chelerythrine chloride or aristolochid acid into the culture medium of the supporting cells in the K(o)lliker organ could decrease the ATP release significantly via inhibiting the hemichannels.In addition,by reducing intracellular Ca2+ concentration,inhibition of intracellular signaling pathways phospholipase also decreased ATP release.Conclusions This study demonstrated the presence and release of ATP from the supporting cells cultured in vitro.It showed that the changes of the intracellular and extracellular Ca2+ concentration could affect on the ATP release from the supporting cells in the K(o)lliker organ by regulating the hemichannels openings.

  19. CALCIUM RELEASE FROM SEPARATE RECEPTOR-SPECIFIC INTRACELLULAR STORES INDUCED BY HISTAMINE AND ATP IN A HAMSTER-CELL LINE

    NARCIS (Netherlands)

    DENHERTOG, A; HOITING, B; MOLLEMAN, A; VANDENAKKER, J; DUIN, M; NELEMANS, A

    1992-01-01

    1. The specificity of intracellular Ca2+ stores to Ca2+-mobilizing agonists was studied in DDT1 MF-2 vas deferens cells of the Syrian hamster. 2. Application of histamine (100-mu-M or ATP (100-mu-m) to the DDT, MF-2 cells caused an initial increase of intracellular Ca2+ followed by a lower phase as

  20. Interdependence of ATP signalling and pannexin channels; the servant was really the master all along?

    Science.gov (United States)

    Jackson, Michael F

    2015-12-15

    Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors.

  1. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    Science.gov (United States)

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents.

  2. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  3. Mycobacterium tuberculosis Synergizes with ATP To Induce Release of Microvesicles and Exosomes Containing Major Histocompatibility Complex Class II Molecules Capable of Antigen Presentation ▿ †

    Science.gov (United States)

    Ramachandra, Lakshmi; Qu, Yan; Wang, Ying; Lewis, Colleen J.; Cobb, Brian A.; Takatsu, Kiyoshi; Boom, W. Henry; Dubyak, George R.; Harding, Clifford V.

    2010-01-01

    Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-Ab complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses. PMID:20837713

  4. Cystine accumulation attenuates insulin release from the pancreatic β-cell due to elevated oxidative stress and decreased ATP levels.

    Science.gov (United States)

    McEvoy, Bernadette; Sumayao, Rodolfo; Slattery, Craig; McMorrow, Tara; Newsholme, Philip

    2015-12-01

    The pancreatic β-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This rare disease is caused by an abnormal lysosomal cystine transporter, cystinosin, which causes excessive accumulation of cystine in the lysosome. Cystinosis associated kidney damage and dysfunction leads to the Fanconi syndrome and ultimately end-stage renal disease. Following kidney transplant, cystine accumulation in other organs including the pancreas leads to multi-organ dysfunction. In this study, a Ctns gene knockdown model of cystinosis was developed in the BRIN-BD11 rat clonal pancreatic β-cell line using Ctns-targeting siRNA. Additionally there was reduced cystinosin expression, while cell cystine levels were similarly elevated to the cystinotic state. Decreased levels of chronic (24 h) and acute (20 min) nutrient-stimulated insulin secretion were observed. This decrease may be due to depressed ATP generation particularly from glycolysis. Increased ATP production and the ATP/ADP ratio are essential for insulin secretion. Oxidised glutathione levels were augmented, resulting in a lower [glutathione/oxidised glutathione] redox potential. Additionally, the mitochondrial membrane potential was reduced, apoptosis levels were elevated, as were markers of oxidative stress, including reactive oxygen species, superoxide and hydrogen peroxide. Furthermore, the basal and activated phosphorylated forms of the redox-sensitive transcription factor NF-κB were increased in cells with silenced Ctns. From this study, the cystinotic-like pancreatic β-cell model demonstrated that the altered oxidative status of the cell, resulted in depressed mitochondrial function and pathways of ATP production, causing reduced nutrient-stimulated insulin secretion.

  5. Leptin stimulates pituitary prolactin release through an extracellular signal-regulated kinase-dependent pathway

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Strom, Christina N; Bailey, Sean T

    2008-01-01

    Leptin was initially identified as a regulator of appetite and weight control centers in the hypothalamus, but appears to be involved in a number of physiological processes. This study was carried out to examine the possible role of leptin in regulating prolactin (PRL) release using the teleost...... pituitary model system. This advantageous system allows isolation of a nearly pure population of lactotropes in their natural, in situ aggregated state. The rostral pars distalis were dissected from tilapia pituitaries and exposed to varying concentrations of leptin (0, 1, 10, 100 nM) for 1 h. Release...... of PRL was stimulated by leptin in a potent and concentration-dependent manner. A time-course experiment showed that the strongest response in PRL release with leptin occurs within the first hour (approximately sixfold), and stimulation was sustained after 16 h (approximately twofold). Many...

  6. The expression and significance of extracellular ATP in murine acute liver injury model%胞外ATP在小鼠急性肝损伤中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    胡梅琮; 邹玲莉; 黄保军; 王磊

    2014-01-01

    Objective To observe the expression and significance of extracellular adenosine triphosphate (eATP) in concanavalin A (ConA)-induced murine acute liver injury model.Methods A total of 72 mice were randomly classified into control group (saline,36 cases)and ConA group (20 mg/kg ConA,36 cases).The blood specimens and liver tissues were collected at 2,6,12,18,24 and 48 h after injection.The activities of serum alanine aminotransferase (ALT)were measured by Reitman Frankel assay.Hematoxylin-eosin (HE)dyeing was carried out to assess the pathological change of liver tissue.The levels of eATP in serum were detected by chemiluminescence. Western-blot was employed to detect the expression of purinoceptor P2(P2X7).The contents of serum interleukin 1 beta (IL-1β)were assayed by enzyme-linked immunosorbent assay (ELISA).Results The ConA-induced murine acute liver injury model was constructed successfully.The level of eATP increased at 2 h after ConA injection,and reached peak at 18 h (700 nmol /L).Meanwhile,there expressed P2X7 in liver tissues.Compared with control group,the IL-1βlevels in serum of ConA group increased significantly (P<0.01).Conclusions In ConA-induced murine acute liver injury model,eATP releases from the injury liver tissues,and might influence the synthesis and secretion of inflammatory cytokine IL-1βthrough the P2X7 pathway,eventually aggravating the process of acute liver injury.%目的:探讨胞外三磷酸腺苷(eATP)在刀豆蛋白A(ConA)诱导小鼠急性肝损伤中的表达及意义。方法将72只昆明种小鼠随机分为对照组(36只)、ConA组(36只)。ConA组由尾静脉处注射20 mg/kg ConA,对照组注射同体积的无致热原生理盐水。2组分别于注射后2、6、12、18、24、48 h留取血液标本和肝脏标本。采用赖氏法检测血清丙氨酸氨基转移酶(ALT)活性,苏木素-伊红(HE )染色法检查肝组织病理学改变,化学发光技术检测血清eATP水平,免疫印

  7. ATP Is Required and Advances Cytokine-Induced Gap Junction Formation in Microglia In Vitro

    Directory of Open Access Journals (Sweden)

    Pablo J. Sáez

    2013-01-01

    Full Text Available Microglia are the immune cells in the central nervous system. After injury microglia release bioactive molecules, including cytokines and ATP, which modify the functional state of hemichannels (HCs and gap junction channels (GJCs, affecting the intercellular communication via extracellular and intracellular compartments, respectively. Here, we studied the role of extracellular ATP and several cytokines as modulators of the functional state of microglial HCs and GJCs using dye uptake and dye coupling techniques, respectively. In microglia and the microglia cell line EOC20, ATP advanced the TNF-α/IFN-γ-induced dye coupling, probably through the induction of IL-1β release. Moreover, TNF-α/IFN-γ, but not TNF-α plus ATP, increased dye uptake in EOC20 cells. Blockade of Cx43 and Panx1 HCs prevented dye coupling induced by TNF-α/IFN-γ, but not TNF-α plus ATP. In addition, IL-6 prevented the induction of dye coupling and HC activity induced by TNF-α/IFN-γ in EOC20 cells. Our data support the notion that extracellular ATP affects the cellular communication between microglia through autocrine and paracrine mechanisms, which might affect the timing of immune response under neuroinflammatory conditions.

  8. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes

    Science.gov (United States)

    Palygin, Oleg; Weyer, Andy D.; Barabas, Marie E.; Lawlor, Michael W.; Staruschenko, Alexander; Stucky, Cheryl L.

    2016-01-01

    Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1. PMID:26978657

  9. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  10. ATP signals

    DEFF Research Database (Denmark)

    Novak, Ivana

    2016-01-01

    The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas......The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas...

  11. Extracellular Release of CD11b by TLR9 Stimulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Dongbum Kim

    Full Text Available CpG-DNA upregulates the expression of pro-inflammatory cytokines, chemokines and cell surface markers. Investigators have shown that CD11b (integrin αM regulates TLR-triggered inflammatory responses in the macrophages and dendritic cells. Therefore, we aimed to identify the effects of CpG-DNA on the expression of CD11b in macrophages. There was no significant change in surface expression of CD11b after CpG-DNA stimulation. However, CD11b was released into culture supernatants after stimulation with phosphorothioate-backbone modified CpG-DNA such as PS-ODN CpG-DNA 1826(S. In contrast, MB-ODN 4531 and non-CpG-DNA control (regardless of backbone type and liposome-encapsulation failed to induce release of CD11b. Therefore, the context of the CpG-DNA sequence and phosphorothioate backbone modification may regulate the effects of CpG-DNA on CD11b release. Based on inhibitor studies, CD11b release is mediated by p38 MAP kinase activation, but not by the PI3K and NF-κB activation. CD11b release is mediated by lysosomal degradation and by vacuolar acidification in response to CpG-DNA stimulation. The amount of CD11b in the exosome precipitant was significantly increased by CpG-DNA stimulation in vivo and in vitro depending on TLR9. Our observations perhaps give more insight into understanding of the mechanisms involved in CpG-DNA-induced immunomodulation in the innate immunity.

  12. Is the extracellular ATP a key in X-linked Charcot-Marie-Tooth disease and in inherited non-syndromic deafness?

    OpenAIRE

    Mas del Molino, Ezequiel

    2011-01-01

    [spa] El ATP es una molécula ampliamente conocida por su papel en muchas funciones como la homeostasis celular, el mantenimiento de gradientes iónicos, el mantenimiento del pH en gránulos secretores, el almacenamiento energético, regulador de la interacción actina-miosina, etc. Además, el ATP puede actuar como molécula señalizadora a través de los receptores purinérgicos P2. De receptores P2 hay de dos tipos, los P2X, que son ionotrópicos, y los P2Y que son metabotrópicos. Los primeros son un...

  13. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael;

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant‐associated infections. Nonetheless, large proportions of invasive Staphylococcus epidermidis isolates fail to form a biofilm in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via overexpression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...

  14. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation.

    Science.gov (United States)

    Jiang, Shuang; Zhang, Yu; Zheng, Jin-Hua; Li, Xia; Yao, You-Li; Wu, Yan-Ling; Song, Shun-Zong; Sun, Peng; Nan, Ji-Xing; Lian, Li-Hua

    2017-03-01

    Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10μM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1β, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1β mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1β and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1

  15. LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes.

    Science.gov (United States)

    Hyzinski-García, María C; Rudkouskaya, Alena; Mongin, Alexander A

    2014-11-15

    In mammals, cellular swelling activates release of small organic osmolytes, including the excitatory amino acids (EAA) glutamate and aspartate, via a ubiquitously expressed volume-regulated chloride/anion channel (VRAC). Pharmacological evidence suggests that VRAC plays plural physiological and pathological roles, including excitotoxic release of glutamate in stroke. However, the molecular identity of this pathway was unknown. Two recent studies discovered that LRRC8 gene family members encode heteromeric VRAC composed of LRRC8A plus LRRC8B-E, which mediate swelling-activated Cl(-) currents and taurine release in human non-neural cells (Z. Qiu et al. Cell 157: 447, 2014; F.K. Voss et al. Science 344: 634, 2014). Here, we tested the contribution of LRRC8A to the EAA release in brain glia. We detected and quantified expression levels of LRRC8A-E in primary rat astrocytes with quantitative RT-PCR and then downregulated LRRC8A with gene-specific siRNAs. In astrocytes exposed to hypo-osmotic media, LRRC8A knockdown dramatically reduced swelling-activated release of the EAA tracer D-[(3)H]aspartate. In parallel HPLC assays, LRRC8A siRNA prevented hypo-osmotic media-induced loss of the endogenous intracellular L-glutamate and taurine. Furthermore, downregulation of LRRC8A completely ablated the ATP-stimulated release of D-[(3)H]aspartate and [(14)C]taurine from non-swollen astrocytes. Overall, these data indicate that LRRC8A is an indispensable component of a permeability pathway that mediates both swelling-activated and agonist-induced amino acid release in brain glial cells. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  16. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro

    Science.gov (United States)

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection. PMID:27843440

  17. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro.

    Science.gov (United States)

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay(®) kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  18. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  19. Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus.

    Science.gov (United States)

    Koli, Sunil H; Suryawanshi, Rahul K; Patil, Chandrashekar D; Patil, Satish V

    2017-03-15

    Traditional methods for the production of food grade pigments from fungus Monascus spp. are mostly relying on submerged fermentation. However, cell bound nature and intracellular accumulation of pigments in Monascus spp is the major hurdle in pigment production by submerged fermentation. The present study focused on the investigation of the effect of the antifungal agent, fluconazole on red pigment production from Monascus purpureus (NMCC-PF01). At the optimized concentration of fluconazole (30 μg/ml), pigment production was found to be enhanced by 88% after 96 h and it remained constant even after further incubation up to 168 h. An ergosterol, a sterol specific for fungi was also extracted and estimated as a function of fungal growth. The concentration of ergosterol in fluconazole-treated fermentation broth was reduced by 49% as compared to control broth. Thus it could be responsible for facilitating the release of intracellular and cell bound pigments. Nevertheless, the role of cell transporters in transporting out the red pigments cannot be ignored and deserves further attention. Qualitative analysis of red pigment by TLC, UV spectroscopy and mass spectrometric analysis (ESIMS) has confirmed the presence of well-known pigment, Rubropunctamine. In addition, this fermentation process produces citrinin-free pigments. This novel approach will be useful to facilitate increased pigment production by the release of intracellular or cell bound Monascus pigments.

  20. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Directory of Open Access Journals (Sweden)

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  1. Canine neutrophil extracellular traps release induced by the apicomplexan parasite Neospora Caninum in vitro

    Directory of Open Access Journals (Sweden)

    Zhengkai Wei

    2016-10-01

    Full Text Available Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM. Visualization of DNA decorated with H3, NE and MPO within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine PMN. In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2 and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation, which suggests that N. caninum tachyzoite-induced NETs formation is a NADPH oxidase-, NE-, MPO-, SOCE-, ERK 1/2- and p38 MAPK-dependent cell death process. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  2. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Science.gov (United States)

    Akagi, Takanori; Kato, Kei; Kobayashi, Masashi; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2015-01-01

    Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  3. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  4. Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released extracellular vesicles.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Ruebsaamen, Katharina; Boettcher, Alfred; Orsó, Evelyn; Scherer, Max; Liebisch, Gerhard; Kilalic, Dzenan; Ahrens, Norbert; Schmitz, Gerd

    2013-03-01

    Stored platelet concentrates (PLCs) for transfusion develop a platelet storage lesion (PSL), resulting in decreased platelet (PLT) viability and function. The processes leading to PSL have not been described in detail and no data describe molecular changes occurring in all three components of stored PLCs: PLTs, PLC extracellular vesicles (PLC-EVs), and plasma. Fifty PLCs from healthy individuals were stored under standard blood banking conditions for 5 days. Changes in cholesterol, glycerophospholipid, and sphingolipid species were analyzed in PLTs, PLC-EVs, and plasma by mass spectrometry and metabolic labeling. Immunoblots were performed to compare PLT and PLC-EV protein expression. During 5 days, PLTs transferred glycerophospholipids, cholesterol, and sphingolipids to newly formed PLC-EVs, which increased corresponding lipids by 30%. Stored PLTs significantly increased ceramide (Cer; +53%) and decreased sphingosine-1-phosphate (-53%), shifting sphingolipid metabolism toward Cer. In contrast, plasma accumulated minor sphingolipids. Compared to PLTs, fresh PLC-EVs were enriched in lysophosphatidic acid (60-fold) and during storage showed significant increases in cholesterol, sphingomyelin, dihydrosphingomyelin, plasmalogen, and lysophosphatidylcholine species, as well as accumulation of apolipoproteins A-I, E, and J/clusterin. This is the first detailed analysis of lipid species in all PLC components during PLC storage, which might reflect mechanisms active during in vivo PLT senescence. Stored PLTs reduce minor sphingolipids and shift sphingolipid metabolism toward Cer, whereas in the plasma fraction minor sphingolipids increase. The composition of PLC-EVs resembles that of lipid rafts and confirms their role as carriers of bioactive molecules and master regulators in vascular disease. © 2012 American Association of Blood Banks.

  5. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    Science.gov (United States)

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.

  6. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects.

    Science.gov (United States)

    Kojima, Shuji; Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  7. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects

    Directory of Open Access Journals (Sweden)

    Shuji Kojima

    2017-02-01

    Full Text Available Adenosine triphosphate (ATP serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  8. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects

    Science.gov (United States)

    Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  9. P2X receptors regulate adenosine diphosphate release from hepatic cells.

    Science.gov (United States)

    Chatterjee, Cynthia; Sparks, Daniel L

    2014-12-01

    Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

  10. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Katherine J Zappia

    Full Text Available Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1 is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.

  11. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles.

    Science.gov (United States)

    Tafelmeier, M; Fischer, A; Orsó, E; Konovalova, T; Böttcher, A; Liebisch, G; Matysik, S; Schmitz, G

    2017-05-01

    Stored platelet concentrates (PLCs) for therapeutic purpose, develop a platelet storage lesion (PSL), characterized by impaired platelet (PLT) viability and function, platelet extracellular vesicle (PL-EV) release and profound lipidomic changes. Whereas oxidized low-density lipoprotein (oxLDL) activates PLTs and promotes atherosclerosis, effects linked to oxidized high-density lipoprotein (oxHDL) are poorly characterized. PLCs from blood donors were treated with native (nHDL) or mildly oxidized HDL (moxHDL) for 5days under blood banking conditions. Flow cytometry, nanoparticle tracking analysis (NTA), aggregometry, immunoblot analysis and mass spectrometry were carried out to analyze PL-EV and platelet exosomes (PL-EX) release, PLT aggregation, protein expression, and PLT and plasma lipid composition. In comparison to total nHDL, moxHDL significantly decreased PL-EV release by -36% after 5days of PLT storage and partially reversed agonist-induced PLT aggregation. PL-EV release positively correlated with PLT aggregation. MoxHDL improved PLT membrane lipid homeostasis through enhanced uptake of lysophospholipids and their remodeling to corresponding phospholipid species. This also appeared for sphingomyelin (SM) and d18:0/d18:1 sphingosine-1-phosphate (S1P) at the expense of ceramide (Cer) and hexosylceramide (HexCer) leading to reduced Cer/S1P ratio as PLT-viability indicator. This membrane remodeling was associated with increased content of CD36 and maturation of scavenger receptor-B1 (SR-B1) protein in secreted PL-EVs. MoxHDL, more potently than nHDL, improves PLT-membrane lipid homeostasis, partially antagonizes PL-EV release and agonist-induced PLT aggregation. Altogether, this may be the result of more efficient phospho- and sphingolipid remodeling mediated by CD36 and SR-B1 in the absence of ABCA1 on PLTs. As in vitro supplement in PLCs, moxHDL has the potential to improve PLC quality and to prolong storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA

    Science.gov (United States)

    Blenkiron, Cherie; Simonov, Denis; Muthukaruppan, Anita; Tsai, Peter; Dauros, Priscila; Green, Sasha; Hong, Jiwon; Print, Cristin G.

    2016-01-01

    Background Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection. Methods and Results Using the uropathogenic Escherichia coli (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different ‘size’ RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of csrC. It was estimated that 1% of MV RNA cargo is delivered into cultured cells. Conclusions These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process. PMID:27500956

  13. 细胞外ATP和水杨酸对烟草光合指标的影响%Effects of extracellular ATP and salicylic acid on photosynthetic index of tobacco

    Institute of Scientific and Technical Information of China (English)

    冯汉青; 焦青松

    2014-01-01

    研究了细胞外ATP(eATP)和水杨酸(SA)对烟草(Nicotiana tabacum)叶片的气孔导度(GH2 O)、蒸腾速率(E)、光合作用速率(A)与叶绿素荧光参数[包括PSⅡ潜在最大光化学量子效率(Fv/Fm)、PSⅡ光适应下实际光化学效率Y(Ⅱ)、电子传递速率(ETR)、非光化学荧光淬灭(NPQ)和光化学荧光淬灭(qP)]的影响。结果表明:SA能导致A、GH2 O和E的下降,而eATP的处理能缓解SA造成的A、GH2 O和E的下降;但SA未对叶绿素荧光参数Fv/Fm、Y(Ⅱ)、NPQ、qP和ETR造成显著影响,eATP的加入也未改变SA处理下叶片叶绿素荧光参数的水平。这说明SA能导致光合作用的抑制,而eATP能明显缓解SA对光合作用的抑制,但以上作用可能均和光反应阶段无关。并对其内在机理进行了探讨。%The present work studied the effects of extracellular ATP (eATP )and salicylic acid (SA)on transpiration rate (E),stomatal conductance (GH2 O),photosynthesis rate (A)and chlorophyll fluorescence parameters,including maximal photochemical efficiency of PSⅡ(Fv/Fm),effective photochemical quantum yield of PSⅡ(Y(Ⅱ)),PSⅡelec-tron transport rate (ETR),non-photochemical quenching coefficient (NPQ)and the coefficient of photochemical fluo-rescence (qP))of tobacco (Nicotiana tabacum).The results showed that the transpiration rate (E),stomatal con-ductance (GH2 O)and photosynthesis rate (A)decreased under SA stress,while these decreases were anesised by the addition of eATP .However,SA had no significant effects on the chlorophyll fluorescence parameters,and the addition of eATP did not significantly changed the values of the chlorophyll fluorescence parameters under SA stress.These results indicated that SA could inhibit photosynthesis of tobacco leaves and the addition of eATP could alleviate the inhibition of photosynthesis by SA stress,while these effects were not related to the light reaction.We also discussed the possible mechanism based on these observations.

