WorldWideScience

Sample records for extracellular adenine nucleotide

  1. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    Science.gov (United States)

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  2. Adenine nucleotide depletion from endothelial cells exposed to xanthine oxidase

    International Nuclear Information System (INIS)

    Aalto, T.K.; Raivio, K.O.

    1990-01-01

    Hypoxia causes breakdown of cellular nucleotides, accumulation of hypoxanthine (HX), and conversion of xanthine dehydrogenase into xanthine oxidase (XO). Upon reoxygenation, the HX-XO reaction generates free radicals, one potential mechanism of tissue damage. Because endothelial cells contain XO and are exposed to circulating HX, they are a likely target for damage. We studied the effect of XO and/or HX at physiologically relevant concentrations on nucleotide metabolism of cultured endothelial cells from human umbilical veins. Cells were labeled with [14C]adenine and incubated for up to 6 h with HX, XO, or both, in the absence or presence of serum. Adenine nucleotides from cell extracts and nucleotide breakdown products (HX, xanthine, and urate) from the medium were separated and counted. HX alone had no effect. XO (80 mU/ml) alone caused a 70% (no serum) or 40% (with serum) fall in adenine nucleotides and an equivalent increase of xanthine and urate. The combination of HX and XO caused a 90% (no serum) or 70% (with serum) decrease in nucleotides, decrease in energy charge, and detachment of cells from the culture plate. Nucleotide depletion was not accounted for by proteolytic activity in the XO preparation. Albumin was only half as effective as serum in preventing nucleotide loss. Thus exogenous XO, in the presence of endogenous HX, triggers adenine nucleotide catabolism, but endogenous XO activity is too low to influence nucleotide levels even at high exogenous HX concentrations. Serum limits the catabolic effect of XO and thus protects cells from free radical damage

  3. Purine nucleotide synthesis from exogenous adenine and guanine in rodent small intestine

    International Nuclear Information System (INIS)

    Gross, C.J.; Karlberg, P.K.; Savaiano, D.A.

    1986-01-01

    14 C-Adenine and 14 C-guanine uptake was studied in isolated guinea pig enterocytes. Cells were incubated in Hank's buffer and separated from the medium by centrifugation through silicone oil into 1M PCA. Uptake was temperature and concentration dependent. Both compounds were incorporated into nucleotides as measured by HPLC and HVE. Adenine was more extensively incorporated into nucleotides than was guanine. Adenine nucleotides accounted for about 70% of the intracellular label after 30 min with a majority being ADP and ATP (medium concentration = 10 μM). Guanine nucleotides accounted for only 30% of the intracellular label after 30 min. Labeled intracellular free adenine or guanine were not detected. Significantly more guanine vs. adenine was converted to uric acid. After 30 min, 11.5 +/- 3.9% (n=3) and 83.0 +/- 8.4% (n=4) of the label was present as uric acid in the medium when adenine and guanine, respectively, were the substrate. After 1 min, 34.8 +/- 3.4% (n=4) of the label in the medium was present as uric acid when guanine was the substrate. Decreasing the concentration of adenine resulted in an increase in the percent of uric acid in the medium. 14 C-adenine (75 nmol) was injected into 1 gm segments of rat jejunum. After 5 min., segments were quickly flushed and the tissue homogenized in 1M PCA. Only uric acid was present after 5 min (n=6). In contrast, in animals fasted 3 to 5 days, less conversion to uric acid was observed in the intestinal content (50-80% of the same dose was still present as adenine after 5 min) and nucleotide formation was observed in the tissue. The results indicate that uric acid and nucleotide synthesis from exogenous adenine and guanine are concentration dependent and affected by nutritional state

  4. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  5. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    International Nuclear Information System (INIS)

    Edenbrandt, C.M.; Murphy, S.

    1990-01-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation

  6. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  7. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    International Nuclear Information System (INIS)

    Puig, J.G.; Fox, I.H.

    1984-01-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with [8-14C] adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake

  8. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  9. NMR studies of the fate of adenine nucleotides in glucose-starved erythrocytes

    International Nuclear Information System (INIS)

    Bubb, W.A.; Mulquiney, P.J.; Kuchel, P.W.; Rohwer, J.; De Atauri, P.

    2002-01-01

    Full text: As a consequence of many refinements during the past 30 years, we now have a detailed understanding of the glycolytic pathway in human erythrocytes. By comparison, and notwithstanding their central importance to four key steps in erythrocyte glycolysis, our knowledge of the catabolism of adenine nucleotides remains relatively limited. In particular, the mechanism for the degradation of AMP, whose concentration rises under conditions of oxidative stress or glucose deprivation, remains poorly understood, AMP degradation may proceed via two possible pathways which converge in the production of inosine. Analysis of the key intermediates for the respective pathways, adenosine and AMP, as well as determination of end products is not straightforward. High-resolution NMR spectroscopy affords a potentially simple analytical solution to this problem but is complicated by spectral overlap and the sensitivity of key resonances to variations in pH and the concentrations of cations such as Mg 2+ . We describe a multinuclear NMR approach towards characterising the intermediates and end-products of adenine nucleotide metabolism in glucose-starved human erythrocytes. Assignments based on homo- and heteronuclear correlation experiments for both 13 C and 31 P are presented

  10. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  11. Adenine nucleotide translocator transports haem precursors into mitochondria.

    Directory of Open Access Journals (Sweden)

    Motoki Azuma

    2008-08-01

    Full Text Available Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT, the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.

  12. Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Atlasi

    2011-01-01

    Full Text Available Objective (s Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury.Materials and MethodsFor this purpose, we used in vivo 4-vessel occlusion model of rat brain and porin purification method by hydroxyapatite column. After SDS gel electrophoresis and silver nitrate staining, Western blotting was done for porin, adenine nucleotide translocase and cyclophilin-D proteins.Results Porin was purified from mitochondrial mixture in ischemic brain and control groups. Investigation of interaction of adenine nucleotide transposes (ANT and cyclophilin-D with porin by Western blotting showed no proteins co-purified with porin from injured tissues.Conclusion The present study implies that there may not be interaction between porin, and ANT or cyclophilin-D, and if there is any, it is not maintained during the purification procedure.

  13. Simultaneous quantification of porcine myocardial adenine nucleotides and creatine phosphate by ion-pair reverse-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Cordis, G.A.; Das, D.K.

    1987-01-01

    In order to follow the energy metabolism and the levels of high-energy phosphate compounds in porcine myocardium subjected to ischemic insult, it was necessary to develop a high-performance liquid chromatography (HPLC) method where creatine phosphate (CP) and the adenine nucleotides could be measured simultaneously in a single run. Currently available ion-pair reverse-phase HPLC methods require a separate injection with a change in wavelength and mobile phase in order to measure the creatine phosphate, while baseline separation of AMP is lacking. The ion-exchange HPLC method includes a simultaneous determination, but the baseline drifts due to the gradient and baseline separation of AMP is not achieved. In the following ion-pair reverse-phase HPLC method, simultaneous measurements of porcine myocardial adenine nucleotides and creatine phosphate were achieved along with a stable baseline and homogeneous baseline separation of each measured compound, allowing accurate quantification

  14. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    Science.gov (United States)

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  15. Antinociceptive effect of purine nucleotides.

    Science.gov (United States)

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  16. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine

    Czech Academy of Sciences Publication Activity Database

    Fernández-Botello, A.; Holý, Antonín; Moreno, V.; Sigel, H.

    2004-01-01

    Roč. 98, - (2004), s. 2114-2124 ISSN 0162-0134 R&D Projects: GA MŠk OC D20.002 Institutional research plan: CEZ:AV0Z4055905 Keywords : adenine nucleotide analogues * intramolecular equilibria * isomeric complexes Subject RIV: CC - Organic Chemistry Impact factor: 2.225, year: 2004

  17. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    Science.gov (United States)

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  18. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Foster, J W; Kinney, D M; Moat, A G

    1979-03-01

    Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.

  19. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite

  20. Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria

    NARCIS (Netherlands)

    Ciapaite, J; Van Eikenhorst, G; Bakker, SJL; Diamant, M; Heine, RJ; Wagner, MJ; Westerhoff, HV; Krab, K

    To test whether long-chain fatty acyl-CoA esters link obesity with type 2 diabetes through inhibition of the mitochondrial adenine nucleotide translocator, we applied a system-biology approach, dual modular kinetic analysis, with mitochondrial membrane potential (Delta psi) and the fraction of

  1. Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria

    NARCIS (Netherlands)

    Ciapaite, J.; van Eikenhorst, G.; Bakker, S.J.L.; Diamant, M.; Heine, R.J.; Wagner, M.J.; Westerhoff, H.V.; Krab, K.

    2005-01-01

    To test whether long-chain fatty acyl-CoA esters link obesity with type 2 diabetes through inhibition of the mitochondrial adenine nucleotide translocator, we applied a system-biology approach, dual modular kinetic analysis, with mitochondrial membrane potential (Δψ) and the fraction of matrix ATP

  2. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  3. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    OpenAIRE

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC. 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, c...

  4. Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence

    Energy Technology Data Exchange (ETDEWEB)

    Benz, T; Hampp, R; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence. Lyophilized needles of Picea abies (Kaelbelescheuer, southern Black Forest) were analyzed for their content of adenine nucleotides (ATP, ADP, AMP: AdN) and of inorganic phosphate (Psub(i)). The metabolite levels were related to needle age, vegetation period and degree of damage (chlorophyll content). The results were as follows: 1) With increasing needle age there is a general decrease in the total AdN-pool. This decrease is most pronounced in very young needles and occurs in both healthy and damaged tissue. 2) The ATP/ADP-ratio of damaged needle is significantly higher than that of healthy ones. 3) Both phosphorylation potential (ATP.(ADP.Psub(i))/sup -1/) and adenylate energy charge ((ATP + 0.5.ADP).(AdN)/sup -1/) are significantly reduced in damaged needles. This is due to relatively higher levels of Psub(i) and of AMP. The results, although incomplete and preliminary, indicate metabolic alterations which have been described for other tissues in response to pollution by photooxidants.

  5. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-01-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. 14 C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of 14 C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types

  6. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase.

    Science.gov (United States)

    Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo

    2015-10-15

    Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Functional expression of human adenine nucleotide translocase 4 in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Hamazaki

    2011-04-01

    Full Text Available The adenine nucleotide translocase (ANT mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31 was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4 in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.

  8. Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes. Application of a new rapid high pressure filtration technique for fractionation.

    OpenAIRE

    Hummerich, H; de Groot, H; Noll, T; Soboll, S

    1988-01-01

    By using a new rapid high pressure filtration technique, mitochondrial and cytosolic ATP and ADP contents were determined in isolated hepatocytes at different oxygen partial pressures. At 670 mmHg, subcellular adenine nucleotide contents and ATP/ADP ratios were comparable with values obtained with the digitonin fractionation technique. However at lower oxygen partial pressure ADP appears to be rephosphorylated during digitonin fractionation whereas with high pressure filtration fractionation ...

  9. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  10. Effect of gamma radiation on levels of adenine nucleotides in erythrocytes of healthy individuals after submaximum physical exertion

    International Nuclear Information System (INIS)

    Zagorski, T.; Dudek, I.; Mazurek, M.; Berkan, L.; Chmielewski, H.; Kedziora, J.

    1994-01-01

    The authors studied the effect of gamma radiation and submaximum physical exercise on adenosine-5'-triphosphate (ATP), adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) contents in erythrocytes of healthy males. Twenty one men aged 20-22 years were examined. They underwent physical exercise at doses of 2 w/kg body weight for 15 min. Erythrocytes were exposed to gamma radiation (500 Gy doses) from 60 Co source. The concentration of adenine nucleotides in erythrocytes was measured by the Boehringer Mannheim tests. The submaximum physical exercise was found to decrease ATP content and to increase ADP and AMP in erythrocytes. Gamma radiation at 500 Gy dose was found to decrease ATP concentration in erythrocytes both at rest and after submaximum exercise and to increase AD content. It was revealed that AMP content increased at rest and decreased after submaximum exercise in irradiated erythrocytes. (author). 20 refs, 1 tab

  11. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production.

    Science.gov (United States)

    Naasani, Liliana I Sous; Rodrigues, Cristiano; de Campos, Rafael Paschoal; Beckenkamp, Liziane Raquel; Iser, Isabele C; Bertoni, Ana Paula Santin; Wink, Márcia R

    2017-08-01

    Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105 + , CD44 + , CD14 - , CD34 - , CD45 - , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Monica [Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany); Schmetzer, Helga [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Braeu, Marion; Buhmann, Raymund [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany)

    2016-11-15

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  13. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    International Nuclear Information System (INIS)

    Weiler, Monica; Schmetzer, Helga; Braeu, Marion; Buhmann, Raymund

    2016-01-01

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3 + T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  14. Divalent phosphate is a counterion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria

    International Nuclear Information System (INIS)

    Nosek, M.T.; Aprille, J.R.

    1986-01-01

    Unidirectional, carboxyatractyloside(CAT)-insensitive adenine nucleotide (AdN) fluxes have been studied in isolated rat liver mitochondria (mito). Previous work has shown that ATP x Mg transport in one direction is coupled to ATP x Mg or P/sub i/ transport in the opposite direction. The purpose of this study was to determine whether divalent HPO 4 2- or monovalent H 2 PO 4 - is the transported phosphate species. The authors used the monofluorophosphate (PO 3 F 2- ) and difluorophosphate (PO 2 F 2 - ) analogues as potential counterions forAdN efflux. After a preincubation on ice with 14 C-ADP to label the matrix AdN, efflux was measured at 30 0 C, pH 7.4, in 225mM sucrose, 10mM KCl, 5mM MgCl 2 , 5mM glutamate, 5mM malate, 10mM Tris, 0.5mM P/sub i/, 1mM ATP, and 5μM CAT. With no other additions efflux was -0.62 +/- 0.20 nmole/minute/mg protein. The data supports the hypothesis that divalent but not monovalent phosphate can act as a counterion for ATPx Mg transport over this CAT-insensitive carrier

  15. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress.

    Science.gov (United States)

    Klumpe, Inga; Savvatis, Konstantinos; Westermann, Dirk; Tschöpe, Carsten; Rauch, Ursula; Landmesser, Ulf; Schultheiss, Heinz-Peter; Dörner, Andrea

    2016-06-01

    Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.

  16. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Science.gov (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  17. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. (Fitzsimons Army Medical Center, Aurora, CO (USA))

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  18. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    International Nuclear Information System (INIS)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E.

    1990-01-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of [G- 3 H] hypoxanthine (Hy) into [ 3 H] labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate [ 3 H] ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation

  19. pH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides: A fluorimetric study

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Bhattacharya, Subhash C.; Saha, Abhijit

    2007-01-01

    The interaction of DNA bases and corresponding nucleotides with CdS nanoparticles (NPs), biofunctionalized by cysteine, has been investigated by absorption and fluorescence spectroscopy. Unique enhancement effect of adenine, in contrast to other nucleobases, on the luminescence of cysteine capped CdS (cys-CdS) NPs at both pH 7.5 and 10.5 was found, the extent of enhancement being much higher at pH 10.5. At the latter pH, the difference optical absorption spectra show development of new peak at 278 nm with corresponding decrease in the absorption of adenine at 260 nm, which is attributed to binding of adenine anion to the CdS surface through N7 of the purine ring. Appearance of a new band at 478 cm -1 and concomitant shift in the C 8 -N 7 vibrations to 1610 cm -1 in the FTIR spectra of cys-CdS NPs with adenine also suggest Cd-N7 binding on the particle surface. Amongst various nucleotides, ATP exhibited maximum luminescence enhancement on CdS NPs for a given change in concentration in the micro-molar range at physiological pH. A quantitative correlation between ATP concentration and PL enhancement of CdS NPs has been established, a step which in future might assist in developing new protocols for fluorescence sensing of adenine nucleotides under certain pathological conditions

  20. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Damage to uracil- and adenine-containing bases, nucleosides, nucleotides and polynucleotides: quantum yields on irradiation at 193 and 254 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Goerner, H.

    1994-01-01

    Photoreactions, such as base release and decomposition of the base moeity, induced by either 20 ns laser pulses at 193 nm or continuous 254 nm irradiation, were studied for a series of uracil and adenine derivatives in neutral aqueous solution. The quantum yield of chromophore loss (Φ cl ) depends significantly on the nature of the nucleic acid constituent and the saturating gas (Ar, N 2 O or O 2 ). In the case of polynucleotides the destruction of nucleotides was measured by high-performance liquid chromatography after hydrolysis; the quantum yields (Φ dn ) are comparable to those of chromophore loss or larger. The Φ cl and Φ dn of 0.04-0.1 for poly(U) and poly(dU), obtained for both wavelengths of irradiation, are due to processes originating from the lowest excited singlet state, i.e. formation of photohydrates and photodimers, and a second part from photoionization using λ irr = 193 nm. Irradiation at 193 nm effectively splits pyrimidine dimers and thus reverts them into monomers. (author)

  2. Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides.

    Science.gov (United States)

    Iser, Isabele C; Bracco, Paula A; Gonçalves, Carlos E I; Zanin, Rafael F; Nardi, Nance B; Lenz, Guido; Battastini, Ana Maria O; Wink, Márcia R

    2014-10-01

    Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically. © 2014 Wiley Periodicals, Inc.

  3. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.

    Science.gov (United States)

    Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I

    2016-01-01

    We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

  4. Regulation of Ecto-5´-Nucleotidase by Docosahexaenoic Acid in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Vu Thi Thom

    2013-08-01

    Full Text Available Background/Aims: Modulation of extracellular adenine nucleotide and adenosine concentrations is one potential mechanism by which docosahexaenoic acid (DHA may exert beneficial effects in critically ill patients. This study assessed DHA effects on extracellular adenine purines. Methods: Experiments used human pulmonary endothelial cells (HPMEC and umbilical vein endothelial cells (HUVEC treated with DHA (48 h. mRNA level (real-time PCR, expression (western blot, flow cytometry and activities (hydrolysis of etheno(ε-purines and fluorescence HPLC of CD73 (ecto-5´-nucleotidase and CD39 (ecto-NTPDase-1 were quantified. Results: DHA elevated total CD73 membrane protein expression concentration-dependently but CD73 mRNA level did not change. Increased expression was paralleled by increased enzyme activity. Effects observed on membrane level were reversed in intact cells, in which ε-AMP hydrolysis decreased after DHA. In intact endothelial cells ATP release was enhanced and CD39 activity blunted following DHA treatment. Hence, extracellular ATP and ADP concentrations increased and this inhibited ε-AMP hydrolysis. Conclusion: In human endothelial cells DHA caused 1 up-regulation of CD73 protein content and increased AMP hydrolysis at the cell membrane level, 2 increased cellular ATP release, and 3 decreased extracellular ATP/ADP hydrolysis. Thus, reorganization of the extracellular adenine-nucleotide-adenosine axis in response to DHA resulted in an increased extracellular ATP/adenosine ratio.

  5. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function

    Science.gov (United States)

    Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP4- (out) for ADP3- (in) + 0.5 phosphate2- (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  6. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  7. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ryohei Sugahara

    Full Text Available Mitochondrial adenine nucleotide translocase (ANT specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4 and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4 is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1 and the testis-specific paralogue (BmANTI2. The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1, but not those of other insect species (or PxANTI2, restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.

  8. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  9. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    Science.gov (United States)

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  10. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger....... ONs modified with pyrene-functionalized 2'-amino-α-l-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation...

  11. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes.

    Science.gov (United States)

    Mitrović, Nataša; Zarić, Marina; Drakulić, Dunja; Martinović, Jelena; Sévigny, Jean; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana

    2017-03-01

    17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.

  12. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  13. Adenine-N-oxide produced from adenine with gamma-rays and its binding to SH protein

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, O [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-12-01

    /sup 14/C-labeled adenine aqueous solution was irradiated with /sup 60/Co gamma-rays. The yield of adenine-7-N-oxide, a radiolytic product, was determined by Sephadex G-10 column chromatography and TLC autoradiography. The apparent productive yield was very low, but the true yield should be much higher because of the reversible reaction to adenine and the easy decomposition of the N-oxide itself. Using synthesized /sup 14/C-adenine-7-N-oxide, noncovalent binding of this N-oxide to urease, an SH protein, was confirmed in comparison between the presence and absence of SDS by Ultrogel AcA 22 column chromatography. The noncovalent binding of the gamma-irradiated /sup 35/S-cysteine was also observed. The yield reached a limit in O/sub 2/ easier than in N/sub 2/ as the atmosphere for DNA irradiation. These results support an interaction structure, chemical bonds N-O---H-S-, for noncovalent binding which may be applied to the biological system as a radiation-induced damage.

  14. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  15. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis.

    Science.gov (United States)

    Menezes, Camila Braz; Rigo, Graziela Vargas; Bridi, Henrique; Trentin, Danielle da Silva; Macedo, Alexandre José; von Poser, Gilsane Lino; Tasca, Tiana

    2017-11-01

    Trichomonas vaginalis causes trichomoniasis, a neglected sexually transmitted disease. Due to severe health consequences and treatment failure, new therapeutic alternatives are crucial. Phloroglucinols from southern Brazilian Hypericum species demonstrated anti-T. vaginalis and anti-Leishmania amazonensis activities. The modulation of biochemical pathways involved in the control of inflammatory response by ectonucleotidases, NTPDase, and ecto-5'-nucleotidase represents new targets for combating protozoa. This study investigated the activity of phloroglucinol derivatives of Hypericum species from southern Brazil against T. vaginalis as well as its ability on modulating parasite ectonucleotidases and, consequently, immune parameters through ATP and adenosine effects. Phloroglucinol derivatives screening revealed activity for isoaustrobrasilol B (IC 50 38 μm) with no hemolytic activity. Although the most active compound induced cytotoxicity against a mammalian cell lineage, the in vivo model evidenced absence of toxicity. Isoaustrobrasilol B significantly inhibited NTPDase and ecto-5'-nucleotidase activities, and the immune modulation attributed to extracellular nucleotide accumulation was evaluated. The production of ROS and IL-6 by T. vaginalis-stimulated neutrophils was not affected by the treatment. Conversely, IL-8 levels were significantly enhanced. The associative mechanism of trophozoites death and ectonucleotidases modulation by isoaustrobrasilol B may increase the susceptibility of T. vaginalis to host innate immune cell like neutrophils consequently, contributing to parasite clearance. © 2017 John Wiley & Sons A/S.

  16. Adenine phosphoribosyltransferase-deficient Leishmania donovani

    International Nuclear Information System (INIS)

    Kaur, K.; Iovannisci, D.M.; Ullman, B.

