WorldWideScience

Sample records for extra-solar oort clouds

  1. Impact cratering and the Oort cloud

    CERN Document Server

    Wickramasinghe, J T

    2008-01-01

    We calculate the expected flux profile of comets into the planetary system from the Oort cloud arising from Galactic tides and encounters with molecular clouds. We find that both periodic and sporadic bombardment episodes, with amplitudes an order of magnitude above background, occur on characteristic timescales ~25-35 Myr. Bombardment episodes occurring preferentially during spiral arm crossings may be responsible both for mass extinctions of life and the transfer of viable microorganisms from the bombarded Earth into the disturbing nebulae. Good agreement is found between the theoretical expectations and the age distribution of large, well-dated terrestrial impact craters of the past 250 million years. A weak periodicity of ~36 Myr in the cratering record is consistent with the Sun's recent passage through the Galactic plane, and implies a central plane density ~0.15 M_Sun pc^(-3). This leaves little room for a significant dark matter component in the disc.

  2. Do Gamma-Ray Bursts Come from the Oort Cloud?

    CERN Document Server

    Clarke, T E; Tremaine, S; Tremaine, adn S.

    1993-01-01

    We examine the possibility that gamma-ray bursts arise from sources in the Oort comet cloud, basing most of our arguments on accepted models for the formation and spatial distribution of the cloud. We identify three severe problems with such models: (1) There is no known mechanism for producing bursts that can explain the observed burst rate and energetics without violating other observational constraints. (2) The bright source counts cannot be reconciled with standard models for the phase-space distribution of objects in the Oort cloud. (3) The observed isotropy of the available burst data is inconsistent with the expected angular distribution of sources in the Oort cloud. We therefore assert that Oort cloud models of gamma-ray bursts are extremely implausible.

  3. Sedna and the Oort Cloud Around a Migrating Sun

    CERN Document Server

    Kaib, Nathan A; Quinn, Thomas

    2011-01-01

    Recent numerical simulations have demonstrated that the Sun's dynamical history within the Milky Way may be much more complex than that suggested by its current low peculiar velocity. In particular, the Sun may have radially migrated through the galactic disk by up to 5-6 kpc. This has important ramifications for the structure of the Oort Cloud, as it means that the solar system may have experienced tidal and stellar perturbations that were significantly different from its current local galactic environment. To characterize the effects of solar migration within the Milky Way, we use direct numerical simulations to model the formation of an Oort Cloud around stars that end up on solar-type orbits in a galactic-scale simulation of a Milky Way-like disk formation. Surprisingly, our simulations indicate that Sedna's orbit may belong to the classical Oort Cloud. Contrary to previous understanding, we show that field star encounters play a pivotal role in setting the Oort Cloud's extreme inner edge, and due to thei...

  4. Inner solar system material discovered in the Oort cloud.

    Science.gov (United States)

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.

  5. A Diversity of Dust In Oort Cloud Comets

    Science.gov (United States)

    Kelley, Michael S.; Woodward, Charles E.; Harker, David Emerson; Wooden, Diane H.; Sitko, Michael L.; Yang, Bin; Russell, Ray W.

    2016-10-01

    Oort cloud comet nuclei, especially their interiors, have remained cool enough to retain highly volatile molecules such as CO2, CO, and CH4. At these low temperatures the composition of comet dust remains stable. Thus, observations of comet dust may reveal information on cometary origins, including dust formation processes and the spatial distribution of refractory materials in the early outer Solar System. We examine IRTF/BASS, IRTF/MIRSI, Gemini/T-ReCS, and VLT/VISIR mid-infrared spectra of six Oort cloud comets: C/2004 Q2 (Machholz), C/2009 P1 (Garradd), C/2011 L4 (Pan-STARRS), C/2012 F6 (Lemmon), C/2013 US10 (Catalina) (from Woodward et al. in prep.), and C/2014 Q1 (Pan-STARRS). The shapes of their 10-μm silicate bands are similar, trapezoidal with a crystalline silicate peak at 11.2 to 11.3 μm. However, there are some differences on the short-wavelength end of the spectrum, and the relative strengths of the silicate bands vary from 12% to 45% above the pseudo continuum. These variations are due to dust grain size, porosity, and composition. We fit each spectrum with our comet dust thermal model to quantify the relative amounts of the major dust species: "amorphous" silicates, crystalline silicates, and low albedo (e.g., carbonaceous) dust. These results are presented, and comapred to other Oort cloud comets already modeled in the literature in order to better understand the distribution of dust in the comet formation zone.This research was supported by NASA's Planetary Astronomy Program grant NNX13AH67G and at The Aerospace Corporation by the Independent Research and Development program.