  14. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries

    NARCIS (Netherlands)

    Wisselink, H.J.; Smith, H.E.; Stockhofe-Zurwieden, N.; Peperkamp, K.; Vecht, U.

    2000-01-01

    Streptococcus suis strains (n=411), isolated from diseased pigs in seven European countries were serotyped using specific antisera against serotype 1 to 28, and were phenotyped on the basis of their muramidase-released-protein (MRP) and extracellular-factor protein (EF) production. Overall, S. suis

  15. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine

    NARCIS (Netherlands)

    Wisselink, H.J.; Vecht, U.; Stockhofe Zurwieden, N.; Smith, H.E.

    2001-01-01

    The efficacy of a muramidase-released protein (MRP) and extracellular factor (EF) vaccine in preventing infection and disease in pigs challenged either with a homologous or a heterologous Streptococcus suis serotype 2 strain (MRP EF ) was compared with the efficacy of a vaccine containing formalin-k

  16. Prostaglandins but not leukotrienes alter extracellular matrix protein deposition and cytokine release in primary human airway smooth muscle cells and fibroblasts

    NARCIS (Netherlands)

    Van Ly, David; Burgess, Janette K.; Brock, Thomas G.; Lee, Tak H.; Black, Judith L.; Oliver, Brian G. G.

    2012-01-01

    Van Ly D, Burgess JK, Brock TG, Lee TH, Black JL, Oliver BG. Prostaglandins but not leukotrienes alter extracellular matrix protein deposition and cytokine release in primary human airway smooth muscle cells and fibroblasts. Am J Physiol Lung Cell Mol Physiol 303: L239-L250, 2012. First published Ma

  17. High-density lipoprotein 3 and apolipoprotein A-I alleviate platelet storage lesion and release of platelet extracellular vesicles.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Fischer, Astrid; Tafelmeier, Maria; Orsó, Evelyn; Konovalova, Tatiana; Böttcher, Alfred; Liebisch, Gerhard; Reidel, Armin; Schmitz, Gerd

    2014-09-01

    Stored platelet (PLT) concentrates (PLCs) for transfusion develop a PLT storage lesion (PSL), decreasing PLT viability and function with profound lipidomic changes and PLT extracellular vesicle (PL-EV) release. High-density lipoprotein 3 (HDL3 ) improves PLT homeostasis through silencing effects on PLT activation in vivo. This prompted us to investigate HDL3 and apolipoprotein A-I (apoA-I) as PSL-antagonizing agents. Healthy donor PLCs were split into low-volume standard PLC storage bags and incubated with native (n)HDL3 or apoA-I from plasma ethanol fractionation (precipitate IV) for 5 days under standard blood banking conditions. Flow cytometry, Born aggregometry, and lipid mass spectrometry were carried out to analyze PL-EV release, PLT aggregation, agonist-induced PLT surface marker expression, and PLT and plasma lipid compositions. Compared to control, added nHDL3 and apoA-I significantly reduced PL-EV release by up to -62% during 5 days, correlating with the added apoA-I concentration. At the lipid level, nHDL3 and apoA-I antagonized PLT lipid loss (+12%) and decreased cholesteryl ester (CE)/free cholesterol (FC) ratios (-69%), whereas in plasma polyunsaturated/saturated CE ratios increased (+3%) and CE 16:0/20:4 ratios decreased (-5%). Administration of nHDL3 increased PLT bis(monoacylglycero)phosphate/phosphatidylglycerol (+102%) and phosphatidic acid/lysophosphatidic acid (+255%) ratios and improved thrombin receptor-activating peptide 6-induced PLT aggregation (+5%). nHDL3 and apoA-I improve PLT membrane homeostasis and intracellular lipid processing and increase CE efflux, antagonizing PSL-related reduction in PLT viability and function and PL-EV release. We suggest uptake and catabolism of nHDL3 into the PLT open canalicular system. As supplement in PLCs, nHDL3 or apoA-I from Fraction IV of plasma ethanol fractionation have the potential to improve PLC quality to prolong storage. © 2014 AABB.

  18. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells.

    Science.gov (United States)

    Smallwood, Dawn T; Apollonio, Benedetta; Willimott, Shaun; Lezina, Larissa; Alharthi, Afaf; Ambrose, Ashley R; De Rossi, Giulia; Ramsay, Alan G; Wagner, Simon D

    2016-07-28

    The complex interplay between cancer cells, stromal cells, and immune cells in the tumor microenvironment (TME) regulates tumorigenesis and provides emerging targets for immunotherapies. Crosstalk between CD4(+) T cells and proliferating chronic lymphocytic leukemia (CLL) tumor B cells occurs within lymphoid tissue pseudofollicles, and investigating these interactions is essential to understand both disease pathogenesis and the effects of immunotherapy. Tumor-derived extracellular vesicle (EV) shedding is emerging as an important mode of intercellular communication in the TME. In order to characterize tumor EVs released in response to T-cell-derived TME signals, we performed microRNA (miRNA [miR]) profiling of EVs released from CLL cells stimulated with CD40 and interleukin-4 (IL-4). Our results reveal an enrichment of specific cellular miRNAs including miR-363 within EVs derived from CD40/IL-4-stimulated CLL cells compared with parental cell miRNA content and control EVs from unstimulated CLL cells. We demonstrate that autologous patient CD4(+) T cells internalize CLL-EVs containing miR-363 that targets the immunomodulatory molecule CD69. We further reveal that autologous CD4(+) T cells that are exposed to EVs from CD40/IL-4-stimulated CLL cells exhibit enhanced migration, immunological synapse signaling, and interactions with tumor cells. Knockdown of miR-363 in CLL cells prior to CD40/IL-4 stimulation prevented the ability of CLL-EVs to induce increased synapse signaling and confer altered functional properties to CD4(+) T cells. Taken together, these data reveal a novel role for CLL-EVs in modifying T-cell function that highlights unanticipated complexity of intercellular communication that may have implications for bidirectional CD4(+) T-cell:tumor interactions within the TME. © 2016 by The American Society of Hematology.

  19. Developmental regulation and extracellular release of a VSG expression-site-associated gene product from Trypanosoma brucei bloodstream forms.

    Science.gov (United States)

    Barnwell, Eleanor M; van Deursen, Frederick J; Jeacock, Laura; Smith, Katherine A; Maizels, Rick M; Acosta-Serrano, Alvaro; Matthews, Keith

    2010-10-01

    Trypanosomes evade host immunity by exchanging variant surface glycoprotein (VSG) coats. VSG genes are transcribed from telomeric expression sites, which contain a diverse family of expression-site-associated genes (ESAGs). We have discovered that the mRNAs for one ESAG family, ESAG9, are strongly developmentally regulated, being enriched in stumpy forms, a life-cycle stage in the mammalian bloodstream that is important for the maintenance of chronic parasite infections and for tsetse transmission. ESAG9 gene sequences are highly diverse in the genome and encode proteins with weak similarity to the massively diverse MASP proteins in Trypanosoma cruzi. We demonstrate that ESAG9 proteins are modified by N-glycosylation and can be shed to the external milieu, this being dependent upon coexpression with at least one other family member. The expression profile and extracellular release of ESAG9 proteins represents a novel and unexpected aspect of the transmission biology of trypanosomes in their mammalian host. We suggest that these molecules might interact with the external environment, with possible implications for infection chronicity or parasite transmission.

  20. Effects of ticlopidine or ticlopidine plus aspirin on platelet aggregation and ATP release in normal volunteers: why aspirin improves ticlopidine antiplatelet activity.

    Science.gov (United States)

    Altman, R; Scazziota, A; Rouvier, J; Gonzalez, C

    1999-10-01

    Aspirin and ticlopidine are used to prevent arterial thrombosis. In some clinical settings ticlopidine is administered with aspirin for improving antithrombotic effect. We administered aspirin (100 mg/day), ticlopidine (500 mg/day), or ticlopidine and aspirin for 7 days to healthy volunteers. Platelet aggregation and ATP release induced by sodium arachidonate, ADP, or a combination of both were measured. Sodium arachidonate (0.25 mmol/L), which produces no platelet aggregation, combined with adenosine diphosphate (1 mumol/L), which produced a reversible platelet aggregation of 20% after ticlopidine, resulted in a synergistic platelet aggregation response in normal (74.6 +/- 9.2%) and in ticlopidine platelet-rich plasma (59.1% +/- 14.9%, p < 0.0001). Synergism after sodium arachidonate (0.75 mmol/L) plus adenosine diphosphate (4 mumol/L) fell from 75.8% +/- 11.0% and 59.1% +/- 15.6% after ticlopidine or aspirin, respectively, to 14.8% +/- 18.0% (p < 0.0001) after ticlopidine plus aspirin. Aspirin and ticlopidine alone did not inhibit adenosine triphosphate release as thoroughly as did aspirin plus ticlopidine. Aspirin or ticlopidine does not adequately prevent platelet activity as ticlopidine plus aspirin do. Addition of aspirin to treatment with ticlopidine improves their antiplatelet activity and better results could be obtained in arterial thrombotic prevention strategies.

  1. The P2X7 loss-of-function Glu496Ala polymorphism affects ex vivo cytokine release and protects against the cytotoxic effects of high ATP-levels

    Directory of Open Access Journals (Sweden)

    Wesselius Anke

    2012-12-01

    Full Text Available Abstract Background The P2X7 receptor plays an important role in cytokine release during the inflammatory response in vivo. Polymorphisms within the P2X7 receptor gene that lead to loss of receptor function may contribute to impaired cytokine release by immune cells. Therefore, we investigated whether a known loss-of-function polymorphism (Glu496Ala in the P2X7 receptor gene leads to alterations in cytokine release in response to ATP. Results An ex vivo whole blood model was used to induce an inflammatory reaction with the pro-inflammatory stimuli LPS and PHA (phytohemagglutinin. Blood from n=9 subjects with the Glu496Ala P2X7 SNP (P2X7MUT and n=7 ‘wild-type’ subjects (no P2X7 SNP; P2X7WT was used. Addition of ATP (0.9-3 mM to LPS/PHA-stimulated whole blood induced an increase in IL-1β release in P2X7MUT subjects, whereas decreased release was observed in P2X7WT subjects. Decreased levels of IL-6 and TNF-α in response to ATP were shown in both P2X7MUT and P2X7WT subjects, which was less pronounced in P2X7MUT subjects. ATP at 3 mM also significantly decreased levels of lactate dehydrogenase (LDH in P2X7MUT subjects compared to P2X7WT subjects. Conclusions The presence of the non-synonymous Glu496Ala loss-of-function polymorphism within the P2X7 receptor gene is likely to be of importance in the release of cytokines during inflammation. Furthermore, this study suggests that carriers of the Glu496Ala loss-of-function polymorphism are protected against the cytotoxic effects of high ATP-levels.

  2. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    Science.gov (United States)

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  3. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes.

    Science.gov (United States)

    Kraaij, Tineke; Tengström, Fredrik C; Kamerling, Sylvia W A; Pusey, Charles D; Scherer, H Ulrich; Toes, Rene E M; Rabelink, Ton J; van Kooten, Cees; Teng, Y K Onno

    2016-06-01

    A newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases.

  4. Effects of antiplatelet therapy on platelet extracellular vesicle release and procoagulant activity in health and in cardiovascular disease.

    Science.gov (United States)

    Connor, David E; Ly, Ken; Aslam, Anoosha; Boland, John; Low, Joyce; Jarvis, Susan; Muller, David W; Joseph, Joanne E

    2016-12-01

    Dual antiplatelet therapy with aspirin and clopidogrel is commonly used to prevent recurrent ischemic events in patients with cardiovascular disease. Whilst their effects on platelet reactivity are well documented, it is unclear, however, whether antiplatelet therapy inhibits platelet extracellular vesicle (EV) release. The aim of this study was to investigate the effects of antiplatelet therapy on platelet EV formation and procoagulant activity. Blood samples from 10 healthy controls not receiving antiplatelet therapy were incubated in vitro with aspirin or a P2Y12 inhibitor (MeSAMP). Blood samples from 50 patients receiving long-term dual antiplatelet therapy and undergoing coronary angiography were also studied. Platelet reactivity was assessed by Multiplate™ impedance aggregometry. Platelet EV formation and procoagulant activity of pretreated and untreated blood samples in response to arachidonic acid (AA), adenosine diphosphate (ADP), ADP+PGE1, and thrombin receptor-activating peptide (TRAP) stimulation were assessed by flow cytometry and Procoag-PL assays, respectively. Incubation of normal platelets with aspirin significantly inhibited AA-induced platelet reactivity, EV formation, and procoagulant activity, whilst MeSAMP significantly inhibited platelet reactivity and EV formation in response to AA, ADP, and TRAP, but had minimal effect on procoagulant activity. Most patients receiving dual antiplatelet therapy showed an appropriate reduction in platelet reactivity in response to their treatment; however there was not complete inhibition of increased platelet and EV procoagulant activity in response to ADP, AA, or TRAP. In addition, we could not find any correlation between platelet reactivity and procoagulant activity in patients receiving dual antiplatelet therapy.

  5. Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7.

    Science.gov (United States)

    Hattori, Fumie; Ohshima, Yasuhiro; Seki, Shizuka; Tsukimoto, Mitsutoshi; Sato, Mitsuru; Takenouchi, Takato; Suzuki, Akina; Takai, Erina; Kitani, Hiroshi; Harada, Hitoshi; Kojima, Shuji

    2012-11-15

    The P2X7 receptor is not only involved in cell proliferation, but also acts as an adenosine 5'-triphosphate (ATP)-gated non-selective channel, and its expression is increased in human melanoma. An irreversible antagonist of P2X7, such as oxidized ATP (oxATP), might block P2X7 receptor-mediated ATP release and proliferative signaling. Therefore, we carried out basic studies to test this idea and to examine the feasibility of using oxATP to treat B16 melanoma. We first found that low-pH conditions (mimicking the hypoxia and acidosis commonly seen in solid tumors) induced P2X7 receptor-mediated ATP release from B16 melanoma cells. Then, we compared the proliferation rates of B16 melanoma wild-type cells and B16 P2X7 receptor-knockdown clone (P2X7-KDC) cells in the presence of P2X7 agonists. The proliferation rate, as well as the ATP release, of agonist-treated P2X7-KDC cells was lower than that of agonist-treated wild-type cells. Next, the effect of P2X7 antagonist oxATP on B16 melanoma cell growth was examined in vitro and in vivo. oxATP significantly decreased B16 melanoma cell proliferation in vitro, and also significantly inhibited tumor growth in B16 melanoma-bearing mice. These data indicate that extracellularly released ATP may serve as an intercellular signaling molecule. We propose that the P2X7 receptor is a promising target for treatment of solid tumors.

  6. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Baconnais Sonia

    2010-10-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma (NPC is a human epithelial malignancy consistently associated with the Epstein-Barr virus. The viral genome is contained in the nuclei of all malignant cells with abundant transcription of a family of viral microRNAs called BART miRNAs. MicroRNAs are well known intra-cellular regulatory elements of gene expression. In addition, they are often exported in the extra-cellular space and sometimes transferred in recipient cells distinct from the producer cells. Extra-cellular transport of the microRNAs is facilitated by various processes including association with protective proteins and packaging in secreted nanovesicles called exosomes. Presence of microRNAS produced by malignant cells has been reported in the blood and saliva of tumor-bearing patients, especially patients diagnosed with glioblastoma or ovarian carcinoma. In this context, it was decided to investigate extra-cellular release of BART miRNAs by NPC cells and their possible detection in the blood of NPC patients. To address this question, we investigated by quantitative RT-PCR the status of 5 microRNAs from the BART family in exosomes released by NPC cells in vitro as well as in plasma samples from NPC xenografted nude mice and NPC patients. Results We report that the BART miRNAs are released in the extra-cellular space by NPC cells being associated, at least to a large extent, with secreted exosomes. They are detected with a good selectivity in plasma samples from NPC xenografted nude mice as well as NPC patients. Conclusions Viral BART miRNAs are secreted by NPC cells in vitro and in vivo. They have enough stability to diffuse from the tumor site to the peripheral blood. This study provides a basis to explore their potential as a source of novel tumor biomarkers and their possible role in communications between malignant and non-malignant cells.

  7. Abciximab treatment in vitro after aspirin treatment in vivo has additive effects on platelet aggregation, ATP release, and P-selectin expression.

    Science.gov (United States)

    Scazziota, A; Altman, R; Rouvier, J; Gonzalez, C; Ahmed, Z; Jeske, W P; Walenga, J M; Fareed, J

    2000-12-15

    To prevent arterial thrombosis, abciximab is administered together with aspirin. However, whether or not there are benefits to combine abciximab with aspirin is not yet well defined. Healthy volunteers were studied for the effect of aspirin + abciximab using sodium arachidonate and adenosine diphosphate (ADP) alone or in combination to induce platelet activation/aggregation. Abciximab produced complete inhibition of platelet aggregation induced with ADP but only 40% inhibition of aggregation induced by 0.75-mmol/l sodium arachidonate. Abciximab added in vitro to platelet-rich plasma (PRP) from platelets from aspirin-treated donors produced an almost complete inhibition of platelet aggregation. Aspirin, and abciximab alone, did not inhibit adenosine triphosphate (ATP) release as thoroughly as aspirin + abciximab did. Abciximab (3-5 microg/ml) produced inhibition of P-selectin expression induced with 5 (from 46.2 +/- 6.0% to 27.4 +/- 7.0%, P=0.002) and 20-micromol/l ADP (from 53.1 +/- 8.1% to 35.1 +/- 11.0%, P=0.019), but no effect was observed when 0.75-mmol/l sodium arachidonate was used (P=0.721). Aspirin diminished P-selectin expression in sodium arachidonate-stimulated platelets (from 77.7 +/- 11.8% to 40.2 +/- 3.6%, P<0.0001) in non-aspirinated and platelets from aspirin-treated donors, respectively. Abciximab (3, 4, and 5 microg/ml) added to platelets from aspirin-treated donors decreased P-selectin expression in platelets stimulated with sodium arachidonate from 40.2 +/- 8.6% to 25.6 +/- 11.5% (P=0.027), to 20.5 +/- 3.5% (P<0.0001), and to 22.5 +/- 1.8% (P<0.0001). We concluded that the antiplatelet effect of abciximab is greatly increased by aspirin.

  8. Effect of ATP on intracellular pH in pancreatic ducts involves P2X7 receptors

    DEFF Research Database (Denmark)

    Henriksen, Katerine L; Novak, Ivana

    2003-01-01

    Pancreatic acini release ATP, which can stimulate HCO3--secreting ducts that express purinergic receptors from both P2X and P2Y families. The aim of this study was to investigate whether extracellular ATP affects HCO3- or H+ transport across the plasma membrane of intralobular ducts, and determine......, experiments were performed in solutions with or without bicarbonate buffers (+BIC or -BIC), with amiloride derivative EIPA, or with low extracellular Cl- concentrations. Although these transporters contributed to pHi recovery from acidosis, ATP had no effect. Nevertheless, ATP induced a small and reversible...... decrease in pHi by 0.07+/-0.02 pH-units and BzATP decreased pHi by 0.29+/-0.07 pH-units in -BIC (n=10, 11). These effects were abolished by Brilliant Blue and in Ca2+-free solutions. Our study shows that the pHi effect of ATP is mediated by P2X7 receptors. However, ATP does not affect H+/HCO3- transporters...

  9. Tetrandrine differentially inhibits aggregation and ATP-release of rat platelets%粉防己碱特异抑制大鼠血小板聚集和ATP释放

    Institute of Scientific and Technical Information of China (English)

    陳一岳; 關超然; 許少珍

    1996-01-01

    To examine the effects of tetrandrine (Tet)on the aggregation and ATP-release of rat washed platelets induced by several platelet activators.METHODS: Gel-filtration (Sepharose 2B) was used to isolate washed platelets from adult rats and the platelet aggragation and ATP-release were measured simultaneously. RESULTS: In the presence of Ca2+ 1 mmol·L-1, Tet 300 μmol·L-1 inhibited the aggregation induced by ADP (25μmol· L- 1 ), collagen (2.5 g·L-1), and thrombin (103 unit·L-1)by 62 %, 60 %, and 34 %, respectively. It also inhibited arachidonic acid ( 1 mmol· L- 1 )-induced aggregation. Elevating intracellular Ca2+ concentration with the Ca2+ ionophore, calcimycin (30μmol· L-1), or by blocking the intracellular calcium pump with cyclopiazonic acid (5 μmol· L-1) initiated platelet aggregation, which was also inhibited by Tet. In Ca2 + -free medium, Tet still elicited an inhibitory effect on aggregation induced by ristocetin(2.5 g· L- 1). Lower concentrations of Tet (30nmol· L-1 to 3 μmol· L-1) failed to inhibit the aggregation (requiring Tet 10 - 300 μmol· L- 1 ), but strongly suppressed ATP-release induced by ADP 10μmol· L- 1, both of which were measured simultaneously in a single sample. CONCLUSION: Tet elicits a nonselective inhibitory effect on platelet aggregation not solely due to its Ca2+ antagonism and may act on a final common pathway leading to platelet aggregation. Furthermore, Tet is a much potent inhibitor of the release of ATP in platelets.