    1986-01-01

    To elucidate the relative roles of two routes for adenine salvage, the authors use biochemical genetic approaches to isolate clonal strains of Leishmania donovani promasatigotes genetically deficient in APRTase activity. The studies suggest that the metabolic rate of adenine in these organisms is initiated by deamination. The radiolabel incorporation experiments and biochemical experiments are described in which the rate of uptake of radiolabelled purine nucleobases (C 14) was determined. Results are presented

  17. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  18. {8-14C}-Adenine and {1-14C}-isopentenyl pyrophosphate - precursors for root-produced cytokinins in the tomato (Lycopersicon esculentum mill.)

    International Nuclear Information System (INIS)

    Dickinson, J.R.

    1985-01-01

    Following the detection of reasonable levels of biologically active cytokinin-like compounds in one-month-old tomato plants, the possible involvement of {8- 14 C}-adenine and {1- 14 C}-isopentenyl pyrophosphate in the biosynthetic pathway leading to an accumulation of free zeatin derivatives, was studied. Intact tomato plants were used for a time-course study involving the uptake of {8- 14 C}-adenine and the tentative identification of compounds into which the 14 C became incorporated. Using high performance liquid chromatography, radioactive trans-zeatin was identified as being present in the Dowex 50 root extract. The 12-hour time interval was used and the roots of the tomato plants were immersed in a more heavily radiolabelled medium. Modified separation techniques were used to achieve enhanced radioactivity recovery rates. This experiment demonstrated the presence of relatively high levels of tentatively identified radioactive zeatin in the Dowex 50 root and stem extracts. Radioactivity in the aqueous extracts was found not to be contributed by cytokinin nucleotides. A final experiment was carried out using decapitated root systems to determine if the root tissue alone could be implicated in the synthesis of cytokinins. Decapitated tomato root systems were supplied with either {8- 14 C}-adenine or {1- 14 C}-isopentenyl pyrophosphate. The ratio of incorporation of {1- 14 C}-isopentenyl pyrophosphate into identified cytokinins was higher than for {8- 14 C}-adenine. It was concluded that both adenine and isopentenyl pyrophosphate are involved in the biosynthetic pathway leading to an accumulation of free zeatin derivatives in tomato roots

  19. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.

    2017-01-01

    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  20. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    International Nuclear Information System (INIS)

    Meerabai Devi, L; Negi, Devendra P S

    2011-01-01

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10 -7 M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10 -9 -2 x 10 -7 M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  1. Complexes of Escherichia coli adenylate kinase and nucleotides: 1H NMR studies of the nucleotide sites in solution

    International Nuclear Information System (INIS)

    Vetter, I.R.; Reinstein, J.; Roesch, P.

    1990-01-01

    One- and two-dimensional nuclear magnetic resonance (NMR) studies, in particular substrate-protein nuclear Overhauser effect (NOESY) measurements, as well as nucleotide and P 1 ,P 5 -bis-(5'-adenosyl) pentaphosphate (AP 5 A) titrations and studies of the temperature-dependent unfolding of the tertiary structure of Escherichia coli adenylate kinase (AK EC ) were performed. These experiments and comparison with the same type of experiments performed with the porcine enzyme led them to the following conclusions: (1) at pH 8 and concentrations of approximately 2.5-3 mM, AK EC is partially unfolded at 318 K; (2) ATP·Mg 2+ binds to the ATP site with a dissociation constant of approximately 40 μM under the assumption that ATP binds to one nucleotide site only; (3) AP 5 A·Mg 2+ binds to both nucleotide sites and thus simulates the active complex; (4) the ATP·Mg 2+ adenine in the AK EC ·AP 5 A·Mg 2+ complex is located close to His 134 and Phe 19 ; (5) the AK EC G-loop with bound ATP·Mg 2+ is structurally highly homologous to the loop region in the oncogene product p21 with bound GTP·Mg 2+

  2. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  3. Influence of Magnetic Microparticles Isolation on Adenine Homonucleotides Structure

    Directory of Open Access Journals (Sweden)

    Monika Kremplova

    2014-02-01

    Full Text Available The electroactivity of purine and pyrimidine bases is the most important property of nucleic acids that is very useful for determining oligonucleotides using square wave voltammetry. This study was focused on the electrochemical behavior of adenine-containing oligonucleotides before and after their isolation using paramagnetic particles. Two peaks were detected—peak A related to the reduction of adenine base and another peak B involved in the interactions between individual adenine strands and contributes to the formation of various spatial structures. The influence of the number of adenine bases in the strand in the isolation process using paramagnetic particles was investigated too.

  4. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  6. Degradation of adenine in aqueous solution containing 3HHO

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Fuji, Izumi

    1986-01-01

    Aqueous adenine solutions of 5 x 10 -4 M (containing 14 C-adenine and buffered pH 7.0) were irradiated with 60 Co gamma-rays and 3 H beta-rays from tritiated water in the presence of N 2 , O 2 , N 2 O or t-BuOH-N 2 . Thin-layer chromatography (TLC) was carried out bidimensionally for separation of the radiolytically produced products and autoradiography was performed. Considerable differences were observed in the dose-yield curves for the decomposition of adenine and for the product formation between gamma- and beta-radiolyses. As for the degradation yield, oxygen enhancement ratios, 3.19 in gamma-irradiation and 1.08 in beta-irradiation, were obtained at a dose of 3.0 x 10 3 Gy. Similar products were produced both under N 2 and O 2 , but there were found a specific reaction of t-butanol radical with adenine, the high yield of hypoxanthine under N 2 O, and the higher degradation of the TLC origin-fixed products in beta-irradiation. The present results on adenine suggest, as reported previously for thymine, that a specific oxidative species is produced from water in beta-radiolysis but not in gamma-radiolysis. (author)

  7. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    Science.gov (United States)

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  8. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  9. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  10. Studies on mixed ligand complexes of adenine and xanthine with some rare earth ions

    International Nuclear Information System (INIS)

    Rastogi, P.R.; Singh, Mamta; Nayan, Ram

    1993-01-01

    Interactions of 6-aminopurine (adenine, HA) and 2,6-dihydroxypurine (xanthine, HB) with trivalent rare earth ions Y, Tb, Dy, Ho, Er and Tm, have been studied by pH-titration methods in aqueous solution at 20 o (μ = 0.1 M KNO 3 ). The ligands in their mixtures with tripositive rare earth ions (M 3+ ) form a number of mixed ligand complexes, M 3+ -adenine-xanthine, M 3+ -(adenine) 2 -xanthine, M 3+ -adenine-(xanthine) 2 in addition to the binary complexes, M 3+ -(adenine), M 3+ -(adenine) 2 , M 3+ -(adenine) 3 , M 3+ -(xanthine), M 3+ -(xanthine) 2 and M 3+ -(xanthine) 3 . The stability constants of these complexes have been evaluated and the results discussed. (author). 13 refs., 1 fig., 1 tab

  11. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    Science.gov (United States)

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  12. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunhua [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States); Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin [College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124 (China); Su, Jiguo, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [College of Science, Yanshan University, Qinhuangdao 066004 (China); Zhang, Yang, E-mail: jiguosu@ysu.edu.cn, E-mail: zhng@umich.edu [Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108 (United States)

    2016-07-07

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  13. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  14. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Science.gov (United States)

    Roque, Fernanda R.; Soci, Ursula Paula Renó; De Angelis, Katia; Coelho, Marcele A.; Furstenau, Cristina R.; Vassallo, Dalton V.; Irigoyen, Maria Claudia; Oliveira, Edilamar M.

    2011-01-01

    OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05). RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 5′-nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion. PMID:22189737

  15. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Directory of Open Access Journals (Sweden)

    Fernanda R. Roque

    2011-01-01

    Full Text Available OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C and trained (T. An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05. RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion.

  16. The catalase activity of diiron adenine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  17. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  18. Hydrolytic cleavage of N-6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, H.; Šebela, M.; Novák, Ondřej; Frébort, I.

    2008-01-01

    Roč. 28, č. 6 (2008), s. 335-347 ISSN 0144-8463 R&D Projects: GA ČR(CZ) GA522/06/0022 Institutional research plan: CEZ:AV0Z50380511 Keywords : adenine deaminase * adenosine deaminase (ADA) * aminohydrolase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.525, year: 2008

  19. Dissociative Excitation of Adenine by Electron Impact

    Science.gov (United States)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  20. File list: Oth.Lar.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.20.Adenine_N6-methylation.AllCell.bed ...

  1. File list: Oth.Adl.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.20.Adenine_N6-methylation.AllCell.bed ...

  2. File list: Oth.Unc.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.10.Adenine_N6-methylation.AllCell.bed ...

  3. File list: Oth.Unc.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.50.Adenine_N6-methylation.AllCell.bed ...

  4. File list: Oth.Emb.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.50.Adenine_N6-methylation.AllCell.bed ...

  5. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  6. File list: Oth.ALL.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.Adenine_N6-methylation.AllCell.bed ...

  7. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  8. A novel approach to adenine-induced chronic kidney disease associated anemia in rodents.

    Directory of Open Access Journals (Sweden)

    Asadur Rahman

    Full Text Available To date, good experimental animal models of renal anemia are not available. Therefore, the purpose of this study was to establish a novel approach to induce chronic kidney disease (CKD with severe anemia by oral administration of adenine in rodents. Adenine was administered to 6-week-old male C57BL/6 mice (25 and 50 mg/kg body weight by oral gavage daily for 28 days. Serum creatinine and BUN as well as hematocrit, hemoglobin (Hb and plasma erythropoietin (EPO levels were monitored to assess renal function and anemia, respectively. Adenine at 25 mg/kg for 28 days slightly increased plasma creatinine levels, but did not induce anemia. In contrast, 50 mg/kg of adenine daily for 28 days showed severe renal dysfunction (plasma creatinine 1.9 ± 0.10 mg/dL and anemia (hematocrit 36.5 ± 1.0% and EPO 28 ± 2.4 pg/mL as compared with vehicle-treated mice (0.4 ± 0.02 mg/dL, 49.6 ± 1.6% and 61 ± 4.0 pg/mL, respectively. At the end of experiment, level of Hb also significantly reduced in 50 mg/kg adenine administration group. Remarkable histological changes of kidney tissues characterized by interstitial fibrosis and cystic appearance in tubules were observed in 50 mg/kg of adenine treatment group. These results have demonstrated that oral dosing with adenine at 50 mg/kg for 28 days is suitable to induce a stable anemia associated with CKD in mice.

  9. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  10. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit; Samanta, Pralok Kumar; Pati, Swapan

    2015-01-01

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  11. Distribution of 3H within purine nucleotides of Ehrlich mouse ascites tumour cells after intraabdominal injection of myo-[2-3H]inositol

    DEFF Research Database (Denmark)

    Christensen, Søren; Klenow, H.; Overgaard-Hansen, Kay

    2000-01-01

    /desorption the nucleotides were dephosphorylated, enriched with [U-14C]adenosine, and exposed to purine-nucleoside specific enzymes. Reverse phase HPLC and radioactivity measurement demonstrated that for adenosine about 82% of total stable 3H label was in ribose and thus about 18% in adenine. For guanosine about 89...

  12. Spectral studies of lanthanide-nucleic acid component interaction: complexes of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di- and adenosine 5' tri-phosphates with praseodymium(III)

    International Nuclear Information System (INIS)

    Joseph, George; Anjaiah, K.; Misra, S.N.

    1990-01-01

    The interactions of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di-and adenosine 5'-tri-phosphates with praseodymium(III) have been studied in different stoichiometries and at varying hydrogen ion concentrations by absorption spectral studies. The sharp bands in the spectra have been individually analysed by Gaussian curve analysis, and various spectral parameters have been computed using partial and multiple regression methods on an HP-1000/45 computer. The changes in and the magnitudes of these parameters have been correlated with the degrees of outer- and inner-sphere coordination around praseodymium(III). Crystalline complexes of the type: Pr(nucleotide) 2 (H 2 O) 2 (where nucleotide = AMP, ADP and ATP) have been characterized on the basis of analytical, IR and 1 H NMR spectral data. These studies indicate that the binding of the nucleotide is through phosphoric oxygen. These complexes in aqueous medium show significant ionization which supports the observed weak 4f-4f bands, lower values of nephelauxetic effect and the parameters derived from coulombic and spin-orbit interactions. (author). 3 t abs., 28 refs

  13. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies

    International Nuclear Information System (INIS)

    Kiick, D.M.; Harris, B.G.; Cook, P.F.

    1986-01-01

    The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. Results indicate that substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction

  14. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  15. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  16. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis.

    Science.gov (United States)

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; Kist, Luiza Wilges; Oliveira, Giovanna Medeiros Tavares de; Bogo, Maurício Reis; Carli, Geraldo Atillio de; Macedo, Alexandre José; Tasca, Tiana

    2015-04-01

    Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5'-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5'-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  17. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Patrícia de Brum Vieira

    2015-04-01

    Full Text Available Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB and haemin (HM enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  18. Guanine nucleotide regulation of α1-adrenergic receptors of muscle and kidney eptihelial cells

    International Nuclear Information System (INIS)

    Terman, B.I.; Hughes, R.J.; Slivka, S.R.; Insel, P.A.

    1986-01-01

    The authors have examined the effect of guanine nucleotides on the interaction of adrenergic agents with α 1 -adrenergic receptors of two cell lines, the Madin-Darby Canine Kidney (MDCK) and BC3H-1 muscle cells. While gaunylylimidodiphosphoate (Gpp(NH)p) had no effect on the affinity or the total number of [ -3 H]prazosin binding sites in membranes prepared from these cells, the nucleotide decreased the apparent affinity of the agonist epinephrine in competing for [ 3 H]prazosin binding sites in both cell types. The EC 50 of Gpp(NH)p was ∼100 μM, and a maximal effect was seen at 500 μM. In contrast, 100 μM Gpp(NH)p yielding maximal shifts in binding of epinephrine to β-adrenergic receptors in BC3H-1 cell membranes. Guanine nucleotides were significantly more effective than adenine nucleotides in shifting agonist affinity for the α 1 -receptor and Mg ++ was required to observe a maximal effect. α 1 -receptor agonists activated phosphatidylinositol (PI) hydrolysis in both cell types, but have no direct effect on membrane adenylate cyclase activity. In intact BC3H-1 cells, α 1 -agonists inhibited β-adrenergic cAMP production, an effect which appears in preliminary studies not to result from enhanced phosphodieterase activity. These results show that agonist binding to α 1 -adrenergic receptors in mammalian kidney and muscle cells is regulated by guanine nucleotides. This regulation and inturn transmembrane signalling (PI hydrolysis) by these receptors appear to involve a guanine nucleotide binding (G) protein, which may be different than G/sub s/ and G/sub i/

  19. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; Clercq, H. de; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice.

  20. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences.

    Science.gov (United States)

    Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Grabar, Marina; Smrečki, Vilko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2013-06-28

    Among three novel DBTAA derivatives only the DBTAA-propyl-adenine conjugate showed recognition of the consecutive oligo dT sequence by increased affinity and specific induced chirooptical response in comparison to other single stranded RNA and DNA; whereby of particular importance is the up until now unique efficient differentiation between dT and rU. At variance, its close analogue DBTAA-hexyl-adenine did not reveal any selectivity between ss-DNA/RNA pointing out the important role of steric factors (linker length); moreover non-selectivity of the reference compound (, lacking adenine) stressed the importance of adenine interactions in the selectivity.

  1. Statistical properties of nucleotides in human chromosomes 21 and 22

    International Nuclear Information System (INIS)

    Zhang Linxi; Sun Tingting

    2005-01-01

    In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r n-1 and a rapid decrease for r > 4 n-1 . In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N 0 (l) can be described by a power law: N 0 (l) ∼ l -μ . The distance distributions P 0 (S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P 0 (S) = a + bS + cS 2 , and it is quite different from the random sequence

  2. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    Science.gov (United States)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-05

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  4. Synthesis of adenine mediated superparamagnetic colloidal β-FeOOH nanostructure(s): study of their morphological changes and magnetic behavior

    International Nuclear Information System (INIS)

    Kumar, Anil; Gupta, Sudhir Kumar

    2013-01-01

    This paper describes the synthesis of adenine-mediated superparamagnetic β-FeOOH nanostructures in aqueous medium. Capping by adenine provides a synthetic control to manipulate their size, morphology, optical and magnetization properties. β-FeOOH binds to adenine mainly through –NH 2 , N(3); N(9)H and N(7) of the pyridine and imidazole rings, respectively. At low [adenine], it produces nanorods, but at higher [adenine] (>1 × 10 −2 mol dm −3 ), increasing numbers of spherical nanoparticles encapsulating β-FeOOH with an average diameter of 2.5 nm in the core and adenine molecules in the shell are obtained, causing an increase in the specific surface area by about twofold. Dynamic light scattering technique also depicts a regular decrease in their hydrodynamic size with increasing [adenine] and exhibits the highest stability with a zeta potential of ∼67 mV for the sample containing 2 × 10 −2 mol dm −3 adenine (SP5). An increasing [adenine] from 1 × 10 −3 to 2 × 10 −2 mol dm −3 in these samples enhanced the value of saturation magnetization (M S ), due to β-FeOOH, gradually from 2.0 to 6.9 emu g −1 at 300 K, but at S at 300 K having potential for environmental and biological applications.

  5. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats

    OpenAIRE

    Kim, Eun Jin; Oh, Hyun-A; Choi, Hyuck Jai; Park, Jeong Hill; Kim, Dong-Hyun; Kim, Nam Jae

    2013-01-01

    To evaluate the effect of the saponin of heat-processed ginseng (Sun ginseng, SG), we investigated the protective effect of SG total saponin fraction against adenine-induced chronic renal failure in rats. SG saponin significantly decreased the levels of urea nitrogen and creatinine in the serum, but increased the urinary excretion of urea nitrogen and creatinine, indicating an improvement of renal function. SG saponin also inhibited adenine-induced kidney hypertrophy and edema. SG saponin red...

  6. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    Science.gov (United States)

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  7. Communication: Site-selective bond excision of adenine upon electron transfer

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  8. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.

    Science.gov (United States)

    Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-01-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be ∼6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C≡N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  10. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  11. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

    DEFF Research Database (Denmark)

    Ross, Fiona A; Jensen, Thomas Elbenhardt; Hardie, D Grahame

    2016-01-01

    The g subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different g isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged ve...

  12. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    Science.gov (United States)

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  13. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    Science.gov (United States)

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  14. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  15. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  16. Design, synthesis, and characterization of 0-D, 1-D, and 2-D Zinc–Adeninate coordination assemblies

    Energy Technology Data Exchange (ETDEWEB)

    An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of); Geib, Steven J. [Dept. of Chemistry, University of Pittsburgh, Pittsburgh (United States); Kim, Myung Gil [Dept. of Chemistry, Chungang University, Seoul (Korea, Republic of)

    2015-08-15

    In this study, we demonstrate the synthesis and characterization of zinc– adeninate coordination polymers with 0-D, 1-D, and 2-D structures. We describe methods for controlling the structure of these materials by applying different synthetic conditions and discuss their structural relationships. 0-D, 1-D, and 2-D zinc–adeninate coordination polymers with the same metal–adeninate coordination mode were synthesized and characterized. By controlling the temperature, a material with 0-D macrocycle or 1-D chain coordination polymer was prepared. A replacement of pyridine with bipyridine formed 2-D sheet structure by connecting 1-D chains with each other. They exhibited an interesting relationship between synthetic methods and structures. Further study of metal–adeninate coordination chemistry will render a precise control of the structure in synthesis and will open a new venue to new materials with fascinating properties.

  17. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Jensen, Kristine Steen; Rasmussen, Mads Skytte

    2014-01-01

    Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine...... phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we.......5, while maximal activity with xanthine was observed at pH 7.5. We discuss likely reasons why SSO2341 in S. solfataricus and similar open reading frames in other Crenarchaeota could not be identified as genes encoding APRTase....

  18. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  19. Extracellular visfatin activates gluconeogenesis in HepG2 cells through the classical PKA/CREB-dependent pathway.

    Science.gov (United States)

    Choi, Y J; Choi, S-E; Ha, E S; Kang, Y; Han, S J; Kim, D J; Lee, K W; Kim, H J

    2014-04-01

    Adipokines reportedly affect hepatic gluconeogenesis, and the adipokine visfatin is known to be related to insulin resistance and type 2 diabetes. However, whether visfatin contributes to hepatic gluconeogenesis remains unclear. Visfatin, also known as nicotinamide phosphoribosyltransferase (NAMPT), modulates sirtuin1 (SIRT1) through the regulation of nicotinamide adenine dinucleotide (NAD). Therefore, we investigated the effect of extracellular visfatin on glucose production in HepG2 cells, and evaluated whether extracellular visfatin affects hepatic gluconeogenesis via an NAD+-SIRT1-dependent pathway. Treatment with visfatin significantly increased glucose production and the mRNA expression and protein levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in HepG2 cells in a time- and concentration-dependent manner. Knockdown of SIRT1 had no remarkable effect on the induction of gluconeogenesis by visfatin. Subsequently, we evaluated if extracellular visfatin stimulates the production of gluconeogenic enzymes through the classical protein kinase A (PKA)/cyclic AMP-responsive element (CRE)-binding protein (CREB)-dependent process. The phosphorylation of CREB and PKA increased significantly in HepG2 cells treated with visfatin. Additionally, knockdown of CREB and PKA inhibited visfatin-induced gluconeogenesis in HepG2 cells. In summary, extracellular visfatin modulates glucose production in HepG2 cells through the PKA/CREB pathway, rather than via SIRT1 signaling. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  1. Proceedings of Biological Actions of Extracellular ATP Conference Held in Philadelphia, Pennsylvania on 27-19 November 1990. (Annals of the New York Academy of Sciences. Volume 603)

    Science.gov (United States)

    1990-12-16

    Control Hypoxia Recoser, solution." The single ventricle contracted against an artificial resistance of constant value, and an increase in workload was...Suspended Cardiocytes Isolated from Adult Rat Hearr Initial ATP Rate of Hydrolysis ( AM • hr - ’) Concentratisn OC/ 37 "C/ (PM) 0, CO, 03 CO, 37’C/N, 05 4...adenine nucleotides, placed in perfusion chambers, and superfused with artificial cerebrospinal fluid. The efflux of endogenous and radiolabeled

  2. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  3. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  4. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  5. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  6. Protection of Chinese herbs against Adenine-induced chronic renal ...

    African Journals Online (AJOL)

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three ...