  6. Capture of the Sun's Oort cloud from stars in its birth cluster.

    Science.gov (United States)

    Levison, Harold F; Duncan, Martin J; Brasser, Ramon; Kaufmann, David E

    2010-07-09

    Oort cloud comets are currently believed to have formed in the Sun's protoplanetary disk and to have been ejected to large heliocentric orbits by the giant planets. Detailed models of this process fail to reproduce all of the available observational constraints, however. In particular, the Oort cloud appears to be substantially more populous than the models predict. Here we present numerical simulations that show that the Sun captured comets from other stars while it was in its birth cluster. Our results imply that a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary disks of other stars.

  7. Molecular Oxygen in Oort Cloud Comet 1P/Halley

    CERN Document Server

    Rubin, Martin; van Dishoeck, Ewine F; Schwehm, Gerhard

    2015-01-01

    Recently the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80+/-0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. One crucial question is whether the O2 abundance is peculiar to comet 67P/Churyumov-Gerasimenko or Jupiter family comets in general or whether also Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument obtained during the flyby by the European Space Agency's Giotto probe at comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7+/-1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.

  8. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dishoeck, E. F. van [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Schwehm, G. [ESA (retired) Science Operations Department, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  9. Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets

    CERN Document Server

    Veras, Dimitri; Gaensicke, Boris T

    2014-01-01

    The origin of trace hydrogen in white dwarfs (WDs) with He-dominated atmospheres is a long-standing problem, one that cannot satisfactorily be explained by the historically-favoured hypothesis of accretion from the interstellar medium. Here we explore the possibility that the gradual accretion of exo-Oort cloud comets, which are a rich source of H, contributes to the apparent increase of trace H with WD cooling age. We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the WD's Roche radius. We improve upon previous studies by considering a representative range of single WD masses (0.52-1.00 Solar masses) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of WD cooling. We find that about 10^{-5} of the material in an exo-Oort cloud is typically amassed onto t...

  10. Upper limits to the number of Oort Cloud Objects based on serendipitous occultation events search in X-rays

    CERN Document Server

    Chang, Hsiang-Kuang; Shang, Jie-Rou

    2016-01-01

    Using all the RXTE archival data of Sco X-1 and GX 5-1, which amount to about 1.6 mega seconds in total, we searched for possible occultation events caused by Oort Cloud Objects. The detection efficiency of our searching approach was studied with simulation. Our search is sensitive to object size of about 300 m in the inner Oort Cloud, taking 4000 AU as a representative distance, and of 900 m in the outer Oort Cloud, taking 36000 AU as the representative distance. No occultation events were found in the 1.6 Ms data. We derived upper limits to the number of Oort Cloud Objects, which are about three orders of magnitude higher than the highest theoretical estimates in the literature for the inner Oort Cloud, and about six orders higher for the outer Oort Cloud. Although these upper limits are not constraining enough, they are the first obtained observationally, without making any model assumptions about comet injection. They also provide guidance to such serendipitous occultation event search in the future.

  11. Upper limits to the number of Oort Cloud objects based on serendipitous occultation events search in X-rays

    Science.gov (United States)

    Chang, Hsiang-Kuang; Liu, Chih-Yuan; Shang, Jie-Rou

    2016-10-01

    Using all the RXTE archival data of Sco X-1 and GX 5-1, which amount to about 1.6 Ms in total, we searched for possible occultation events caused by Oort Cloud objects. The detection efficiency of our searching approach was studied with simulation. Our search is sensitive to object size of about 300 m in the inner Oort Cloud, taking 4000 au as a representative distance, and of 900 m in the outer Oort Cloud, taking 36 000 au as the representative distance. No occultation events were found in the 1.6 Ms data. We derived upper limits to the number of Oort Cloud objects, which are about three orders of magnitude higher than the highest theoretical estimates in the literature for the inner Oort Cloud, and about six orders higher for the outer Oort Cloud. Although these upper limits are not constraining enough, they are the first obtained observationally, without making any model assumptions about comet injection. They also provide guidance to such serendipitous occultation event search in the future.