  10. Histamine release induced from rat mast cells by the ionophore A23187 in the absence of extracellular calcium

    DEFF Research Database (Denmark)

    Johansen, Torben

    1980-01-01

    Isolated rat mast cells were used to study whether ionophore A23187 could induce histamine release by mobilizing cellular calcium. The histamine release was a slow process which was completed after about 20 min incubation with A23187. The A23187-induced histamine release was inhibited after...... incubation of the cells with EDTA for 1 h in a 37 degrees C water bath in calcium-free medium. Reintroduction of calcium in excess of EDTA induced the release of histamine. The observations suggest that A23187 can induce histamine release by mobilizing a cellular pool of calcium....

  11. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils.

  12. The relationship between energy metabolism and the action of inhibitors of histamine release

    DEFF Research Database (Denmark)

    Garland, L G; Johansen, Torben

    1977-01-01

    /l) and dicumarol (10 micronmol/l) did not reduce the adenosine 5'-triphosphate (ATP) content of mast cells in glucose-free medium. Higher concentrations of dicumarol (56-100 micronmol/l) markedly reduced the cellular ATP content. This reduction was reversed by glucose. 3 Papaverine was a more potent inhibitor...... of histamine release from mast cells incubated in glucose-free solution than in complete Tyrode solution (dose-ratio = 20). Like antimycin A (L MICRONMOL/L), PAPAVERINE (3 MICRONMOL/L) CAUSED A DEPLETION OF MAST CELL ATP that was greater in the absence (85%) than in the presence (25%) of extracellular glucose....... 4 These results suggest that dicumarol, like doxantrazole and theophylline, inhibits histamine release without affecting mast cell energy metabolism. In contrast, papaverine probably inhibits release by depleting ATP that is required for exocytosis. 5 Inhibition of histamine release by dibutyryl...

  13. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells.

    Science.gov (United States)

    Candela, Maria Elena; Geraci, Fabiana; Turturici, Giuseppina; Taverna, Simona; Albanese, Ida; Sconzo, Gabriella

    2010-07-01

    Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. (c) 2010 Wiley-Liss, Inc.

  14. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV Nonstructural Protein 5A (NS5A via MEK/Extracellular Signal Regulated Kinase (ERK Pathway

    Directory of Open Access Journals (Sweden)

    Xuesong Gao

    2013-05-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein 5A (NS5A is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-binding protein. Earlier studies have shown that NS5ATP9 might play an important role in HCV infection. The aim of this study is to investigate the function of NS5ATP9 on hepatocellular carcinoma (HCC cell lines proliferation under HCV NS5A expression. The results showed that overexpression of NS5ATP9 inhibited the proliferation of Bel7402 cells, whereas knockdown of NS5ATP9 by interfering RNA promoted the growth of HepG2 cells. Under HCV NS5A expression, RNA interference (RNAi targeting of NS5ATP9 could reverse the inhibition of HepG2 cell proliferation, suggesting that NS5ATP9 might be an anti-proliferation gene that plays an important role in the suppression of cell growth mediated by HCV NS5A via MEK/ERK signaling pathway. These findings might provide new insights into HCV NS5A and NS5ATP9.

  15. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.

    Science.gov (United States)

    Takai, Erina; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Sawada, Keisuke; Moriyama, Yoshinori; Kojima, Shuji

    2012-11-01

    TGF-β1 plays a key role in cancer progression through induction of various biological effects, including cell migration. Extracellular nucleotides, such as ATP, released from cells play a role in signaling through activation of P2 receptors. We show here that exocytosis of ATP followed by activation of P2 receptors play a key role in TGF-β1-induced actin remodeling associated with cell migration. Treatment with TGF-β1 facilitated migration of human lung cancer A549 cells, which was blocked by pretreatment with ecto-nucleotidase and P2 receptor antagonists. ATP and P2 agonists facilitated cell migration. TGF-β1-induced actin remodeling, which contributes to cell migration, was also suppressed by pretreatment with ecto-nucleotidase and P2 receptor antagonists. Knockdown of P2X7 receptor suppressed TGF-β1-induced migration and actin remodeling. These results indicate the involvement of TGF-β1-induced ATP release in cell migration, at least in part, through activation of P2X7 receptors. TGF-β1 caused release of ATP from A549 cells within 10 minutes. Both ATP-enriched vesicles and expression of a vesicular nucleotide transporter (VNUT) SLC17A9, which is responsible for exocytosis of ATP, were found in cytosol of A549 cells. TGF-β1 failed to induce release of ATP from SLC17A9-knockdown cells. TGF-β1-induced cell migration and actin remodeling were also decreased in SLC17A9-knockdown cells. These results suggest the importance of exocytosis of ATP in cell migration. We conclude that autocrine signaling through exocytosis of ATP and activation of P2 receptors is required for the amplification of TGF-β1-induced migration of lung cancer cells.

  16. Influence of radiographic contrast media on the nitric oxide release from human arterial and venous endothelial cells on extracellular matrix.

    Science.gov (United States)

    Franke, R P; Fuhrmann, R; Jung, F

    2013-01-01

    Radiographic contrast media (RCM) can vary widely in their physicochemical properties, e.g. the iodine concentration, osmolality, molecule structure, chemotoxicity, hydrophilicity, electric charge and viscosity. Besides the necessary effect of Roentgen ray absorption, which provides contrast-rich images of vessels, RCMs can have varying adverse effects. As one possible cause of microcirculatory disorders, changes in morphology and function of endothelial cells are discussed. Therefore, RCM media-induced release of nitric oxide from arterial as well as from venous endothelial cells in contact with two commercially available RCMs (Iodixanol and Iomeprol) was investigated. NO concentrations started to increase slightly in the HUVEC control cultures after 3 min incubation time, however, NO concentrations in the cultures incubated with Iomeprol 350 and Iodixanol 320 did not change over time (Iomeprol 350: p = 0.4905; Iodixanol 320: p = 0.784). On the whole, the time-dependent NO release differed for the three groups (RCM × time: p = 0.00224). This difference was due to the fact that, after incubation with the two contrast agents (Iodixanol 320: p = 0.0003; Iomeprol 350: p = 0.0168), less NO was released by the exposed HUVEC at 3 minutes and after 12 hours than by the control cells. In the control cultures of arterial endothelial cells as well as in cultures incubated with 30% v/v Iodixanol supplemented culture medium the NO release did not change. In those cultures of arterial endothelial cells supplemented with 30% v/v Iomeprol the NO release was significantly less than in control cultures and in cultures supplemented with Iodixanol (p = 0.021; p = 0.043). Inspite of a missing shear stress in our static plane vessel wall model there was a RCM-dependent difference in NO release from endothelial cells in vitro. The NO release from venous endothelial cells differed significantly from the NO release from arterial endothelial cells. While the administration of Iomeprol

  17. Niflumic acid inhibits ATP-stimulated exocytosis in a mucin-secreting epithelial cell line.

    Science.gov (United States)

    Bertrand, C A; Danahay, H; Poll, C T; Laboisse, C; Hopfer, U; Bridges, R J

    2004-02-01

    ATP is an efficacious secretagogue for mucin and chloride in the epithelial cell line HT29-Cl.16E. Mucin release has been measured as [3H]glucosamine-labeled product in extracellular medium and as single-cell membrane capacitance increases indicative of exocytosis-related increases in membrane area. The calcium-activated chloride channel blocker niflumic acid, also reported to modulate secretion, was used to probe for divergence in the purinergic signaling of mucin exocytosis and channel activation. With the use of whole cell patch clamping, ATP stimulated a transient capacitance increase of 15 +/- 4%. Inclusion of niflumic acid significantly reduced the ATP-stimulated capacitance change to 3 +/- 1%, although normalized peak currents were not significantly different. Ratiometric imaging was used to assess intracellular calcium (Cai2+) dynamics during stimulation. In the presence of niflumic acid, the ATP-stimulated peak change in Cai2+ was unaffected, but the initial response and overall time to Cai2+ peak were significantly affected. Excluding external calcium before ATP stimulation or including the capacitative calcium entry blocker LaCl3 during stimulation muted the initial calcium transient similar to that observed with niflumic acid and significantly reduced peak capacitance change, suggesting that a substantial portion of the ATP-stimulated mucin exocytosis in HT29-Cl.16E depends on a rapid, brief calcium influx through the plasma membrane. Niflumic acid interferes with this influx independent of a chloride channel blockade effect.

  18. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    Science.gov (United States)

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  19. The importance of cell density in the interpretation of growth factor effects on collagenase IV activity release and extracellular matrix production from C6 astrocytoma cells.

    Science.gov (United States)

    Tamaki, M; McDonald, W; Del Maestro, R F

    1998-09-01

    We have examined the influence of basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF) on the release of collagenase type IV activity and the production of extracellular matrix (ECM) molecules using C6 astrocytoma cells in monolayer culture. Collagenase type IV activity was significantly increased in a dose dependent manner in the low cell density group by treatment with FGF-2 and VEGF but significantly decreased in a dose dependent fashion in the high cell density group. These results were corroborated using Western blot technique with an antibody to gelatinase A. Addition of exogenous laminin and fibronectin to the media decreased collagenase type IV activity in a dose dependent fashion with the minimum concentration of 0.1 microgram/ml. Laminin and fibronectin reached a concentration of 0.1 microgram/ml in only the high cell density group after treatment with the growth factors tested. These findings indicate that C6 astrocytoma cells appear to have two regulatory mechanisms for collagenase type IV activity which are dependent on cell density. In a low cell density, C6 astrocytoma cells respond to the dominant effect of FGF-2 and VEGF by increasing the release of collagenase IV activity. In a high cell density collagenase type IV activity is decreased due to it's down regulation by released ECM molecules in response to FGF-2 and VEGF. These regulatory mechanisms may be crucial to the understanding of the coordination of tumor-associated angiogenesis by malignant glial cells.

  20. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    Science.gov (United States)

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  1. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  2. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    Science.gov (United States)

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  3. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. (Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill (United States))

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  4. Shock waves co-stimulate T-cell proliferation and interleukin-2 expression through ATP release, P2 receptor and p38 mitogen activated protein kinase activation%冲击波通过ATP释放、P2受体及激活p38MAPK激酶促进T细胞增殖和分泌白细胞介素2

    Institute of Scientific and Technical Information of China (English)

    于铁成; 赵毅; 陈玮伦; 金安; 刘建国

    2007-01-01

    Source Inc., Camarillo, CA); ATP Bioluminescence Assay Kit CLS Ⅱ (Roche Diagnostics GmbH,Mannheim, Germany).METHODS: The experiment was carried out in the Orthopedic Laboratory of the First Clinical Hospital in Jilin University from January 2005 to December 2006. ①An Extracorporeal Shockwave Lithotripter (at 7 kV generator voltage, 0.3 μF capacitance, 23 MPa positive pressure, 0.18 mJ/mm2 energy flux density) was applied for LDSWs treatment ranging from 50 to 400 impulses. ②ATP release into the culture supernatant from Jurkat T-cells or human peripheral blood mononuclear cells (PBMCs) was determined with a specific ATP Bioluminescence Assay Kit. ③Negative control group excluded antagonist or inhibitor. Human PBMCs were used to determine the effect of LDSWs on activated T-lymphocyte proliferation. Human Jurkat cells were used to study the effects of LDSWs on IL-2 expression. Expression and phosphorylation of p38 MAPK in Jurkat T-cell were measured by Western Immunoblotting with anti-p38 MAPK antibodies and anti-p38 MAPK phospho-specific antibodies that recognized the phosphorylation (on Thr180/Tyr182).MAIN OUTCOME MEASURES: extra-cellular ATP release, IL-2 expression in cell suspension, cellular proliferation and the phosphorylation of p38 MAPK.RESULTS: ①ATP release under the condition without LDSWs was obviously lower than that with LDSWs of 100, 150,200, 250, 300, 360 and 400 impulses (P < 0.01), and ATP release increased with the LDSWs impulse.②Compared with negative control group, the additions of apyrase, KN-62 or suramin attenuated the 3H-TdR incorporation of the phytohemagglutinin-stimulated PBMCs or CD3/CD28-stimulated Jurkat T-cells, which were effected with LDSWs of 100,150, 200, 250, 300, 330 impulses at 0.18 mJ/mm2 (P< 0.01). IL-2 expression in the cellular supernatant was also significant increased (P < 0.01). ATPase, KN-62 or suramin all decreased the effect of LDSWs on p38 MAPK of Jurkat T-cells.CONCLUSION: ①LDSWs deform cellular membranes

  5. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain

    Directory of Open Access Journals (Sweden)

    Bernd L. Fiebich

    2014-09-01

    Full Text Available Brain inflammation is a common occurrence following responses to varied insults such as bacterial infections, stroke, traumatic brain injury and neurodegenerative disorders. A common mediator for these varied inflammatory responses is prostaglandin E2 (PGE2, produced by the enzymatic activity of cyclooxygenases (COX 1 and 2. Previous attempts to reduce neuronal inflammation through COX inhibition, by use of nonsteroidal anti-inflammatory drugs (NSAIDs, have met with limited success. We are proposing the two-hit model for neuronal injury – an initial localized inflammation mediated by PGE2 (first hit and the simultaneous release of adenosine triphosphate (ATP by injured cells (second hit, which significantly enhances the inflammatory response through increased synthesis of PGE2. Several evidences on the role of exogenous ATP in inflammation have been reported, including contrary instances where extracellular ATP reduces inflammatory events. In this review, we will examine the current literature on the role of P2 receptors, to which ATP binds, in modulating inflammatory reactions during neurodegeneration. Targeting the P2 receptors, therefore, provides a therapeutic alternative to reduce inflammation in the brain. P2 receptor-based anti-inflammatory drugs (PBAIDs will retain the activities of essential COX enzymes, yet will significantly reduce neuroinflammation by decreasing the enhanced production of PGE2 by extracellular ATP.

  6. Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release.

    Science.gov (United States)

    Kotha, Sainath R; Piper, Melissa G; Patel, Rishi B; Sliman, Sean; Malireddy, Smitha; Zhao, Lingying; Baran, Christopher P; Nana-Sinkam, Patrick S; Wewers, Mark D; Romberger, Debra; Marsh, Clay B; Parinandi, Narasimham L

    2013-11-01

    The mechanisms of poultry particulate matter (PM)-induced agricultural respiratory disorders are not thoroughly understood. Hence, it is hypothesized in this article that poultry PM induces the release of interleukin-8 (IL-8) by lung epithelial cells that is regulated upstream by the concerted action of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK). To test this hypothesis, the widely used cultured human lung epithelial cells (A549) were chosen as the model system. Poultry PM caused a significant activation of PLA2 in A549 cells, which was attenuated by AACOCF3 (cPLA2 inhibitor) and PD98059 (ERK-1/2 upstream inhibitor). Poultry PM induced upstream ERK-1/2 phosphorylation and downstream cPLA2 serine phosphorylation, in a concerted fashion, in cells with enhanced association of ERK-1/2 and cPLA2. The poultry PM-induced cPLA2 serine phosphorylation and IL-8 release were attenuated by AACOCF3, PD98059, and by transfection with dominant-negative ERK-1/2 DNA in cells. The poultry PM-induced IL-8 release by the bone marrow-derived macrophages of cPLA2 knockout mice was significantly lower. For the first time, this study demonstrated that the poultry PM-induced IL-8 secretion by human lung epithelial cells was regulated by cPLA2 activation through ERK-mediated serine phosphorylation, suggesting a mechanism of airway inflammation among poultry farm workers.

  7. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    Science.gov (United States)

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  8. Gonadotropin-releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Bing Yao; Hai-Yan Liu; Yu-Chun Gu; Shan-Shan Shi; Xiao-Qian Tao; Xiao-Jun Li; Yi-Feng Ge; Ying-Xia Cui; Guo-Bin Yang

    2011-01-01

    Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L-1 after 24 h, activation of ERK1/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERK1/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSDgene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.

  9. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

    Science.gov (United States)

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Koch-Nolte, Friedrich; Haag, Friedrich; Bulfone-Paus, Silvia

    2009-04-01

    Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  10. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this st......Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim...... of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either...... release of both ATP-consuming and ATP-generating enzymes into pancreatic juice. This newly discovered richness of secreted enzymes underscores the importance of purine signaling between acini and pancreatic ducts lumen and implies regulation of the purine-converting enzymes release....

  11. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells.

    Science.gov (United States)

    Honegger, Anja; Leitz, Jenny; Bulkescher, Julia; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2013-10-01

    The human papillomavirus (HPV) E6/E7 oncogenes play a crucial role in the HPV-induced carcinogenesis. In this study, the authors investigated whether silencing of endogenous HPV E6/E7 expression may influence the contents or amounts of extracellular microvesicles (eMVs) released from HPV-positive cancer cells. It was found that eMVs secreted from HeLa cells are enriched for Survivin protein. RNA interference studies revealed that maintenance of both intracellular and microvesicular Survivin amounts was strongly dependent on continuous E6/E7 expression. This indicates that intracellular HPV activities are translated into visible alterations of protein contents in eMVs. Besides Survivin, eMVs from HeLa cells contain additional members of the inhibitor of apoptosis protein (IAP) family (XIAP, c-IAP1 and Livin). In contrast, no evidence for the presence of the HPV E6 and E7 oncoproteins in eMVs was obtained. Moreover, it was found that silencing of HPV E6/E7 expression led to a significant increase of exosomes-representing eMVs of endocytic origin-released from HeLa cells. This effect was associated with the reinduction of p53, stimulation of the p53 target genes TSAP6 and CHMP4C that can enhance exosome production and induction of senescence. Taken together, these results show that silencing of HPV E6/E7 oncogene expression profoundly affects both the composition and amounts of eMVs secreted by HPV-positive cancer cells. This indicates that HPVs can induce molecular signatures in eMVs that may affect intercellular communication and could be explored for diagnostic purposes. © 2013 UICC.

  12. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders.

    Science.gov (United States)

    Caivano, Antonella; Laurenzana, Ilaria; De Luca, Luciana; La Rocca, Francesco; Simeon, Vittorio; Trino, Stefania; D'Auria, Fiorella; Traficante, Antonio; Maietti, Maddalena; Izzo, Tiziana; D'Arena, Giovanni; Mansueto, Giovanna; Pietrantuono, Giuseppe; Laurenti, Luca; Musto, Pellegrino; Del Vecchio, Luigi

    2015-12-01

    Many cell types release extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic bodies, which play a role in physiology and diseases. Presence and phenotype of circulating EVs in hematological malignancies (HMs) remain largely unexplored.The aim of this study was to characterize EVs in peripheral blood of HM patients compared to healthy subjects (controls). We isolated serum EVs from patients with chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma (NHL), Waldenstrom's macroglobulinemia (WM), Hodgkin's lymphoma (HL), multiple myeloma (MM), acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and controls. EVs were isolated from serum of peripheral blood by ultracentrifuge steps and analyzed by flow cytometry to define count, size, and immunophenotype. MV levels were significantly elevated in WM, HL, MM, AML, and some MPNs and, though at a lesser degree, in CLL and NHL as compared to healthy controls. HL, MM, and MPNs generated a population of MVs characterized by lower size (below 0.3 μm) when compared to controls. MVs from patients specifically expressed tumor-related antigens, such as CD19 in B cell neoplasms, CD38 in MM, CD13 in myeloid tumors, and CD30 in HL. Both total and antigen-specific count of MVs significantly correlated with different HM clinical features such as Rai stage in CLL, International Prognostic Scoring System in WM, International Staging System in MM, and clinical stage in HL. MVs may represent a novel biomarker in HMs.

  13. Arecoline excites the contraction of distal colonic smooth muscle strips in rats via the M3 receptor-extracellular Ca2+ influx - Ca2+ store release pathway.

    Science.gov (United States)

    Li, Chuan-Bao; Yang, Xiao; Tang, Wen-Bo; Liu, Chuan-Yong; Xie, Dong-Ping

    2010-04-01

    Areca is a Chinese herbal medicine that is widely used for constipation. However the mechanisms of its action are not clear. We investigated the effects of arecoline, the most active component of areca, on the motility of rat distal colonic smooth muscle strips. In longitudinal muscle of distal colon (LMDC) and circular muscle of distal colon (CMDC), arecoline increased the contraction in a dose-dependent manner. Tetrodotoxin (TTX) did not inhibit the effects of arecoline. The contractile response to arecoline was completely antagonized by atropine. 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) strongly depressed the response to arecoline, but gallamine and methoctramine did not. Nifedipine, 2-aminoethoxydiphenyl borate (2-APB), and Ca2+-free Krebs solution with EGTA partly inhibited the effects of arecoline. The sum of Ca2+-free Krebs solution, EGTA, and 2-APB completely inhibited the effects of arecoline. The results show that arecoline stimulates distal colonic contraction in rats via the muscarinic (M3) receptor - extracellular Ca2+ influx - Ca2+ store release pathway. It is likely that the action of areca in relieving constipation is due to its stimulation of muscle contraction.

  14. Adenosine-5'-triphosphate (ATP supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets

    Directory of Open Access Journals (Sweden)

    Rathmacher John A

    2012-10-01

    Full Text Available Abstract Background Intracellular concentrations of adenosine-5’-triphosphate (ATP are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow not only increases substrate availability but may also aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise. Methods Sixteen participants (8 male and 8 female; ages: 21–34 years were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer. Results No differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p Conclusions Supplementation with 400 mg ATP/d for 15 days tended to reduce muscle fatigue and improved a participant’s ability to maintain a higher force output at the end of an exhaustive exercise bout.

  15. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling.