  7. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  8. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  9. Simultaneous quantification by HPLC of purines in umami soup stock and evaluation of their effects on extracellular and intracellular purine metabolism.

    Science.gov (United States)

    Fukuuchi, T; Iyama, N; Yamaoka, N; Kaneko, K

    2018-04-13

    Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.

  10. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1

    Directory of Open Access Journals (Sweden)

    Chi-Tai Fang

    2017-08-01

    Conclusion: Our results support the view that DNA adenine methylation plays an important role in modulating the pathogenicity of K. pneumoniae genotype K1. The incomplete attenuation indicates the existence of other regulatory factors.

  11. The synthesis of nucleotide in the aqueous solution induced by low energy ions

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2000-08-01

    A new apparatus was designed to induce reactions in aqueous solution by introducing low energy ions into the aqueous solution, this apparatus overcome the defaults of the old ones which demanded vacuum and made it possible to study the action among solutions, it also expanded the ion implantation biology. The role of low energy ions was introduced into the study of the origin of life, primitive earth conditions were imitated to study prior-life synthesis of nucleotide by introducing low energy ions into aqueous solution, low energy N + was implanted into adenine supersaturation solution including D-ribose and NH 4 H 2 PO 4 , it was confirmed that 5'-AMP was gained by HPLC analysis of the products. In comparison with other methods in this field, this one is simpler and nearer to the primitive earth conditions, thus it provided a new try for the studying of the origin of life

  12. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  13. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.; Regan, John M.

    2015-01-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  14. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  15. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    Science.gov (United States)

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hydrothermal stability of adenine under controlled fugacities of N2, CO2 and H2.

    Science.gov (United States)

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; LaRowe, Douglas E

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  17. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  18. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    Science.gov (United States)

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  19. Rapid field multiplication of plantains using benzyl adenine or ...

    African Journals Online (AJOL)

    Une technique appropriee et moins chere pour la multiplication rapide sur Ie terrain de deux varietes locales de plantain Apantu (une corne fausse) et Asamienu (une come veritable) a ete obtenue par injection de 6 ou 8 ml du jus de noix de coco mur sec apres L' ebullition et la filtration ou de 4 ml 10-2 M benzyle adenine ...

  20. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological......ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......, particularly during Ca2+ stress conditions. In conclusion, these studies demonstrate a complex regulation of purinergic signalling in exocrine pancreas. A crucial role for duct cells in mediating extracellular nucleotides homeostasis, involving ATP release, subsequent hydrolysis and conversion via...

  1. Quantification of DNA in Neonatal Dried Blood Spots by Adenine Tandem Mass Spectrometry.

    Science.gov (United States)

    Durie, Danielle; Yeh, Ed; McIntosh, Nathan; Fisher, Lawrence; Bulman, Dennis E; Birnboim, H Chaim; Chakraborty, Pranesh; Al-Dirbashi, Osama Y

    2018-01-02

    Newborn screening programs have expanded to include molecular-based assays as first-tier tests and the success of these assays depends on the quality and yield of DNA extracted from neonatal dried blood spots (DBS). To meet high throughput and rapid turnaround time requirements, newborn screening laboratories adopted rapid DNA extraction methods that produce crude extracts. Quantification of DNA in neonatal DBS is not routinely performed due to technical challenges; however, this may enhance the performance of assays that are sensitive to amounts of input DNA. In this study, we developed a novel high throughput method to quantify total DNA in DBS. It is based on specific acid-catalyzed depurination of DNA followed by mass spectrometric quantification of adenine. The amount of adenine was used to calculate DNA quantity per 3.2 mm DBS. Reference intervals were established using archived, neonatal DBS (n = 501) and a median of 130.6 ng of DNA per DBS was obtained, which is in agreement with literature values. The intra- and interday variations were quantification were 12.5 and 37.8 nmol/L adenine, respectively. We demonstrated that DNA from neonatal DBS can be successfully quantified in high throughput settings using instruments currently deployed in NBS laboratories.

  2. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    International Nuclear Information System (INIS)

    Fenati, Renzo A.; Connolly, Ashley R.; Ellis, Amanda V.

    2017-01-01

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  3. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    Energy Technology Data Exchange (ETDEWEB)

    Fenati, Renzo A.; Connolly, Ashley R. [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  4. Prevention of injury by resveratrol in a rat model of adenine-induced ...

    African Journals Online (AJOL)

    phosphorous, and fibroblast growth factor-23 (FGF-23) in rat urine samples after 2 months of adenine ... parathyroid hormone, phosphorous and FGF-23 levels (p < 0.002). In rats ... cartilage degradation in animal models of arthritis. [11].

  5. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  6. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles.

    Science.gov (United States)

    Sun, Feifei; You, Ying; Liu, Jie; Song, Quanwei; Shen, Xiaotong; Na, Na; Ouyang, Jin

    2017-05-23

    A label- and enzyme-free fluorescent sensor for the detection of single-nucleotide polymorphisms (SNPs) at room temperature is proposed, using new copper nanoparticles (CuNPs) as fluorescent reporters. The CuNPs were constructed by using a DNA three-way junction (3WJ) template. In this assay, two complementary adenine/thymine-rich probes can hybridize with the wild-type target simultaneously to construct a 3WJ structure, serving as an efficient scaffold for the generation of CuNPs. However, the CuNPs produce weak fluorescence when the probes bind with a mutant-type target. SNPs can be identified by the difference in fluorescence intensity of the CuNPs. This SNPs detection strategy is straightforward, cost-effective, and avoids the complicated procedures of labeling or enzymatic reactions. The fluorescent sensor is versatile and can be applied to all types of mutation because the probes are programmable. Moreover, the sensor exhibits good detection performance in biological samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzymatic synthesis of 13N-β-nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Lambrecht, R.H.D.; Slegers, G.; Claeys, A.; Vandecasteele, C.

    1985-01-01

    Nitrogen-13-labelled β-nicotinamide adenine dinucleotide ( 13 N-NAD) is an interesting new compound for positron emission tomography. A semi-automatic production method is developed that yields a solution of 13 N-NAD of radiopharmaceutical quality, suitable for human intravenous administration. The 13 N-NAD is prepared enzymatically in one step from cyclotron-produced 13 NH 3 and nicotinic acid adenine dinucleotide (deamido-NAD). The enzyme NAD synthetase (E.C. 6.3.1.5), catalysing this reaction, is extracted and purified from Escherichia coli. The purified enzyme is immobilized by glutaraldehyde coupling to γ-aminopropylsilane-coated porous glass beads. The enzyme-loaded glass beads are packed in a column. The kinetic properties of the column are optimized. For synthetizing 13 N-NAD, the mixture of co-factors and substrates, containing 13 NH 3 , is pumped over the enzyme column. The unreacted 13 NH 3 is separated from 13 N-NAD by on-line passage over a cation exchanger. After passing over a millipore filter, a sterile solution of radiochemically pure 13 N-NAD is obtained, containing 70 mCi in 10 mL. The total synthesis time is 10 minutes. The specific activity is about 120 mCi/μmol at EOB. Quality control includes sterility and pyrogen tests, HPLC and HPTLC analysis. (author)

  8. Synaptosomal ecto-5'-nucleotidases activity modulation after ionizing irradiation

    International Nuclear Information System (INIS)

    Drakulic, D.; Stanojevic, I.; Petrovic, S.; Velickovic, N.; Horvat, A.

    2009-01-01

    Adenine nucleotides, such as ATP and adenosine are involved in the regulation of variety of physiological processes in the central nervous system (CNS), including development and tissue remodeling following trauma, stroke, ischemia or neurodegenerative disorders. Ecto-5'- nucleotidase (ecto-5'-NT), membrane enzyme, catalyzes the last step of extracellular nucleotide degradation and it is responsible for purinergic signaling modulation and termination. In order to investigate if ionizing irradiation could modulate CNS purinergic signalization in synaptic plasma membranes (SPM) the activity of ecto-5'-NT was monitored after whole-body acute irradiation with low (0,5 Gy) or therapeutic (2 Gy) doses, 1h, 24h and 72h after irradiating juvenile (15-day old), prepubertal (30 days), pubertal (60 days) and adult (90-day old) female rats. Results suggest that acute irradiation could modulate activity of the enzymes that are necessary for purinergic signal termination depended of dose and time after irradiation, as well as brain development stage. (author) [sr

  9. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  10. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype

    International Nuclear Information System (INIS)

    McKnight, Kevin L.; Sandefur, Stephanie; Phipps, Krista M.; Heinz, Beverly A.

    2003-01-01

    The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs

  11. Chinese herbal medicine Shenqi Detoxification Granule inhibits fibrosis in adenine induced chronic renal failure rats.

    Science.gov (United States)

    Peng, Min; Cai, Pingping; Ma, Hongbo; Meng, Hongyan; Xu, Yuan; Zhang, Xiaoyi; Si, Guomin

    2014-01-01

    Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry. The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO. Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.

  12. Voltammetric study of adenine complex with copper on mercury electrode

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Kouřilová, Alena; Hasoň, Stanislav; Kizek, R.; Trnková, L.

    2009-01-01

    Roč. 21, 3-5 (2009), s. 439-444 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA100040602; GA AV ČR(CZ) IAA400040804; GA AV ČR(CZ) KAN200040651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cyclic voltammetry * elimination voltammetry * copper-adenine complex Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  13. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  14. In vitro propagation of Calla lily: adenine sulphate and 6-benzilaminopurine

    Directory of Open Access Journals (Sweden)

    Márcia De Nazaré Oliveira Ribeiro

    2014-09-01

    Full Text Available Calla lily [Zantedeschia aethiopica (L. Spreng.] belonging to the Araceae family is appreciated as cut flower and in com­position of gardens. However, the conventional propagation of this plants shows a poor productive. Thus, tissue culture besides allowing fast clonal propagation also provides healthy and uniforms plants. The aim was study the influence of the differents concentrations of 6-benzilaminopurine (BAP and adenine sulphate (AS on in vitro multiplication of Calla lily. The explants were maintained in MS medium added with BAP (0.0, 8.9, 17.8 and 26.7 μM and adenine sulphate (0, 54, 108 and 162 μM. The plants were transferred to growth room and maintained at 25±1ºC and photoperiod of 16 hours for 60 days, under luminous intensity of 35 μmol m-2 s-1, for a period of 60 days. The experimental design was entirely randomized with four repetitions of three seedlings each, resulting in twelve plants per treatment, each tube with one plant. The statistics analysis showed interactive effects for quantify of BAP and AS for leaves number and fresh mass of the aerial parts. The highest number of leaves (4.8 and fresh mass of aerial parts (0.73 g was obtained with 26.7 μM of BAP combined with 108 μM of AS, highest number of shoots (2.6 was obtained with 22,19 μM of BAP and highest lengh of sprouts (5.0 cm was observed in the absence of BAP. The addition of BAP increased the number of shoots per explant. The use of adenine sulphate in combination with BAP had a positive effect for the accumulation of fresh weight and number of leaves in vitro culture.

  15. DNA synthesis and cell survival after X-irradiation of mammalian cells treated with caffeine or adenine

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.; Dahle, D.B.

    1978-01-01

    The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation could be postponed by a post-irradiation treatment with 1.0 to 2.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibited depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis had no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiated X-ray-induced cell killing, this reduction in survival was due primarily to effects on cells not in S-phase. (author)

  16. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  17. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.

    Science.gov (United States)

    Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C

    2010-12-15

    hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.

  18. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolis...

  19. Permeability of Rickettsia prowazekii to NAD

    International Nuclear Information System (INIS)

    Atkinson, W.H.; Winkler, H.H.

    1989-01-01

    Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation

  20. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  1. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters*

    Science.gov (United States)

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. PMID:25320081

  2. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3.

    Science.gov (United States)

    Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin

    2018-03-02

    The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.

  3. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.

    Science.gov (United States)

    Sandefur, Conner I; Boucher, Richard C; Elston, Timothy C

    2017-08-29

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.

  4. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.

    Science.gov (United States)

    Ali, Badreldin H; Cahliková, Lucie; Opletal, Lubomir; Karaca, Turan; Manoj, Priyadarsini; Ramkumar, Aishwarya; Al Suleimani, Yousuf M; Al Za'abi, Mohammed; Nemmar, Abderrahim; Chocholousova-Havlikova, Lucie; Locarek, Miroslav; Siatka, Tomas; Blunden, Gerald

    2017-09-01

    The aim of this work was to assess the possible beneficial effects of aqueous extracts of Hibiscus sabdariffa L. calyces and anthocyanins isolated therefrom in an adenine-induced chronic kidney disease (CKD) model. Rats were orally given, for 28 consecutive days, either adenine alone or together with either aqueous extract of H. sabdariffa calyces (5 and 10%) or anthocyanins (50, 100 and 200 mg/kg of anthocyanin concentrate). For comparative purposes, two groups of rats were given lisinopril (10 mg/kg). When either H. sabdariffa aqueous extract or the anthocyanins isolated from it was administered along with adenine, the adverse effects of adenine-induced CKD were significantly lessened, mostly in a dose-dependent manner. The positive effects were similar to those obtained by administration of lisinopril. The results obtained show that both H. sabdariffa and its anthocyanins could be considered as possible promising safe dietary agents that could be used to attenuate the progression of human CKD. This could have added significance as H. sabdariffa tea is widely consumed in many parts of Africa and Asia and is thus readily available. © 2017 Royal Pharmaceutical Society.

  5. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  6. On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Mikkelsen, Kurt V; Kongsted, Jacob

    2010-01-01

    The (15)N NMR spectrum of adenine in aqueous solution has been modeled using high-level combined density functional theory/molecular mechanics techniques coupled to a dynamical averaging scheme. The explicit consideration of the three lowest-energy tautomers of adenine-H9, H7 and H3-allows...

  7. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Circular dichroism spectroscopy of conformers of (guanine + adenine) repeat strands of DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2003-01-01

    Roč. 15, č. 7 (2003), s. 584-592 ISSN 0899-0042 R&D Projects: GA AV ČR IAA4004201; GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA conformation * (guanine + adenine) repeats * homoduplexes Subject RIV: BO - Biophysics Impact factor: 1.793, year: 2003

  9. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    Science.gov (United States)

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  10. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.

    Science.gov (United States)

    Chen, Yuanyuan; Eldho, Nadukkudy V; Dayie, T Kwaku; Carey, Paul R

    2010-04-27

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates

  11. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    Science.gov (United States)

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  12. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    Science.gov (United States)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  13. Effect of adenine on bacterial translocation using technetium-99m labeled E. coli in an intestinal obstruction model in rats

    International Nuclear Information System (INIS)

    Ugur Oflaz; Fatma Yurt Lambrecht; Osman Yilmaz; Cetin Pekcetin

    2013-01-01

    This study aims to investigate effects of adenine on bacterial translocation (BT) using 99m Tc-labeled E. coli in an intestinal obstruction rat model. In the study twenty-one rats were used. The rats were divided into three groups according to different feeding patterns. The control group (CG) was fed with a standard chow diet for 7 days. Group A1 and group A2 were fed with adenine supplemented chow diet for 7 days. At the end of the feeding period, after all groups was submitted intestinal obstruction. 99m Tc-E. coli was injected into the rats' terminal ileum under anesthetic. The rats were sacrificed under aseptic conditions at 24th h after the surgery. The uptake of 99m Tc-E. coli was determined in organs such as the liver, mesenteric lymph nodes, spleen and ileum. Group A1 and group A2 results show that the uptake of 99m Tc-E. coli decreased in the blood and organs comparing to the CG. As a result, it was observed that adenine reduced the level of BT when compared with CG. The beneficial effect of adenine on BT in intestinal obstruction was observed. However, further studies are needed to more clearly assess how this benefit can be achieved. (author)

  14. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    Science.gov (United States)

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  15. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters.

    Science.gov (United States)

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-11-28

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Effects of Foliar Application of Benzyl Adenine, Ascorbic Acid and Thiamine on Some Morphological and Biochemical Characteristics of Petunia (Petunia hybrida

    Directory of Open Access Journals (Sweden)

    M. Salehi

    2016-05-01

    Full Text Available The improvement of growth and flowering of petunia as one of the most popular and cultivated bedding plants in Iran, is of significant importance. Thus, a CRD experiment with five replications was conducted at the Research Greenhouse of Shahid Bahonar University, Kerman, Iran.  From 48 days after sowing, when the seedlings had 5-6 true leaves, the seedlings were sprayed with  thiamine (0 and 100 mgL-1, ascorbic acid (0 and 100 mg L-1 and benzyl adenine (0 and 200 mg L-1 at 4 steps during  growth and development. The results indicated that the treatment of ascorbic acid with thiamine and benzyl adenine led to 2.5 and 3.5-fold increases in the number and length of lateral shoots compared to control treatment. The greatest fresh weight was obtained with ascorbic acid with thiamine and benzyl adenine treatment which led to a 2.5-fold increase in this trait, compared to the control. The highest dry weight was achieved in benzyl adenine treatment. The greatest vase-life and flower diameter were found with ascorbic acid (100 mg L-1, thiamine (100 mg L-1 and benzyl adenine (200 mg L-1 treatments in an extent that the flower longevity and diameter were increased by 83% and 72%, respectively, in comparison to control. Furthermore, chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and reduced sugars concentrations were significantly increased by the foliar-applied compounds compared to control.

  17. Influence of nucleotide modifications at the C2' position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA.

    Science.gov (United States)

    Copp, William; Denisov, Alexey Y; Xie, Jingwei; Noronha, Anne M; Liczner, Christopher; Safaee, Nozhat; Wilds, Christopher J; Gehring, Kalle

    2017-09-29

    Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    Directory of Open Access Journals (Sweden)

    Martin Lubin

    2009-05-01

    Full Text Available The gene for methylthioadenosine phosphorylase (MTAP lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA, to adenine and 5-methylthioribose-1-phosphate (MTR-1-P, which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP, 6-methylpurine (MeP, or 2-fluoroadenine (F-Ade, are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT, to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked.We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU and 6-thioguanine (6-TG may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP. The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index

  19. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)-adenine derivatives.

    Science.gov (United States)

    Stojković, Marijana Radić; Skugor, Marko; Dudek, Lukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    An investigation of the interactions of two novel and several known DBTAA-adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA-propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure-activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA.

  20. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  1. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    Science.gov (United States)

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-03

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration. © 2011 American Chemical Society

  2. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation

    Directory of Open Access Journals (Sweden)

    Francesco Di Virgilio

    2018-02-01

    Full Text Available The P2X7 receptor (P2X7R is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b the bactericidal peptide LL-37, (c the amyloidogenic β peptide, and (d serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.

  3. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  4. Abundant extracellular myelin in the meninges of patients with multiple sclerosis.

    Science.gov (United States)

    Kooi, E-J; van Horssen, J; Witte, M E; Amor, S; Bø, L; Dijkstra, C D; van der Valk, P; Geurts, J J G

    2009-06-01

    In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.

  5. A nucleotide-analogue-induced gain of function corrects the error-prone nature of human DNA polymerase iota.

    Science.gov (United States)

    Ketkar, Amit; Zafar, Maroof K; Banerjee, Surajit; Marquez, Victor E; Egli, Martin; Eoff, Robert L

    2012-06-27

    Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.

  6. A nucleotide analogue induced gain of function corrects the error-prone nature of human DNA polymerase iota

    Science.gov (United States)

    Ketkar, Amit; Zafar, Maroof K.; Banerjee, Surajit; Marquez, Victor E.; Egli, Martin; Eoff, Robert L

    2012-01-01

    Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2′-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2′-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle (χ), which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase. PMID:22632140

  7. Renal and Myocardial Histopathology and Morphometry in Rats with Adenine - Induced Chronic Renal Failure: Influence of Gum Acacia

    Directory of Open Access Journals (Sweden)

    Badreldin H. Ali

    2014-08-01

    Full Text Available Background/Aim: Chronic kidney disease (CKD is associated with increased occurrence of cardiovascular system dysfunction. Previous studies have revealed a number of alterations in the kidneys and heart during CKD. However, unbiased quantitative studies on these structures in this disease have so far not been addressed. Materials and Methods: We induced CKD in rats by feeding adenine (0.75% w/w, four weeks and using unbiased stereological methods, investigated the effect of the ensuing CKD on the kidneys and left ventricular structure. Since gum acacia (GA has previously been shown to ameliorate the severity of CKD in humans and rodents, we investigated the effect of giving GA (15% w/v in the drinking water concomitantly with adenine on the kidneys and left ventricular structure using the above model. Results: The CKD was confirmed by standard biochemical indices in plasma and urine and by accumulation of the uremic toxin indoxyl sulfate. Additionally, it increased blood pressure. In rats with CKD absolute volume of left ventricle was significantly increased, and the volume density and absolute volume of myocardial capillaries were decreased, whilst the same parameters of myocardium and interstitial tissue were increased. Renal morphometry demonstrated significant increase in kidney volume and interstitial tissue in adenine- treated rats. Similarly, glomerular Bowman's capsule was significantly thickened. The myocardial and renal changes were significantly mitigated by GA treatment. Conclusions: These results add to our existing knowledge of the pathophysiology of adenine - CKD and provides plausible histopathological and morphometric evidence for the usefulness of GA in CKD.

  8. Extracellular ATP elevates cytoplasmatic free Ca2+ in HeLa cells by the interaction with a 5'-nucleotide receptor

    NARCIS (Netherlands)

    Smit, M J; Leurs, R; Bloemers, S M; Tertoolen, L G; Bast, A; De Laat, S W; Timmerman, H

    1993-01-01

    In the present study we have characterized the effects of ATP and several other nucleotides on the intracellular Ca2+ levels of HeLa cells. Using fura-2 microscopy fluorescence measurements, the ATP-mediated increase in intracellular Ca2+ was shown to consist of a rapid rise which decreased after a

  9. DNA homoduplexes containing no pyrimidine nucleotide

    Czech Academy of Sciences Publication Activity Database

    Kypr, Jaroslav; Kejnovská, Iva; Vorlíčková, Michaela

    2003-01-01

    Roč. 32, č. 2 (2003), s. 154-158 ISSN 0175-7571 R&D Projects: GA ČR GA301/01/0590; GA AV ČR IAA4004201 Institutional research plan: CEZ:AV0Z5004920 Keywords : adenine * base pairing * circular dichroism spectroscopy Subject RIV: BO - Biophysics Impact factor: 1.769, year: 2003

  10. FRAS1-related extracellular matrix 3 (FREM3 single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed

    Directory of Open Access Journals (Sweden)

    Yuliya eNikolova

    2015-09-01

    Full Text Available The A allele of the Fras1-related extracellular matrix protein 3 (FREM3 rs7676614 single nucleotide polymorphism (SNP was linked to major depressive disorder (MDD in an early genome-wide association study (GWAS, and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (192 women, mean age 19.7±1.2. Perceptual processing speed was indexed by reaction times in the same task and the Trails Making Test (TMT. The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8±14.9. The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p<0.04, as well as marginally slower performance on TMT Part B (p=0.056. In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele, was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p=0.066, reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187 was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and Extraversion (p<0.05. Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  11. Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Fariborz Bahrami

    2014-01-01

    Full Text Available Interleukin-8 (IL-8 plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2 receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C, with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase.