  12. Dynamical Constraints on the Existence of a 9th Planet Residing in the Inner Oort Cloud

    Science.gov (United States)

    Schwamb, Megan E.; Brasser, Ramon; Zhang, Zhi-Wei

    2015-11-01

    The discovery of Sedna, a decade ago, on a highly eccentric orbit beyond the Kuiper belt challenged our understanding of the Solar System. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna’s aphelion at ~1000 AU is too far from the edge of the Solar System to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Some other mechanism likely no longer active in the Solar System today is required to emplace Sedna on its orbit. Sedna's presence predicts a population of icy bodies on similar orbits residing past the Kuiper belt in what has been called the Inner Oort Cloud.The recent discovery of 2012 VP113 on a similar orbit to Sedna confirmed the presence of the Inner Oort Cloud and identified a possible alignment of the argument of perihelion for objects with orbits detached from Neptune. Based on the expected precession frequency, the arguments of perihelion should be randomly distributed. The existence of a planet beyond 200 AU has been suggested as a possible mechanism to actively control and lock the argument of perihelion of these orbits. We use new dynamical modeling to further investigate this hypothesis and explore the possible orbital configurations and physical properties of such a body residing beyond Neptune. We will also discuss the implications of the presence of a ninth planet for the Solar System's formation and for the current Inner Oort Cloud.

  13. Coupling dynamical and collisional evolution of small bodies II Forming the Kuiper Belt, the Scattered Disk and the Oort Cloud

    CERN Document Server

    Morbidelli, S C A

    2006-01-01

    The Oort Cloud, the Kuiper Belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach (Charnoz & Morbidelli 2003), the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Scattered Disk and the Oort Cloud would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of...

  14. Planetary perturbations for Oort cloud comets: II. Implications for the origin of observable comets

    Science.gov (United States)

    Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.

    2014-03-01

    We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion paper (Fouchard, M., Rickman, H., Froeschlé, Ch., Valsecchi, G.B. [2013b]. Icarus, in press), the planetary perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better understanding of the outcomes, we supplement the full dynamical model by others, where one or more of the effects are left out. We concentrate on the production of observable comets, reaching for the first time a perihelion within 5 AU of the Sun. We distinguish between four categories, depending on whether the comet jumps across, or creeps through, the Jupiter-Saturn barrier (perihelion distances between 5 and 15 AU), and whether the orbit leading to the observable perihelion is preceded by a major planetary perturbation or not. For reasons explained in the paper, we call the strongly perturbed comets "Kaib-Quinn comets". We thus derive a synthetic picture of the Oort spike, from which we draw two main conclusions regarding the full dynamical model. One is that 2/3 of the observable comets are injected with the aid of a planetary perturbation at the previous perihelion passage, and about half of the observable comets are of the Kaib-Quinn type. The other is that the creepers dominate over the jumpers. Due to this fact, the spike peaks at only 31 000 AU, and the majority of new comets have semi-major axes less than this value. The creepers show a clear preference for retrograde orbits as a consequence of the need to avoid untimely, planetary ejection before becoming observable. Thus, the new comets should have a 60/40 preference for retrograde against prograde orbits in apparent conflict with observations. However, both these and other results depend on our model

  15. A Comparison of the Volatile Carbon-Oxygen Chemistry in Several Oort Cloud Comets

    Science.gov (United States)

    DiSanti, M. A.; Dello Russo, N.; Magee-Sauer, K.; Gibb, E. L.; Reuter, D. C.; Xu, L.-H.; Mumma, M. J.