    Science.gov (United States)

    Plattner, Helmut; Verkhratsky, Alexei

    2016-08-05

    From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally

  16. ATP as a peripheral mediator of pain.

    Science.gov (United States)

    Hamilton, S G; McMahon, S B

    2000-07-01

    This article reviews the extent to which recent studies substantiate the hypothesis that ATP functions as a peripheral pain mediator. The discovery of the P2X family of ion channels (for which ATP is a ligand) and, in particular, the highly selective distribution of the P2X(3) receptor within the rat nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. ATP elicits excitatory inward currents in small diameter sensory ganglion cells. These currents resemble those elicited by ATP on recombinantly expressed heteromeric P2X(2/3) channels as well as homomultimers consisting of P2X(2) and P2X(3). In vivo behavioural models have characterised the algogenic properties of ATP in normal conditions and in models of peripheral sensitisation. In humans, iontophoresis of ATP induces modest pain. In rats and humans the response is dependent on capsaicin sensitive neurons and is augmented in the presence of inflammatory mediators. Since ATP can be released in the vicinity of peripheral nociceptive terminals under a variety of conditions, there exists a purinergic chain of biological processes linking tissue damage to pain perception. The challenge remains to prove a physiological role for endogenous ATP in activating this chain of events.

  17. Aptamer/Graphene Quantum Dots Nanocomposite Capped Fluorescent Mesoporous Silica Nanoparticles for Intracellular Drug Delivery and Real-Time Monitoring of Drug Release.

    Science.gov (United States)

    Zheng, Fen-Fen; Zhang, Peng-Hui; Xi, Yu; Chen, Jing-Jia; Li, Ling-Ling; Zhu, Jun-Jie

    2015-12-01

    Great challenges in investigating the release of drug in complex cellular microenvironments necessitate the development of stimuli-responsive drug delivery systems with real-time monitoring capability. In this work, a smart drug nanocarrier based on fluorescence resonance energy transfer (FRET) is fabricated by capping graphene quantum dots (GQDs, the acceptor) onto fluorescent mesoporous silica nanoparticles (FMSNs, the donor) via ATP aptamer for real-time monitoring of ATP-triggered drug release. Under extracellular conditions, the fluorescence of FMSNs remains in the "off" state in the low ATP level which is unable to trigger the release of drug. Once specifically recognized and internalized into the target tumor cells by AS1411 aptamer, in the ATP-rich cytoplasm, the conformation switch of the ATP aptamer causes the shedding of the GQDs from the nanocarriers, leading to the release of the loaded drugs and consequently severe cytotoxicity. Simultaneously, the fluorescence of FMSNs turns "on" along with the dissociation of GQDs, which allows real-time monitoring of the release of drug from the pores. Such a drug delivery system features high specificity of dual-target recognition with AS1411 and ATP aptamer as well as high sensitivity of the FRET-based monitoring strategy. Thus, the proposed multifunctional ATP triggered FRET-nanocarriers will find potential applications for versatile drug-release monitoring, efficient drug transport, and targeted cancer therapeutics.

  18. Glioactive ATP controls BDNF recycling in cortical astrocytes

    Science.gov (United States)

    Vignoli, Beatrice; Canossa, Marco

    2017-01-01

    ABSTRACT We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs.

  19. Protein Characterization of Extracellular Microvesicles/Exosomes Released from Cytotoxin-Challenged Rat Cerebrocortical Mixed Culture and Mouse N2a Cells.

    Science.gov (United States)

    Kumar, Dhwani; Manek, Rachna; Raghavan, Vijaya; Wang, Kevin K

    2017-03-10

    A number of neuronal and glial proteins were previously found to be released in free-standing soluble form from cultured brain cells into cell-conditioned media. Here, we sought to examine if similar proteins are also contained in neural and astroglial cell-released extracellular microvesicles/exosomes (MV/E). In this study, MV/E were isolated from cell-conditioned media from control and cytotoxin-challenged rat cerebrocortical mixed culture (CTX) and mouse neuroblastoma N2a cells. Cytotoxin challenges included pro-necrosis calcium ionophore A23187, pro-apoptosis staurosporine (STS), and excitotoxin N-methyl-D-aspartate. Based on established nanoparticle characterization method (dynamic light scattering, NanoTracker, and transmission electron microscopy), we confirmed that these released vesicles are in fact characteristic representation of MV/E by morphology (lipid bilayered vesicles) and by particle size (132-142 nm for CTX and 49-77 nm for N2a cells). We indeed identified neural cell body protein UCH-L1, axonal injury marker αII-spectrin and its breakdown products (SBDPs), astroglial markers GFAP and its breakdown products (GFAP-BDP), dendritic protein BIII-tubulin, synaptic protein synaptophysin, and exosome marker Alix in microvesicles from CTX and/or N2a cells. Furthermore, SBDPs, GFAP-BDP, UCH-L1, and synaptophysin are especially dominant in MV/E isolated from cytotoxin-treated CTX cells. Similarly, SBDPs, βIII-tubulin, and UCH-L1 are more prominently observed in cytotoxin-challenged N2a cells. Lastly, when isolated MV/E from A23187- or STS-challenged N2a cells were introduced to healthy N2a culture, they are capable of evoking cytotoxicity in the latter. Taken together, our study identified that microvesicles/exosomes isolated form healthy and injured brain cells contain certain neural and astroglial proteins, as well as possibly other cytotoxic factors that are capable of propagating cytotoxic effects.

  20. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  1. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  2. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    Science.gov (United States)

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  3. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  4. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop.

    Science.gov (United States)

    Michalski, Kevin; Kawate, Toshimitsu

    2016-02-01

    Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.

  5. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  6. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Takaki Junpei

    2012-12-01

    Full Text Available Abstract Background In the central nervous system, astrocytic L-glutamate (L-Glu transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown. Methods We used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM. We determined the optimal conditions of lipopolysaccharide (LPS treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model. Results Because LPS (10 ng/mL, 72 h caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST. Conclusions Our findings suggest that activated microglia trigger the

  7. The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-04-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)(2) complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP(2) of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P(2) variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM.

  8. The Second Extracellular Loop of Pore-Forming Subunits of ATP-Binding Cassette Transporters for Basic Amino Acids Plays a Crucial Role in Interaction with the Cognate Solute Binding Protein(s)▿

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-01-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)2 complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP2 of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P2 variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  9. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles. PMID:27583360

  10. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    Science.gov (United States)

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles.

  11. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells

    OpenAIRE

    Baconnais Sonia; Amiel Corinne; Schneider Véronique; Témam Stéphane; Lang Philippe; Guigay Joël; Vérillaud Benjamin; Klibi Jihène; Bombik Izabela; Gelin Aurore; Gourzones Claire; Jimenez Anne-Sophie; Busson Pierre

    2010-01-01

    Abstract Background Nasopharyngeal carcinoma (NPC) is a human epithelial malignancy consistently associated with the Epstein-Barr virus. The viral genome is contained in the nuclei of all malignant cells with abundant transcription of a family of viral microRNAs called BART miRNAs. MicroRNAs are well known intra-cellular regulatory elements of gene expression. In addition, they are often exported in the extra-cellular space and sometimes transferred in recipient cells distinct from the produc...

  12. Intracellular adenosine formation and release by freshly-isolated vascular endothelial cells from rat skeletal muscle: effects of hypoxia and/or acidosis.

    Science.gov (United States)

    Le, G Y; Essackjee, H C; Ballard, H J

    2014-07-18

    Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5'-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5'nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5'-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Metabolic requirements for neutrophil extracellular traps formation

    Science.gov (United States)

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  14. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana

    2015-01-01

    effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP...... and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and respond to even low...... concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling...

  15. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors.

    Science.gov (United States)

    Schenk, Ursula; Frascoli, Michela; Proietti, Michele; Geffers, Robert; Traggiai, Elisabetta; Buer, Jan; Ricordi, Camillo; Westendorf, Astrid M; Grassi, Fabio

    2011-03-01

    Extracellular nucleotides are pleiotropic regulators of mammalian cell function. Adenosine triphosphate (ATP) released from CD4(+) helper T cells upon stimulation of the T cell receptor (TCR) contributes in an autocrine manner to the activation of mitogen-activated protein kinase (MAPK) signaling through purinergic P2X receptors. Increased expression of p2rx7, which encodes the purinergic receptor P2X7, is part of the transcriptional signature of immunosuppressive CD4(+)CD25(+) regulatory T cells (T(regs)). Here, we show that the activation of P2X7 by ATP inhibits the suppressive potential and stability of T(regs). The inflammatory cytokine interleukin-6 (IL-6) increased ATP synthesis and P2X7-mediated signaling in T(regs), which induced their conversion to IL-17-secreting T helper 17 (T(H)17) effector cells in vivo. Moreover, pharmacological antagonism of P2X receptors promoted the cell-autonomous conversion of naïve CD4(+) T cells into T(regs) after TCR stimulation. Thus, ATP acts as an autocrine factor that integrates stimuli from the microenvironment and cellular energetics to tune the developmental and immunosuppressive program of the T cell in adaptive immune responses.

  16. Extracellular Adenosine Triphosphate Affects Systemic and Kidney Immune Cell Populations in Pregnant Rats

    NARCIS (Netherlands)

    Spaans, Floor; Melgert, Barbro N.; Borghuis, Theo; Klok, Pieter A.; de Vos, Paul; Bakker, Winston W.; van Goor, Harry; Faas, Marijke

    PROBLEM: Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation

  17. Intrarenal localization of the plasma membrane ATP channel pannexin1.

    Science.gov (United States)

    Hanner, Fiona; Lam, Lisa; Nguyen, Mien T X; Yu, Alan; Peti-Peterdi, János

    2012-11-15

    In the renal tubules, ATP released from epithelial cells stimulates purinergic receptors, regulating salt and water reabsorption. However, the mechanisms by which ATP is released into the tubular lumen are multifaceted. Pannexin1 (Panx1) is a newly identified. ubiquitously expressed protein that forms connexin-like channels in the plasma membrane, which have been demonstrated to function as a mechanosensitive ATP conduit. Here, we report on the localization of Panx1 in the mouse kidney. Using immunofluorescence, strong Panx1 expression was observed in renal tubules, including proximal tubules, thin descending limbs, and collecting ducts, along their apical cell membranes. In the renal vasculature, Panx1 expression was localized to vascular smooth muscle cells in renal arteries, including the afferent and efferent arterioles. Additionally, we tested whether Panx1 channels expressed in renal epithelial cells facilitate luminal ATP release by measuring the ATP content of urine samples freshly collected from wild-type and Panx1(-/-) mice. Urinary ATP levels were reduced by 30% in Panx1(-/-) compared with wild-type mice. These results suggest that Panx1 channels in the kidney may regulate ATP release and via purinergic signaling may participate in the control of renal epithelial fluid and electrolyte transport and vascular functions.

  18. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes.

    Science.gov (United States)

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo

    2006-01-01

    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes.

  19. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  20. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  1. Defect-Related Luminescent Hydroxyapatite-Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells Via an ATP-Induced cAMP/PKA Pathway.

    Science.gov (United States)

    Wang, Chao; Liu, Dandan; Zhang, Cuimiao; Sun, Jiadong; Feng, Weipei; Liang, Xing-Jie; Wang, Shuxiang; Zhang, Jinchao

    2016-05-11

    Novel defect-related hydroxyapatite (DHAP), which combines the advantages of HAP and defect-related luminescence, has the potential application in tissue engineering and biomedical area, because of its excellent capability of monitoring the osteogenic differentiation and material biodegradation. Although the extracellular mechanism of DHAP minerals and PO4(3-) functioning in osteogenic differentiation has been widely studied, the intracellular molecular mechanism through which PO4(3-) mediates osteogenesis of bone mesenchymal stem cells (BMSCs) is not clear. We examined a previously unknown molecular mechanism through which PO4(3-) promoted osteogenesis of BMSCs with an emphasis on adenosine-triphosphate (ATP)-induced cAMP/PKA pathway. Our studies showed that DHAP could be uptaken into lysosome, in which PO4(3-) was released from DHAP, because of the acid environment of lysosome. The released PO4(3-) interacted with ADP to form ATP, and then degraded into adenosine, an ATP metabolite, which interacted with A2b adenosine receptor to activate the cAMP/PKA pathway, resulting in the high expression of osteogenesis-related genes, such as Runx2, BMP-2, and OCN. These findings first revealed the function of ATP-metabolism in bone physiological homeostasis, which may be developed to cure bone metabolic diseases.

  2. Activation of volume-regulated Cl− channels by ACh and ATP in Xenopus follicles

    Science.gov (United States)

    Pérez-Samartín, Alberto L; Miledi, Ricardo; Arellano, Rogelio O

    2000-01-01

    Osmolarity-dependent ionic currents from follicle-enclosed Xenopus oocytes (follicles) were studied using electrophysiological techniques. Whole follicle currents were monitored using a two-electrode voltage clamp and single-channel activity was measured using the patch-clamp technique.In follicles held at -60 mV two chloride currents were activated in external hyposmotic solutions. One was the habitual volume-regulated current elicited by external hyposmolarity (ICl,swell), and the second was a slow and smooth current (Sin) generated by ACh or ATP application.In follicles, the permeability ratios for different anions with respect to Cl− were similar for both ICl,swell and Sin, with a sequence of: SCN− > I− > Br−≥ NO3−≥ Cl− > gluconate ≥ cyclamate > acetate > SO42−.Extracellular ATP blocked the outward component of Sin. Also, extracellular pH modulated the inactivation kinetics of Sin elicited by ACh; e.g. inactivation at +80 mV was ∼100% slower at pH 8.0 compared with that at pH 6.0.Lanthanides inhibited ICl,swell and Sin. La3+ completely inhibited ICl,swell with a half-maximal inhibitory concentration (IC50) of 17 ± 1.9 μm, while Sin was blocked up to 55% with an apparent IC50 of 36 ± 2.6 μm.Patch-clamp recordings in follicular cells showed that hyposmotic challenge opened inward single-channel currents. The single channel conductance (4.7 ± 0.4 pS) had a linear current-voltage relationship with a reversal membrane potential close to −20 mV. This single-channel activity was increased by application of ACh or ATP.The ICl,swell generation was not affected by pirenzepine or metoctramine, and did not affect the purinergic activation of the chloride current named Fin. Thus, ICl,swell was not generated via neurotransmitters released during cellular swelling.All together, equal discrimination for different anions, similar modulatory effects by extracellular pH, the blocking effects by ATP and La3+, and the same single-channel activity

  3. ATP storage and uptake by isolated pancreatic zymogen granules

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Novak, Ivana

    2010-01-01

    ATP is released from pancreatic acini in response to cholinergic and hormonal stimulation. The same stimuli cause exocytosis of ZG (zymogen granules) and release of digestive enzymes. The aim of the present study was to determine whether ZG stored ATP and to characterize the uptake mechanism...... for ATP transport into the ZG. ZG were isolated and the ATP content was measured using luciferin/luciferase assays and was related to protein in the sample. The estimate of ATP concentration in freshly isolated granules was 40-120 µM. The ATP uptake had an apparent Km value of 4.9±2.1 mM when granules...... were incubated without Mg2+ and a Km value of 0.47±0.05 mM in the presence of Mg2+, both in pH 6.0 buffers. The uptake of ATP was significantly higher at pH 7.2 compared with pH 6.0 solutions. The anion transport blockers DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate) and Evans Blue inhibited ATP...

  4. Hemopexin activity and extracellular ATP in the pathogenesis of preeclampsia

    NARCIS (Netherlands)

    Spaans, Floor

    2014-01-01

    Pre-eclampsie (zwangerschapsvergiftiging), de meest voorkomende zwangerschapscomplicatie, wordt gekenmerkt door hoge bloeddruk en eiwitten in de urine. We hebben geen behandeling, behalve het inleiden van de bevalling. Na de bevalling verdwijnt de aandoening. De exacte oorzaak van pre-eclampsie is n

  5. Hemopexin activity and extracellular ATP in the pathogenesis of preeclampsia

    NARCIS (Netherlands)

    Spaans, Floor

    2014-01-01

    Pre-eclampsie (zwangerschapsvergiftiging), de meest voorkomende zwangerschapscomplicatie, wordt gekenmerkt door hoge bloeddruk en eiwitten in de urine. We hebben geen behandeling, behalve het inleiden van de bevalling. Na de bevalling verdwijnt de aandoening. De exacte oorzaak van pre-eclampsie is

  6. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    Science.gov (United States)

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  7. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery.

    Science.gov (United States)

    Liao, Sumei; Klein, Marlise I; Heim, Kyle P; Fan, Yuwei; Bitoun, Jacob P; Ahn, San-Joon; Burne, Robert A; Koo, Hyun; Brady, L Jeannine; Wen, Zezhang T

    2014-07-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.

  8. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    Science.gov (United States)

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  9. Electrophysiological effects of ATP on brain neurones.

    Science.gov (United States)

    Illes, P; Nieber, K; Nörenberg, W

    1996-12-01

    1. The electrophysiological effects of ATP on brain neurones are either due to the direct activation of P2 purinoceptors by the unmetabolized nucleotide or to the indirect activation of P1. purinoceptors by the degradation product adenosine. 2. Two subtypes of P2 purinoceptors are involved, a ligand-activated ion channel (P2X) and a G protein-coupled receptor (P2Y). Hence, the stimulation of P2X purinoceptors leads to a cationic conductance increase, while the stimulation of P2Y purinoceptors leads to a G protein-mediated opening or closure of potassium channels. 3. ATP may induce a calcium-dependent potassium current by increasing the intracellular Ca2+ concentration. This is due either to the entry of Ca2+ via P2X purinoceptors or to the activation of metabotropic P2Y purinoceptors followed by signaling via the G protein/phospholipase C/inositol 1,4,5-trisphosphate (IP3) cascade. Eventually, IP3 releases Ca2+ from its intracellular pools. 4. There is no convincing evidence for the presence of P2U purinoceptors sensitive to both ATP and UTP, or pyrimidinoceptors sensitive to UTP only, in the central nervous system (CNS). 5. ATP-sensitive P2X and P2Y purinoceptors show a wide distribution in the CNS and appear to regulate important neuronal functions.

  10. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    Science.gov (United States)

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  11. The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells.

    Science.gov (United States)

    Campanella, Claudia; D'Anneo, Antonella; Marino Gammazza, Antonella; Caruso Bavisotto, Celeste; Barone, Rosario; Emanuele, Sonia; Lo Cascio, Filippa; Mocciaro, Emanuele; Fais, Stefano; Conway De Macario, Everly; Macario, Alberto J L; Cappello, Francesco; Lauricella, Marianna

    2016-05-17

    HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.

  12. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A

    Institute of Scientific and Technical Information of China (English)

    Jian-zhong HAN; Wen LIN; Yi-zhang CHEN

    2005-01-01

    Aim: In our previous observations, adenosine triphosphate (ATP) was found to evoke immediate elevations in intracellular free calcium concentration ([Ca2+]i) in HT4 neuroblastoma cells of mice. We tried to see if a brief pretreatment of glucocorticoids could inhibit the Ca2+ response and reveal the underlying signal ing mechanism. Methods: Measurement of [Ca2+]i was carried out using the dual-wavelength fluorescence method with Fura-2 as the indicator. Results: Pre incubation of HT4 cells for 5 min with corticosterone (B) or bovine serum albumin conjugated corticosterone (B-BSA) inhibited the peak [Ca2+]i increments in a concentration-dependent manner. Cortisol and dexamethasone had a similar action, while deoxycorticosterone and cholesterol were ineffective. Both extracellular Ca2+ influx and internal Ca2+ release contributed to ATP-induced [Ca2+]i elevation. The brief treatment with only B attenuated Ca2+ influx. Furthermore, the [Ca2+]i elevation induced by the P2X receptor agonist adenosine 5'-(β,γ-methylene) triphosphate (β,γ-meATP) was also suppressed. The rapid inhibitory effect of B can be reproduced by forskolin 1 mmol/L and blocked by H89 20 mmol/L. Neither nuclear glucocorticoid receptor antagonist mifepristone nor protein kinase C in hibitors influenced the rapid action of B. Conclusion: Our results suggest that glucocorticoids modulate P2X receptor-medicated Ca2+ influx through a membrane-initiated, non-genomic and PKA-dependent pathway in HT4 cells.

  14. Low extracellular calcium enhances beta cell sensitivity to the stimulatory influence of 1,25-dihydroxyvitamin D3 on insulin release by islets from vitamin D3-deficient rats.

    Science.gov (United States)

    Faure-Dussert, A G; Delbancut, A P; Billaudel, B J

    1997-07-01

    The beneficial effect of 1,25-dihydroxyvitamin D3 [1,25 (OH)2 D3] on insulin secretion from beta cells in hypocalcemic vitamin D3-deficient rats is now well established. Moreover, few data concerning the mechanism of 1,25 (OH) 2D3 efficiency as a function of the severity of hypocalcemia. In the present experiment, we submitted islets from vitamin D3-deficient rats to in vitro exposure to a range of decreasing extracellular Ca2+ concentrations ([Ca2+]ex), from 0.5 mM to 0.6 mM, during a 6-h 10-8 M 1,25 (OH) 2D3 induction. Thereafter, we compared the effect of this pretreatment on the islets' insulin response to a given stimulus. Various stimuli were used, and we measured in parallel the variations of 86Rb+ and 45Ca2+ efflux and insulin release into the perifusion medium. In the presence of 1,25 (OH) 2D3, we observed an inverse correlation between the [Ca2+]ex pre-exposure and the amplitude of the insulin response to certain stimuli studied, suggesting that beta cells that were pre-exposed to low [Ca2+]ex became more sensitive to the beneficial effect of 1,25 (OH) 2D3 on insulin release. This effect was observed when beta cells were activated by acetylcholine but only during its second phase of stimulation, and more particularly with the barium plus theophylline stimulus. In contrast, insulin release was not affected by [Ca2+]ex pre-exposure during 1,25 (OH) 2D3 induction in response to acetylcholine during its first phase of stimulation, thus excluding any mechanism mediated via nutrient pathways, membrane depolarization, or inositol triphosphate (IP3)-dependent events. Moreover, the islets that were pre-exposed to a 10-fold [Ca2+]ex exhibited only a 50% lower 45Ca2+ content after 45Ca2+ loading, suggesting a different or relatively more efficient storage capacity in the presence of low extracellular calcium. Studies of 45Ca2+ efflux showed that the mobilization of Ca2+ stores induced by a barium plus theophylline stimulus, in the absence of calcium in the

  15. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase

    OpenAIRE

    Rak, Malgorzata; Tzagoloff, Alexander

    2009-01-01

    The ATP synthase of yeast mitochondria is composed of 17 different subunit polypeptides. We have screened a panel of ATP synthase mutants for impaired expression of Atp6p, Atp8p, and Atp9p, the only mitochondrially encoded subunits of ATP synthase. Our results show that translation of Atp6p and Atp8p is activated by F1 ATPase (or assembly intermediates thereof). Mutants lacking the α or β subunits of F1, or the Atp11p and Atp12p chaperones that promote F1 assembly, have normal levels of the b...