  12. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    Science.gov (United States)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  13. Extracellular ATP4- promotes cation fluxes in the J774 mouse macrophage cell line

    International Nuclear Information System (INIS)

    Steinberg, T.H.; Silverstein, S.C.

    1987-01-01

    Extracellular ATP stimulates transmembrane ion fluxes in the mouse macrophage cell line J774. In the presence of Mg2+, nonhydrolyzable ATP analogs and other purine and pyrimidine nucleotides do not elicit this response, suggesting the presence of a specific receptor for ATP on the macrophage plasma membrane. One candidate for such a receptor is the ecto-ATPase expressed on these cells. We, therefore, investigated the role of this enzyme in ATP-induced 86 Rb+ efflux in J774 cells. The ecto-ATPase had a broad nucleotide specificity and did not hydrolyze extracellular ATP in the absence of divalent cations. 86 Rb+ efflux was not blocked by inhibition of the ecto-ATPase and did not require Ca2+ or Mg2+. In fact, ATP-stimulated 86 Rb+ efflux was inhibited by Mg2+ and correlated with the availability of ATP4- in the medium. In the absence of divalent cations, the slowly hydrolyzable ATP analogs adenosine 5'-(beta, gamma-imido)triphosphate (AMP-PNP) and adenosine 5'-O-(3-thio)triphosphate (ATP-gamma-S) also stimulated 86 Rb+ efflux, albeit at higher concentrations than that required for ATP4-. Exposure of J774 cells to 10 mM ATP for 45 min caused death of 95% of cells. By this means we selected variant J774 cells that did not exhibit 86 Rb+ efflux in the presence of extracellular ATP but retained ecto-ATPase activity. These results show that the ecto-ATPase of J774 cells does not mediate the effects of ATP on these cells; that ATP4- and not MgATP2- promotes 86 Rb+ efflux from these cells; and that hydrolysis of ATP is not required to effect this change in membrane permeability. These findings suggest that J774 cells possess a plasma membrane receptor which binds ATP4-, AMP-PNP, and ATP-gamma-S, and that the ecto-ATPase limits the effects of ATP on these cells by hydrolyzing Mg-ATP2-

  14. Synthetic models related to DNA-intercalating molecules. Interactions between 8-alkoxypsoralen and adenine

    International Nuclear Information System (INIS)

    Decout, J.L.; Lhomme, J.

    1983-01-01

    To investigate the interactions and the photoreactions between furocoumarins and adenine, compounds in which a psoralen molecule is linked by different polymethylene bridges have been synthesised. Ring-ring intramolecular interactions are observed by UV spectroscopy. Thermodynamic parameters of these hydrophobic interactions are determined by the study of the variation of the hypochromic effect with temperature. (author)

  15. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    Science.gov (United States)

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA. PMID:25246976

  16. Cyclic AMP in rat pancreatic islets

    International Nuclear Information System (INIS)

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  17. Synthesis of coenzyme A and nicotineamide-adenine dinucleotide labelled with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    1999-01-01

    Isotopic exchange in solution with tritium water and with gaseous tritium and solid-phase reaction of isotopic exchange of NAD with tritium were investigated. For synthesis of labelled with tritium coenzyme A solid-phase reaction of isotopic exchange with gaseous tritium was used. It was determined that 98% of tritium was contained in nicotineamide part of molecule of NAD. In the case of coenzyme A studying of intramolecular distribution of tritium demonstrated that 90% of tritium were localized in adenine fragment [ru

  18. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine

    NARCIS (Netherlands)

    Fonseca Guerra, C.; van der Wijst, T.; Bickelhaupt, F.M.

    2006-01-01

    Substituted Watson-Crick guanine-cytosine (GC) base pairs were recently shown to yield robust three-state nanoswitches. Here, we address the question: Can such supramolecular switches also be based on Watson-Crick adenine-thymine (AT) base pairs? We have theoretically analyzed AT pairs in which

  19. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  20. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage

    International Nuclear Information System (INIS)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-01-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25±5 °C, Relative Humidity 90±2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar, non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control. (author)

  1. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.

    2012-01-01

    to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion...

  2. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  3. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  4. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    Science.gov (United States)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  5. Ultrafast deactivation processes in the 2-aminopyridine dimer and the adenine-thymine base pair: Similarities and differences

    International Nuclear Information System (INIS)

    Ai Yuejie; Zhang Feng; Cui Ganglong; Fang Weihai; Luo Yi

    2010-01-01

    2-aminopyridine dimer has frequently been used as a model system for studying photochemistry of DNA base pairs. We examine here the relevance of 2-aminopyridine dimer for a Watson-Crick adenine-thymine base pair by studying UV-light induced photodynamics along two main hydrogen bridges after the excitation to the localized 1 ππ* excited-state. The respective two-dimensional potential-energy surfaces have been determined by time-dependent density functional theory with Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP). Different mechanistic aspects of the deactivation pathway have been analyzed and compared in detail for both systems, while the related reaction rates have also be obtained from Monte Carlo kinetic simulations. The limitations of the 2-aminopyridine dimer as a model system for the adenine-thymine base pair are discussed.

  6. Adenine ribbon stabilized by Watson–Crick and Hoogsteen hydrogen Bonds: WFT and DFT study

    Czech Academy of Sciences Publication Activity Database

    Zierkiewicz, W.; Michalska, D.; Hobza, Pavel

    2010-01-01

    Roč. 12, č. 12 (2010), s. 2888-2894 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:Wroclaw University of Technology(PL) 343974/Z0304 Institutional research plan: CEZ:AV0Z40550506 Keywords : adenine ribbon * ab initio correlated calculations * self- organization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  7. Imidazopyridine- and purine-thioacetamide derivatives: potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).

    Science.gov (United States)

    Chang, Lei; Lee, Sang-Yong; Leonczak, Piotr; Rozenski, Jef; De Jonghe, Steven; Hanck, Theodor; Müller, Christa E; Herdewijn, Piet

    2014-12-11

    Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) belongs to the family of ecto-nucleotidases, which control extracellular nucleotide, nucleoside, and (di)phosphate levels. To study the (patho)physiological roles of NPP1 potent and selective inhibitors with drug-like properties are required. Therefore, a compound library was screened for NPP1 inhibitors using a colorimetric assay with p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as an artificial substrate. This led to the discovery of 2-(3H-imidazo[4,5-b]pyridin-2-ylthio)-N-(3,4-dimethoxyphenyl)acetamide (5a) as a hit compound with a Ki value of 217 nM. Subsequent structure-activity relationship studies led to the development of purine and imidazo[4,5-b]pyridine analogues with high inhibitory potency (Ki values of 5.00 nM and 29.6 nM, respectively) when assayed with p-Nph-5'-TMP as a substrate. Surprisingly, the compounds were significantly less potent when tested versus ATP as a substrate, with Ki values in the low micromolar range. A prototypic inhibitor was investigated for its mechanism of inhibition and found to be competitive versus both substrates.

  8. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  9. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  10. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima-Ito, Kaori [RIKEN, Cellular and Molecular Biology Laboratory (Japan); Ikeya, Teppei [National Institute of Advanced Industrial Science and Technology (AIST), (Japan); Senbongi, Hiroshi [Mitochondrial Diseases Group, MRC Dunn Human NutritionUnit (United Kingdom); Tochio, Hidehito [International Graduate School of Arts and Sciences, Supramolecular Biology, Yokohama City University, Molecular Biophysics Laboratory (Japan); Mikawa, Tsutomu [RIKEN, Cellular and Molecular Biology Laboratory (Japan); Shibata, Takehiko [RIKEN, Shibata Distinguished Senior Scientist Laboratory (Japan); Ito, Yutaka [RIKEN, Cellular and Molecular Biology Laboratory (Japan)], E-mail: ito-yutaka@center.tmu.ac.jp

    2006-05-15

    Human ATP-binding cassette, sub-family B, member 6 (ABCB6) is a mitochondrial ABC transporter, and presumably contributes to iron homeostasis. Aimed at understanding the structural basis for the conformational changes accompanying the substrate-transportation cycle, we have studied the C-terminal nucleotide-binding domain of ABCB6 (ABCB6-C) in both the nucleotide-free and ADP-bound states by heteronuclear multidimensional NMR and homology modelling. A non-linear sampling scheme was utilised for indirectly acquired {sup 13}C and {sup 15}N dimensions of all 3D triple-resonance NMR experiments, in order to overcome the instability and the low solubility of ABCB6-C. The backbone resonances for approximately 25% of non-proline residues, which are mostly distributed around the functionally important loops and in the Helical domain, were not observed for nucleotide-free form of ABCB6-C. From the pH, temperature and magnetic field strength dependencies of the resonance intensities, we concluded that this incompleteness in the assignments is mainly due to the exchange between multiple conformations at an intermediate rate on the NMR timescale. These localised conformational dynamics remained in ADP-bound ABCB6-C except for the loops responsible for adenine base and {alpha}/{beta}-phosphate binding. These results revealed that the localised dynamic cooperativity, which was recently proposed for a prokaryotic ABC MJ1267, also exists in a higher eukaryotic ABC, and is presumably shared by all members of the ABC family. Since the Helical domain is the putative interface to the transmembrane domain, this cooperativity may explain the coupled functions between domains in the substrate-transportation cycle.

  11. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage.

    Science.gov (United States)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-10-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.

  12. Effects of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32p-incorporation into rat myocardial adenylic nucleotides and their turn-over.

    Science.gov (United States)

    Merouze, P; Gaudemer, Y; Gautheron, D

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on 32Pi incorporation into intracellular phosphate and adenylic nucleotides has been studied on rat myocardium slices; consequently, the turn-over of nucleotides could be determined and compared under the influence of these two hormones. 2. In order to specify the site of action of these catecholamines, several inhibitors and activators of energetic metabolism were included in the incubation medium: 3'5'-AMP, caffein, ouabain, oligomycin, rotenone + antimycin. 3. Both catecholamines favour Pi exchanges between intra and extracellular spaces; ATP turn-over is greatly increased, while ADP turn-over is slightly decreased, and 32P-incorporation into ADP is increased. 4. 3'5'-AMP and caffein are without effect on Pi penetration; however, caffein increases catecholamine effects on this penetration. ATP turn-over is slightly increased by 3'5'-AMP or caffein. 5. Ouabain decreases ATP turn-over but does not prevent the adrenaline induced acceleration. Inhibitors of oxidative phosphorylation and electron transport decrease ATP-turn-over severely; this inhibition is not released by catecholamines. 6. It is concluded that the catecholamine effects observed are dependent on the oxidative phosphorylations process. The increase of Pi exchange by catecholamines may be related to the increase of extracellular space and cation translocations we observed with the hormones.

  13. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  14. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Pengchong Jiang

    Full Text Available Nerve injury is accompanied by a liberation of diverse nucleotides, some of which act as 'find/eat-me' signals in mediating neuron-glial interplay. Intercellular Ca2+ wave (ICW communication is the main approach by which glial cells interact and coordinate with each other to execute immune defense. However, the detailed mechanisms on how these nucleotides participate in ICW communication remain largely unclear. In the present work, we employed a mechanical stimulus to an individual BV-2 microglia to simulate localized injury. Remarkable ICW propagation was observed no matter whether calcium was in the environment or not. Apyrase (ATP/ADP-hydrolyzing enzyme, suramin (broad-spectrum P2 receptor antagonist, 2-APB (IP3 receptor blocker and thapsigargin (endoplasmic reticulum calcium pump inhibitor potently inhibited these ICWs, respectively, indicating the dependence of nucleotide signals and P2Y receptors. Then, we detected the involvement of five naturally occurring nucleotides (ATP, ADP, UTP, UDP and UDP-glucose by desensitizing receptors. Results showed that desensitization with ATP and ADP could block ICW propagation in a dose-dependent manner, whereas other nucleotides had little effect. Meanwhile, the expression of P2Y receptors in BV-2 microglia was identified and their contributions were analyzed, from which we suggested P2Y12/13 receptors activation mostly contributed to ICWs. Besides, we estimated that extracellular ATP and ADP concentration sensed by BV-2 microglia was about 0.3 μM during ICWs by analyzing calcium dynamic characteristics. Taken together, these results demonstrated that the nucleotides ATP and ADP were predominant signal transmitters in mechanical stimulation-induced ICW communication through acting on P2Y12/13 receptors in BV-2 microglia.

  15. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  16. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study

    International Nuclear Information System (INIS)

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.; Rak, Janusz

    2007-01-01

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.

  17. A single nucleotide polymorphism in the promoter of the LOXL1 gene and its relationship to pelvic organ prolapse and preterm premature rupture of membranes.

    Science.gov (United States)

    Ferrell, Georgia; Lu, Minyan; Stoddard, Paul; Sammel, Mary D; Romero, Roberto; Strauss, Jerome F; Matthews, Catherine A

    2009-05-01

    Pelvic organ prolapse and preterm premature rupture of membranes, the 2 conditions which have in common weakening of the tensile strength of tissues, are thought to be caused, in part, by abnormal extracellular matrix synthesis and/or catabolism. We identified a new single nucleotide polymorphism (NT_010194(LOXL1):g.45008784A>C) in the promoter of the LOXL1 gene, which is essential for elastin synthesis. Promoter studies showed that the minor "C'' allele had significantly greater activity than the major "A'' allele. Case-control studies examined the association of the alleles of this single nucleotide polymorphism with pelvic organ prolapse and preterm premature rupture of membranes. When comparing allele frequencies and genotypes in pelvic organ prolapse cases versus controls, no significant associations were found. A case-control study conducted in African American neonates also found no significant associations between the promoter alleles and preterm premature rupture of membranes. We conclude that a functional single nucleotide polymorphism exists in the promoter region of the LOXL1 gene. Association studies suggest that the promoter single nucleotide polymorphism does not contribute significantly to risk of pelvic organ prolapse or preterm premature rupture of membranes.

  18. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-04-10

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10 -3 , 10 -4 and 10 -5 M and adenine in 30 and 100μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm -1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm -1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm -1 . The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm -1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae.

    Directory of Open Access Journals (Sweden)

    Kentaro Nishida

    Full Text Available ATP and its metabolites are important for taste signaling in taste buds, and thus a clearance system for them would play critical roles in maintenance of gustatory function. A previous report revealed that mRNAs for ecto-5'-nucleotidase (NT5E and prostatic acid phosphatase (PAP were expressed by taste cells of taste buds, and NT5E-immunoreactivity was detected in taste cells. However, there was no information on PAP-immunoreactivity in taste buds. In this study, we examined the expression profile of PAP in rat taste buds. In the isolated rat taste buds, we detected expression of mRNA for PAP, but NT5E was not detected differing from the case of mouse ones (Dando et al., 2012, J Neuroscience. On immunohistochemical analysis, PAP-immunoreactivity was found predominantly in NTPDase2-positive type I and SNAP25-positive type III taste cells, while there were no apparent signals of it in PLC-β2-positive type II, α-gustducin-positive type II, AADC-positive type III and 5HT-positive type III ones. As for NT5E, we could not detect its immunoreactivity in rat taste buds, and co-localization of it with any taste cell markers, although mouse taste buds expressed NT5E as reported previously. These findings suggest that PAP expressed by type I and one of type III taste cells of rats may contribute to metabolic regulation of the extracellular levels of adenine nucleotides in the taste buds of circumvallate papillae, and the regulating mechanisms for adenine nucleotides in taste buds might be different between rats and mice.

  20. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  1. Kinetics of hydrogen-deuterium exchange in guanosine 5'-monophosphate and guanosine 3':5'-monophosphate determined by laser-Raman spectroscopy.

    Science.gov (United States)

    Lane, M J; Thomas, G J

    1979-09-04

    Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in guanosine 5'-monophosphate (5'-rGMP) and guanosine 3':5'-monophosphate (cGMP) were determined as a function of temperature in the range 30-80 degrees C by means of laser-Raman spectroscopy. For each guanine nucleotide the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature: i.e., k psi = Ae-Ea/RT with A = 8.84 X 10(14) h-1 and Ea = 24.6 kcal/mol for 5'-rGMP and A = 3.33 X 10(13) h-1 and Ea = 22.2 kcal/mol for cGMP. Exchange of the 8-CH groups in guanine nucleotides is generally 2-3 times more rapid than in adenine nucleotides [cf. g. j. thomas, Jr., & J. Livramento (1975) Biochemistry 14, 5210-5218]. As in the case of adenine nucleotides, cyclic and 5' nucleotides of guanine exchange at markedly different rates at lower temperatures, with exchange in the cyclic nucleotide being the more facile. Each of the guanine nucleotides was prepared in four different isotopic modifications for Raman spectral analysis. The Raman frequency shifts resulting from the various isotopic substitutions have been tabulated, and assignments have been given for most of the observed vibrational frequencies.

  2. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  3. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  4. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  5. The incorporation of 14C-adenine into the oocytes of Asellus aquaticus as studied by autoradiography

    NARCIS (Netherlands)

    Broek, C.J.H. van den; Tates, A.D.

    Asellus aquaticus females were injected with 8-14C-adenine, fixed after 3 hours and sectioned. In coated autoradiographs, the number of β-tracks from 14C were counted over nucleolus, nucleus and cytoplasm of the oocytes at various stages of their development. Incorporation into nucleolar RNA, being

  6. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    Directory of Open Access Journals (Sweden)

    Biris AR

    2013-04-01

    Full Text Available Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2 1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%. The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3 showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50% and the final purity (96%–98% of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot one order of magnitude higher than that of the bare platinum electrode, which also confirmed that

  7. Cyclic nucleotides and radioresistnace

    International Nuclear Information System (INIS)

    Kulinskij, V.I.; Mikheeva, G.A.; Zel'manovich, B.M.

    1982-01-01

    The addition of glucose to meat-peptone broth does not change the radiosensitizing effect (RSE) of cAMP at the logarithmic phase (LP) and the radioprotective effect (RPE) at the stationary phase (SP), but sensitization, characteristic of cGMP, disappears in SP and turns into RPE in LP. Introduction of glucose into the broth for 20 min eliminates all the effects of both cyclic nucleotides in the cya + strain while cya - mutant exhibits RSE. RSE of both cyclic nucleotides is only manifested on minimal media. These data brought confirmation of the dependence of the influence of cyclic media. These data brought confirmation of the dependence of the influence of cyclic nucleotides on radioresistance upon the metabolic status of the cell [ru

  8. Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers†

    Science.gov (United States)

    Abbas, Charles A.; Sibirny, Andriy A.

    2011-01-01

    Summary: Riboflavin [7,8-dimethyl-10-(1′-d-ribityl)isoalloxazine, vitamin B2] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP. PMID:21646432

  9. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.

    Science.gov (United States)

    Abbas, Charles A; Sibirny, Andriy A

    2011-06-01

    Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.

  10. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  11. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium

    International Nuclear Information System (INIS)

    Kutty, R.K.; Singh, Y.; Santostasi, G.; Krishna, G.

    1989-01-01

    Maitotoxin, one of the most potent marine toxins known, produced cell death in cultures of rat hepatocytes with a TD50 of 80 pM at 24 hr. The cell death, as indicated by a dose- and time-dependent leakage of lactate dehydrogenase (LDH), was also associated with the leakage of [14C]adenine nucleotides from hepatocytes prelabeled with [14C]-adenine. The toxic effect of maitotoxin was completely abolished by the omission of calcium from the culture medium. The cell death induced by maitotoxin increased with increasing concentrations of calcium in the medium. Treatment of hepatocytes with low concentrations of the toxin (less than 0.5 ng/ml) resulted in increases in 45Ca influx into the cells. At higher concentrations of maitotoxin (greater than 1ng/ml), the initial increase in 45Ca influx was followed by the release of the 45Ca from the cells into the medium. Since the 45Ca release paralleled the LDH leakage, the release of calcium was due to cell death. The 45Ca influx, [14C]adenine nucleotide leakage, and LDH leakage were effectively inhibited by verapamil, a calcium channel blocker. Maitotoxin also induced a time- and dose-dependent loss of ATP from hepatocytes, which preceded the [14C]adenine nucleotide and LDH leakage. Thus, it appears that the cell death resulting from maitotoxin treatment is caused by the elevated intracellular calcium, which in turn inhibits mitochondrial oxidative phosphorylation causing depletion of cell ATP. Loss of cell ATP may be the causative event in the maitotoxin-induced cell death

  12. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-01-01

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  13. Critical role of γ-phosphate in structural transition of Na,K-ATPase upon ATP binding

    Science.gov (United States)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Klimanova, Elizaveta A.; Dergousova, Elena A.; Lopina, Olga D.; Makarov, Alexander A.

    2014-06-01

    Active transport of sodium and potassium ions by Na,K-ATPase is accompanied by the enzyme conformational transition between E1 and E2 states. ATP and ADP bind to Na,K-ATPase in the E1 conformation with similar affinity but the properties of enzyme in complexes with these nucleotides are different. We have studied thermodynamics of Na,K-ATPase binding with adenine nucleotides at different temperatures using isothermal titration calorimetry. Our data indicate that β-phosphate is involved in complex formation by increasing the affinity of adenine nucleotides to Na,K-ATPase by an order of magnitude, while γ-phosphate does not affect it. ATP binding to Na,K-ATPase in contrast to ADP binding generates a structural transition in the enzyme, which is consistent with the movement of a significant portion of the surface area to a solvent-protected state. We propose that ATP binding leads to convergence of the nucleotide-binding and phosphorylation domains transferring the enzyme from the ``E1-open'' to ``E1-closed'' conformation ready for phosphorylation.