    2002-09-01

    Since 1996, we have conducted detailed studies of the abundances of parent volatiles in 8 Oort Cloud comets using modern long-slit echelle spectrometers having sensitivity in the 1 - 5 μ m spectral region. These instruments (CSHELL at the NASA-IRTF, and NIRSPEC at Keck 2) have sufficiently high spectral resolution ( ν / Δ ν ~ 2 x 104 ) to resolve individual cometary emission lines. Their small pixel sizes provide the high angular resolution necessary for detailed study of the spatial distribution of emissions in the coma. Here we inter-compare our results for the chemically-linked molecules carbon monoxide (CO), formaldehyde (H2CO), and methyl alcohol (CH3OH) among our sample of comets. Such a study can provide clues as to the processing history of the ice. Measuring the relative abundances of these molecules can provide a test of the efficiency of conversion of CO, for example through hydrogen addition on icy grain mantles or by radiation processing in the dense cloud core. Comparisons with fluorescence models and/or laboratory measurements will also be presented where appropriate. This work is supported by NASA Planetary Astronomy Program grants NAG5-7905 and NAG5-12208 to M. A. DiSanti, and RTOP 693-344-32-30-07 to M. J. Mumma.

  16. Oort Cloud and Scattered Disc formation during a late dynamical instability in the Solar System

    CERN Document Server

    Brasser, R

    2013-01-01

    One of the outstanding problems of the dynamical evolution of the outer solar system concerns the observed population ratio between the Oort Cloud (OC) and the Scattered Disc (SD): observations suggest that this ratio lies between 100 and 1000 but simulations that produce these two reservoirs simultaneously consistently yield a value of the order of 10. Here we stress that the populations in the OC and SD are inferred from the observed fluxes of new Long Period Comets (LPCs) and Jupiter-family comets (JFCs), brighter than some reference total magnitude. However, the population ratio estimated in the simulations of formation of the SD and OC refers to objects bigger than a given size. There are multiple indications that LPCs are intrinsically brighter than JFCs, i.e. an LPC is smaller than a JFC with the same total absolute magnitude. When taking this into account we revise the SD/JFC population ratio from our simulations relative to Duncan and Levison (1997), and then deduce from the observations that the siz...

  17. The Influence of Outer Solar System Architecture on the Structure and Evolution of the Oort Cloud

    CERN Document Server

    Lewis, Alexia R; Kaib, Nathan A

    2013-01-01

    We study the influence of outer Solar System architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as "planetary protectors". To do so, we have run simulations in each of four different planetary mass configurations to understand the significance of each of the giant planets. Because the outer planets modify the structure of the OC throughout its formation, we integrate each simulation over the full age of the Solar System. Over this time, we follow the evolution of cometary orbits from their starting point in the protoplanetary disk to their injection into the OC to their possible re-entry into the inner planetary region. We find that the overall structure of the OC, including the location of boundaries and the relative number of comets in the inner and outer parts, does not change significantly between configurations; however, as planetary mass decreases, the trapping efficiency (TE) of comets i...

  18. BOPPS Observations of Oort Cloud Comets Siding and PanSTARRS

    Science.gov (United States)

    Cheng, A. F.; Hibbitts, C.; Young, E. F.; Bernasconi, P. N.; Tibor, K.

    2014-12-01

    The Balloon Observation Platform for Planetary Science (BOPPS) mission is a stratospheric balloon mission to conduct planetary science observations during a one-day flight from Ft. Sumner, NM in late September, 2014. BOPPS will fly an 80-cm telescope with two instruments to detect and characterize two Oort Cloud comets, C/2013 A1 Siding Spring and C/2012 K1 PanSTARRS. The BOPPS instruments [1,2] are the BOPPS Infrared Camera (BIRC), imaging at R band and from 2.5 to 5 microns, and the UVvis camera which includes a fine pointing system to demonstrate sub-arc second pointing and ability to obtain high SNR imaging at wavelengths near 300 nm sensitive to OH emission (1). The BIRC will image the comets in nine filter pass bands at 1.16 arc second per pixel resolution and will measure the strengths of H2O and CO2 emissions at 2.7μ and 4.3μ respectively. These are the primary volatiles driving cometary activity, and there is no alternative way to make these measurements from Earth or from space. The BIRC observations of Comet Siding Spring will occur about three weeks prior to the close approach of the comet to Mars, which will also be observed by the full constellation of Mars spacecraft. We will report initial results of BOPPS comet observations. References: [1] Young EF et al. (2014), Fall AGU this session [2] Hibbitts et al., (2014), Fall AGU