  16. P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells.

    Science.gov (United States)

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2011-04-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.

  17. β-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus.

    Science.gov (United States)

    Fu, S-P; Liu, B-R; Wang, J-F; Xue, W-J; Liu, H-M; Zeng, Y-L; Huang, B-X; Li, S-N; Lv, Q-K; Wang, W; Liu, J-X

    2015-03-01

    β-Hydroxybutyric acid (BHBA) has recently been shown to regulate hormone synthesis and secretion in the hypothalamus. However, little is known about the effects of BHBA-mediated hormone regulation or the detailed mechanisms by which BHBA regulates growth hormone-releasing hormone (GHRH) synthesis and secretion. In the present study, we examined the expression of the BHBA receptor GPR109A in primary hypothalamic cell cultures. We hypothesised that BHBA regulates GHRH via GPR109A and its downstream signals. Initial in vivo studies conducted in rats demonstrated that GHRH mRNA expression in the hypothalamus was strongly inversely correlated with BHBA levels in the cerebrospinal fluid during postnatal development (r = -0.89, P hypothalamus in both in vivo and in vitro, and this effect was also inhibited by PTX in vitro. In primary hypothalamic cells, BHBA activated the extracellular signal-regulated kinase (ERK)1/2, p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) kinases, as shown by western blot analysis. Moreover, inhibition of ERK1/2 with U0126 attenuated the BHBA-mediated reduction in Gsh-1 expression and GHRH synthesis and secretion. These results strongly suggest that BHBA directly regulates GHRH synthesis and secretion via the GPR109A/ERK1/2 MAPK pathway, and also that Gsh-1 is essential for this function. © 2015 British Society for Neuroendocrinology.

  18. 异丙酚在不同pH值环境下对苯甲酰苯甲酸ATP诱发的巨噬细胞嘌呤2X7受体电流的影响%Effect of propofol on BzATP induced P2X7-gated currents in RAW264.7 macrophages under different extracellular pH values

    Institute of Scientific and Technical Information of China (English)

    刘红亮; 戴体俊

    2011-01-01

    To investigate the sensitivity of P2X7 receptor to its specific agonist BZATP and the effect of propofol on P2X7-gated currents in RAW264. 7 macrophages under different extracellular pH values. METHODS-RAW264. 7 cells were cultured, and whole-cell patch clamp technique was used. BZATP (10 - 10000 pimol/L) was applied for 5 seconds, the currents were recorded, and the EC50 value of BZATP was achieved under the extracellular pH value of 7. 4 or 6. 0. Propofol (1 -100 jumol/L) was applied to the cells for 1 min, then BZATP with two times EC50 value was applied, the IC50 or EC50 value of propofol was achieved under different extracellular pH values. To investigate the effect of propofol on the dose-response curve of B2ATP under different extracellular pH values, propofol with IC50 value was applied, and BZATP (10-10000 fimol/L) was applied for 5 seconds, the EC50 value of BZATP was achieved. RESULTS :BZATP could induce the inward cur-rents in a dose-dependent manner, and the EC50 value of BZATP was (112 ±26) μmol/L and (643 ±87) μmol/L at extracellular pH value of 7. 4 or 6. 0. Propofol could inhibit P2X7-gated currents at pH 7. 4, and the IC50 value was (31 ±6) μmol/L; but propofol increased P2X7-ga-ted currents at pH 6. 0, and the EC50 value was (38 ±6) fxmol/L. The IC50 value of propofol made the dose-response curve of BZATP shifted rightward at pH 7.4, or leftward at pH 6.0. CONCLUSION: The sensitivity of P2X7 receptor to BZATP decreases when extracellular pH value changes from 7. 4 to 6. 0. Propofol with clinically related concentrations could inhibit P2X7-ga-ted currents at pH 7. 4, and increase P2X7-gated currents at pH 6. 0 extracellularly.%目的:观察在不同pH值条件下巨噬细胞膜嘌呤2X7(P2X7)受体电流对其特异性激动剂苯甲酰苯甲酸ATP (BZATP)的敏感性及异丙酚对P2X7受体电流的影响.方法:应用培养的RAW264.7巨噬细胞,采用全细胞膜片钳技术,向细胞施加BZ ATP(10~10000 μmol/L)5 s,记录电流,

  19. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  20. Role of P2X7 Receptors in Release of IL-1β: A Possible Mediator of Pulmonary Inflammation.

    Science.gov (United States)

    Mortaz, Esmaeil; Adcock, Ian M; Shafei, Hamed; Masjedi, Mohammad Reza; Folkerts, Gert

    2012-01-01

    Extracellular ATP is a signaling molecule which plays an important role in alerting the immune system in case of any tissue damage. Recent studies show that binding of ATP to the ionotropic P2X7 receptor of inflammatory cells (macrophages and monocytes) will induce caspase 1 activation. Stimulation of caspase 1 activity results in maturation and release of IL-1β in the inflammasome in Chronic Obstructive Pulmonary Disease (COPD) patients. COPD is an inflammatory disease characterized by emphysema and/or chronic bronchitis and is mostly associated with cigarette smoking. It is one of the leading causes of death in humans and there is currently no medication to stop the progression of disease. A deeper understanding of the mechanism by which the P2X7 receptor triggers IL-1β maturation and release, may open new opportunities for the treatment of inflammatory diseases such as COPD.

  1. Towards the development of an automated ATP measuring platform to monitor microbial quality of drinking water

    DEFF Research Database (Denmark)

    Tatari, Karolina; Hansen, C. B.; Rasmussen, A.

    clogged the microfluidic channels. An alternative thermal lysis step was implemented, by adding a flow-though heating/cooling step to the system. Thermal lysis showed efficient release of ATP from an E. coli dilution, but the releasing efficiency varied according to the type of water. Overall......This work aimed to develop an automated and nearly on-line method to monitor ATP levels in drinking water as an indicator of microbial contamination. The system consists of a microfluidic cartridge installed in a light tight box, where the sample is mixed with the reagents and the emitted light...... is detected by a photomultiplier. Temperature in the assay box is controlled and set to 25°C. Calibration of the system using ATP standard solutions was successful, both for free and for total ATP. Chemical release of ATP by reagent addition however resulted in the formation of particles that ultimately...

  2. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Directory of Open Access Journals (Sweden)

    Julija Svirskaitė

    2016-02-01

    Full Text Available The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1 icosahedral internal membrane-containing SH1; (2 icosahedral tailed HHTV-1; (3 spindle-shaped His1; and (4 pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.

  3. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Science.gov (United States)

    Svirskaitė, Julija; Oksanen, Hanna M.; Daugelavičius, Rimantas; Bamford, Dennis H.

    2016-01-01

    The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels. PMID:26927156

  4. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  5. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    Science.gov (United States)

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  6. Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells.

    Science.gov (United States)

    Aromolaran, Ademuyiwa S; Zima, Aleksey V; Blatter, Lothar A

    2007-07-01

    The role of glycolytically generated ATP in Ca(2+)/calmodulin-dependent kinase II (CaMKII)-mediated regulation of intracellular Ca(2+) signaling was examined in cultured calf pulmonary artery endothelial (CPAE) cells. Exposure of cells (extracellular Ca(2+) concentration = 2 mM) to glycolytic inhibitors 2-deoxy-D-glucose (2-DG), pyruvate (pyr) + beta-hydroxybutyrate (beta-HB), or iodoacetic acid (IAA) caused an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). CaMKII inhibitors (KN-93, W-7) triggered a similar increase of [Ca(2+)](i). The rise of [Ca(2+)](i) was characterized by a transient spike followed by a small sustained plateau of elevated [Ca(2+)](i). In the absence of extracellular Ca(2+) 2-DG caused an increase in [Ca(2+)](i), suggesting that inhibition of glycolysis directly triggered release of Ca(2+) from intracellular endoplasmic reticulum (ER) Ca(2+) stores. The inositol-1,4,5-trisphosphate receptor (IP(3)R) inhibitor 2-aminoethoxydiphenyl borate abolished the KN-93- and 2-DG-induced Ca(2+) response. Ca(2+) release was initiated in peripheral cytoplasmic processes from which activation propagated as a [Ca(2+)](i) wave toward the central region of the cell. Focal application of 2-DG resulted in spatially confined elevations of [Ca(2+)](i). Propagating [Ca(2+)](i) waves were preceded by [Ca(2+)](i) oscillations and small, highly localized elevations of [Ca(2+)](i) (Ca(2+) puffs). Inhibition of glycolysis with 2-DG reduced the KN-93-induced Ca(2+) response, and vice versa during inhibition of CaMKII 2-DG-induced Ca(2+) release was attenuated. Similar results were obtained with pyr + beta-HB and W-7. Furthermore, 2-DG and IAA caused a rapid increase of intracellular Mg(2+) concentration, indicating a concomitant drop of cellular ATP levels. In conclusion, CaMKII exerts a profound inhibition of ER Ca(2+) release in CPAE cells, which is mediated by glycolytically generated ATP, possibly through ATP-dependent phosphorylation of the IP(3)R.

  7. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  8. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  9. Involvement of anion channels in mediating elicitor-induced ATP efflux in Salvia miltiorrhiza hairy roots.

    Science.gov (United States)

    Wu, Shu-Jing; Siu, Ka-Chai; Wu, Jian-Yong

    2011-01-15

    This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn(2+), but not by a specific Cl(-) channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.

  10. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    Science.gov (United States)

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  11. ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs.

    Science.gov (United States)

    Betzenhauser, Matthew J; Wagner, Larry E; Park, Hyung Seo; Yule, David I

    2009-06-12

    ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.

  12. Molecular mechanism for H(2)S-induced activation of K(ATP) channels.

    Science.gov (United States)

    Jiang, Bo; Tang, Guanghua; Cao, Kun; Wu, Lingyun; Wang, Rui

    2010-05-15

    Hydrogen sulfide (H(2)S) is an endogenous opener of K(ATP) channels in many different types of cells. However, the molecular mechanism for an interaction between H(2)S and K(ATP) channel proteins remains unclear. The whole-cell patch-clamp technique and mutagenesis approach were used to examine the effects of H(2)S on different K(ATP) channel subunits, rvKir6.1 and rvSUR1, heterologously expressed in HEK-293 cells. H(2)S stimulated coexpressed rvKir6.1/rvSUR1 K(ATP) channels, but had no effect on K(ATP) currents generated by rvKir6.1 expression alone. Intracellularly applied sulfhydryl alkylating agent (N-ethylmaleimide, NEM), oxidizing agent (chloramine T, CLT), and a disulfide bond-oxidizing enzyme (protein disulfide isomerase) did not alter H(2)S effects on this recombinant channels. CLT, but not NEM, inhibited basal rvKir6.1/rvSUR1 currents, and both abolished the stimulatory effects of H(2)S on K(ATP) currents, when applied extracellularly. After selective cysteine residues (C6S and C26S but not C1051S and C1057S) in the extracellular loop of rvSUR1 subunits were point-mutated, H(2)S lost its stimulatory effects on rvKir6.1/rvSUR1 currents. Our results demonstrate that H(2)S interacts with Cys6 and Cys26 residues of the extracellular N terminal of rvSUR1 subunit of K(ATP) channel complex. Direct chemical modification of rvSUR1 subunit protein constitutes a molecular mechanism for the activation of K(ATP) channels by H(2)S.

  13. The role of calcium in endotoxin-induced release of calcitonin gene-related peptide (CGRP) from rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    唐跃明; 韩启德; 王宪

    1997-01-01

    In the present study, the role of calcium in endotoxin-induced CGRP release was studied. 2 .5-50 μg/mL endotoxin and 1 -10 mmol/L caffeine caused concentration-dependent increase of CGRP release from rat spinal cord in vitro. However, no additive effect could he found when caffeine and endotoxin were concomitantly incubated. By using capsaicin, Ca2+-free medium, Omega-Conotoxin, nifedipine, W-7, ryanodine, MgCl2, Tris-ATP, rutheni-um red, the results indicate that the release of CGRP evoked by endotoxin from the sensory fibers of rat spinal cord is dependent on extracellular calcium. After entering into the cell through the N-type calcium channel, calcium binds to calmodulin, and triggers calcium release from intracellular calcium store by activating the caffeine-sensitive but ryan-odine-insensitive mechanism.

  14. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  15. Neutrophil Extracellular Traps and Microcrystals.

    Science.gov (United States)

    Rada, Balázs

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  16. Neutrophil Extracellular Traps and Microcrystals

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    2017-01-01

    Full Text Available Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  17. ATP as a biomarker of viable microorganisms in clean-room facilities

    Science.gov (United States)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  18. ATP as a biomarker of viable microorganisms in clean-room facilities

    Science.gov (United States)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  19. Substantia nigra osmoregulation: taurine and ATP involvement.

    Science.gov (United States)

    Morales, Ingrid; Dopico, Jose G; Sabate, Magdalena; Gonzalez-Hernandez, Tomas; Rodriguez, Manuel

    2007-05-01

    An extracellular nonsynaptic taurine pool of glial origin was recently reported in the substantia nigra (SN). There is previous evidence showing taurine as an inhibitory neurotransmitter in the SN, but the physiological role of this nonsynaptic pool of taurine has not been explored. By using microdialysis methods, we studied the action of local osmolarity on the nonsynaptic taurine pool in the SN of the rat. Hypoosmolar pulses (285-80 mosM) administered in the SN by the microdialysis probe increased extrasynaptic taurine in a dose-dependent way, a response that was counteracted by compensating osmolarity with choline. The opposite effect (taurine decrease) was observed when osmolarity was increased. Under basal conditions, the blockade of either the AMPA-kainate glutamate receptors with 6-cyano-7-nitroquinoxaline-2,3-dionine disodium or the purinergic receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid modified the taurine concentration, suggesting that both receptors modulate the extrasynaptic pool of taurine. In addition, these drugs decreased the taurine response to hypoosmolar pulses, suggesting roles for glutamatergic and purinergic receptors in the taurine response to osmolarity. The participation of purinergic receptors was also supported by the fact that ATP (which, under basal conditions, increased the extrasynaptic taurine in a dose-dependent way) administered in doses saturating purinergic receptors also decreased the taurine response to hypoosmolarity. Taken together, present data suggest osmoregulation as a role of the nonsynaptic taurine pool of the SN, a function that also involves glutamate and ATP and that could influence the nigral cell vulnerability in Parkinson's disease.

  20. Functional studies of ATP sulfurylase from Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, P.A.

    1985-01-01

    ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP. Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.

  1. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    NARCIS (Netherlands)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique|info:eu-repo/dai/nl/30481489X; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke|info:eu-repo/dai/nl/074327941; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M|info:eu-repo/dai/nl/256594783; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information

  2. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    NARCIS (Netherlands)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information fro

  3. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    Science.gov (United States)

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB–atpE dicistronic mRNAs in chloroplasts

    OpenAIRE

    Suzuki, Haruka; Kuroda, Hiroshi; Yukawa, Yasushi; Sugiura, Masahiro

    2011-01-01

    The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the ...

  5. Red blood cell ATP/ADP & nitric oxide: The best vasodilators in diabetic patients

    Directory of Open Access Journals (Sweden)

    Bakhtiari Nuredin

    2012-08-01

    Full Text Available Abstract Background Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels that result from defects in insulin secretion, or action, or both. Inspired by previous report the release of ATP from RBCs, which may participate in vessel dilation by stimulating NO production in the endothelium through purinergic receptor signaling and so, the aim of this study is to clearly determined relationship between RBC ATP/ADP ratio with nitric oxide. Methods The ATP/ADP ratio of erythrocytes among four groups of normal individuals (young & middle age, athletes’ subjects and diabetic patients were compared and the relationship between ATP/ADP ratio and NO level of plasma was determined with AVOVA test and bioluminescence method. Results ATP/ADP level in four groups normal (young & middle age, athletes, diabetes] are measured and analyzed with ANOVA test that show a significant difference between groups (P-value Conclusion In this study, a positive relationship between RBC ATP/ADP ratio and NO was found. Based on the obtained result, higher RBC ATP/ADP content may control the ratio of plasma NO in different individuals, also this results show that ATP can activate endothelial cells in NO production and is a main factor in releasing of NO from endothelial cells.

  6. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise

    Directory of Open Access Journals (Sweden)

    Askew Christopher D

    2009-12-01

    Full Text Available Abstract Background It has been proposed that adenosine triphosphate (ATP released from red blood cells (RBCs may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC. Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

  7. α1-Adrenoceptor-mediated Ca2+-entry from the extracellular fluid and Ca2+-release from intracellular stores: No role for α(1A,B)-adrenoceptor subtypes in the pithed rat

    NARCIS (Netherlands)

    Schwietert, H.R.; Mathy, M.-J.; Wilhelm, D.; Wilffert, B.; Pfaffendorf, M.; Van Zwieten, P.A.

    1992-01-01

    1. In the present study, we tested the hypothesis that in the pithed rat preparation two subtypes of the α1-adrenoceptor are linked to two different signal transduction mechanisms, both of which contribute to vasoconstriction, one facilitating Ca2+-entry from the extracellular fluid (α(1A)) and one

  8. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  9. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  10. A secreted tyrosine kinase acts in the extracellular environment.

    Science.gov (United States)

    Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B; Thon, Jonathan N; Italiano, Joseph E; Xiao, Junyu; Worby, Carolyn; Wong, Swee-Kee; Lin, Grace; Edenius, Maja; Keller, Tracy L; Asara, John M; Dixon, Jack E; Yeo, Chang-Yeol; Whitman, Malcolm

    2014-08-28

    Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.

  11. ATPase Activity Measurements Using Radiolabeled ATP

    NARCIS (Netherlands)

    Swarts, H.G.; Koenderink, J.B.

    2016-01-01

    ATP provides the energy that is essential for all P-type ATPases to actively transport their substrates against an existing gradient. This ATP hydrolysis can be measured using different methods. Here, we describe a method that uses radiolabeled [gamma-(32)P]ATP, which is hydrolyzed by P-type ATPases

  12. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  13. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    Science.gov (United States)

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  14. Metal-dependent regulation of ATP7A and ATP7B in fibroblast cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured...

  15. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz;

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured...

  16. 2´,3´-Dialdehyde of ATP, ADP, and adenosine inhibit HIV-1 reverse transcriptase and HIV-1 replication.

    Science.gov (United States)

    Schachter, Julieta; Valadao, Ana Luiza Chaves; Aguiar, Renato Santana; Barreto-de-Souza, Victor; Rossi, Atila Duque; Arantes, Pablo Ricardo; Verli, Hugo; Quintana, Paula Gabriela; Heise, Norton; Tanuri, Amilcar; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis

    2014-01-01

    The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.

  17. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O;

    2000-01-01

    to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover......Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown......-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant...

  18. Does extracellular calcium determine what pool of GABA is the target for alpha-latrotoxin?

    Science.gov (United States)

    Storchak, L G; Linetska, M V; Himmelreich, N H

    2002-04-01

    Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha-latrotoxin-released

  19. Ultrasensitive bioluminescent determinations of adenosine triphosphate (ATP) for investigating the energetics of host-grown microbes

    Science.gov (United States)

    Hanks, J. H.; Dhople, A. M.

    1975-01-01

    Stability and optimal concentrations of reagents were studied in bioluminescence assay of ATP levels. Luciferase enzyme was prepared and purified using Sephadex G-100. Interdependencies between enzyme and luciferin concentrations in presence of optimal Mg are illustrated. Optimal ionic strength was confirmed to be 0.05 M for the four buffers tested. Adapted features of the R- and H-systems are summarized, as well as the percentages of ATP pools released from representative microbes by heat and chloroform.

  20. Protection of ATP-Depleted Cells by Impermeant Strychnine Derivatives

    Science.gov (United States)

    Dong, Zheng; Venkatachalam, Manjeri A.; Weinberg, Joel M.; Saikumar, Pothana; Patel, Yogendra

    2001-01-01

    Glycine and structurally related amino acids with activities at chloride channel receptors in the central nervous system also have robust protective effects against cell injury by ATP depletion. The glycine receptor antagonist strychnine shares this protective activity. An essential step toward identification of the molecular targets for these compounds is to determine whether they protect cells through interactions with intracellular targets or with molecules on the outer surface of plasma membranes. Here we report cytoprotection by a cell-impermeant derivative of strychnine. A strychnine-fluorescein conjugate (SF) was synthesized, and impermeability of plasma membranes to this compound was verified by fluorescence confocal microscopy. In an injury model of Madin-Darby canine kidney cells, ATP depletion led to lactate dehydrogenase release. SF prevented lactate dehydrogenase leakage without ameliorating ATP depletion. This was accompanied by preservation of cellular ultrastructure and exclusion of vital dyes. SF protection was also shown for ATP-depleted rat hepatocytes. On the other hand, when a key structural motif in the active site of strychnine was chemically blocked, the SF lost its protective effect, establishing strychnine-related specificity for SF protection. Cytoprotective effects of the cell-impermeant strychnine derivative provide compelling evidence suggesting that molecular targets on the outer surface of plasma membranes may mediate cytoprotection by strychnine and glycine. PMID:11238050

  1. Urinary ATP may be a dynamic biomarker of detrusor overactivity in women with overactive bladder syndrome.

    Directory of Open Access Journals (Sweden)

    Miguel Silva-Ramos

    Full Text Available BACKGROUND: Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. METHODS: Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF by ELISA. RESULTS: The urinary content of ATP, but not of NGF, normalized to patients' urine creatinine levels (ATP/Cr or urinary volume (ATP.Vol were significantly (P<0.05 higher in OAB women with detrusor overactivity (n = 34 than in healthy controls (n = 30. Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. CONCLUSION: A high area under the receiver operator characteristics (ROC curve (0.741; 95% CI 0.62-0.86; P<0.001 is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome.