  14. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    Science.gov (United States)

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is

  15. Tools and drugs for uracil nucleotide-activated P2Y receptors.

    Science.gov (United States)

    Rafehi, Muhammad; Müller, Christa E

    2018-04-13

    P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y 1 , P2Y 2 , P2Y 4 , P2Y 6 , P2Y 11 , P2Y 12 , P2Y 13 , and P2Y 14 , which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y 2 (UTP, also ATP and dinucleotides), P2Y 4 (UTP), P2Y 6 (UDP), and P2Y 14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y 2 R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y 2 R antagonist is AR-C118925 (10-01). For studies of the P2Y 4 R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) represents a selective antagonist. Several potent P2Y 6 R agonists have been developed including 5-methoxyuridine 5'-O-((R p )α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y 6 R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y 14 R agonist is available, while PPTN (10-14) represents a potent and selective P2Y 14 R antagonist. The radioligand [ 3 H]UDP can be used to label P2Y 14 Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases. Copyright © 2018. Published by Elsevier Inc.

  16. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    Science.gov (United States)

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  18. Receptor binding of somatostatin-14 and somatostatin-28 in rat brain: differential modulation by nucleotides and ions.

    Science.gov (United States)

    Srikant, C B; Dahan, A; Craig, C

    1990-02-04

    The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2

  19. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...... polarizable continuum model (PCM) or through explicit modelling of micro-solvation by a single water molecule at the site of reaction as well as the combination of both. Scrutiny of the thermodynamics and kinetics of the individual sub-reactions suggests that the qualitative differences introduced...

  20. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  1. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  3. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    Science.gov (United States)

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Kinetics and thermodynamics of the reaction between the •OH radical and adenine – a theoretical investigation

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2015-01-01

    the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimised with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X and wB97X-D), in combination...

  5. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  6. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  7. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    International Nuclear Information System (INIS)

    Luo, X L; Bentley, W E; Buckhout-White, S; Rubloff, G W

    2011-01-01

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  8. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  9. Palindromic nucleotide analysis in human T cell receptor rearrangements.

    Directory of Open Access Journals (Sweden)

    Santosh K Srivastava

    Full Text Available Diversity of T cell receptor (TCR genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3 of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8(+ and CD4(+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8(+ naïve T cells. The naïve CD8(+ T cell clones with P nucleotides are more highly expanded.

  10. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    Science.gov (United States)

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    Science.gov (United States)

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  12. Analysis of the NTPDase and ecto-5'-nucleotidase profiles in serum-limited Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Amanda Piccoli Frasson

    2012-03-01

    Full Text Available Trichomonas vaginalis is a parasite of the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ectonucleoside triphosphate diphosphohydrolase (NTPDase family members, which hydrolyse extracellular ATP and ADP and ecto-5′-nucleotidase, which hydrolyses AMP, have been characterised in T. vaginalis. For trichomonad culture, the growth medium is supplemented with 10% serum, which is an important source of nutrients, such as adenosine. Here, we investigated the ATP metabolism of T. vaginalis trophozoites from long-term cultures and clinical isolates under limited bovine serum conditions (1% serum. The specific enzymatic activities were expressed as nmol inorganic phosphate (Pi released/min/mg protein, the gene expression patterns were determined by reverse transcriptase-polymerase chain reaction, the extracellular adenine nucleotide hydrolysis was analysed by high performance liquid chromatography and the cell cycle analysis was assessed by flow cytometry. Serum limitation led to the profound activation of NTPDase and ecto-5'-nucleotidase activities. Furthermore, the levels of NTPDase A and B transcripts increased and extracellular ATP metabolism was activated, which led to enhanced ATP hydrolysis and the formation of ADP and AMP. Moreover, the cell cycle was arrested at the G0/G1 stage, which suggested adenosine uptake. Our data suggest that under conditions of serum limitation, NTPDase and ecto-5'-nucleotidase play a role in providing the adenosine required for T. vaginalis growth and that this process contributes to the establishment of parasitism.

  13. Towards Controlling the Glycoform: A Model Framework Linking Extracellular Metabolites to Antibody Glycosylation

    Directory of Open Access Journals (Sweden)

    Philip M. Jedrzejewski

    2014-03-01

    Full Text Available Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region of an antibody product. The main focus of this work is the mechanistic in silico reconstruction of the nucleotide sugar donor (NSD metabolic network by means of 34 species mass balances and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the co-substrates of the glycosylation process in the Golgi apparatus and their simulated dynamic intracellular concentration profiles were linked to an existing model describing the distribution of N-linked glycan structures of the antibody constant region. The modelling framework also describes the growth dynamics of the cell population by means of modified Monod kinetics. Simulation results match well to experimental data from a murine hybridoma cell line. The result is a modelling platform which is able to describe the product glycoform based on extracellular conditions. It represents a first step towards the in silico prediction of the glycoform of a biotherapeutic and provides a platform for the optimisation of bioprocess conditions with respect to product quality.

  14. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara; Meier, Stuart; Gehring, Christoph A

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  15. Post-synthetic modification of mesoporous zinc-adeninate framework with tris(2,2′-biprydine) ruthenium(II) complex and its electrochemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Shin, Ik Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Oh, Hye Jae; An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of)

    2017-04-15

    Herein we report a redox-active metal-organic framework (MOF) via post-synthetic cation exchange with tris(2,2′-biprydine) ruthenium(II) complex (Ru(bpy){sub 3}{sup 2+}). A porous anionic zinc-adeninate framework (bMOF-100) is spacious enough to easily entrap 2.43 of Ru(bpy){sub 3}{sup 2+} cations within the mesopore. The encapsulation supported the framework structure preventing any distortion from a rapid solvent evaporation under SEM observation. Ru(bpy){sub 3}{sup 2+}@bMOF-100 was then immobilized on the surface of glassy carbon electrode, and its electrocatalytic and electrochemiluminescent (ECL) properties were investigated in aqueous and organic solution. Especially, Ru(bpy){sub 3}{sup 2+}@bMOF-100 showed the excellent electrochemical properties of Ru(bpy){sub 3}{sup 2+}, but gradual decomposition of the MOF structure was observed under electrochemical measurements because of the sluggish oxidation of adeninate ligand.

  16. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    in rats with severe acute pancreatitis (SAP) and to elucidate its underlying molecular mechanism. Methods: Thirty .... on T lymphocytes apoptosis in SAP rat model and elucidated ..... oxygen radicals, the exhaustion of adenine nucleotide and ...

  17. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v1; ref status: indexed, http://f1000r.es/3rm

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-07-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  18. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v2; ref status: indexed, http://f1000r.es/4dl

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-09-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  19. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  20. Nitric oxide level and von Willebrand factor (vWF) secretion are not ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... potassium channels; RBECs, rat brain capillary endothelial cells. and transport of ... addition, adenine nucleotides modulate the release of endothelial-derive ..... A cellular model of endothelial cell ischemia. J Surg Res. 44(5): ...

  1. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  2. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  3. Dermal extracellular lipid in birds.

    Science.gov (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  4. Fermentative metabolism impedes p53-dependent apoptosis in a ...

    Indian Academy of Sciences (India)

    Abhay Kumar

    2017-10-31

    Oct 31, 2017 ... inhibit respiration of mitochondria isolated from normal rat liver cells ... yeast as a model, it was reported that Warburg effect in addition to inducing aerobic ...... of adenine nucleotides carrier and cytochrome c. FEBS Lett. 456.

  5. Determination of the recognition site for adenine-specific methylase of Shigella sonnei 47 by hydazinolysis of DNA, followed by separation of the purine oligonucleotides by thin-layer chromatography on DEAE-cellulose

    International Nuclear Information System (INIS)

    Lopatina, N.G.; Kirnos, M.D.; Suchkov, S.V.; Vanyushin, B.F.; Nikol'skaya, I.I.; Debov, S.S.

    1985-01-01

    A method has been developed for the separation of oligopurine units according to length and composition by two-dimensional thin-layer chromatography on plates with DEAE-cellulose, permitting a comparative analysis of the content of various purine isopliths in DNA of different origin. In the case of the analysis of methylated DNA, the method permits a comparison of the substrate specificity of various enzymes of methylation of the adenine residues in DNA. In conjunction with enzymatic treatment of labeled methylated isopliths, the method permits determination of the methylatable sequence and in a number of cases an ascertainment of the recognition site for adenine-specific methylase as a whole. The proposed method was used to establish the fact that the methylase Ssol recognizes the sequence 5'...G-A-A-T-T-C...3' and methylates the adenine residue closest to its 5'-end

  6. Effect of the acquisition enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effects of Piracetam, Naftidrofuryl and methamphetamine on several parameters of cerebral energy metabolism have been studied. At variance with some reports in the literature neither Piracetam nor Naftidrofuryl affected the cerebral contents of adenine nucleotides and, accordingly, both

  7. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  8. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  9. Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria

    NARCIS (Netherlands)

    Gellerich, F.N.; Laterveer, F.D.; Korzeniewski, B.; Zierz, S.; Nicolaij, K.

    1998-01-01

    Macromolecules restore the morphological changes which occur upon isolation of mitochondria in normally used isolation media. It was shown that in the presence of dextrans the permeability of mitochondrial outer membrane for adenine nucleotides decreases which may have considerable implications for

  10. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  11. Properties of the mitochondrial carrier of adenine-nucleotide after purification. Study of the transport protein under isolated form and reincorporated form in phospho-lipidic vesicles

    International Nuclear Information System (INIS)

    Brandolin, Gerard

    1983-01-01

    The first part of this research thesis addresses the reconstitution of the ADP/ATP transport by incorporation of the specific carrier, isolated in presence of detergent, in phospholipids vesicles. Fundamental properties of the reconstituted transport are identical to that of transport in mitochondria, notably as far as the exchange stoichiometry, the turn over and the transport Km are concerned, as well as the asymmetric orientation of the carrier in the membrane. The second part of this research addresses the study of interactions of specific ligands with the ADP/ATP transport protein in presence of detergent. The study of the variations of the intrinsic fluorescence of the isolated ADP/ATP carrier highlights conformational changes exclusively induced by the presence of transportable nucleotides which are modulated in a different manner by carboxy-atractyloside or bongkrekic acid. Moreover, by using the isolated protein, a detailed analysis of binding parameters of fluorescent analogues of ATP is reported [fr

  12. Main: Nucleotide Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Nucleotide Analysis Japonica genome blast search result Result of blastn search against jap...onica genome sequence kome_japonica_genome_blast_search_result.zip kome_japonica_genome_blast_search_result ...

  13. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  14. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    Science.gov (United States)

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  15. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  16. Function of the Nucleotide Exchange Activity of Vav1 in T cell Development and Activation*

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J.; Rittinger, Katrin; Tybulewicz, Victor L. J.

    2012-01-01

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal–regulated kinase (ERK) and protein kinase D1 (PKD1), and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions. PMID:20009105

  17. Function of the nucleotide exchange activity of vav1 in T cell development and activation.

    Science.gov (United States)

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J; Rittinger, Katrin; Tybulewicz, Victor L J

    2009-12-15

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.

  18. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol.

    Science.gov (United States)

    Antonelou, Marianna H; Kriebardis, Anastasios G; Stamoulis, Konstantinos E; Economou-Petersen, Effrosini; Margaritis, Lukas H; Papassideri, Issidora S

    2010-02-01

    It has been suggested that red blood cell (RBC) senescence is accelerated under blood bank conditions, although neither protein profile of RBC aging nor the impact of additive solutions on it have been studied in detail. RBCs and vesicles derived from RBCs in both citrate-phosphate-dextrose (CPD)-saline-adenine-glucose-mannitol (SAGM) and citrate-phosphate-dextrose-adenine (CPDA) were evaluated for the expression of cell senescence markers (vesiculation, protein aggregation, degradation, activation, oxidation, and topology) through immunoblotting technique and immunofluorescence or immunoelectron microscopy study. A group of cellular stress proteins exhibited storage time- and storage medium-related changes in their membrane association and exocytosis. The extent, the rate, and the expression of protein oxidation, Fas oligomerization, caspase activation, and protein modifications in Band 3, hemoglobin, and immunoglobulin G were less conspicuous and/or exhibited significant time retardation under storage in CPD-SAGM, compared to the CPDA storage. There was evidence for the localization of activated caspases near to the membrane of both cells and vesicles. We provide circumstantial evidence for a lower protein oxidative damage in CPD-SAGM-stored RBCs compared to the CPDA-stored cells. The different expression patterns of the senescence markers in the RBCs seem to be accordingly related to the oxidative stress management of the cells. We suggest that the storage of RBCs in CPD-SAGM might be more alike the in vivo RBC aging process, compared to storage in CPDA, since it is characterized by a slower stimulation of the recognition signaling pathways that are already known to trigger the erythrophagocytosis of senescent RBCs.

  19. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    Science.gov (United States)

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  20. Sources of extracellular tau and its signaling.

    Science.gov (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  1. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  2. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  3. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system.

    Science.gov (United States)

    Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi

    2010-11-19

    Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.

  4. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  5. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  6. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  7. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  8. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  9. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  10. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  11. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    International Nuclear Information System (INIS)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.; Mildvan, A.S.; Kenyon, G.L.

    1987-01-01

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10 0 ) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH 3 ) 4 ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (≤ 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker

  12. Human adenylate kinases – classification, structure, physiological and pathological importance

    Directory of Open Access Journals (Sweden)

    Magdalena Wujak

    2015-01-01

    Full Text Available Adenylate kinase (AK, EC 2.7.4.3 is a ubiquitous phosphotransferase which catalyzes the reversible transfer of high-energy β – and γ-phosphate groups between nucleotides. All classified AKs show a similar structure: they contain a large central CORE region, nucleoside monophosphate and triphosphate binding domains (NMPbd and NTPbd and the LID domain. Analysis of amino acid sequence similarity revealed the presence of as many as nine human AK isoenzymes, which demonstrate different organ-tissue and intercellular localization. Among these kinases, only two, AK1 and AK2, fulfill the structural and functional criterion by the highest affinity for adenine nucleotides and the utilization of only AMP or dAMP as phosphate acceptors. Human AK isoenzymes are involved in nucleotide homeostasis and monitor disturbances of cell energy charge. Participating in large regulatory protein complexes, AK supplies high energy substrates for controlling the functions of channels and transporters as well as ligands for extracellular P2 nucleotide receptors. In pathological conditions AK can take over the function of other kinases, such as creatine kinase in oxygen-depleted myocardium. Directed mutagenesis and genetic studies of diseases (such as aleukocytosis, hemolytic anemia, primary ciliary dyskinesia (PCD link the presence and activity of AK with etiology of these disturbances. Moreover, AK participates in regulation of differentiation and maturation of cells as well as in apoptosis and oncogenesis. Involvement of AK in a wide range of processes and the correlation between AK and etiology of diseases support the medical potential for the use of adenylate kinases in the diagnosis and treatment of certain diseases. This paper summarizes the current knowledge on the structure, properties and functions of human adenylate kinase.

  13. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.

    Science.gov (United States)

    Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata

    2013-02-21

    All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.

  14. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    Science.gov (United States)

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  15. Enzymatic Incorporation of Modified Purine Nucleotides in DNA.

    Science.gov (United States)

    Abu El Asrar, Rania; Margamuljana, Lia; Abramov, Mikhail; Bande, Omprakash; Agnello, Stefano; Jang, Miyeon; Herdewijn, Piet

    2017-12-14

    A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N 8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease

    OpenAIRE

    Yokote, Shinya; Katsuoka, Yuichi; Yamada, Akifumi; Ohkido, Ichiro; Yokoo, Takashi

    2017-01-01

    Previous studies have investigated the use of mesenchymal stem cells (MSCs) to treat damaged kidneys. However, the effect of adipose-derived MSCs (ASCs) on vascular calcification in chronic kidney disease (CKD) is still poorly understood. In the present study, we explored the potential of ASCs for the treatment of CKD and vascular calcification. CKD was induced in male Sprague-Dawley rats by feeding them a diet containing 0.75% adenine for 4 weeks. ASCs transplantation significantly reduced s...

  17. Gene cloning and characterization of NADH oxidase from ...

    African Journals Online (AJOL)

    The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 ...

  18. Ketogenesis in rat-liver mitochondria: Stimulation by palmityl-coenzyme A

    NARCIS (Netherlands)

    Vaartjes, W.J.; Lopes-Cardozo, M.; Bergh, S.G. van den

    1972-01-01

    It is well-known that the movement of adenine nucleotides (AdN) across the inner mitochondrial membrane is markedly decreased both by unsaturated and by saturated long-chain fatty acids. A similar effect is displayed by palmityl-CoA as demonstrated recently with isolated mitochondria of rat

  19. Identification of cyclic nucleotide gated channels using regular expressions

    KAUST Repository

    Zelman, Alice K.; Dawe, Adam Sean; Berkowitz, Gerald A.

    2013-01-01

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin

  20. P2Y purinoceptor and nucleotide receptor-induced relaxation of precontracted bovine aortic collateral artery rings: differential sensitivity to suramin and indomethacin.

    Science.gov (United States)

    Wilkinson, G F; McKechnie, K; Dainty, I A; Boarder, M R

    1994-02-01

    We have examined a series of adenine nucleotides and UTP for their ability to cause relaxation of precontracted bovine aortic collateral artery rings. The overall rank order of agonist potency for relaxation was 2-methylthioadenosine 5'-triphosphate (2MeSATP) > adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) > UTP > ADP > ATP. These responses were endothelium-dependent. Interaction studies showed that responses to the selective P2Y purinoceptor agonist 2MeSATP, and to ADP, were mediated by different receptors from those mediating responses to UTP. Suramin, a P2 purinoceptor antagonist that binds to diverse sites for ATP, produced a concentration-dependent shift in the agonist concentration-effect curve to 2MeSATP, with a pKB of 5.45 +/- 0.15 and a slope of 0.94 +/- 0.09. Suramin produced a small, nonsignificant shift in the UTP response curve and had little effect on responses to ATP. Indomethacin (2.8 x 10(-6) M) had no effect on concentration-effect curves to UTP but almost abolished the relaxations produced by 2MeSATP and ADP. The concentration-effect curves to ATP and ATP gamma S showed a significant (P effects of indomethacin show that these receptors differentially modulate the release of cyclooxygenase-derived mediators of relaxation.

  1. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  2. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  3. Isolation, identification of an axenic fungal isolate of aspergillus sp. (mbl-1511) and its subsequent improvement for enhanced extracellular lipolytic potential through monoculture fermentation

    International Nuclear Information System (INIS)

    Iftikhar, T.; Sidra, A.; Ali, M.; Majeed, H.; Abdullah, R.

    2017-01-01

    The present investigation was conducted for extracellular lipases production. One hundred and forty samples of fungi were isolated from different environment and food samples. Among all the isolated cultures, an isolate obtained from chicken roasted in oil (MBL-1511) gave the highest extracellular lipase through SSF. Hyper producer strain (MBL-1511) was morphologically identified. A morphologically identified isolate of Aspergillus niger (MBL 1511) was verified by DNA barcoding marker like 18S rRNA gene sequence. The sequence of Aspergillus niger (MBL 1511) was registered with accession no. [GenBank: KP172477] in the public nucleotide library (genbank) of NCBI. The selected hyper producer of Aspergillus niger (MBL-1511) strain was subjected to physical and chemical mutagenic treatments to improve its lipolytic potential. Proximate analysis confirmed brassica meal as the best basal substrate with the lipases potential of 10.67+-0.01 IU/mL (wild) and 19.58+-0.04 IU/mL (mutant). The optimum conditions for the maximized extracellular lipases production were 1.0 mL inoculum at 30 degree C after 72 h at pH of 6.2. Finally, a potent mutant of A. niger [MBL-1511SA-4(150 min)] with an increased activity of 161 % over the wild strain was obtained when olive oil was used at 1% (v/v) concentration. (author)

  4. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    Science.gov (United States)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  5. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  6. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  7. Effects of hypokinesia on cyclic nucleotides and hormonal regulation ...

    African Journals Online (AJOL)

    PTH), calcitonin (CT), cyclic nucleotides (cAMP, cGMP) and calcium in the blood of rats, while in urine - phosphate, calcium and cyclic nucleotides. Design: Laboratory based experiment. Setting: Laboratory in the Department of Biochemistry, ...

  8. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  9. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  10. Extent of Intramolecular p-Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and Several 2-Aminopurine Derivatives of the Antivirally Active Nucleotide Analog 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA)

    Czech Academy of Sciences Publication Activity Database

    Gómez-Coca, R. B.; Blindauer, C. A.; Sigel, A.; Operschall, B. P.; Holý, Antonín; Sigel, H.

    2012-01-01

    Roč. 9, č. 9 (2012), s. 2008-2034 ISSN 1612-1872 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper complexes * nucleotides * acyclic nucleoside phosphonates * ANPs * antiviral activity Subject RIV: CE - Biochemistry Impact factor: 1.808, year: 2012

  11. Nucleotide Selectivity at a Preinsertion Checkpoint of T7 RNA Polymerase Transcription Elongation.

    Science.gov (United States)

    E, Chao; Duan, Baogen; Yu, Jin

    2017-04-20

    Nucleotide selection is crucial for transcription fidelity control, in particular, for viral T7 RNA polymerase (RNAP) lack of proofreading activity. It has been recognized that multiple kinetic checkpoints exist prior to full nucleotide incorporation. In this work, we implemented intensive atomistic molecular dynamics (MD) simulations to quantify how strong the nucleotide selection is at the initial checkpoint of an elongation cycle of T7 RNAP. The incoming nucleotides bind into a preinsertion site where a critical tyrosine residue locates nearby to assist the nucleotide selection. We calculated the relative binding free energy between a noncognate nucleotide and a cognate one at a preinsertion configuration via alchemical simulations, showing that a small selection free energy or the binding free energy difference (∼3 k B T) exists between the two nucleotides. Indeed, another preinsertion configuration favored by the noncognate nucleotides was identified, which appears to be off path for further nucleotide insertion and additionally assists the nucleotide selection. By chemical master equation (CME) approach, we show that the small selection free energy at the preinsertion site along with the off-path noncognate nucleotide filtering can help substantially to reduce the error rate and to maintain the elongation rate high in the T7 RNAP transcription.

  12. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification...... of SNPs. This will allow acquisition of more information from the sample materials and open up for new possibilities as well as new challenges....

  13. A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, R.S.; Dutton, C.M.; Heufelder, A.E.; Sarkar, G. [Mayo Clinic/Foundation, Rochester, MN (United States)]|[Ludwig-Maximilians-Universitat, Munich (Germany)

    1994-02-01

    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves` ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves` disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, the authors have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. They suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties. 28 refs., 3 figs., 2 tabs.

  14. Condensing the information in DNA with double-headed nucleotides

    DEFF Research Database (Denmark)

    Hornum, Mick; Sharma, Pawan K; Reslow-Jacobsen, Charlotte

    2017-01-01

    A normal duplex holds as many Watson-Crick base pairs as the number of nucleotides in its constituent strands. Here we establish that single nucleotides can be designed to functionally imitate dinucleotides without compromising binding affinity. This effectively allows sequence information...