  19. THE INFLUENCE OF OUTER SOLAR SYSTEM ARCHITECTURE ON THE STRUCTURE AND EVOLUTION OF THE OORT CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Alexia R.; Quinn, Thomas [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Kaib, Nathan A., E-mail: arlewis@astro.washington.edu [Department of Physics and Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208-2900 (United States)

    2013-07-01

    We study the influence of outer solar system architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as ''planetary protectors''. To do so, we have run simulations in each of four different planetary mass configurations to understand the significance of each of the giant planets. Because the outer planets modify the structure of the OC throughout its formation, we integrate each simulation over the full age of the solar system. Over this time, we follow the evolution of cometary orbits from their starting point in the protoplanetary disk to their injection into the OC to their possible re-entry into the inner planetary region. We find that the overall structure of the OC, including the location of boundaries and the relative number of comets in the inner and outer parts, does not change significantly between configurations; however, as planetary mass decreases, the trapping efficiency (TE) of comets into the OC and the flux of comets into the observable region increases. We determine that those comets that evolve onto Earth-crossing orbits come primarily from the inner OC but show no preference for initial protoplanetary disk location. We also find that systems that have at least a Saturn-mass object are effective at deflecting possible Earth-crossing comets but the difference in flux between systems with and without such a planet is less than an order of magnitude. We conclude by discussing the individual roles of the planets and the implications of incorporating more realistic planetary accretion and migration scenarios into simulations, particularly on existing discrepancies between low TE and the mass of the protoplanetary disk and on determining the structural boundaries of the OC.

  20. Dust in brown dwarfs and extra-solar planets IV. Assessing TiO2 and SiO nucleation for cloud formation modeling

    CERN Document Server

    Lee, G; Giles, H; Bromley, S T

    2014-01-01

    Clouds form in atmospheres of brown dwarfs and planets. The cloud particle formation processes are similar to the dust formation process studied in circumstellar shells of AGB stars and in Supernovae. Cloud formation modelling in substellar objects requires gravitational settling and element replenishment in addition to element depletion. All processes depend on the local conditions, and a simultaneous treatment is required. We apply new material data in order to assess our cloud formation model results regarding the treatment of the formation of condensation seeds. We re-address the question of the primary nucleation species in view of new (TiO2)_N-cluster data and new SiO vapour pressure data. We apply the density functional theory using the computational chemistry package Gaussian 09 to derive updated thermodynamical data for (TiO2)_N-clusters as input for our TiO2 seed formation model. We test different nucleation treatments and their effect on the overall cloud structure by solving a system of dust momen...

  1. Reaction between atomic N(4S) and molecular CO at very low temperature: possible formation of HNCO in the Oort cloud

    Science.gov (United States)

    Nourry, Sendres; Zins, Emilie-Laure; Krim, Lahouari

    2015-07-01

    Beyond the Kuiper belt, the Oort cloud is characterized by particularly cold temperatures and the absence of energetic particles. Specific chemical processes involving cold radicals may occur in this reservoir of comets. A microwave-driven atomic source can be used to generate cold atomic nitrogen (N (4S)) for reactivity study of ices relevant to the Oort cloud. Without any additional source of energy, atomic nitrogen does not react with CO molecules to form NCO. This is consistent with a previous theoretical investigation carried out by Yazidi et al., who have shown that the potential energy surface for the CO (X1Σ+) + N (4S) system is purely dissociative. On the other hand, a very small amount of water is sufficient to induce a reaction between these two species. This three-body reaction leads to the formation of the HNCO monomer, the (HNCO)(H2O) complex, and the hydroxyl radical. Such reactions, leading to prebiotic molecules, may take place in the Oort cloud and in the Kuiper belt, from which most of the comets come.