  2. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  3. [A review of recent researches on correlation between ATP and acupuncture efficacies].

    Science.gov (United States)

    Chen, Bo; Guo, Yi; Zhao, Xue; Liu, Yang-Yang; Li, Zhong-Zheng; Li, Ying-Hong; Guo, Yong-Ming

    2012-08-01

    It has been documented that adenosine triphosphate (ATP) is a multifunctional nucleoside triphosphate used in cells, including chemical energy transportation, extra- and intracellular signaling, cell structure maintaining, DNA and RNA synthesis, etc. In the present paper, the authors reviewed studies on the involvement of ATP in different efficacies of acupuncture intervention from the following four aspects. 1) ATP release in the stimulated acupoint area is one of the key factors for producing acupuncture analgesia; 2) Acupuncture induced suppression of ATP activity in the central nervous system results in pain relief; 3) ATP application on the human body surface may strengthen the sensation propagation along the meridian; 4) Favorable regulation of acupuncture intervention on the abnormal functional activities of some viscera often accompanies with an increase of ATP content and ATPase activity in the related internal organs. It has been proposed that ATP, Ca2+ and reactive oxygen species (ROS) are closely related each other in the life activities of the organism. Hence, a reasonable regulation on ATP levels in the related organs of the body may be a new approach for raising clinical therapeutic effects of acupuncture therapy.

  4. Antiphospholipid Antibodies Bind ATP: A putative Mechanism for the Pathogenesis of Neuronal Dysfunction

    Directory of Open Access Journals (Sweden)

    J. Chapman

    2005-01-01

    Full Text Available Antiphospholipid antibodies (aPL generated in experimental animals cross-react with ATP. We therefore examined the possibility that aPL IgG from human subjects bind to ATP by affinity column and an enzyme linked immunosorbent assay (ELISA. Sera with high levels of aPL IgG were collected from 12 patients with the antiphospholipid syndrome (APS. IgG fractions from 10 of 12 APS patients contained aPL that could be affinity-bound to an ATP column and completely eluted with NaCl 0.5 M. A significant (>50% inhibition of aPL IgG binding by ATP 5 mM was found in the majority. Similar inhibition was obtained with ADP but not with AMP or cAMP. All the affinity purified anti-ATP antibodies also bound β2-glycoprotein-I (β2-GPI, also known as apolipoprotein H suggesting that, similar to most pathogenic aPL, their binding depends on this serum cofactor. We further investigated this possibility and found that the binding of β2-GPI to the ATP column was similar to that of aPL IgG in that most was reversed by NaCl 0.5 M. Furthermore, addition of β2-GPI to aPL IgG significantly increased the amount of aPL binding to an ATP column. We conclude that aPL IgG bind ATP, probably through β2-GPI. This binding could interfere with the normal extracellular function of ATP and similar neurotransmitters.

  5. The extracellular RNA complement of Escherichia coli.

    Science.gov (United States)

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  6. Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes

    Institute of Scientific and Technical Information of China (English)

    Amy; J; Galliher-Beckley; Li-Qiong; Lan; Shelly; Aono; Lei; Wang; Jishu; Shi

    2013-01-01

    AIM:To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β(pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events.METHODS:All experiments were performed on fresh or overnight cultured human peripheral blood monocytes(PBMCs) that were isolated from healthy donors.PBMCs were activated by lipopolysaccharide(LPS) stimulation before being treated with Adenosine triphosphate(ATP,1 mmol/L),human α-defensin-5(HD-5,50 μg/mL),and/or nigericin(Nig,30 μmol/L).For each experiment,the culture supernatants were collected separately from the cells.Cell lysates and supernatants were both subject to immunoprecipitation with anti-IL1β antibodies followed by western blot analysis with anti-caspase-1 and anti-IL-1β antibodies.RESULTS:We found that pro-IL-1β was processed to mature IL-1β in LPS-activated fresh and overnight cultured human monocytes in response to ATP stimulation.In the presence of HD-5,this release of IL-1β,but not the processing of pro-IL-1β to IL-1β,was completely inhibited.Similarly,in the presence of HD-5,the release of IL-1β,but not the processing of IL-1β,was significantly inhibited from LPS-activated monocytes stimulated with Nig.Finally,we treated LPS-activated monocytes with ATP and Nig and collected the supernatants.We found that both ATP and Nig stimulation could activate and release cleaved caspase-1 from the monocytes.Interestingly,and contrary to IL-1β processing and release,caspase-1 cleavage and release was not blocked by HD-5.All images are representative of three independent experiments.CONCLUSION:These data suggest that caspase-1 activation/processing of pro-IL-1β by caspase-1 and the release of mature IL-1β from human monocytes are distinct and separable events.

  7. Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females.

    Science.gov (United States)

    Fujii, Naoto; Halili, Lyra; Singh, Maya Sarah; Meade, Robert D; Kenny, Glen P

    2015-10-15

    Acetylcholine released from cholinergic nerves is a key neurotransmitter contributing to heat stress-induced cutaneous vasodilation and sweating. Given that sympathetic cholinergic nerves also release ATP, ATP may play an important role in modulating cholinergic cutaneous vasodilation and sweating. However, the pattern of response may differ between males and females given reports of sex-related differences in the peripheral mechanisms governing these heat loss responses. Cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) and sweat rate (ventilated capsule) were evaluated in 17 young adults (8 males, 9 females) at four intradermal microdialysis skin sites continuously perfused with: 1) lactated Ringer (Control), 2) 0.3 mM ATP, 3) 3 mM ATP, or 4) 30 mM ATP. At all skin sites, methacholine was coadministered in a concentration-dependent manner (0.0125, 0.25, 5, 100, 2,000 mM, each for 25 min). In both males and females, CVC was elevated with the lone infusion of 30 mM ATP (both P 0.27). However, 0.3 mM ATP induced a greater increase in CVC compared with control in response to 100 mM methacholine infusion in males (P 0.44). We demonstrate that ATP enhances cholinergic cutaneous vasodilation albeit the pattern of response differs between males and females. Furthermore, we show that ATP does not modulate cholinergic sweating.

  8. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M; Reddy, Sekhar P; Cress, Anne E; Tang, Haiyang; Dudek, Steven M; Black, Stephen M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2016-01-15

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. Copyright

  9. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  10. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  11. Activation of the damage-associated molecular pattern receptor P2X7 induces interleukin-1β release from canine monocytes.

    Science.gov (United States)

    Jalilian, Iman; Peranec, Michelle; Curtis, Belinda L; Seavers, Aine; Spildrejorde, Mari; Sluyter, Vanessa; Sluyter, Ronald

    2012-09-15

    P2X7, a damage-associated molecular pattern receptor and adenosine 5'-triphosphate (ATP)-gated cation channel, plays an important role in the activation of the NALP3 inflammasome and subsequent release of interleukin (IL)-1β from human monocytes; however its role in monocytes from other species including the dog remains poorly defined. This study investigated the role of P2X7 in canine monocytes, including its role in IL-1β release. A fixed-time flow cytometric assay demonstrated that activation of P2X7 by extracellular ATP induces the uptake of the organic cation, YO-PRO-1(2+), into peripheral blood monocytes from various dog breeds, a process impaired by the specific P2X7 antagonist, A438079. Moreover, in five different breeds, relative P2X7 function in monocytes was about half that of peripheral blood T cells but similar to that of peripheral blood B cells. Reverse transcription-PCR demonstrated the presence of P2X7, NALP3, caspase-1 and IL-1β in LPS-primed canine monocytes. Immunoblotting confirmed the presence of P2X7 in LPS-primed canine monocytes. Finally, extracellular ATP induced YO-PRO-1(2+) uptake into and IL-1β release from these cells, with both processes impaired by A438079. These results demonstrate that P2X7 activation induces the uptake of organic cations into and the release of IL-1β from canine monocytes. These findings indicate that P2X7 may play an important role in IL-1β-dependent processes in dogs.

  12. Students' Interdisciplinary Reasoning about "High-Energy Bonds" and ATP

    CERN Document Server

    Dreyfus, Benjamin W; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F

    2012-01-01

    Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectiv...

  13. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  14. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing

    NARCIS (Netherlands)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-01-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at m

  15. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  16. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  17. Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages.

    Directory of Open Access Journals (Sweden)

    Duo-ling Li

    Full Text Available Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP-induced intracellular calcium ([Ca(2+]i handling in Raw 264.7 macrophages. In the present study, [Ca(2+]i transient, reactive oxygen species (ROS and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+ channel blockers had no effect on the resting [Ca(2+]i of Raw 264.7 cells. Extracellular ATP (100 µM induced [Ca(2+]i transient elevation independent of extracellular Ca(2+. The transient elevation was inhibited by an ROS scavenger (tiron and mitochondria inhibitor (rotenone. Glibenclamide and 5-hydroxydecanoate (5-HD also decreased ATP-induced [Ca(2+]i transient elevation, but pinacidil and other unselective K(+ channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+]i transient induced by extracellular thapsigargin (Tg, 1 µM. Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.

  18. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1999-08-01

    Control analysis was used to analyse the internal control of rat hepatocyte metabolism. The reactions of the cell were grouped into nine metabolic blocks linked by five key intermediates. The blocks were glycogen breakdown, glucose release, glycolysis, lactate production, NADH oxidation, pyruvate oxidation, mitochondrial proton leak, mitochondrial phosphorylation and ATP consumption. The linking intermediates were intracellular glucose-6-phosphate, pyruvate and ATP levels, cytoplasmic NADH/NAD ratio and mitochondrial membrane potential. The steady-state fluxes through the blocks and the levels of the intermediates were measured in the absence and presence of specific effectors of hepatocyte metabolism. Application of the multiple modulation approach gave the kinetic responses of each block to each intermediate (the elasticities). These were then used to calculate all of the control coefficients, which describe the degree of control each block had over the level of each intermediate, and over the rate of each process. Within this full description of control, many different interactions could be identified. One key finding was that the processes that consumed ATP had only 35% of the control over the rate of ATP consumption. Instead, the reactions that produced ATP exerted the most control over ATP consumption rate; particularly important were mitochondrial phosphorylation (30% of control) and glycolysis (19%). The rate of glycolysis was positively controlled by the glycolytic enzymes themselves (66% of control) and by ATP consumption (47%). Mitochondrial production of ATP, including oxidative, proton leak and phosphorylation processes, had negative control over glycolysis (-26%; the Pasteur effect). In contrast, glycolysis had little control over the rate of ATP production by the mitochondria (-10%; the Crabtree effect). Control over the flux through the mitochondrial phosphorylation block was shared between pyruvate oxidation (23%), ATP consumption (28%) and the

  19. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    Science.gov (United States)

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment.

  20. The ATP-P2X7 signalling axis is dispensable for obesity-associated inflammasome activation in adipose tissue

    NARCIS (Netherlands)

    Sun, S.; Xia, S.; Ji, Y.; Kersten, A.H.; Qi, L.

    2012-01-01

    Inflammasome activation in adipose tissue has been implicated in obesity-associated insulin resistance and type 2 diabetes. However, when and how inflammasome is activated in adipose tissue remains speculative. Here we test the hypothesis that extracellular ATP, a potent stimulus of inflammasome in

  1. The ATP-P2X7 signalling axis is dispensable for obesity-associated inflammasome activation in adipose tissue

    NARCIS (Netherlands)

    Sun, S.; Xia, S.; Ji, Y.; Kersten, A.H.; Qi, L.

    2012-01-01

    Inflammasome activation in adipose tissue has been implicated in obesity-associated insulin resistance and type 2 diabetes. However, when and how inflammasome is activated in adipose tissue remains speculative. Here we test the hypothesis that extracellular ATP, a potent stimulus of inflammasome in

  2. Intracellular drug release nanosystems

    Directory of Open Access Journals (Sweden)

    Fenghua Meng

    2012-10-01

    Full Text Available In order to elicit therapeutic effects, many drugs including small molecule anticancer drugs, proteins, siRNA, and DNA have to be delivered and released into the specific cellular compartments typically the cytoplasm or nucleus of target cells. Intracellular environment-responsive nanosystems that exhibit good extracellular stability while rapidly releasing drugs inside cancer cells have been actively pursued for effective cancer therapy. Here, we highlight novel designs of smart nanosystems that release drugs in response to an intracellular biological signal of cancer cells such as acidic pH in endo/lysosomal compartments, enzymes in lysosomes, and redox potential in cytoplasm and the cell nucleus.

  3. Tetraspanins in Extracellular Vesicle Formation and Function

    OpenAIRE

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different phy...

  4. Tetraspanins in Extracellular Vesicle formation and function

    OpenAIRE

    Zoraida Andreu Martínez; María eYáñez-Mó

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physi...

  5. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP.

    Science.gov (United States)

    Karmakar, Mausita; Katsnelson, Michael A; Dubyak, George R; Pearlman, Eric

    2016-02-15

    Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K(+), NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca(2+)], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca(2+)]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact.

  6. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Dando, Robin; Roper, Stephen D

    2009-11-01

    Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.

  7. Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells.

    Science.gov (United States)

    Toma, Ildikó; Bansal, Eric; Meer, Elliott J; Kang, Jung Julie; Vargas, Sarah L; Peti-Peterdi, János

    2008-06-01

    Endothelial intracellular calcium ([Ca(2+)](i)) plays an important role in the function of the juxtaglomerular vasculature. The present studies aimed to identify the existence and molecular elements of an endothelial calcium wave in cultured glomerular endothelial cells (GENC). GENCs on glass coverslips were loaded with Fluo-4/Fura red, and ratiometric [Ca(2+)](i) imaging was performed using fluorescence confocal microscopy. Mechanical stimulation of a single GENC caused a nine-fold increase in [Ca(2+)](i), which propagated from cell to cell throughout the monolayer (7.9 +/- 0.3 microm/s) in a regenerative manner (without decrement of amplitude, kinetics, and speed) over distances >400 microm. Inhibition of voltage-dependent calcium channels with nifedipine had no effect on the above parameters, but the removal of extracellular calcium reduced Delta[Ca(2+)](i) by 50%. Importantly, the gap junction uncoupler alpha-glycyrrhetinic acid or knockdown of connexin 40 (Cx40) by transfecting GENCs with Cx40 short interfering RNA (siRNA) almost completely eliminated Delta[Ca(2+)](i) and the calcium wave. Breakdown of extracellular ATP using a scavenger cocktail (apyrase and hexokinase) or nonselective inhibition of purinergic P2 receptors with suramin, had similar blocking effects. Scraping cells off along a line eliminated physical contact between cells but did not effect calcium wave propagation. Using an ATP biosensor technique, we detected a significant elevation in extracellular ATP (Delta = 76 +/- 2 microM) during calcium wave propagation, which was abolished by Cx40 siRNA treatment (Delta = 6 +/- 1 microM). These studies suggest that connexin 40 hemichannels and extracellular ATP are key molecular elements of the glomerular endothelial calcium wave, which may serve important juxtaglomerular functions.

  8. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition.

    Directory of Open Access Journals (Sweden)

    Suma Mohan

    Full Text Available BACKGROUND: Glucose transporter 4 (GLUT4 is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states. Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport. CONCLUSIONS/SIGNIFICANCE: In the absence of a crystal structure for any

  9. Neuronal Release of Cytokine IL-3 Triggered by Mechanosensitive Autostimulation of the P2X7 Receptor Is Neuroprotective

    Science.gov (United States)

    Lim, Jason C.; Lu, Wennan; Beckel, Jonathan M.; Mitchell, Claire H.

    2016-01-01

    Mechanical strain due to increased pressure or swelling activates inflammatory responses in many neural systems. As cytokines and chemokine messengers lead to both pro-inflammatory and neuroprotective actions, understanding the signaling patterns triggered by mechanical stress may help improve overall outcomes. While cytokine signaling in neural systems is often associated with glial cells like astrocytes and microglia, the contribution of neurons themselves to the cytokine response is underappreciated and has bearing on any balanced response. Mechanical stretch of isolated neurons was previously shown to trigger ATP release through pannexin hemichannels and autostimulation of P2X7 receptors (P2X7Rs) on the neural membrane. Given that P2X7Rs are linked to cytokine activation in other cells, this study investigates the link between neuronal stretch and cytokine release through a P2X7-dependent pathway. Cytokine assays showed application of a 4% strain to isolated rat retinal ganglion cells (RGCs) released multiple cytokines. The P2X7R agonist BzATP also released multiple cytokines; Interleukin 3 (IL-3), TNF-α, CXCL9, VEGF, L-selectin, IL-4, GM-CSF, IL-10, IL-1Rα, MIP and CCL20 were released by both stimuli, with the release of IL-3 greatest with either stimuli. Stretch-dependent IL-3 release was confirmed with ELISA and blocked by P2X7R antagonists A438079 and Brilliant Blue G (BBG), implicating autostimulation of the P2X7R in stretch-dependent IL-3 release. Neuronal IL-3 release triggered by BzATP required extracellular calcium. The IL-3Rα receptor was expressed on RGCs but not astrocytes, and both IL-3Rα and IL-3 itself were predominantly expressed in the retinal ganglion cell layer of adult retinal sections, implying autostimulation of receptors by released IL-3. While the number of surviving ganglion cells decreased with time in culture, the addition of IL-3 protected against this loss of neurons. Expression of mRNA for IL-3 and IL-3Rα increased in rat

  10. Neuronal release of cytokine IL-3 triggered by mechanosensitive autostimulation of the P2X7 receptor is neuroprotective

    Directory of Open Access Journals (Sweden)

    Jason C Lim

    2016-11-01

    Full Text Available Mechanical strain due to increased pressure or swelling activates inflammatory responses in many neural systems. As cytokines and chemokine messengers lead to both pro-inflammatory and neuroprotective actions, understanding the signaling patterns triggered by mechanical stress may help improve overall outcomes. While cytokine signaling in neural systems is often associated with glial cells like astrocytes and microglia, the contribution of neurons themselves to the cytokine response is underappreciated and has bearing on any balanced response. Mechanical stretch of isolated neurons was previously shown to trigger ATP release through pannexin hemichannels and autostimulation of P2X7 receptors (P2X7Rs on the neural membrane. Given that P2X7Rs are linked to cytokine activation in other cells, this study investigates the link between neuronal stretch and cytokine release through a P2X7-dependent pathway. Cytokine assays showed application of a 4% strain to isolated rat retinal ganglion cells (RGCs released multiple cytokines. The P2X7R agonist BzATP also released multiple cytokines; IL-3, TNF-α, CXCL9, VEGF, L-selectin, IL-4, GM-CSF, IL-10, IL-1Rα, MIP and CCL20 were released by both stimuli, with the release of IL-3 greatest with either stimulus. Stretch-dependent IL-3 release was confirmed with ELISA and blocked by P2X7R antagonists A438079 and Brilliant Blue G (BBG, implicating autostimulation of the P2X7R in stretch-dependent IL-3 release. Neuronal IL-3 release triggered by BzATP required extracellular calcium. The IL-3Rα receptor was expressed on retinal ganglion cells but not astrocytes, and both IL-3Rα and IL-3 itself were predominantly expressed in the retinal ganglion cell layer of adult retinal sections, implying autostimulation of receptors by released IL-3. While the number of surviving ganglion cells decreased with time in culture, addition of IL-3 protected against this loss of neurons. Expression of mRNA for IL-3 and IL-3R

  11. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations.

    Science.gov (United States)

    Xing, Shu; Grol, Matthew W; Grutter, Peter H; Dixon, S Jeffrey; Komarova, Svetlana V

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca(2+)]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca(2+)]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K 1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

  12. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    Science.gov (United States)

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases.

  13. Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP).

    Science.gov (United States)

    Jiang, Houli; Anderson, Gail D; McGiff, John C

    2010-01-01

    In addition to serving as carriers of O(2), red blood cells (RBCs) regulate vascular resistance and the distribution of microvascular perfusion by liberating adenosine triphosphate (ATP) and epoxyeicosatrienoic acids (EETs) upon exposure to a low O(2) environment. Therefore, RBCs act as sensors that respond to low pO(2) by releasing millimolar amounts of ATP, a signaling molecule, and lipid mediators (EETs). The release of EETs occurs by a mechanism that is activated by ATP stimulation of P2X(7) receptors coupled to ATP transporters, which should greatly amplify the circulatory response to ATP. RBCs are reservoirs of EETs and the primary sources of plasma EETs, which are esterified to the phospholipids of lipoproteins. Levels of free EETs in plasma are low, about 3% of circulating EETs. RBC EETs are produced by direct oxidation of arachidonic acid (AA) esterified to glycerophospholipids and the monooxygenase-like activity of hemoglobin. On release, EETs affect vascular tone, produce profibrinolysis and dampen inflammation. A soluble epoxide hydrolase (sEH) regulates the concentrations of RBC and vascular EETs by metabolizing both cis- and trans-EETs to form dihydroxyeicosatrienoic acids (DHETs). The function and pathophysiological roles of trans-EETs and erythro-DHETs has yet to be integrated into a physiological and pathophysiological context.

  14. Adenosine 5′-triphosphate (ATP supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    Directory of Open Access Journals (Sweden)

    Arts Ilja CW

    2012-04-01

    Full Text Available Abstract Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine, or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube or 7 h (pellets post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003 and naso-duodenal tube (P = 0.001, but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of

  15. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  16. No effect of aluminium upon the hydrolysis of ATP in the coronary circulation of the isolated working rat heart.