  15. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  16. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.

    Science.gov (United States)

    Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V

    2012-09-01

    The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.

  17. Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2016-01-01

    One of the newest and strongest members of intercellular communicators, the Extracellular vesicles (EVs) and their enclosed RNAs; Extracellular RNAs (exRNAs) have been acknowledged as putative biomarkers and therapeutic targets for various diseases. Although a very deep insight has not been possible into the physiology of these vesicles, they are believed to be involved in cell-to-cell communication and host-pathogen interactions. EVs might be significantly helpful in discovering biomarkers for possible target identification as well as prognostics, diagnostics and developing vaccines. In recent studies, highly bioactive EVs have drawn attention of parasitologists for being able to communicate between different cells and having likeliness of reflecting both source and target environments. Next-generation sequencing (NGS) has eased the way to have a deeper insight into these vesicles and their roles in various diseases. This article arises from bioinformatics-based analysis and predictive data mining of transcriptomic (RNA-Seq) data of EVs, derived from different life stages of Trypanosoma cruzi ; a causing agent of neglected Chagas disease. Variants (Single Nucleotide Polymorphisms (SNPs)) were mined from Extracellular vesicular transcriptomic data and functionally analyzed using different bioinformatics based approaches. Functional analysis showed the association of these variants with various important factors like Trans-Sialidase (TS), Alpha Tubulin, P-Type H+-ATPase, etc. which, in turn, are associated with disease in different ways. Some of the 'candidate SNPs' were found to be stage-specific, which strengthens the probability of finding stage-specific biomarkers. These results may lead to a better understanding of Chagas disease, and improved knowledge may provide further development of the biomarkers for prognosis, diagnosis and drug development for treating Chagas disease.

  18. Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease

    Directory of Open Access Journals (Sweden)

    Pallavi Gaur

    2016-11-01

    Full Text Available One of the newest and strongest members of intercellular communicators, the Extracellular vesicles (EVs and their enclosed RNAs; Extracellular RNAs (exRNAs have been acknowledged as putative biomarkers and therapeutic targets for various diseases. Although a very deep insight has not been possible into the physiology of these vesicles, they are believed to be involved in cell-to-cell communication and host-pathogen interactions. EVs might be significantly helpful in discovering biomarkers for possible target identification as well as prognostics, diagnostics and developing vaccines. In recent studies, highly bioactive EVs have drawn attention of parasitologists for being able to communicate between different cells and having likeliness of reflecting both source and target environments. Next-generation sequencing (NGS has eased the way to have a deeper insight into these vesicles and their roles in various diseases. This article arises from bioinformatics-based analysis and predictive data mining of transcriptomic (RNA-Seq data of EVs, derived from different life stages of Trypanosoma cruzi; a causing agent of neglected Chagas disease. Variants (Single Nucleotide Polymorphisms (SNPs were mined from Extracellular vesicular transcriptomic data and functionally analyzed using different bioinformatics based approaches. Functional analysis showed the association of these variants with various important factors like Trans-Sialidase (TS, Alpha Tubulin, P-Type H+-ATPase, etc. which, in turn, are associated with disease in different ways. Some of the ‘candidate SNPs’ were found to be stage-specific, which strengthens the probability of finding stage-specific biomarkers. These results may lead to a better understanding of Chagas disease, and improved knowledge may provide further development of the biomarkers for prognosis, diagnosis and drug development for treating Chagas disease.

  19. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  20. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  1. Assessment of extracellular dehydration using saliva osmolality.

    Science.gov (United States)

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal ( 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  2. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  3. Identification of a Novel Pathway of Transforming Growth Factor-β1 Regulation by Extracellular NAD+ in Mouse Macrophages

    Science.gov (United States)

    Zamora, Ruben; Azhar, Nabil; Namas, Rajaie; Metukuri, Mallikarjuna R.; Clermont, Thierry; Gladstone, Chase; Namas, Rami A.; Hermus, Linda; Megas, Cristina; Constantine, Gregory; Billiar, Timothy R.; Fink, Mitchell P.; Vodovotz, Yoram

    2012-01-01

    Extracellular β-nicotinamide adenine dinucleotide (NAD+) is anti-inflammatory. We hypothesized that NAD+ would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD+ led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD+ acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca2+. Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca2+ ionophores recapitulated the effects of NAD+ on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca2+ chelation, and antagonism of L-type Ca2+ channels suppressed these effects. The time and dose effects of NAD+ on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD+. Thus, in vitro and in silico evidence points to NAD+ as a novel modulator of TGF-β1. PMID:22829588

  4. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  5. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  6. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    Energy Technology Data Exchange (ETDEWEB)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.

  7. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    International Nuclear Information System (INIS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2017-01-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C 5 H 5 N 5 ) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO 2 ), isocyanic acid (HNCO), isocyanate (OCN − ), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R 1 R 2 –C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H 2 N–C≡N) was detected in both irradiated samples as well.

  8. Statistical properties and fractals of nucleotide clusters in DNA sequences

    International Nuclear Information System (INIS)

    Sun Tingting; Zhang Linxi; Chen Jin; Jiang Zhouting

    2004-01-01

    Statistical properties of nucleotide clusters in DNA sequences and their fractals are investigated in this paper. The average size of nucleotide clusters in non-coding sequence is larger than that in coding sequence. We investigate the cluster-size distribution P(S) for human chromosomes 21 and 22, and the results are different from previous works. The cluster-size distribution P(S 1 +S 2 ) with the total size of sequential Pu-cluster and Py-cluster S 1 +S 2 is studied. We observe that P(S 1 +S 2 ) follows an exponential decay both in coding and non-coding sequences. However, we get different results for human chromosomes 21 and 22. The probability distribution P(S 1 ,S 2 ) of nucleotide clusters with the size of sequential Pu-cluster and Py-cluster S 1 and S 2 respectively, is also examined. In the meantime, some of the linear correlations are obtained in the double logarithmic plots of the fluctuation F(l) versus nucleotide cluster distance l along the DNA chain. The power spectrums of nucleotide clusters are also discussed, and it is concluded that the curves are flat and hardly changed and the 1/3 frequency is neither observed in coding sequence nor in non-coding sequence. These investigations can provide some insights into the nucleotide clusters of DNA sequences

  9. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  10. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    OpenAIRE

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity...

  11. Detection of DNA nucleotides on pretreated boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Garbellini, Gustavo S.; Uliana, Carolina V.; Yamanaka, Hideko [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2011-07-01

    The individual detection and equimolar mixture of DNA nucleotides guanosine monophosphate (GMP), adenosine monophosphate (AMP), thymidine (TMP) and cytidine (CMP) 5'-monophosphate using square wave voltammetry was performed on boron doped diamond (BDD) electrodes cathodically (Red-DDB) and anodically (Oxi-DDB) pretreated. The oxidation of individual DNA nucleotides was more sensitive on Oxi-BDD electrode. In a simultaneous detection of nucleotides, the responses of GMP, AMP, TMP and CMP were very adequate on both treated electrodes. Particularly, more sensitive and separate peaks for TMP and CMP on Oxi-BDD and Red-BDD electrodes, respectively, were observed after deconvolution procedure. The detection of nucleotides in aqueous solutions will certainly contribute for genotoxic evaluation of substances and hybridization reactions by immobilizing ss or ds-DNA on BDD surface. (author)

  12. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    Science.gov (United States)

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  13. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.

    Science.gov (United States)

    Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard

    2014-07-28

    The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  15. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  16. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  17. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway

    International Nuclear Information System (INIS)

    Mitsuda, Hisateru; Nakajima, Kenji; Nadamoto, Tomonori

    1977-01-01

    In the present paper, the nucleotide precursor of riboflavin was investigated by experiments with labeled purines using non-growing cells of Eremothecium ashbyii. The added purines, at 10 -4 M, were effectively incorporated into riboflavin at an early stage of riboflavin biosynthesis under the experimental conditions. In particular, both labeled xanthine and labeled guanine were specifically transported to guanosine nucleotides, GMP, GDP, GDP-Mannose and GTP, in the course of the riboflavin biosynthesis. A comparison of specific activities of labeled guanosine nucleotides and labeled riboflavin indicated that the nucleotide precursor of riboflavin is guanosine triphosphate. From the results obtained, a biosynthetic pathway of riboflavin is proposed. (auth.)

  18. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.

    OpenAIRE

    Le Gall, O; Candresse, T; Brault, V; Dunez, J

    1989-01-01

    The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that o...

  19. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    Science.gov (United States)

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  20. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    Directory of Open Access Journals (Sweden)

    Débora Claramunt

    2015-11-01

    Full Text Available Pediatric chronic kidney disease (CKD has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  1. Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Laura Oliveira

    2015-01-01

    Full Text Available AMP dephosphorylation via ecto-5′-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO from released adenine nucleotides. ADO, via A2A receptors (A2ARs, is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5′-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG. Results show that CD4+CD25+FoxP3+ regulatory T cells express lower amounts of ecto-5′-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4+ T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5′-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.

  2. Electrical detection and quantification of single and mixed DNA nucleotides in suspension

    Science.gov (United States)

    Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah

    2016-09-01

    High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.

  3. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  4. The possible role of human milk nucleotides as sleep inducers.

    Science.gov (United States)

    Sánchez, Cristina L; Cubero, Javier; Sánchez, Javier; Chanclón, Belén; Rivero, Montserrat; Rodríguez, Ana B; Barriga, Carmen

    2009-02-01

    Breast-milk contains a potent mixture of diverse components, such as the non-protein nitrogen fraction which includes nucleotides, whose variation in levels is evident throughout lactation. In addition, these substances play an important role in sleep homeostasis. In the present study, human milk samples were analyzed using a capillary electrophoresis system. The rhythmicity of each nucleotide was studied by cosinor analysis. It was found that the nucleotides 5'AMP, 5'GMP, 5'CMP, and 5'IMP have significant (P inducing the 'hypnotic' action of breast-milk at night in the infant.

  5. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Alexandra M.; Piazza, Gary A. [Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Suite 3029, Mobile, AL 36604 (United States); Tinsley, Heather N., E-mail: htinsley@montevallo.edu [Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6480, Montevallo, AL 35115 (United States)

    2014-02-26

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.

  6. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.

    Science.gov (United States)

    Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O

    1987-06-01

    The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.

  7. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency.

    Science.gov (United States)

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Fujimoto, Yuki; Furuie, Sumie; Yamamura, Ken-Ichi; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Moriyama, Mitsuaki; Sinasac, David S; Yamamoto, Takashi; Furukawa, Tatsuhiko; Kobayashi, Keiko

    2017-04-01

    Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  9. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    Science.gov (United States)

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (Pexercise training (Pexercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    Science.gov (United States)

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  12. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    Science.gov (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  13. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  14. Nucleotide diversity and phylogenetic relationships among ...

    Indian Academy of Sciences (India)

    2017-03-03

    Mar 3, 2017 ... 2Department of Botany, D. S. B. Campus, Kumaun University, Nainital 263 001, India ... Rana T. S. 2017 Nucleotide diversity and phylogenetic relationships ... Anderson and Park 1989). ..... Edgewood Press, Edgewood, USA.

  15. Free amino acids and 5'-nucleotides in Finnish forest mushrooms.

    Science.gov (United States)

    Manninen, Hanna; Rotola-Pukkila, Minna; Aisala, Heikki; Hopia, Anu; Laaksonen, Timo

    2018-05-01

    Edible mushrooms are valued because of their umami taste and good nutritional values. Free amino acids, 5'-nucleotides and nucleosides were analyzed from four Nordic forest mushroom species (Lactarius camphoratus, Boletus edulis, Cantharellus cibarius, Craterellus tubaeformis) using high precision liquid chromatography analysis. To our knowledge, these taste components were studied for the first time from Craterellus tubaeformis and Lactarius camphoratus. The focus was on the umami amino acids and 5'-nucleotides. The free amino acid and 5'-nucleotide/nucleoside contents of studied species differed from each other. In all studied samples, umami amino acids were among five major free amino acids. The highest concentration of umami amino acids was on L. camphoratus whereas B. edulis had the highest content of sweet amino acids and C. cibarius had the highest content of bitter amino acids. The content of umami enhancing 5'-nucleotides were low in all studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-01-01

    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  17. The role of extracellular histones in haematological disorders.

    Science.gov (United States)

    Alhamdi, Yasir; Toh, Cheng-Hock

    2016-06-01

    Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders. © 2016 John Wiley & Sons Ltd.

  18. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen

    2015-01-01

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2, was subjected to crystallographic, kinetic and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5...

  19. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in myxococcus xanthus.

    Science.gov (United States)

    Harris, B Z; Kaiser, D; Singer, M

    1998-04-01

    Guanosine 3'-di-5'-(tri)di-phosphate nucleotides [(p)ppGpp], synthesized in response to amino acid limitation, induce early gene expression leading to multicellular fruiting body formation in Myxococcus xanthus. A mutant (DK527) that fails to accumulate (p)ppGpp in response to starvation was found to be blocked in development prior to aggregation. By use of a series of developmentally regulated Tn5lac transcriptional fusion reporters, the time of developmental arrest in DK527 was narrowed to within the few hours of development, the period of starvation recognition. The mutant is also defective in the production of A-factor, an early extracellular cell-density signal. The relA gene from Escherichia coli, which encodes a ribosome-dependent (p)ppGpp synthetase, rescues this mutant. We also demonstrate that inactivation of the M. xanthus relA homolog blocks development and the accumulation of (p)ppGpp. Moreover, the wild-type allele of Myxococcus relA rescues DK527. These observations support a model in which accumulation of (p)ppGpp, in response to starvation, initiates the program of fruiting body development, including the production of A-factor.

  20. Integrins and extracellular matrix in mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ramage L

    2011-12-01

    Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction

  1. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P V; Vignais, P M; Defaye, G; Lauquin, G; Doussiere, J; Chabert, J; Brandolin, G

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  2. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  3. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase.

    Science.gov (United States)

    Lang, Roman; Fromme, Tobias; Beusch, Anja; Lang, Tatjana; Klingenspor, Martin; Hofmann, Thomas

    2014-08-01

    Capsules, powders and tablets containing raw coffee extract are advertised to the consumer as antioxidant rich dietary supplements as part of a healthy diet. We isolated carboxyatractyligenin (4), 2-O-β-d-glucopyranosyl carboxyatractyligenin (6) and 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside (8) from green coffee and found strong inhibitory effects on phosphorylating respiration in isolated mitochondria similar to the effects of the known phytotoxin carboxyatractyloside. LC-MS/MS analysis of commercial green coffee based dietary supplements revealed the occurrence of carboxyatractyligenin, 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside, and 2-O-β-d-glucopyranosyl carboxyatractyligenin in concentrations up to 4.0, 5.7, and 41.6μmol/g, respectively. These data might help to gain first insight into potential physiological side-effects of green coffee containing dietary supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  5. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement

    International Nuclear Information System (INIS)

    Broderick, T.P.; Schaff, D.A.; Bertino, A.M.; Dush, M.K.; Tischfield, J.A.; Stambrook, P.J.

    1987-01-01

    The functional human adenine phosphoribosyltransferase (APRT) gene is <2.6 kilobases in length and contains five exons. The amino acid sequences of APRTs have been highly conserved throughout evolution. The human enzyme is 82%, 90%, and 40% identical to the mouse, hamster, and Escherichia coli enzymes, respectively. The promoter region of the human APRT gene, like that of several other housekeeping genes, lacks TATA and CCAAT boxes but contains five GC boxes that are potential binding sites for the Sp1 transcription factor. The distal three, however, are dispensable for gene expression. Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, except for similarly positioned GC boxes in the promoter region and a 26-base-pair region in intron 3. This 26-base-pair sequence is 92% identical with a similarly positioned sequence in the mouse gene and is also found in intron 3 of the hamster gene, suggesting that its retention may be a consequence of stringent selection. The positions of all introns have been precisely retained in the human and both rodent genes. Retention of an elevated CpG dinucleotide content, despite loss of sequence homology, suggests that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for APRT gene function

  6. Identification of a novel pathway of transforming growth factor-β1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies.

    Science.gov (United States)

    Zamora, Ruben; Azhar, Nabil; Namas, Rajaie; Metukuri, Mallikarjuna R; Clermont, Thierry; Gladstone, Chase; Namas, Rami A; Hermus, Linda; Megas, Cristina; Constantine, Gregory; Billiar, Timothy R; Fink, Mitchell P; Vodovotz, Yoram

    2012-09-07

    Extracellular β-nicotinamide adenine dinucleotide (NAD(+)) is anti-inflammatory. We hypothesized that NAD(+) would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD(+) led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD(+) acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca(2+). Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca(2+) ionophores recapitulated the effects of NAD(+) on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca(2+) chelation, and antagonism of L-type Ca(2+) channels suppressed these effects. The time and dose effects of NAD(+) on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD(+). Thus, in vitro and in silico evidence points to NAD(+) as a novel modulator of TGF-β1.

  7. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technolo...

  8. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Extracellular deoxyribonuclease production by periodontal bacteria.

    Science.gov (United States)

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  10. In vitro Determination of Extracellular Proteins from Xylella fastidiosa.

    Science.gov (United States)

    Mendes, Juliano S; Santiago, André S; Toledo, Marcelo A S; Horta, Maria A C; de Souza, Alessandra A; Tasic, Ljubica; de Souza, Anete P

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa . Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa . Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.

  11. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans.

    Science.gov (United States)

    Eigenheer, Richard A; Jin Lee, Young; Blumwald, Eduardo; Phinney, Brett S; Gelli, Angie

    2007-06-01

    Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or beta-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography-mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans.

  12. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    Science.gov (United States)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  13. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  14. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  15. Study on preventive effects of i.v. administration of flavin adenine dinucleotide (FAD) before irradiation on radiation stomatitis

    International Nuclear Information System (INIS)

    Nagai, Masao; Houzawa, Jiro; Hakamada, Masaru

    1984-01-01

    In order to compare the preventive effect on radiation stomatitis, flavin adenine dinucleotide (FAD) or vitamin C was administered intravenously until the blood level reached the maximum at the time of irradiation. Thirtyfive patients with cranial or cervical tumors were allocated into the group with FAD (15), the group with vitamin C (10), and the group with irradiation alone (10). The incidence of stomititis was significantly lower and the number of patients in whom the drug was withdrawn due to stomatitis was extremely smaller in the group with FAD than in the other groups. FAD administered before irradiation was considered very useful in preventing radiation stomatitis. (Namekawa, K.)

  16. Structural study and investigation of NMR tensors in interaction of dopamine with Adenine and guanine

    Directory of Open Access Journals (Sweden)

    Lingjia Xu

    2007-04-01

    Full Text Available The interaction of dopamine with adenine and guanine were studied at the Hartree-Fock level theory. The structural and vibrational properties of dopamine-4-N7GUA and dopamine-4-N3ADE were studied at level of HF/6-31G*. Interaction energies (ΔE were calculated to be -11.49 and -11.92 kcal/mol, respectively. Some of bond lengths, angels and tortions are compared. NBO studies were performed to the second-order and perturbative estimates of donor-acceptor interaction have been done. The procedures of gauge-invariant atomic orbital (GIAO and continuous-set-of-gauge-transformation (CSGT were employed to calculate isotropic shielding, chemical shifts anisotropy and chemical shifts anisotropy asymmetry and effective anisotropy using 6-31G* basis set. These calculations yielded molecular geometries in good agreement with available experimental data.

  17. Three-step preparation and purification of phosphorus-33-labeled creatine phosphate of high specific activity

    International Nuclear Information System (INIS)

    Savabi, F.; Geiger, P.J.; Bessman, S.P.

    1984-01-01

    Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references

  18. Shaping Synapses by the Neural Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Maura Ferrer-Ferrer

    2018-05-01

    Full Text Available Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs, neuronal pentraxins (NPs and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.

  19. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.

    Science.gov (United States)

    Fuchs, M; Pinck, M; Serghini, M A; Ravelonandro, M; Walter, B; Pinck, L

    1989-04-01

    The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of Mr37275. The coding sequence was bordered by a leader of 14 nucleotides and a 3'-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U.G/UGAAAAU/AU/AU/A at the 5' end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

  20. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  1. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  2. Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.

    Science.gov (United States)

    Le Gall, O; Candresse, T; Brault, V; Dunez, J

    1989-10-11

    The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that of other viral polyproteins, revealing the same general genetic organization as that of other picorna-like viruses (comoviruses, potyviruses and picornaviruses), except that an additional protein is suspected to occupy the N-terminus of the polyprotein.

  3. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  4. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    . The yields of these were measured as a function of the wavelength of the light from 210 nm to 300 nm, and they were combined to obtain the total photoinduced dissociation at each wavelength (i.e., action spectrum). A broad band between 230 nm and 290 nm and the tail of a band with maximum below 210 nm (high......-energy band) are seen. In the case of AdeH+(H2O), the dominant dissociation channel after photoexcitation in the low-energy band was simply loss of H2O while photodissociation of protonated AMP revealed two dominant dissociation channels associated with the formation of either AdeH+ or loss of H3PO4....... The action spectra of AdeH+, AdeH+(H2O), and AMPH+ are almost identical in the 230–290 nm region, and they resemble the absorption spectrum of protonated adenine in aqueous solution recorded at low pH. Hence from our work it is firmly established that the lowest-energy transitions are independent...

  5. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    Science.gov (United States)

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  6. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Arehart Eric

    2009-03-01

    Full Text Available Abstract Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194. We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI database (n = 29967 and a control set of sequences (coding region not associated with SNP sites randomly selected from the NCBI database (n = 29967. We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in

  7. Adsorption of nucleotides onto Fe-Mg-Al rich swelling clays

    Science.gov (United States)

    Feuillie, Cécile; Daniel, Isabelle; Michot, Laurent J.; Pedreira-Segade, Ulysse

    2013-11-01

    Mineral surfaces may have played a role in the origin of the first biopolymers, by concentrating organic monomers from a dilute ocean. Swelling clays provide a high surface area for the concentration of prebiotic monomers, and have therefore been the subject of numerous investigations. In that context, montmorillonite, the most abundant swelling clay in modern environments, has been extensively studied with regard to adsorption and polymerization of nucleic acids. However, montmorillonite was probably rather marginal on the primitive ocean floor compared to iron-magnesium rich phyllosilicates such as nontronite that results from the hydrothermal alteration of a mafic or ultramafic oceanic crust. In the present paper, we study the adsorption of nucleotides on montmorillonite and nontronite, at various pH and ionic strength conditions plausible for Archean sea-water. A thorough characterization of the mineral surfaces shows that nucleotide adsorb mainly on the edge faces of the smectites by ligand exchange between the phosphate groups of the nucleotides and the -OH groups from the edge sites over a wide pH range (4-10). Nontronite is more reactive than montmorillonite. At low pH, additional ion exchange may play a role as the nucleotides become positively charged.