  2. Discovery of a New Member of the Inner Oort Cloud from The Next Generation Virgo Cluster Survey

    CERN Document Server

    Chen, Ying-Tung; Gwyn, Stephen; Ferrarese, Laura; Côté, Patrick; Jordán, Andrés; Suc, Vincent; Cuillandre, Jean-Charles; Ip, Wing-Huen

    2013-01-01

    We report the discovery of 2010 GB$_{174}$, a likely new member of the Inner Oort Cloud (IOC). 2010 GB$_{174}$ is one of 91 Trans Neptunian Objects (TNOs) and Centaurs discovered in a 76 deg$^2$ contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS) --- a moderate ecliptic latitude survey reaching a mean limiting magnitude of $g^\\prime \\simeq 25.5$ --- using MegaPrime on the 3.6m Canada France Hawaii Telescope. 2010 GB$_{174}$ is found to have an orbit with semi-major axis $a\\simeq350.8$ AU, inclination $i \\simeq 21.6^\\circ$ and pericentre $q\\sim48.5$ AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km ($H_V \\le 6.2$ mag) to be $\\simeq 11\\,000$. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that `re-discovered' the IOC object Sedna) gives, for an assumed a power-law LF for IOC objects, a slope...

  3. The Chemistry of Oxygen-bearing Molecules in the Oort Cloud Comet C/2002 C1 (Ikeya-Zhang)

    Science.gov (United States)

    Disanti, M.; dello Russo, N.; Magee-Sauer, K.; Gibb, E.; Reuter, D.; Xu, L.; Mumma, M.

    Comet Ikeya-Zhang was observed at the NASA Infrared Telescope Facility on Mauna Kea. "Target of Opportunity" time was granted to observe the comet, and daytime observations were acquired on UT 2002 March 21-22 and April 10-13 using the facility echelle spectrometer (CSHELL), which incorporates a 256x256 InSb array detector and a 30 arc-second-long slit. CSHELL provides sufficiently high spectral resolution ( /?? ~ 2.5x104 ) to resolve individual cometary emission? lines, and its small pixel size (0.2 arc-second) yields seeing-limited angular resolution for detailed study of the spatial distribution of emissions in the coma. The comet exhibited a rich chemistry of oxygen-bearing molecules. A summary of production rates and spatial distributions for carbon monoxide (CO), methyl alcohol (CH3OH), formaldehyde (H 2CO), and carbonyl sulfide (OCS) will be presented, and comparisons will be made with mixing ratios observed in other Oort-Cloud comets. Comparisons with fluorescence models and/or laboratory measurements will also be presented where appropriate. Measuring the relative abundances of CO, H2CO, and CH3OH tests the efficiency of conversion of CO, for example through hydrogen addition on icy grain mantles or by radiation processing in the dense cloud core [1-3]. Our observations of OCS represent a link to the sulfur chemistry, for comparison with sulfur-bearing molecules observed at other wavelengths. This work is supported by the NASA Planetary Astronomy Program, through grants NAG5-7905 to M. A. DiSanti and RTOP 693-344-32-30-07 to M. J. Mumma. We thank A. Tokunaga and the IRTF for accommodating our request for TOO time, and also Telescope Operators D. Griep and L. Bergknut, who through their expertise enabled these difficult daytime observations. [1] T. Hasegawa, E. Herbst (1993) Mon. Not. R. Astron. Soc. 263:589. [2] K. Hiraoka et al. (1994) Chem. Phys. Lett. 229:408. [3] M. J. Mumma et al. (1996) Science 272:1310

  4. C/2013 R1 (Lovejoy) at IR wavelengths and the variability of CO abundances among Oort Cloud comets

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A. [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Keane, J. V.; Meech, K. J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Blake, G. A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibb, E. L., E-mail: lucas.paganini@nasa.gov [Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States)