    Science.gov (United States)

    Korchazhkina, O; Wright, G; Exley, C

    1999-08-30

    Adenosine 5'-triphosphate (ATP) is now recognised as an important extracellular signalling molecule. Its action at a number of specific receptors is mediated by the activity of ectonucleotidases. We have optimised a high performance liquid chromatography (HPLC) method to allow the simultaneous determination of ATP, and the products of its hydrolysis, in the coronary effluent of an isolated working rat heart. The method is extremely sensitive allowing picomolar quantities of product to be determined. We have used this method to investigate the influence of aluminium on the hydrolysis of ATP by an ecto-ATPase located in the luminal surface of the coronary endothelium of the rat heart. Aluminium did not influence the hydrolysis of ATP by this enzyme.

  17. Expression of ATP-insensitive KATP channels in pancreatic beta-cells underlies a spectrum of diabetic phenotypes.

    Science.gov (United States)

    Koster, Joseph C; Remedi, Maria S; Masia, Ricard; Patton, Brian; Tong, Ailing; Nichols, Colin G

    2006-11-01

    Glucose metabolism in pancreatic beta-cells elevates cytoplasmic [ATP]/[ADP], causing closure of ATP-sensitive K(+) channels (K(ATP) channels), Ca(2+) entry through voltage-dependent Ca(2+) channels, and insulin release. Decreased responsiveness of K(ATP) channels to the [ATP]/[ADP] ratio should lead to decreased insulin secretion and diabetes. We generated mice expressing K(ATP) channels with reduced ATP sensitivity in their beta-cells. Previously, we described a severe diabetes, with nearly complete neonatal lethality, in four lines (A-C and E) of these mice. We have now analyzed an additional three lines (D, F, and G) in which the transgene is expressed at relatively low levels. These animals survive past weaning but are glucose intolerant and can develop severe diabetes. Despite normal islet morphology and insulin content, islets from glucose-intolerant animals exhibit reduced glucose-stimulated insulin secretion. The data demonstrate that a range of phenotypes can be expected for a reduction in ATP sensitivity of beta-cell K(ATP) channels and provide models for the corollary neonatal diabetes in humans.

  18. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space

    Directory of Open Access Journals (Sweden)

    Schiller Madlen

    2012-07-01

    Full Text Available Abstract Background The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular localization of AtAPY1 was investigated to corroborate an extracellular function. Results Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O6-alkylguanine-DNA alkyltransferase-tag were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl-4-(p-diethylaminophenyl-hexatrienyl-pyridinium dibromide and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the fluorescent protein-tagged Golgi marker Membrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions were able to release the AtAPY1 protein from microsomal membranes. Conclusions AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is

  19. ATP and Presentation Service for Mizar Formalizations

    CERN Document Server

    Urban, Josef; Sitcliffe, Geoff

    2011-01-01

    This paper describes the Automated Reasoning for Mizar (MizAR) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of MizAR services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles.

  20. [ATP in the metabolism of ruminants].

    Science.gov (United States)

    Bergner, H

    1991-10-01

    The ATP yield from the carbohydrates of anaerobically living microorganisms in the rumen amounts to only 5-10% of the ATP yield of the intermediary metabolism in the presence of oxygen. Vital functions and thus microbial protein synthesis are due to protein degradation in the rumen. The ATP yield in the intermediary metabolism of ruminants is mainly achieved from propionate and microbial protein by means of gluconeogenesis because the absorption of glucose from digested starch is very low. The relationships between ATP yield in the rumen and the processes of glucose provision for the production of lactose as well as the protein content of the milk are shown. As important processes of ATP production in microorganisms from easily soluble carbohydrates take place in silage preparations before feed intake, the corresponding consequences for the metabolism of high-performance cows fed with silage are shown.

  1. ATP, P2X receptors and pain pathways.

    Science.gov (United States)

    Ding, Y; Cesare, P; Drew, L; Nikitaki, D; Wood, J N

    2000-07-01

    A role for ATP in nociception and pain induction was proposed on the basis of human psychophysical experiments shortly after the formulation of the purinergic hypothesis. Following the pharmacological definition of distinct P2X and P2Y purinergic receptor subtypes by Burnstock and his collaborators, molecular cloning studies have identified the gene products that underlie the effects of ATP on peripheral sensory neurons. One particular receptor, P2X(3), is of particular interest in the context of pain pathways, because it is relatively selectively expressed at high levels by nociceptive sensory neurons. Evidence that this receptor may play a role in the excitation of sensory neurons has recently been complemented by studies that suggest an additional presynaptic role in the regulation of glutamate release from primary afferent neurons in the dorsal horn of the spinal cord. In this brief review, we discuss the present state of knowledge of the role of ATP in pain induction through its action on peripheral P2X receptors.

  2. Molecular Events Involved in a Single Cycle of Ligand Transfer from an ATP Binding Cassette Transporter, LolCDE, to a Molecular Chaperone, LolA*

    OpenAIRE

    Taniguchi, Naohiro; Tokuda, Hajime

    2008-01-01

    An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters med...

  3. Thermodynamics of proton transport coupled ATP synthesis.

    Science.gov (United States)

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase.

  4. RNAi-mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease.

    Directory of Open Access Journals (Sweden)

    Hongbing Jiang

    Full Text Available Periodontal disease affects about 80% of adults in America, and is characterized by oral bacterial infection-induced gingival inflammation, oral bone resorption, and tooth loss. Periodontitis is also associated with other diseases such as rheumatoid arthritis, diabetes, and heart disease. Although many efforts have been made to develop effective therapies for this disease, none have been very effective and there is still an urgent need for better treatments and preventative strategies. Herein we explored for the first time the possibility that adeno-associated virus (AAV-mediated RNAi knockdown could be used to treat periodontal disease with improved efficacy. For this purpose, we used AAV-mediated RNAi knockdown of Atp6i/TIRC7 gene expression to target bone resorption and gingival inflammation simultaneously. Mice were infected with the oral pathogen Porphyromonas gingivalis W50 (P. gingivalis in the maxillary periodontium to induce periodontitis. We found that Atp6i depletion impaired extracellular acidification and osteoclast-mediated bone resorption. Furthermore, local injection of AAV-shRNA-Atp6i/TIRC7 into the periodontal tissues in vivo protected mice from P. gingivalis infection-stimulated bone resorption by >85% and decreased the T-cell number in periodontal tissues. Notably, AAV-mediated Atp6i/TIRC7 knockdown also reduced the expression of osteoclast marker genes and inflammation-induced cytokine genes. Atp6i(+/- mice with haploinsufficiency were similarly protected from P. gingivalis infection-stimulated bone loss and gingival inflammation. This suggests that AAV-shRNA-Atp6i/TIRC7 therapeutic treatment may significantly improve the health of millions who suffer from P. gingivalis-mediated periodontal disease.

  5. P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells.

    Science.gov (United States)

    Eun, So Young; Ko, Young Shin; Park, Sang Won; Chang, Ki Churl; Kim, Hye Jung

    2015-07-01

    Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between high- and low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.

  6. Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane.

    Science.gov (United States)

    Demidchik, Vadim; Shang, Zhonglin; Shin, Ryoung; Colaço, Renato; Laohavisit, Anuphon; Shabala, Sergey; Davies, Julia M

    2011-07-01

    Extracellular purine nucleotides are implicated in the control of plant development and stress responses. While extracellular ATP is known to activate transcriptional pathways via plasma membrane (PM) NADPH oxidase and calcium channel activation, very little is known about signal transduction by extracellular ADP. Here, extracellular ADP was found to activate net Ca(2+) influx in roots of Arabidopsis (Arabidopsis thaliana) and transiently elevate cytosolic free Ca(2+) in root epidermal protoplasts. An inward Ca(2+)-permeable conductance in root epidermal PM was activated within 1 s of ADP application and repeated application evoked a smaller current. Such response speed and densitization are consistent with operation of equivalents to animal ionotropic purine receptors, although to date no equivalent genes for such receptors have been identified in higher plants. In contrast to ATP, extracellular ADP did not evoke accumulation of intracellular reactive oxygen species. While high concentrations of ATP caused net Ca(2+) efflux from roots, equivalent concentrations of ADP caused net influx. Overall the results point to a discrete ADP signaling pathway, reliant on receptor-like activity at the PM.

  7. Receptor-Like Activity Evoked by Extracellular ADP in Arabidopsis Root Epidermal Plasma Membrane1

    Science.gov (United States)

    Demidchik, Vadim; Shang, Zhonglin; Shin, Ryoung; Colaço, Renato; Laohavisit, Anuphon; Shabala, Sergey; Davies, Julia M.

    2011-01-01

    Extracellular purine nucleotides are implicated in the control of plant development and stress responses. While extracellular ATP is known to activate transcriptional pathways via plasma membrane (PM) NADPH oxidase and calcium channel activation, very little is known about signal transduction by extracellular ADP. Here, extracellular ADP was found to activate net Ca2+ influx in roots of Arabidopsis (Arabidopsis thaliana) and transiently elevate cytosolic free Ca2+ in root epidermal protoplasts. An inward Ca2+-permeable conductance in root epidermal PM was activated within 1 s of ADP application and repeated application evoked a smaller current. Such response speed and densitization are consistent with operation of equivalents to animal ionotropic purine receptors, although to date no equivalent genes for such receptors have been identified in higher plants. In contrast to ATP, extracellular ADP did not evoke accumulation of intracellular reactive oxygen species. While high concentrations of ATP caused net Ca2+ efflux from roots, equivalent concentrations of ADP caused net influx. Overall the results point to a discrete ADP signaling pathway, reliant on receptor-like activity at the PM. PMID:21562328

  8. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  9. The mitochondria and insulin release: Nnt just a passing relationship.

    Science.gov (United States)

    Remedi, M S; Nichols, C G; Koster, J C

    2006-01-01

    Nicotinamide nucleotide transhydrogenase (Nnt) detoxifies reactive oxygen species (ROS), byproducts of mitochondrial metabolism that, when accumulated, can decrease mitochondrial ATP production. In this issue of Cell Metabolism, demonstrate that Nnt in pancreatic beta cells is important for insulin release. Their compelling data highlight the critical roles for ATP generation and subsequent closure of KATP channels for insulin secretion.

  10. ATP-dependent potassium channels and type 2 diabetes mellitus.

    Science.gov (United States)

    Bonfanti, Dianne Heloisa; Alcazar, Larissa Pontes; Arakaki, Priscila Akemi; Martins, Laysa Toschi; Agustini, Bruna Carla; de Moraes Rego, Fabiane Gomes; Frigeri, Henrique Ravanhol

    2015-05-01

    Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.

  11. Species and agonist dependent zinc modulation of endogenous and recombinant ATP-gated P2X7 receptors.

    Science.gov (United States)

    Moore, Samantha F; Mackenzie, Amanda B

    2008-12-15

    Zinc (Zn2+) and copper (Cu2+) are key signalling molecules in the immune system and regulate the activity of many ion channels. Both Zn2+ and Cu2+ potently inhibit rat P2X7 receptors via a binding site identified by mutagenesis. Here we show that extracellular Cu2+ also potently inhibits mouse P2X7 receptors. By contrast, the receptor expression system and agonist strongly influence the action of extracellular Zn2+ at mouse P2X7 receptors. Consistent with previous reports, Zn2+ inhibits recombinant rat P2X7 receptors. However, recombinant mouse P2X7 receptors are potentiated by Zn2+ when activated by ATP4- but inhibited when stimulated with the ATP analogue BzATP4-. Endogenous murine macrophage P2X7 receptors are not modulated by Zn2+ when stimulated by ATP4- however Zn2+ inhibits BzATP4- mediated responses. In summary, these findings provide a fundamental insight into the differential actions of Zn2+ and Cu2+ between different P2X7 receptor species.

  12. Vesicular mechanisms of traffic of fungal molecules to the extracellular space.

    Science.gov (United States)

    Rodrigues, Marcio L; Franzen, Anderson J; Nimrichter, Leonardo; Miranda, Kildare

    2013-08-01

    Fungal cells are efficient in releasing to the extracellular space molecules that lack typical secretion signals, including cytoplasmic components. Studies developed during the last five years indicate that extracellular vesicle formation is involved in the traffic of these intracellular components to the extracellular space. The cellular origin of these vesicles, however, is still unknown. Here we review the potential mechanisms involved in formation of fungal extracellular vesicles and consequent release of fungal molecules to the outer cellular space. We also propose that these compartments can originate from cytoplasmic subtractions whose formation is dependent on plasma membrane reshaping.

  13. Matricryptins and matrikines: biologically active fragments of the extracellular matrix.

    Science.gov (United States)

    Ricard-Blum, Sylvie; Salza, Romain

    2014-07-01

    Numerous extracellular proteins and glycosaminoglycans (GAGs) undergo limited enzymatic cleavage resulting in the release of fragments exerting biological activities, which are usually different from those of the full-length molecules. In this review, we define matrikines and matricryptins, which are bioactive fragments released from the extracellular matrix proteins, proteoglycans and GAGs and report their major biological activities. These fragments regulate a number of physiopathological processes including angiogenesis, cancer, fibrosis, inflammation, neurodegenerative diseases and wound healing. The challenges to translate these fragments from molecules biologically active in vitro and in experimental models to potential drugs are discussed in the last part of the review.

  14. Customized ATP towpreg. [Automated Tow Placement

    Science.gov (United States)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  15. An RNA motif that binds ATP

    Science.gov (United States)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  16. Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-04-01

    Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K(+) uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K(+) concentration, and to be critically dependent upon an increase in free cytosolic Ca(2+) concentration ([Ca(2+)]i), whereas cAMP plays only a facilitatory role together with increased [Ca(2+)]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca(2+)-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca(2+)-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K(+) activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca(2+), known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.

  17. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanism remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on limb muscle interstitial...... ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0.......42+/-0.04 and 2.26+/-0.52 mumol/min; mean+/-SEM) and 2) one-leg knee-extensor exercise (18+/-0 and 37+/-2W) in 10 healthy, male subjects. Arterial ATP infusion and exercise increased leg blood flow (LBF) in the experimental leg from ~0.3 L/min at baseline to 4.2+/-0.3 and 4.6+/-0.5 L/min, respectively, whereas...

  18. The role of individual domains and the significance of shedding of ATP6AP2/(prorenin receptor in vacuolar H(+-ATPase biogenesis.

    Directory of Open Access Journals (Sweden)

    Kenichiro Kinouchi

    Full Text Available The ATPase 6 accessory protein 2 (ATP6AP2/(prorenin receptor (PRR is essential for the biogenesis of active vacuolar H(+-ATPase (V-ATPase. Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD and transmembrane domain (TM of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M and causes X-linked mental retardation Hedera type (MRXSH and X-linked parkinsonism with spasticity (XPDS in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.

  19. The role of individual domains and the significance of shedding of ATP6AP2/(pro)renin receptor in vacuolar H(+)-ATPase biogenesis.

    Science.gov (United States)

    Kinouchi, Kenichiro; Ichihara, Atsuhiro; Sano, Motoaki; Sun-Wada, Ge-Hong; Wada, Yoh; Ochi, Hiroki; Fukuda, Toru; Bokuda, Kanako; Kurosawa, Hideaki; Yoshida, Naohiro; Takeda, Shu; Fukuda, Keiichi; Itoh, Hiroshi

    2013-01-01

    The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H(+)-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.

  20. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Directory of Open Access Journals (Sweden)

    Vania A Figueroa

    2014-09-01

    Full Text Available Gap junction channels (GJCs and hemichannels (HCs are composed of protein subunits termed connexins (Cxs and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive nonsyndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the ATP release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects.

  1. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    Directory of Open Access Journals (Sweden)

    Nicholas S Gregory

    Full Text Available Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X and acid sensing ion channels (ASICs on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive or more than the sum of individual effects (synergistic is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm, lactate (10mM, and acidic pH (pH 6.0 produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol, on the other hand, showed no enhanced effects when combined with lactate (10mM or acidic pH (pH 6.0, i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  2. Electrophysiology of autonomic neuromuscular transmission involving ATP.

    Science.gov (United States)

    Sneddon, P

    2000-07-01

    Electrophysiological investigations of autonomic neuromuscular transmission have provided great insights into the role of ATP as a neurotransmitter. Burnstock and Holman made the first recordings of excitatory junction potentials (e.j.p.s) produced by sympathetic nerves innervating the smooth muscle of the guinea-pig vas deferens. This led to the identification of ATP as the mediator of e.j.p.s in this tissue, where ATP acts as a cotransmitter with noradrenaline. The e.j.p.s are mediated solely by ATP acting on P2X(1) receptors leading to action potentials and a rapid phasic contraction, whilst noradrenaline mediates a slower, tonic contraction which is not dependent on membrane depolarisation. Subsequent electrophysiological studies of the autonomic innervation of smooth muscles of the urogenital, gastrointestinal and cardiovascular systems have revealed a similar pattern of response, where ATP mediates a fast electrical and mechanical response, whilst another transmitter such as noradrenaline, acetylcholine, nitric oxide or a peptide mediates a slower response. The modulation of junction potentials by a variety of pre-junctional receptors and the mechanism of inactivation of ATP as a neurotransmitter will also be described.

  3. Protons, the thylakoid membrane, and the chloroplast ATP synthase.

    Science.gov (United States)

    Junge, W

    1989-01-01

    of heuristic value to visualize CFoCF1 as a mechanical coupling device. Its maximum turnover number ranges up to 400 s-1 for ATP and 1200 s-1 for protons. At about 200 mV electric driving force this implied a conductance of about 1 fS. Its channel portion (CFo), however, has revealed a very large protonic conductance of 1 pS (three orders of magnitude greater than the protonic conductance of gramicidin around neutral pH). (6) The sight and smell of food increased LH serotonin release; this effect was detectable when local fluoxetine was used to block serotonin reuptake.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Modeling interactions among individual P2 receptors to explain complex response patterns over a wide range of ATP concentrations

    Directory of Open Access Journals (Sweden)

    Shu Xing

    2016-07-01

    Full Text Available EExtracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6. In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1/2 in that range (e.g. P2Y4 or P2X5 exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

  5. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Directory of Open Access Journals (Sweden)

    Go Kasuya

    2016-02-01

    Full Text Available P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.

  6. Adenosine triphosphate levels during anaphylactic histamine release in rat mast cells in vitro. Effects of glycolytic and respiratory inhibitors

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The adenosine triphosphate (ATP) content of rat mast cells was studied during and after anaphylactic histamine release. The almost identical time course of ATP decrease from mast cells treated with either glycolytic or respiratory inhibitors supports the view that the ATP depletion was largely re...

  7. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  8. ATP Synthesis in the Extremely Halophilic Bacteria

    Science.gov (United States)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other

  9. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O

    2000-01-01

    to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover......, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure...... of ATP A2 was solved to 1.45 A resolution at 100 K. Docking of p-coumaryl, coniferyl and sinapyl alcohol in the substrate binding site of ATP A2 were analysed on the basis of the crystal structure of a horseradish peroxidase C-CN-ferulic acid complex. The analysis indicates that the precursors p...

  10. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    Science.gov (United States)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    The mineralization of organic C requires two main steps. First, microorganisms secrete exoenzymes in soil in order to depolymerize plant and microbial cell walls and release soluble substrates for microbial assimilation. The second step of mineralization, during which C is released as CO2, implies the absorption and utilization of solubilized substrates by microbial cells with the aim to produce energy (ATP). In cells, soluble substrates are carried out by a cascade of respiratory enzymes, along which protons and electrons are transferred from a substrate to oxygen. Given the complexity of this oxidative metabolism and the typical fragility of respiratory enzymes, it is traditionally considered that respiration (second step of C mineralization process) is strictly an intracellular metabolism process. The recurrent observations of substantial CO2 emissions in soil microcosms where microbial cells have been reduced to extremely low levels challenges this paradigm. In a recent study where some respiratory enzymes have shown to function in an extracellular context in soils, Maire et al. (2013) suggested that an extracellular oxidative metabolism (EXOMET) substantially contributes to CO2 emission from soils. This idea is supported by the recent publication of Blankinship et al., 2014 who showed the presence of active enzymes involved in the Krebs cycle on soil particles. Many controversies subsist in the scientific community due to the presence of non-proliferating but morphologically intact cells after irradiation that could substantially contribute to those soil CO2 emissions. To test whether a purely extracellular oxidative metabolism contribute to soil CO2 emissions, we combined high doses of gamma irradiations to different time of soil autoclaving. The presence of active and non-active cells in soil was checked by DNA and RNA extraction and by electronic microscopy. None active cells (RNA-containing cells) were detectable after irradiation, but some morphological

  11. Synthetic peptides target ATP translocase of ‘Candidatus Liberibacter asiaticus’ to block ATP uptake

    Science.gov (United States)

    As an obligate intracellular pathogen, ‘Candidatus Liberibacter asiaticus’ (Las) may act as an “energy parasite” by importing ATP from its host’s cells. We previously demonstrated that the Las translocase NttA (gb|ACX71867.1) is functional in Escherichia coli and enables the direct import of ATP/ADP...

  12. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  13. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  14. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Arthur Dyer

    2017-03-01

    Full Text Available Enadenotucirev (EnAd is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.

  15. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  16. Extracellular vesicles for clinical diagnostics of nervous system diseases

    NARCIS (Netherlands)

    Atai, N.