  8. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  9. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    International Nuclear Information System (INIS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5 ′ -monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results

  11. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    OpenAIRE

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-01-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the le...

  12. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  13. The International Nucleotide Sequence Database Collaboration.

    Science.gov (United States)

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Nakamura, Yasukazu

    2011-01-01

    Under the International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org), globally comprehensive public domain nucleotide sequence is captured, preserved and presented. The partners of this long-standing collaboration work closely together to provide data formats and conventions that enable consistent data submission to their databases and support regular data exchange around the globe. Clearly defined policy and governance in relation to free access to data and relationships with journal publishers have positioned INSDC databases as a key provider of the scientific record and a core foundation for the global bioinformatics data infrastructure. While growth in sequence data volumes comes no longer as a surprise to INSDC partners, the uptake of next-generation sequencing technology by mainstream science that we have witnessed in recent years brings a step-change to growth, necessarily making a clear mark on INSDC strategy. In this article, we introduce the INSDC, outline data growth patterns and comment on the challenges of increased growth.

  14. 19F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy

    International Nuclear Information System (INIS)

    Sochor, F.; Silvers, R.; Müller, D.; Richter, C.; Fürtig, B.; Schwalbe, H.

    2016-01-01

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus 19 F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5′-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the 19 F isotope. The thermal stability of the 19 F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a 1 H, 15 N-HSQC allow the identification of Watson–Crick base paired uridine signals and the 19 F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of 19 F-labeling even for sizeable RNAs in the range of 70 nucleotides

  15. Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain.

    Science.gov (United States)

    Ahn, Jinhi; Beharry, Seelochan; Molday, Laurie L; Molday, Robert S

    2003-10-10

    ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.

  16. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Louise C. Laurent

    2015-08-01

    Full Text Available Extracellular RNAs (exRNAs have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.

  17. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  18. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Subnanomole detection and quantitation of high specific activity 32P-nucleotides

    International Nuclear Information System (INIS)

    Coniglio, C.; Pappas, G.; Gill, W.J.; Kashdan, M.; Maniscalco, M.

    1991-01-01

    Microbore liquid chromatography utilizes conventional HPLC and ultraviolet detection principles to determine subnanomole mass quantities of biologically significant molecules. This system takes advantage of specifically designed microflow equipment to analyze ultraviolet absorbing species at the picomole range. 32P-labeled nucleotides are examples of compounds routinely used at picomole quantities that are extremely difficult to accurately quantify using standard mass measurement techniques. The procedure described in this paper has the capability of measuring nucleotides down to 10 pmol using commercially available microbore ultraviolet detection equipment. The technique can be used to accurately measure the specific activity of as little as 10 microCi of an aqueous 32P-nucleotide solution

  20. ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance.

    Science.gov (United States)

    Shah, Abdul Haseeb; Banerjee, Atanu; Rawal, Manpreet Kaur; Saxena, Ajay Kumar; Mondal, Alok Kumar; Prasad, Rajendra

    2015-08-01

    The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    Science.gov (United States)

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  2. Neutrophil extracellular traps promote deep vein thrombosis in mice

    Science.gov (United States)

    Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.

    2011-01-01

    Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575

  3. Brain Extracellular Space: The Final Frontier of Neuroscience.

    Science.gov (United States)

    Nicholson, Charles; Hrabětová, Sabina

    2017-11-21

    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  5. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates.

    Science.gov (United States)

    Bayne, E K; Anderson, M J; Fambrough, D M

    1984-10-01

    Monoclonal antibodies recognizing laminin, heparan sulfate proteoglycan, fibronectin, and two apparently novel connective tissue components have been used to examine the organization of extracellular matrix of skeletal muscle in vivo and in vitro. Four of the five monoclonal antibodies are described for the first time here. Immunocytochemical experiments with frozen-sectioned muscle demonstrated that both the heparan sulfate proteoglycan and laminin exhibited staining patterns identical to that expected for components of the basal lamina. In contrast, the remaining matrix constituents were detected in all regions of muscle connective tissue: the endomysium, perimysium, and epimysium. Embryonic muscle cells developing in culture elaborated an extracellular matrix, each antigen exhibiting a unique distribution. Of particular interest was the organization of extracellular matrix on myotubes: the build-up of matrix components was most apparent in plaques overlying clusters of an integral membrane protein, the acetylcholine receptor (AChR). The heparan sulfate proteoglycan was concentrated at virtually all AChR clusters and showed a remarkable level of congruence with receptor organization; laminin was detected at 70-95% of AChR clusters but often was not completely co-distributed with AChR within the cluster; fibronectin and the two other extracellular matrix antigens occurred at approximately 20, 8, and 2% of the AChR clusters, respectively, and showed little or no congruence with AChR. From observations on the distribution of extracellular matrix components in tissue cultured fibroblasts and myogenic cells, several ideas about the organization of extracellular matrix are suggested. (a) Congruence between AChR clusters and heparan sulfate proteoglycan suggests the existence of some linkage between the two molecules, possibly important for regulation of AChR distribution within the muscle membrane. (b) The qualitatively different patterns of extracellular matrix

  6. A novel Y-xylosidase, nucleotide sequence encoding it and use thereof.

    NARCIS (Netherlands)

    Graaff, de L.H.; Peij, van N.N.M.E.; Broeck, van den H.C.; Visser, J.

    1996-01-01

    A nucleotide sequence is provided which encodes a peptide having beta-xylosidase activity and exhibits at least 30mino acid identity with the amino acid sequence shown in SEQ ID NO. 1 or hybridises under stringent conditions with a nucleotide sequence shown in SEQ ID NO. 1, or a part thereof having

  7. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  8. Señales purinérgicas Purinergic signals

    Directory of Open Access Journals (Sweden)

    Eduardo R Lazarowski

    2009-04-01

    Full Text Available En la última década se ha aportado clara evidencia de que tanto nucleósidos como nucleótidos de adenina y uridina pueden funcionar como factores de señalización extracelular. Su acción es mediada por dos tipos principales de receptores de superficie denominados purinérgicos. Los receptores P1 se activan por adenosina, y son todos metabotrópicos, mientras que los receptores de nucleótidos (ATP, ADP, UTP y UDP y nucleótidos-azúcares (UDP-glucosa y UDP-galactosa pueden ser metabotrópicos (P2Y o ionotrópicos (P2X. La importancia y complejidad de este sistema de señalización se evidencia por la diversidad de mecanismos de liberación de nucleótidos al medio extracelular y por la distribución ubicua de varios grupos de ectonucleotidasas capaces de catalizar la degradación y conversión de nucleótidos. Hasta el momento se han descrito y clonado una veintena de estos receptores que modulan una variedad de respuestas, como el impulso nervioso, la respuesta inflamatoria, la secreción de insulina, la regulación del tono vascular y la percepción del dolor. En la presente revisión se describen las características estructurales y farmacológicas de los receptores purinérgicos y se analiza la interacción dinámica entre estos receptores, los nucleósidos y nucleótidos, y las ectonucleotidasas, con especial atención a la dinámica de la agregación plaquetaria, la respuesta inmune y la hidratación de las mucosas respiratorias.In the last decade evidence accumulated that nucleosides and nucleotides of both uridine and adenine can act as extracellular signaling factors. Their action is mediated by two main types of surface receptors commonly known as purinergic. P1 receptors are metabotropic and activated by adenosine, whereas receptors for nucleotides (ATP, ADP, UTP and UDP and nucleotide-sugars (UDP-glucose and UDP-galactose can be either metabotropic (P2Y or ionotropic (P2X. The importance and complexity of this signaling system

  9. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  10. Crystal structure of an intermolecular 2:1 complex between adenine and thymine. Evidence for both Hoogsteen and 'quasi-Watson-Crick' interactions.

    Science.gov (United States)

    Chandrasekhar, Sosale; Naik, Tangali R Ravikumar; Nayak, Susanta K; Row, Tayur N Guru

    2010-06-15

    The titled complex, obtained by co-crystallization (EtOH/25 degrees C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    International Nuclear Information System (INIS)

    Kleist-Retzow, Juergen-Christoph von; Hue-Tran Hornig-Do; Schauen, Matthias; Eckertz, Sabrina; Tuan Anh Duong Dinh; Stassen, Frank; Lottmann, Nadine; Bust, Maria; Galunska, Bistra; Wielckens, Klaus; Hein, Wolfgang; Beuth, Joseph; Braun, Jan-Matthias; Fischer, Juergen H.; Ganitkevich, Vladimir Y.; Maniura-Weber, Katharina; Wiesner, Rudolf J.

    2007-01-01

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca 2+ homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA Leu(UUR) , as well as Rho 0 cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases

  12. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  13. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  14. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  15. Production of extracellular laccase from the newly isolated Bacillus ...

    African Journals Online (AJOL)

    This study was carried out with aim of screening for extracellular thermostable laccase producing bacteria. Twenty-two (22) laccase positive strains were isolated from the selected environmental samples while extracellular laccase activity was detected only in six strains namely TM1, TMT1, PK4, PS1, TMS1 and ASP3.

  16. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  17. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  18. Synthesis and spectroscopy of clay intercalated Cu(II) bio-monomer complexes: coordination of Cu(II) with purines and nucleotides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Leeman, H.; Schoonheydt, R.A.

    1999-01-01

    The spectroscopic properties of Cu(bio-monomer)nm+ complexes [BM=bio-monomer (purine, adenine, guanine, hypoxanthine, 5-ADP and 5-GMP)] in saponite clays have been investigated by diffuse reflectance spectroscopy (DRS) in the UV-Vis-NIR region and electron paramagnetic resonance (EPR) at X-band.

  19. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  20. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct

    DEFF Research Database (Denmark)

    Odgaard, Elvin V. P.; Prætorius, Helle; Leipziger, Jens Georg

    2009-01-01

    is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow...

  1. Trash or Treasure: extracellular microRNAs and cell-to-cell communication

    Directory of Open Access Journals (Sweden)

    Nobuyoshi eKosaka

    2013-09-01

    Full Text Available Circulating RNAs in human body fluids are promising candidates for diagnostic purposes. However, the biological significance of circulating RNAs remains elusive. Recently, small non-coding RNAs, microRNAs (miRNAs, were isolated from multiple human body fluids, and these circulating miRNAs have been implicated as novel disease biomarkers. Concurrently, miRNAs were also identified in the extracellular space associated with extracellular vesicles (EVs, which are small membrane vesicles secreted from various types of cells. The function of these secreted miRNAs has been revealed in several papers. Circulating miRNAs have been experimentally found to be associated with EVs, however, other types of extracellular miRNAs were also described. This review discusses studies related to extracellular miRNAs, including circulating miRNAs and secreted miRNAs, to highlight the importance of studying not only secreted miRNAs but also circulating miRNAs to determine the contribution of extracellular miRNAs especially in cancer development.

  2. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  3. The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-01-29

    The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.

  4. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  5. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    P2X7 nucleotide receptors modulate a spectrum of cellular events in various cells including epithelia, such as exocrine pancreas. Although the pharmacology and channel properties of the P2X7 receptors have been studied intensively, signal transduction pathways are relatively unknown. In this study...... we applied a heterologous expression system of rat P2X7 receptors in HEK-293 cells. We followed the receptor expression and function using the enhanced green fluorescent protein (EGFP) tag, activation of intracellular proteins and increases in cellular Ca2+. EGFP-P2X7 receptors localized...... to the plasma membrane, clusters within the membrane and intracellularly. Stimulation of P2X7 receptors in HEK-293 cells led to an activation of extracellular signal-regulated kinases ERK1 and ERK2 and this activation was seen after just 1 min of stimulation with ATP. Using C- and N-terminal P2X7-receptor...

  6. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Science.gov (United States)

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  7. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  8. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Jabůrek, Martin; Zelenka, Jaroslav; Ježek, Petr

    2010-01-01

    Roč. 59, č. 5 (2010), s. 737-747 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA303/07/0105; GA MŠk ME09018; GA AV ČR(CZ) KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : Heart mitochondrial phospholipase A2 * Fatty Acids * Adenine nucleotide translocase Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  9. Nucleotide sequence of tomato ringspot virus RNA-2.

    Science.gov (United States)

    Rott, M E; Tremaine, J H; Rochon, D M

    1991-07-01

    The sequence of tomato ringspot virus (TomRSV) RNA-2 has been determined. It is 7273 nucleotides in length excluding the 3' poly(A) tail and contains a single long open reading frame (ORF) of 5646 nucleotides in the positive sense beginning at position 78 and terminating at position 5723. A second in-frame AUG at position 441 is in a more favourable context for initiation of translation and may act as a site for initiation of translation. The TomRSV RNA-2 3' noncoding region is 1550 nucleotides in length. The coat protein is located in the C-terminal region of the large polypeptide and shows significant but limited amino acid sequence similarity to the putative coat proteins of the nepoviruses tomato black ring (TBRV), Hungarian grapevine chrome mosaic (GCMV) and grapevine fanleaf (GFLV). Comparisons of the coding and non-coding regions of TomRSV RNA-2 and the RNA components of TBRV, GCMV, GFLV and the comovirus cowpea mosaic virus revealed significant similarity for over 300 amino acids between the coding region immediately to the N-terminal side of the putative coat proteins of TomRSV and GFLV; very little similarity could be detected among the non-coding regions of TomRSV and any of these viruses.

  10. The DNA electronic specific heat at low temperature: The role of aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Mendes, G.A. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Vasconcelos, M.S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Ujsághy, O. [Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest (Hungary); Freire, V.N. [Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza, CE (Brazil); Caetano, E.W.S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531, Fortaleza, CE (Brazil)

    2012-07-16

    The electronic specific heat spectra at constant volume (C{sub V}) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on C{sub V} is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  11. Extracellular space, blood volume, and the early dumping syndrome after total gastrectomy

    Energy Technology Data Exchange (ETDEWEB)

    Miholic, J.; Reilmann, L.; Meyer, H.J.; Koerber, H.K.; Kotzerke, J.; Hecker, H. (Medzinische Hochschule Hannover (Germany, F.R.))

    1990-10-01

    Extracellular space and blood volume were measured using 82Br dilution and 51Cr-tagged erythrocytes in 24 tumor-free patients after total gastrectomy. Eleven of the patients suffered from early dumping. Age, blood volume, and extracellular space were significantly smaller in dumpers (P less than 0.05). The dumping score could be predicted by a multiple regression model considering blood volume per lean body mass and extracellular space (r = 0.637; P = 0.0039). Rapid (t1/2 less than 360 seconds) emptying of the gastric substitute, assessed using a 99Tc-labeled solid test meal, was significantly associated with dumping in addition to extracellular space and blood volume (r = 0.876; P = 0.0018). Both rapid emptying and a narrow extracellular space seem to contribute to the early dumping syndrome.

  12. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  13. Optimization time synthesis of nucleotide labelled [γ-32P]-ATP

    International Nuclear Information System (INIS)

    Rahman, Wira Y; Sarmini, Endang; Herlina; Lubis, Hotman; Triyanto; Hambali

    2013-01-01

    Adenosine triphosphate-labelled with γ- 32 P([γ- 32 p]-ATP) has been widely used in the biotechnology research, usually as a tracer to study aspects of physiological and pathological processes. In order to support biotechnology research in Indonesia, a process for production of [γ- 32 P]-ATP with enzymatic reaction was used as precursors DL-glyceraldehydde 3-phosphate, Adenosine Diphosphate (ADP) and H 3 32 PO 4 , and enzyme glyceraldehid 3-phosphate dehydrogenase, 3-phosphoglyceryc phosphokinase and lactate dehydrogenase. Optimization of incubation time labeled nucleotide synthesis process is performed to find the optimum conditions, in terms of the most advantageous time in the synthesis process. With the success of the synthesis and optimization is done incubation time of synthesis labeled nucleotide, the result suggested can be used for producing [γ- 32 P] -ATP to support the provision of radiolabeled nucleotide for biotechnology research in Indonesia. (author)

  14. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an

  15. WEB-server for search of a periodicity in amino acid and nucleotide sequences

    Science.gov (United States)

    E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.

    2017-12-01

    A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.

  16. Variation in activity of root extracellular phytase between genotypes of barley

    DEFF Research Database (Denmark)

    Asmar, Mohammad Farouq

    1997-01-01

    Barley genotypes grown in nutrient solution under P nutrient stress and sterile conditions were compared in activity of root-associated and root-released extracellular phytase. The activity of root-associated phytase of all genotypes was about 10 times higher than that of root-released phytase...... and the genotypes performed differently with regard to the activity of the enzymes. The winter barley genotype, Marinka had the highest activity of root-associated extracellular phytase which differed significantly from Alexis and Senate, but not from Regatta. Alexis showed the lowest activity of root......-released extracellular phytase which differed significantly from those of Marinka and Regatta, but not from Senate. Generally, there was a significant correlation between the activity of root-associated and released extracellular phytase....

  17. {sup 19}F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sochor, F. [Johann Wolfgang Goethe-University Frankfurt, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany); Silvers, R. [Massachusetts Institute of Technology, Department of Chemistry, Francis Bitter Magnet Laboratory (United States); Müller, D.; Richter, C.; Fürtig, B., E-mail: fuertig@nmr.uni-frankfurt.de; Schwalbe, H., E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe-University Frankfurt, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2016-01-15

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus {sup 19}F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5′-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the {sup 19}F isotope. The thermal stability of the {sup 19}F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a {sup 1}H,{sup 15}N-HSQC allow the identification of Watson–Crick base paired uridine signals and the {sup 19}F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of {sup 19}F-labeling even for sizeable RNAs in the range of 70 nucleotides.

  18. TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase.

    Science.gov (United States)

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C

    2017-04-20

    Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-α promotes glutaminase expression in neurons. However, the expression and the functionality of glutaminase in astrocytes during neuroinflammation remain unknown. We posit that TNF-α can promote the release of EVs in astrocytes through upregulation of glutaminase expression. Release of EVs, which was demonstrated by electron microscopy, nanoparticle tracking analysis (NTA), and Western Blot, increased in mouse astrocytes when treated with TNF-α. Furthermore, TNF-α treatment significantly upregulated protein levels of glutaminase and increased the production of glutamate, suggesting that glutaminase activity is increased after TNF-α treatment. Interestingly, pretreatment with a glutaminase inhibitor blocked TNF-α-mediated generation of reactive oxygen species in astrocytes, which indicates that glutaminase activity contributes to stress in astrocytes during neuroinflammation. TNF-α-mediated increased release of EVs can be blocked by either the glutaminase inhibitor, antioxidant N-acetyl-L-cysteine, or genetic knockout of glutaminase, suggesting that glutaminase plays an important role in astrocyte EV release during neuroinflammation. These findings suggest that glutaminase is an important metabolic factor controlling EV release from astrocytes during neuroinflammation.

  19. Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia

    Directory of Open Access Journals (Sweden)

    Aurèle Vuillemin

    2017-07-01

    Full Text Available Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of

  20. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  1. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-10-15

    Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.

  2. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6

    Directory of Open Access Journals (Sweden)

    Marwa O. Elnahas

    2017-08-01

    Full Text Available A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR, HPLC and 1H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe2+ chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays that were colorimetric assays for NAD(PH-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231. The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1. This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  3. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6.

    Science.gov (United States)

    Elnahas, Marwa O; Amin, Magdy A; Hussein, Mohamed M D; Shanbhag, Vinit C; Ali, Amal E; Wall, Judy D

    2017-08-24

    A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS) composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR), HPLC and ¹H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe 2+ ) chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays that were colorimetric assays for NAD(P)H-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231). The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1). This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  4. A single nucleotide polymorphism (SNP) assay for population ...

    African Journals Online (AJOL)

    A single nucleotide polymorphism (SNP) assay for population stratification test ... phenotypes and unlinked candidate loci in case-control and cohort studies of ... Key words: Chinese, Japanese, population stratification, ancestry informative ...

  5. Effects of Mg2+ and adenine nucleotides on thymidylate synthetase from different mouse tumors.

    Science.gov (United States)

    Rode, W; Jastreboff, M M

    1984-01-01

    Magnesium ions variably influenced activity of highly purified thymidylate synthetase preparations from different mouse tumors, activating the enzyme from Ehrlich ascites carcinoma (EAC) cells and inhibiting the enzyme from L1210 and L5178Y cells and from 5-fluorodeoxyuridine (FdUrd)-resistant EAC cells. In the presence of Mg2+ in a concentration resulting in either maximum activation or inhibition (25-30 mM) the enzymes from both the sensitive and FdUrd-resistant EAC lines and L5178Y cells were activated by ATP. Under the same conditions of Mg2+ concentration ADP and AMP inhibited the enzyme from the parental but not from the FdUrd-resistant EAC cells.

  6. Intercellular Resistance to BRAF Inhibition Can Be Mediated by Extracellular Vesicle–Associated PDGFRβ

    Directory of Open Access Journals (Sweden)

    Laura J. Vella

    2017-11-01

    Full Text Available Treatment of BRAF mutant melanoma with kinase inhibitors has been associated with rapid tumor regression; however, this clinical benefit is short-lived, and most patients relapse. A number of studies suggest that the extracellular environment promotes BRAF inhibitor resistance and tumor progression. Extracellular vesicles, such as exosomes, are functional mediators in the extracellular environment. They are small vesicles known to carry a concentrated group of functional cargo and serve as intercellular communicators not only locally but also systemically. Increasingly, it is reported that extracellular vesicles facilitate the development of drug resistance in cancer; however, their role in BRAF inhibitor resistance in melanoma is unclear. Here we investigated if extracellular vesicles from BRAF inhibitor–resistant melanoma could influence drug sensitivity in recipient melanoma cells. We demonstrate that the resistance driver, PDGFRβ, can be transferred to recipient melanoma cells via extracellular vesicles, resulting in a dose-dependent activation of PI3K/AKT signaling and escape from MAPK pathway BRAF inhibition. These data suggest that the BRAF inhibitor–sensitive phenotype of metastatic melanoma can be altered by delivery of PDGFRβ by extracellular vesicles derived from neighboring drug-resistant melanoma cells.

  7. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    Science.gov (United States)

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  8. Selective inhibitory effects of (S)-9-(3-hydroxy-2-phosphonyl-methoxypropyl)adenine and 1-(2'-deoxy-2'-fluoro-ß-D-arabinofuranosyl)-5-iodouracil on seal herpesvirus (Phocid herpesvirus 1) infection in vitro.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J. Groen (Jan); E. de Clercq

    1987-01-01

    textabstractFrom a selection of 25 antiviral compounds with specific anti-herpes activity or broad-spectrum antiviral properties, two compounds, namely (S)-9-(3-hydroxy-2-phosphonyl-methoxypropyl)adenine and 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-iodouracil, appeared particularly effective

  9. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  10. Scambio, a novel guanine nucleotide exchange factor for Rho

    Directory of Open Access Journals (Sweden)

    Groffen John

    2004-04-01

    Full Text Available Abstract Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho.

  11. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  12. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-06-19

    NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.

  13. Adenosine 5′-Triphosphate Metabolism in Red Blood Cells as a Potential Biomarker for Post-Exercise Hypotension and a Drug Target for Cardiovascular Protection

    Directory of Open Access Journals (Sweden)

    Pollen K. Yeung

    2018-05-01

    Full Text Available The importance of adenosine and ATP in regulating many biological functions has long been recognized, especially for their effects on the cardiovascular system, which may be used for management of hypertension and cardiometabolic diseases. In response to ischemia and cardiovascular injury, ATP is broken down to release adenosine. The effect of adenosine is very short lived because it is rapidly taken up by erythrocytes (RBCs, myocardial and endothelial cells, and also rapidly catabolized to oxypurine metabolites. Intracellular adenosine is phosphorylated back to adenine nucleotides via a salvage pathway. Extracellular and intracellular ATP is broken down rapidly to ADP and AMP, and finally to adenosine by 5′-nucleotidase. These metabolic events are known to occur in the myocardium, endothelium as well as in RBCs. Exercise has been shown to increase metabolism of ATP in RBCs, which may be an important mechanism for post-exercise hypotension and cardiovascular protection. The post-exercise effect was greater in hypertensive than in normotensive rats. The review summarizes current evidence in support of ATP metabolism in the RBC as a potential surrogate biomarker for cardiovascular protection and toxicities. It also discusses the opportunities, challenges, and obstacles of exploiting ATP metabolism in RBCs as a target for drug development and precision medicine.

  14. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    Science.gov (United States)

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton

  15. Extracellular matrix organization in various regions of rat brain grey matter.

    Science.gov (United States)

    Brückner, G; Härtig, W; Kacza, J; Seeger, J; Welt, K; Brauer, K

    1996-05-01

    Previous studies revealed the concentration of extracellular matrix proteoglycans in the so-called perineuronal nets on the one hand and in certain zones of the neuropil on the other. This nonhomogeneous distribution suggested a non-random chemical and spatial heterogeneity of the extracellular space. In the present investigation, regions dominated by one of both distribution patterns, i.e. piriform and parietal cortex, reticular thalamic nucleus, medial septum/diagonal band complex and cerebellar nuclei, were selected for correlative light and electron microscopic analysis. The labelling was performed by the use of the N-acetylgalactosamine-binding plant lectin Wisteria floribunda agglutinin visualized by peroxidase staining and additionally by photoconversion of red carbocyanine fluorescence labelling for electron microscopy. The intense labelling of the neuropil of a superficial piriform region, presumably identical with sublayer Ia, was confined to a fine meshwork spreading over the extracellular space between non-myelinated axons, dendrites and glial profiles. In the reticular thalamic nucleus the neuronal cell bodies were embedded in zones of labelled neuropil. In contrast to these patterns, the labelled extracellular matrix in different cortical layers and in the other subcortical regions was concentrated in perineuronal nets as large accumulations at surface areas of the neuronal perikarya and dendrites and the attached presynaptic boutons. Astrocytic processes usually were separated from the neuronal surface by the interposed extracellular material. Despite a great variability, the width of the extracellular space containing the labelled matrix components in all perineuronal nets appeared to be considerably larger than that in the labelled zones of neuropil and the non-labelled microenvironment of other neurons. Our results support the view that differences expressed in topographical and spatial peculiarities of the extracellular matrix constituents are

  16. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou (NCSU)

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  17. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  18. Study on the change of cyclic nucleotide in mice with yang vacuity disease

    International Nuclear Information System (INIS)

    Zhu Xinhua; Shen Ling; Wang Shuguang

    2002-01-01

    To study the relation between Yang Vacuity disease happening, development and cyclic nucleotide response, and prove curative effects of some assisting Yang drug, the plasma cAMP, cGMP and cAMP/cGMP levels were detected by radioimmunoassay in the Yang Vacuity group and curing group. Results: showed: (1) Yang Vacuity group: the symptoms were clear, death rate was high, the plasma cAMP and cAMP/cGMP increased obviously, it suggests that cyclic nucleotide was imbalance. (2) Curing group: the symptoms of Yang Vacuity disease were improved obviously, death rate dropped, cAMP declined, cGMP increased, while cAMP/cGMP reached the normal level, it showed that cyclic nucleotide of the body had altered greatly. (3) It is a reference target for Yang Vacuity. (4) Assisting yang drug (Sini Decoction) had a close relation with correcting imbalance of cyclic nucleotide

  19. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  20. Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery.

    LENUS (Irish Health Repository)

    Davis, N F

    2012-01-31

    PURPOSE: The field of tissue engineering focuses on developing strategies for reconstructing injured, diseased, and congenitally absent tissues and organs. During the last decade urologists have benefited from remodeling and regenerative properties of bioscaffolds derived from xenogenic extracellular matrices. We comprehensively reviewed the current literature on structural and functional characteristics of xenogenic extracellular matrix grafting since it was first described in urological surgery. We also reviewed the clinical limitations, and assessed the potential for safe and effective urological application of extracellular matrix grafting in place of autogenous tissue. MATERIALS AND METHODS: We performed literature searches for English language publications using the PubMed(R) and MEDLINE(R) databases. Keywords included "xenogenic," "extracellular matrix" and "genitourinary tract applications." A total of 112 articles were scrutinized, of which 50 were suitable for review based on clinical relevance and importance of content. RESULTS: Since the mid 1990s xenogenic extracellular matrices have been used to successfully treat a number of pathological conditions that affect the upper and lower genitourinary tract. They are typically prepared from porcine organs such as small intestine and bladder. These organs are harvested and subjected to decellularization and sterilization techniques before surgical implantation. Bioinductive growth factors that are retained during the preparation process induce constructive tissue remodeling as the extracellular matrix is simultaneously degraded and excreted. However, recent documented concerns over durability, decreased mechanical strength and residual porcine DNA after preparation techniques have temporarily hampered the potential of extracellular matrices as a reliable replacement for genitourinary tract structures. CONCLUSIONS: Extracellular matrices are a useful alternative for successfully treating a number of urological

  1. Target Site Recognition by a Diversity-Generating Retroelement

    OpenAIRE

    Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.

    2011-01-01

    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype...

  2. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence

    Czech Academy of Sciences Publication Activity Database

    Kretová, M.; Šabová, L.; Hodný, Zdeněk; Bartek, Jiří; Kollárovič, G.; Nelson, B. D.; Hubáčková, Soňa; Luciaková, K.

    2014-01-01

    Roč. 26, č. 12 (2014), s. 2903-2911 ISSN 0898-6568 R&D Projects: GA ČR GA13-17658S; GA ČR GA13-17555S Grant - others:Slovak Grant Agency(SK) VEGA [2/0107/11] Institutional support: RVO:68378050 Keywords : Smad * Nuclear factor 1 * Senescence * Adenine nucleotide translocase-2 * Transforming growth factor-β * Oxidative stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  3. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  4. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  6. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    International Nuclear Information System (INIS)

    Zanoni, Maria Valnice Boldrin; Rogers, Emma I.; Hardacre, Christopher; Compton, Richard G.

    2010-01-01

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N 6,2,2,2 ][N(Tf) 2 ], 1-butyl-3-methylimidazolium hexafluorosphosphate [C 4 mim][PF 6 ], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C 4 mpyrr][N(Tf) 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 4 mim][N(Tf) 2 ], N-butyl-N-methyl-pyrrolidinium dicyanamide [C 4 mpyrr][N(NC) 2 ] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P 14,6,6,6 ][FAP] on a platinum microelectrode. In [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P 14,6,6,6 ][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer

  7. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Dae-Kyum Kim

    2013-03-01

    Full Text Available Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.

  8. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

    NARCIS (Netherlands)

    Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B.

    2017-01-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies.

  9. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release

    DEFF Research Database (Denmark)

    Leonardsen, L; DeClue, J E; Lybaek, H

    1996-01-01

    The substrate requirements for the catalytic activity of the mouse Cdc25 homolog Guanine nucleotide Release Factor, GRF, were determined using the catalytic domain of GRF expressed in insect cells and E. coli expressed H-Ras mutants. We found a requirement for the loop 7 residues in Ras (amino ac...... and the human Ras like proteins RhoA, Rap1A, Rac1 and G25K revealed a strict Ras specificity; of these only S. pombe Ras was GRF sensitive....

  10. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    Science.gov (United States)

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  11. DMPD: Fragments of extracellular matrix as mediators of inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18243041 Fragments of extracellular matrix as mediators of inflammation. Adair-Kirk...l) Show Fragments of extracellular matrix as mediators of inflammation. PubmedID 18243041 Title Fragments of... extracellular matrix as mediators of inflammation. Authors Adair-Kirk TL, Senior

  12. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  13. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    Science.gov (United States)

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  15. Extracellular proteases of Trichoderma species. A review.

    Science.gov (United States)

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  16. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  17. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development...... gadolinium-based agent (3-7% versus 0-1% per injection) in patients with reduced renal function. Prevalence after exposure to two gadodiamide injections is as high as 36% in patients with chronic kidney disease (CKD) stage 5. No report of NSF after the most stable agents has been reported in the peer...

  18. Molecular recognition of nucleotides in micelles and the development and expansion of a chemistry outreach program

    Science.gov (United States)

    Schechinger, Linda Sue

    I. To investigate the delivery of nucleotide-based drugs, we are studying molecular recognition of nucleotide derivatives in environments that are similar to cell membranes. The Nowick group previously discovered that membrane-like surfactant micelles tetradecyltrimethylammonium bromide (TTAB) micelle facilitate molecular of adenosine monophosphate (AMP) recognition. The micelles bind nucleotides by means of electrostatic interactions and hydrogen bonding. We observed binding by following 1H NMR chemical shift changes of unique hexylthymine protons upon addition of AMP. Cationic micelles are required for binding. In surfactant-free or sodium dodecylsulfate solutions, no hydrogen bonding is observed. These observations suggest that the cationic surfactant headgroups bind the nucleotide phosphate group, while the intramicellar base binds the nucleotide base. The micellar system was optimized to enhance binding and selectivity for adenosine nucleotides. The selectivity for adenosine and the number of phosphate groups attached to the adenosine were both investigated. Addition of cytidine, guanidine, or uridine monophosphates, results in no significant downfield shifting of the NH resonance. Selectivity for the phosphate is limited, since adenosine mono-, di-, and triphosphates all have similar binding constants. We successfully achieved molecular recognition of adenosine nucleotides in micellar environments. There is significant difference in the binding interactions between the adenosine nucleotides and three other natural nucleotides. II. The UCI Chemistry Outreach Program (UCICOP) addresses the declining interest of the nations youth for science. UCICOP brings fun and exciting chemistry experiments to local high schools, to remind students that science is fun and has many practical uses. Volunteer students and alumni of UCI perform the demonstrations using scripts and material provided by UCICOP. The preparation of scripts and materials is done by two coordinators

  19. NONSPECIFIC IMMUNE RESPONSE AND RESISTANCE OF Litopenaeus vannamei FED WITH NUCLEOTIDE, β-GLUCAN, AND PROTAGEN DIETS

    Directory of Open Access Journals (Sweden)

    Henky Manoppo

    2010-06-01

    Full Text Available The objective of this research was to evaluate the nonspecific immune response and resistance of Litopenaeus vannamei fed with nucleotide, β–glucan, and protagen diets. Shrimp juveniles with an average weight of 5.39±0.56 g were reared in glass aquaria at a density of 15 shrimps/aquarium. Shrimps were fed three times a day for four weeks at a feeding rate of 3%/bw/day. Treatment diets consisted of A: basal diet (without immunostimulant, B: β–glucan, C: protagen, and D: nucleotide, each with three replicates. At the end of feeding period, the shrimps were intramuscularly injected with Vibrio harveyi 0.1 x 106 cfu.shrimp-1. Total haemocyte count (THC of shrimp fed with nucleotide-diet was significantly different compared to that of control shrimp (p=0.01, but not different compared to shrimp fed with protagen-diet. PO activity also increased significantly in shrimp fed with nucleotide-diet (p=0.02. β–glucan diet could also increase THC and PO activity, but compared to the control, the increase was not significantly different. Overall, PO activity of shrimp fed with nucleotide, β–glucan, and protagen diets was high (>0.35. Oral administration of nucleotide, β–glucan, and protagen for four consecutive weeks significantly increased resistance of shrimp to disease (<0.01 where the highest resistance rate was observed on shrimp fed with nucleotide-diet. Growth of shrimp fed with nucleotide-diet was significantly different compared to that of control shrimp (p<0.01, as well as to β–glucan, and protagen-treated shrimp. As a conclusion, supplementation of nucleotide into shrimp pellet enhanced nonspecific immune response and growth performance better than β-glucan, and protagen.

  20. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    Science.gov (United States)

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  1. Kynureninase-type enzymes and the evolution of the aerobic tryptophan-to-nicotinamide adenine dinucleotide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.H.; Shetty, A.S.

    1977-01-01

    Kynureninase-type (L-kynurenine hydrolase, EC 3.7.1.3) activity has been found to be present in the livers of fish, amphibia, reptiles, and birds. In addition to past information concerning this enzyme activity in mammalian liver, it is now clear that all the major classes of vertebrates carry a highly specialized kynureninase-type enzyme, which we have termed a hydroxykynureninase. To compare the reactivities of these enzymes with L-kynurenine and L-3-hydroxykynurenine, ratios of tau values (K/sub m//V) were used. Based on this comparison, the bacterium Pseudomonas fluorescens carries the most efficient kynureninase, whereas the amphibian Xenopus laevis has the most efficient hydroxykynurenase. In these two cases, the ratio of tau values differs by a factor of 38,000. It is hypothesized that the tryptophan-to-nicotinamide adenine dinucleotide biosynthetic pathway evolved from a catabolic system of enzymes, and that the differences observed in the kynureninase-type enzymes between lower and higher organisms reflect the specialization of the function of these enzymes from a strictly catabolic role to an anabolic one during the course of evolution.

  2. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-15

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.

  3. Incorporation of Tenascin-C into the Extracellular Matrix by Periostin Underlies an Extracellular Meshwork Architecture*

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-01

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment. PMID:19887451

  4. Tributyltin interacts with mitochondria and induces cytochrome c release.

    Science.gov (United States)

    Nishikimi, A; Kira, Y; Kasahara, E; Sato, E F; Kanno, T; Utsumi, K; Inoue, M

    2001-01-01

    Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis. PMID:11368793

  5. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  6. Extracellular small heat shock proteins: exosomal biogenesis and function.

    Science.gov (United States)

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  7. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    Science.gov (United States)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  8. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    Science.gov (United States)

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  9. Nucleotide excision repair II: From yeast to mammals

    NARCIS (Netherlands)

    J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractAn intricate network of repair systems safeguards the integrity of genetic material, by eliminating DNA lesions induced by numerous environmental and endogenous genotoxic agents. Nucleotide excision repair (NER) is one of the most versatile DNA repair systems. Deficiencies in this

  10. The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis

    NARCIS (Netherlands)

    Heeneman, Sylvia; Cleutjens, Jack P.; Faber, Birgit C.; Creemers, Esther E.; van Suylen, Robert-Jan; Lutgens, Esther; Cleutjens, Kitty B.; Daemen, Mat J.

    2003-01-01

    The extracellular matrix is no longer seen as the static embedding in which cells reside; it has been shown to be involved in cell proliferation, migration and cell-cell interactions. Turnover of the different extracellular matrix components is an active process with multiple levels of regulation.

  11. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  12. Applicability of Yeast Extracellular Proteinases in Brewing: Physiological and Biochemical Aspects

    Science.gov (United States)

    Bilinski, Carl A.; Russell, Inge; Stewart, Graham G.

    1987-01-01

    A general screening survey for expression of extracellular acid proteinase production was performed on over 100 cultures belonging to the genus Saccharomyces. Although two strains of Saccharomyces cerevisiae showed positive extracellular proteinase phenotypes in plate tests, it was not possible to demonstrate proteolytic activities in cell-free culture supernatants in assays performed at beer pH values. Of several yeasts from other genera examined, Saccharomycopsis fibuligera and Torulopsis magnoliae produced extracellular proteinases with desirable properties. Proteolytic activities were detected in assays performed at beer pH values and at lower temperature. Brewer's wort served as a highly inducing medium for extracellular proteinase production, with T. magnoliae yielding enzyme of highest specific activity. In fact, commencement of enzyme production was detected shortly after the onset of exponential growth in brewer's wort. Inclusion of crude enzyme preparations in brewer's wort inoculated simultaneously with brewer's yeast reduced final ethanol yields slightly and was found to be effective in reducing chill haze formation in bottled beer. PMID:16347298

  13. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances

    Science.gov (United States)

    Naoshin, Zinnia; Defren, Sabrina; Schmaelzle, Jana; Weber, Tobias; Schneider, Hans‐Peter

    2017-01-01

    Key points The present study suggests that the electrogenic sodium–bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes.A decrease in extracellular [HCO3 −] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3 −] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1‐knockout astrocytes.Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1‐ and CAII‐expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes.We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3 −]‐dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3 −] in brain tissue. Abstract Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium–bicarbonate cotransporter, NBCe1, is a high‐affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in

  14. Schistosome tegumental ecto-apyrase (SmATPDase1 degrades exogenous pro-inflammatory and pro-thrombotic nucleotides

    Directory of Open Access Journals (Sweden)

    Akram A. Da’dara

    2014-03-01

    Full Text Available Schistosomes are parasitic worms that can survive in the hostile environment of the human bloodstream where they appear refractory to both immune elimination and thrombus formation. We hypothesize that parasite migration in the bloodstream can stress the vascular endothelium causing this tissue to release chemicals alerting responsive host cells to the stress. Such chemicals are called damage associated molecular patterns (DAMPs and among the most potent is the proinflammatory mediator, adenosine triphosphate (ATP. Furthermore, the ATP derivative ADP is a pro-thrombotic molecule that acts as a strong activator of platelets. Schistosomes are reported to possess at their host interactive tegumental surface a series of enzymes that could, like their homologs in mammals, degrade extracellular ATP and ADP. These are alkaline phosphatase (SmAP, phosphodiesterase (SmNPP-5 and ATP diphosphohydrolase (SmATPDase1. In this work we employ RNAi to knock down expression of the genes encoding these enzymes in the intravascular life stages of the parasite. We then compare the abilities of these parasites to degrade exogenously added ATP and ADP. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade these nucleotides. Suppression of SmAP or SmNPP-5 does not appreciably affect the worms’ ability to catabolize ATP or ADP. These findings are confirmed by the functional characterization of the enzymatically active, full-length recombinant SmATPDase1 expressed in CHO-S cells. The enzyme is a true apyrase; SmATPDase1 degrades ATP and ADP in a cation dependent manner. Optimal activity is seen at alkaline pH. The Km of SmATPDase1 for ATP is 0.4 ± 0.02 mM and for ADP, 0.252 ± 0.02 mM. The results confirm the role of tegumental SmATPDase1 in the degradation of the exogenous pro-inflammatory and pro-thrombotic nucleotides ATP and ADP by live intravascular stages of the parasite. By degrading host inflammatory signals

  15. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Science.gov (United States)

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  16. 1H nuclear magnetic resonance studies of the conformation of an ATP analogue at the active site of Na,K-ATPase from kidney medulla

    International Nuclear Information System (INIS)

    Stewart, J.M.M.; Grisham, C.M.

    1988-01-01

    1 H nuclear magnetic relaxation measurements have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH 3 ) 4 ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH 4 ) 4 ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase and that Mn 2+ bound to a single, high-affinity site on the ATPase can be an effective paramagnetic probe for nuclear relaxation studies of the Na-K-ATPase. From the paramagnetic effect of Mn 2+ bound to the APTase on the longitudinal relaxation rates of the protons of Co(NH 3 ) 4 ATP at the substrate site (at 300 and 361 MHz), Mn-H distances to seven protons on the bound nucleotide were determined. Taken together with previous 31 P nuclear relaxation data, these measurements are consistent with a single nucleotide conformation at the active site. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. The glycosidic torsion angle is 35 0 , and the conformation of the ribose ring is slightly N-type. The bound Mn 2+ lies above and in the plane of the adenine ring. The distances from Mn 2+ to N 6 and N 7 are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme

  17. Crystallization and preliminary crystallographic analysis of Gibberella zeae extracellular lipase

    International Nuclear Information System (INIS)

    Sun, Yuna; Li, Ming; Zhang, Yan; Liu, Lifang; Liu, Ye; Liu, Zheng; Li, Xumei; Lou, Zhiyong

    2008-01-01

    G. zeae extracellular lipase has been overexpressed, purified and crystallized. Diffraction data were collected to 2.8 Å resolution. Fusarium head blight, one of the most destructive crop diseases, is mainly caused by Fusarium graminearum (known in its sexual stage as Gibberella zeae). F. graminearum secretes various extracellular enzymes that have been hypothesized to be involved in host infection. One of the extracellular enzymes secreted by this organism is the G. zeae extracellular lipase (GZEL), which is encoded by the FGL1 gene. In order to solve the crystal structure of GZEL and to gain a better understanding of the biological functions of the protein and of possible inhibitory mechanisms of lipase inhibitors, recombinant GZEL was crystallized at 291 K using PEG 3350 as a precipitant. A data set was collected to 2.8 Å resolution from a single flash-cooled crystal (100 K). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 78.4, b = 91.0, c = 195.8 Å, α = β = γ = 90°. The presence of four molecules was assumed per asymmetric unit, which gave a Matthews coefficient of 2.6 Å 3 Da −1

  18. Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression

    Directory of Open Access Journals (Sweden)

    Charikleia Papadopoulou

    2015-12-01

    Full Text Available Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1low variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.

  19. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  20. Unprecedented head-to-head right-handed cross-links between the antitumor bis(mu-N,N'-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form.

    Science.gov (United States)

    Chifotides, Helen T; Dunbar, Kim R

    2007-10-17

    Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.