    2014-01-01

    In the last decade there has emerged a new dimension in molecular studies which can be applied to gliomas (brain tumors). Extracellular vesicles (EVs), small structures containing genetic materials, are now known to be produced by glioma cells. These EVs, often many hundreds in number, are released

  17. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    H. Kalra (Hina); R.J. Simpson (Richard); H. Ji (Hong); M. Aikawa (Masanori); P. Altevogt (Peter); P. Askenase (Philip); V.C. Bond (Vincent); F.E. Borràs (Francesc); X. Breakefield (Xandra); V. Budnik (Vivian); E. Buzas (Edit); G. Camussi (Giovanni); A. Clayton (Aled); E. Cocucci (Emanuele); J.M. Falcon-Perez (Juan); S. Gabrielsson (Susanne); Y.S. Gho (Yong Song); D. Gupta (Dwijendra); H.C. Harsha (H.); A. Hendrix (An); A.F. Hill (Andrew); J.M. Inal (Jameel); G.W. Jenster (Guido); E.-M. Krämer-Albers (Eva-Maria); S.K. Lim (Sai Kiang); A. Llorente (Alicia); J. Lötvall; A. Marcilla (Antonio); L. Mincheva-Nilsson (Lucia); I. Nazarenko (Irina); C.C.M. van Nieuwland (Carolien); E.N.M. Nolte-'t Hoen (Esther); A. Pandey (Akhilesh); T. Patel (Tushar); M.D. Piper; S. Pluchino (Stefano); T.S.K. Prasad (T. S. Keshava); L. Rajendran (Lawrence); L. Raposo (Luís); M. Record (Michel); G.E. Reid (Gavin); F. Sánchez-Madrid (Francisco); R.M. Schiffelers (Raymond); P. Siljander (Pia); A. Stensballe (Allan); W. Stoorvogel (Willem); D. Taylor (Deborah); C. Thery; H. Valadi (Hadi); B.W.M. van Balkom (Bas); R. Vázquez (Rolando); M. Vidal (Michel); M.H.M. Wauben (Marca); M. Yáñez-Mó (María); M. Zoeller (Margot); S. Mathivanan (Suresh)

    2012-01-01

    textabstractExtracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers.

  18. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    OpenAIRE

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2013-01-01

    We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA) of these extracellular vesicles. Based on current da...

  19. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  20. KR-31761, a novel K+(ATP)-channel opener, exerts cardioprotective effects by opening both mitochondrial K+(ATP) and Sarcolemmal K+(ATP) channels in rat models of ischemia/reperfusion-induced heart injury.

    Science.gov (United States)

    Yang, Min-Kyu; Lee, Sung-Hun; Seo, Ho-Won; Yi, Kyu-Yang; Yoo, Sung-Eun; Lee, Byung-Ho; Chung, Hun-Jong; Won, Hyung-Sik; Lee, Chang-Soo; Kwon, Suk-Hyung; Choi, Wahn-Soo; Shin, Hwa-Sup

    2009-02-01

    The cardioprotective effects of KR-31761, a newly synthesized K+(ATP) opener, were evaluated in rat models of ischemia/reperfusion (I/R) heart injury. In isolated rat hearts subjected to 30-min global ischemia/30-min reperfusion, KR-31761 perfused prior to ischemia significantly increased both the left ventricular developed pressure (% of predrug LVDP: 17.8, 45.1, 54.2, and 62.6 for the control, 1 microM, 3 microM, and 10 microM, respectively) and double product (DP: heart rate x LVDP; % of predrug DP: 17.5, 44.9, 56.2, and 64.5 for the control, 1 microM, 3 microM, and 10 microM, respectively) at 30-min reperfusion while decreasing the left ventricular end-diastolic pressure (LVEDP). KR-31761 (10 microM) significantly increased the time to contracture during the ischemic period, whereas it concentration-dependently decreased the lactate dehydrogenase release during reperfusion. All these parameters were significantly reversed by 5-hydroxydecanoate (5-HD, 100 microM) and glyburide (1 microM), selective and nonselective blockers of the mitochondrial K+(ATP) (mitoK+(ATP)) channel and K+(ATP) channel, respectively. In anesthetized rats subjected to 30-min occlusion of left anterior descending coronary artery/2.5-h reperfusion, KR-31761 administered 15 min before the onset of ischemia significantly decreased the infarct size (72.2%, 55.1%, and 47.1% for the control, 0.3 mg/kg, i.v., and 1.0 mg/kg, i.v., respectively); and these effects were completely and almost completely abolished by 5-HD (10 mg/kg, i.v.) and HMR-1098, a selective blocker of sarcolemmal K+(ATP) (sarcK+(ATP)) channel (6 mg/kg, i.v.) administered 5 min prior to KR-31761 (72.3% and 67.9%, respectively). KR-31761 only slightly relaxed methoxamine-precontracted rat aorta (IC50: > 30.0 microM). These results suggest that KR-31761 exerts potent cardioprotective effects through the opening of both mitoK+(ATP) and sarcK+(ATP) channels in rat hearts with a minimal vasorelaxant effect.

  1. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Zhongrun Qian

    2015-01-01

    Full Text Available Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  2. Growth enhancement effect of BzATP on primary cultured astrocytes from rat brain

    Institute of Scientific and Technical Information of China (English)

    Hua-Zheng LIANG; Ying LIU; Zhu-Rong YE

    2006-01-01

    Objective To explore whether BzATP could promote the growth of primary cultured astrocytes (AS) of rat and its possible mechanism, and whether TGF-β1 was involved in the event. Methods The primary cultured AS were derived from new born Sprague-Dawley rats.Glial fibrillary acidic protein (GFAP) immunofluorescent stain was used to check the purity of cultured AS. Morphometry was used to detect the changes of AS. The proliferation index of AS was detected by BrdU incorporation assay. Western blot was used to detect the changes of GFAP under different conditions. Changes of TGF-β1 gene transcription were detected by RT-PCR. ELISA was utilized to detect the variation of TGF-β1 protein in the supernate. Results The purity of primary cultured AS reached to 99%. BzATP promoted the hypertrophy of AS including the elongation of AS processes and the enlargement of cell bodies, BzATP also promoted the expression of GFAP in existence of Ca2+, but had no effect on cell proliferation. BzATP increased the transcription of TGF-β1 mRNA and the release of TGF-β1 protein in existence of Ca2+. TGF-β1 neutralizing antibody partially inhibited the expression of GFAP induced by BzATP, but had no effect on AS proliferation and cell morphology. Conclusion BzATP enhanced the hypertrophy of primary cultured AS, increased the expression of GFAP partially through TGF-β1. Mechanisms of the enhancement of AS growth induced by BzATP other than TGF-51 pathway remains to be elucidated.

  3. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    Science.gov (United States)

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae.

  4. Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC.

    Science.gov (United States)

    Chen, Siying; Levin, Mikhail K; Sakato, Miho; Zhou, Yayan; Hingorani, Manju M

    2009-05-08

    Circular clamps tether polymerases to DNA, serving as essential processivity factors in genome replication, and function in other critical cellular processes as well. Clamp loaders catalyze clamp assembly onto DNA, and the question of how these proteins construct a topological link between a clamp and DNA, especially the mechanism by which ATP is utilized for the task, remains open. Here we describe pre-steady-state analysis of ATP hydrolysis, proliferating cell nuclear antigen (PCNA) clamp opening, and DNA binding by Saccharomyces cerevisiae replication factor C (RFC), and present the first kinetic model of a eukaryotic clamp-loading reaction validated by global data analysis. ATP binding to multiple RFC subunits initiates a slow conformational change in the clamp loader, enabling it to bind and open PCNA and to bind DNA as well. PCNA opening locks RFC into an active state, and the resulting RFC.ATP.PCNA((open)) intermediate is ready for the entry of DNA into the clamp. DNA binding commits RFC to ATP hydrolysis, which is followed by PCNA closure and PCNA.DNA release. This model enables quantitative understanding of the multistep mechanism of a eukaryotic clamp loader and furthermore facilitates comparative analysis of loaders from diverse organisms.

  5. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation

    NARCIS (Netherlands)

    Rezeli, Melinda; Gidlöf, Olof; Evander, Mikael; Bryl-Górecka, Paulina; Sathanoori, Ramasri; Gilje, Patrik; Pawlowski, Krzysztof; Horvatovich, Péter; Erlinge, David; Marko-Varga, György; Laurell, Thomas

    2016-01-01

    Extracellular vesicles (ECVs), including microparticles (MPs) and exosomes, are submicron membrane vesicles released by diverse cell types upon activation or stress. Circulating ECVs are potential reservoirs of disease biomarkers, and the complexity of these vesicles is significantly lower compared

  6. Variation in activity of root extracellular phytase between genotypes of barley

    DEFF Research Database (Denmark)

    Asmar, Mohammad Farouq

    1997-01-01

    Barley genotypes grown in nutrient solution under P nutrient stress and sterile conditions were compared in activity of root-associated and root-released extracellular phytase. The activity of root-associated phytase of all genotypes was about 10 times higher than that of root-released phytase...... and the genotypes performed differently with regard to the activity of the enzymes. The winter barley genotype, Marinka had the highest activity of root-associated extracellular phytase which differed significantly from Alexis and Senate, but not from Regatta. Alexis showed the lowest activity of root......-released extracellular phytase which differed significantly from those of Marinka and Regatta, but not from Senate. Generally, there was a significant correlation between the activity of root-associated and released extracellular phytase....

  7. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    -470.[12]Ye, Z. H., Sun, D. Y., Guo, J. F., Preliminary study on wheat cell wall calmodulin, Chin. Sci. Bull. (in Chinese), 1988.33(8): 624-626.[13]Li. J. X., Liu. J. W., Sun. D. Y., Immunoelectron microscopic localization of calmodulin in maize root cell, Cell Res., 1993,3: 11-19.[14]Li. J. X.. Sun. D. Y., Comparative studies on immunoreactivity of antibodies against plant and animal calmodulin, Acta Botanica Sinica (in Chinese), 1992, 34(4): 257-263.[15]Ye. Z. H.. Guo. J. F., Sun, D. Y., Studies on the cell wall calmodulin and calmodulin-binding protein of wheat etiolated coleoptiles, Acta Phytophysiologica Sinica (in Chinese), 1989, 15(3): 223-229.[16]Remgard. P.. Ekstrom. P. A. R., Ekstrom, A. et al., Calmodulin and in vitro regenerating frog sciatic herves: release and extracellular effects, European J. Neuroscience, 1995, 7: 1386-1392.[17]Cheung. M. Z., Duo, H. Y., Cheung, G. I., Localization of calmodulin in rabbit pancreas, Chinese J. of Experimental and Clinical Immunology (in Chinese), 1992, 4(6): 13-15.[18]Dawson, R. A., Mac Neil. S., Mitogenis role for extracellular calmodulin-like activity in normal human umbilical vein endothelial cells, Br. J. Haematol., 1992, 82: 151-160.[19]Goberdhan, N. J., Dawson, R. A., Freedlander, E. et al., Calmodulin-like protein as an extracellular mitogen for the keranocyte. Br. J. Dermatol., 1993, 129: 678-688.[20]Woodward, B. J., Lenton, E. A., Mac Neil, S., Requirement of preimplantation human embryos for extracellular calmodulin for development, Human Repro, 1993, 8(2): 272-276.[21]Houston. D. S.. Carson, C., Esmon, C. T., Endothelial cell and extracellular calmodulin inhibited monocyte tumor necrosis factor release and augment neutrophil elastase, The J. of Biol. Chem., 1997, 272(18): 11778-11785.[22]Li, H. B.. Cheng, G., Sun, D. Y., The effects of extracellular calmodulin on the cell proliferation of suspension cultured cell. Chin. Sci. Bull. (in Chinese), 1992, 37(19): 1804

  8. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.

    2016-02-19

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  9. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    Science.gov (United States)

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  10. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  11. Calcium and ATP control multiple vital functions

    Science.gov (United States)

    Verkhratsky, Alexei

    2016-01-01

    Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca2+ concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca2+ concentration (which in all life forms is kept around 50–100 nM) forms the basis for a universal intracellular signalling system in which Ca2+ acts as a second messenger. Maintenance of transmembrane Ca2+ gradients, in turn, requires ATP-dependent Ca2+ transport, thus further emphasizing the inseparable links between these two substances. Ca2+ signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca2+ signalling relies on cell specific Ca2+ signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca2+ signalling toolkits lead to aberrant Ca2+ signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377728

  12. Extracellular heat shock proteins: a new location, a new function.

    Science.gov (United States)

    De Maio, Antonio; Vazquez, Daniel

    2013-10-01

    The expression of heat shock proteins (HSPs) is a basic and well-conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Because these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that HSPs can also be present outside cells where they appear to display a function different than the well-understood chaperone role. Extracellular HSPs act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Because the majority of HSPs do not possess a secretory peptide signal, they are likely to be exported by a nonclassic secretory pathway. Different mechanisms have been proposed to explain the export of HSPs, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular HSPs appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular HSPs suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular HSPs.

  13. Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis.

    Science.gov (United States)

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2013-05-01

    Extracellular potassium makes up only about 2% of the total body's potassium store. The majority of the body potassium is distributed in the intracellular space, of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na(+), K(+)-adenosine triphosphatase and release by inward-rectifier K(+) channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons, and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis, focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward-rectifier K(+) channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings are reviewed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Ciliary extracellular vesicles: Txt msg orgnlls

    Science.gov (United States)

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  15. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  16. Seahorse Xfe 24 Extracellular Flux Analyzer-Based Analysis of Cellular Respiration in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Smith, Latasha L; Rooney, John P; Meyer, Joel N

    2015-11-02

    Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and intercellular as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XF(e) 24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler), and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters [basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity, and proton leak] of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans.

  17. Bidirectional effects of hydrogen sulfide via ATP-sensitive K(+) channels and transient receptor potential A1 channels in RIN14B cells.

    Science.gov (United States)

    Ujike, Ayako; Otsuguro, Ken-ichi; Miyamoto, Ryo; Yamaguchi, Soichiro; Ito, Shigeo

    2015-10-05

    Hydrogen sulfide (H2S) reportedly acts as a gasotransmitter because it mediates various cellular responses through several ion channels including ATP-sensitive K(+) (KATP) channels and transient receptor potential (TRP) A1 channels. H2S can activate both KATP and TRPA1 channels at a similar concentration range. In a single cell expressing both channels, however, it remains unknown what happens when both channels are simultaneously activated by H2S. In this study, we examined the effects of H2S on RIN14B cells that express both KATP and TRPA1 channels. RIN14B cells showed several intracellular Ca(2+) concentration ([Ca(2+)]i) responses to NaHS (300 µM), an H2S donor, i.e., inhibition of spontaneous Ca(2+) oscillations (37%), inhibition followed by [Ca(2+)]i increase (24%), and a rapid increase in [Ca(2+)]i (25%). KATP channel blockers, glibenclamide or tolbutamide, abolished any inhibitory effects of NaHS and enhanced NaHS-mediated [Ca(2+)]i increases, which were inhibited by extracellular Ca(2+) removal, HC030031 (a TRPA1 antagonist), and disulfide bond-reducing agents. NaHS induced 5-hydroxytryptamine (5-HT) release from RIN14B cells, which was also inhibited by TRPA1 antagonists. These results indicate that H2S has both inhibitory and excitatory effects by opening KATP and TRPA1 channels, respectively, in RIN14B cells, suggesting potential bidirectional modulation of secretory functions.

  18. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    methods are vital for an improved surveillance and distribution of clean and safe drinking water. One of these rapid methods is the ATP assay. This thesis encompasses various methodological aspects of the ATP assay describing the principal and theory of the ATP assay measurement. ATP is the main energy...... carrying molecule in living cells, thus ATP can be used as a parameter for microbial activity. ATP is extracted from cells through cell lysis and subsequently assayed with the luciferase enzyme and its substrate luciferin, resulting in bioluminescence, i.e. light emission which can be quantified....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...

  19. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    Science.gov (United States)

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  20. Utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The role of endogenous adenosine triphosphate (ATP) in histamine release from rat mast cells induced by the ionophore A23187 in vitro has been studied. 2 The amount of histamine released by calcium from rat mast cells primed with the ionophore A23187 was dependent on the ATP content of the mast...... cells. 3 In aerobic experiments a drastic reduction in mast cell ATP content was found during the time when histamine release induced by A23187 takes place. 4 Anaerobic experiments were performed with metabolic inhibitors (antimycin A, oligomycin, and carbonyl cyanide p......-trifluorometroxyphenylnydrazone), which are known to block the energy-dependent calcium uptake by isolated mitochondria. The mast cell ATP content was reduced during A23187-induced histamine release under anaerobic conditions in the presence of glucose. This indicates an increased utilization of ATP during the release process. 5...

  1. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ohno

    2016-02-01

    Full Text Available Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs carry various proteins, messenger RNAs (mRNAs, and microRNAs (miRNAs, like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  2. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems.

    Science.gov (United States)

    Ohno, Shin-Ichiro; Drummen, Gregor P C; Kuroda, Masahiko

    2016-02-06

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a "message in a bottle" to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  3. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  4. FTIR study of ATP-induced changes in Na+/K+-ATPase from duck supraorbital glands.

    Science.gov (United States)

    Pratap, Promod R; Dediu, Oana; Nienhaus, G Ulrich

    2003-12-01

    The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm(-1) decreased with a concomitant increase in the absorbance at 1620 cm(-1). These changes are consistent with a partial conversion of protein secondary structure from alpha-helix to beta-sheet. The changes were approximately 8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at approximately 1650 cm(-1) was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few microM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 microM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions.

  5. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1999-12-01

    Previously [Ainscow, E.K. & Brand, M.D. (1999) Eur. J. Biochem. 263, 671-685], top-down control analysis was used to describe the control pattern of energy metabolism in rat hepatocytes. The system was divided into nine reaction blocks (glycogen breakdown, glucose release, glycolysis, lactate production, NADH oxidation, pyruvate oxidation, mitochondrial proton leak, mitochondrial phosphorylation and ATP consumption) linked by five intermediates (intracellular glucose 6-phosphate, pyruvate and ATP levels, cytoplasmic NADH/NAD ratio and mitochondrial membrane potential). The kinetic responses (elasticities) of reaction blocks to intermediates were determined and used to calculate control coefficients. In the present paper, these elasticities and control coefficients are used to quantify the internal regulatory pathways within the cell. Flux control coefficients were partitioned to give partial flux control coefficients. These describe how strongly one block of reactions controls the flux through another via its effects on the concentration of a particular intermediate. Most flux control coefficients were the sum of positive and negative partial effects acting through different intermediates; these partial effects could be large compared to the final control strength. An important result was the breakdown of the way ATP consumption controlled respiration: changes in ATP level were more important than changes in mitochondrial membrane potential in stimulating oxygen consumption when ATP consumption increased. The partial internal response coefficients to changes in each intermediate were also calculated; they describe how steady state concentrations of intermediates are maintained. Increases in mitochondrial membrane potential were opposed mostly by decreased supply, whereas increases in glucose-6-phosphate, NADH/NAD and pyruvate were opposed mostly by increased consumption. Increases in ATP were opposed significantly by both decreased supply and increased consumption.

  6. The Effect of Extracellular Components from Colletotrichum lindemuthianum on Membrane Transport in Vesicles Isolated from Bean Hypocotyl.

    Science.gov (United States)

    Rogers, K R; Anderson, A J

    1987-06-01

    Extracellular components released from mycelia of the alpha and beta races of the bean pathogen, Colletotrichum lindemuthianum, inhibited proton uptake in sealed vesicles prepared from bean hypocotyls. Differential sensitivity of ATP-driven proton transport to nitrate, vanadate, N,N'-dicyclohexylcarbodiimide, diethylstilbestrol, and oligomycin suggested the vesicles were enriched for tonoplast. Anion stimulation of proton transport, by enhancement of ATPase activity and dissipation of the membrane potential, was consistent with this conclusion. Although fungal components inhibited the formation of a pH gradient, the membrane potential was unaffected and the ATPase activity slightly stimulated. These data suggest that the fungal components produce an electroneutral proton exchange. Proton transport in Dark Red Kidney bean tonoplast vesicles was inhibited by mycelial preparations from the incompatible alpha race and compatible beta race. Elicitor activity, however, was greater in the alpha race fractions. Elicitor purified from alpha race culture filtrate did not inhibit proton transport in vesicles isolated from Dark Red Kidney bean. Consequently, elicitor activity need not be associated with an ability to impair tonoplast function.

  7. The Effect of Extracellular Components from Colletotrichum lindemuthianum on Membrane Transport in Vesicles Isolated from Bean Hypocotyl 1

    Science.gov (United States)

    Rogers, Kim R.; Anderson, Anne J.

    1987-01-01

    Extracellular components released from mycelia of the α and β races of the bean pathogen, Colletotrichum lindemuthianum, inhibited proton uptake in sealed vesicles prepared from bean hypocotyls. Differential sensitivity of ATP-driven proton transport to nitrate, vanadate, N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, and oligomycin suggested the vesicles were enriched for tonoplast. Anion stimulation of proton transport, by enhancement of ATPase activity and dissipation of the membrane potential, was consistent with this conclusion. Although fungal components inhibited the formation of a pH gradient, the membrane potential was unaffected and the ATPase activity slightly stimulated. These data suggest that the fungal components produce an electroneutral proton exchange. Proton transport in Dark Red Kidney bean tonoplast vesicles was inhibited by mycelial preparations from the incompatible α race and compatible β race. Elicitor activity, however, was greater in the α race fractions. Elicitor purified from α race culture filtrate did not inhibit proton transport in vesicles isolated from Dark Red Kidney bean. Consequently, elicitor activity need not be associated with an ability to impair tonoplast function. PMID:16665456

  8. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highl

  9. An ATP synthase harboring an atypical γ–subunit is involved in ATP synthesis in tomato fruit chromoplasts

    National Research Council Canada - National Science Library

    Pateraki, Irini; Renato, Marta; Azcón‐Bieto, Joaquín; Boronat, Albert

    2013-01-01

    ... and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP , and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources...

  10. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Masaki Nakano

    2017-08-01

    Full Text Available Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances, which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease.

  11. Yeast ADP/ATP Carrier Isoform 2

    Science.gov (United States)

    Clémençon, Benjamin; Rey, Martial; Trézéguet, Véronique; Forest, Eric; Pelosi, Ludovic

    2011-01-01

    The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure. PMID:21868387

  12. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    Science.gov (United States)

    Brand, M D; Lehninger, A L

    1977-05-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4