    2014-08-20

    We report production rates, rotational temperatures, and related parameters for gases in C/2013 R1 (Lovejoy) using the Near InfraRed SPECtrometer at the Keck Observatory, on six UT dates spanning heliocentric distances (R{sub h} ) that decreased from 1.35 AU to 1.16 AU (pre-perihelion). We quantified nine gaseous species (H{sub 2}O, OH*, CO, CH{sub 4}, HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, NH{sub 3}, and NH{sub 2}) and obtained upper limits for two others (C{sub 2}H{sub 2} and H{sub 2}CO). Compared with organics-normal comets, our results reveal highly enriched CO, (at most) slightly enriched CH{sub 3}OH, C{sub 2}H{sub 6}, and HCN, and CH{sub 4} consistent with {sup n}ormal{sup ,} yet depleted, NH{sub 3}, C{sub 2}H{sub 2}, and H{sub 2}CO. Rotational temperatures increased from ∼50 K to ∼70 K with decreasing R{sub h} , following a power law in R{sub h} of –2.0 ± 0.2, while the water production rate increased from 1.0 to 3.9 × 10{sup 28} molecules s{sup –1}, following a power law in R{sub h} of –4.7 ± 0.9. The ortho-para ratio for H{sub 2}O was 3.01 ± 0.49, corresponding to spin temperatures (T {sub spin}) ≥ 29 K (at the 1σ level). The observed spatial profiles for these emissions showed complex structures, possibly tied to nucleus rotation, although the cadence of our observations limits any definitive conclusions. The retrieved CO abundance in Lovejoy is more than twice the median value for comets in our IR survey, suggesting this comet is enriched in CO. We discuss the enriched value for CO in comet C/2013 R1 in terms of the variability of CO among Oort Cloud comets.

  5. Direct Detection of Extra-Solar Comets is Possible

    OpenAIRE

    Jura, M.

    2005-01-01

    The dust tails of comets similar to Hale-Bopp can scatter as much optical light as does the Earth. Space-based observatories such as the Terrestrial Planet Finder or Darwin that will detect extra-solar terrestrial planets also will be able to detect extra-solar comets.

  6. Search and investigation of extra-solar planets with polarimetry

    Science.gov (United States)

    Schmid, H. M.; Beuzit, J.-L.; Feldt, M.; Gisler, D.; Gratton, R.; Henning, Th.; Joos, F.; Kasper, M.; Lenzen, R.; Mouillet, D.; Moutou, C.; Quirrenbach, A.; Stam, D. M.; Thalmann, C.; Tinbergen, J.; Verinaud, C.; Waters, R.; Wolstencroft, R.

    Light reflected from planets is polarized. This basic property of planets provides the possibility for detecting and characterizing extra-solar planets using polarimetry. The expected polarization properties of extra-solar planets are discussed that can be inferred from polarimetry of "our" solar system planets. They show a large variety of characteristics depending on the atmospheric and/or surface properties. Best candidates for a polarimetric detection are extra-solar planets with an optically thick Rayleigh scattering layer.Even the detection of highly polarized extra-solar planets requires a very sophisticated instrument. We present the results from a phase A (feasibility) study for a polarimetric arm in the ESO VLT planet finder instrument. It is shown that giant planets around nearby stars can be searched and investigated with an imaging polarimeter, combined with a powerful AO system and a coronagraph at an 8 m class telescope.A similar type of polarimeter is also considered for the direct detection of terrestrial planets using an AO system on one of the future Extremely Large Telescopes.

  7. A survey of volatile species in Oort cloud comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) at millimeter wavelengths

    Science.gov (United States)

    de Val-Borro, M.; Küppers, M.; Hartogh, P.; Rezac, L.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.; Jarchow, C.; Villanueva, G. L.

    2013-11-01

    Context. The chemical composition of comets can be inferred using spectroscopic observations in submillimeter and radio wavelengths. Aims: We aim to compare the production rates ratio of several volatiles in two comets, C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR), which are generally regarded as dynamically new and likely to originate in the Oort cloud. This type of comets is considered to be composed of primitive material that has not undergone considerable thermal processing. Methods: The line emission in the coma was measured in the comets, C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR), that were observed on five consecutive nights, 7-11 May 2004, at heliocentric distances of 1.0 and 0.7 AU, respectively, by means of high-resolution spectroscopy using the 10-m Submillimeter Telescope at the Arizona Radio Observatory. Both objects became very bright and reached naked-eye visibility during their perihelion passage in the spring of 2004. Results: We present a search for six parent- and product-volatile species (HCN, H2CO, CO, CS, CH3OH, and HNC) in both comets. Multiline observations of the CH3OH J = 5-4 series allow us to estimate the rotational temperature using the rotation diagram technique. We derive rotational temperatures of 54(9) K for C/2001 Q4 (NEAT) and 119(34) K for C/2002 T7 (LINEAR). The gas production rates are computed using the level distribution obtained with a spherically symmetric molecular excitation code that includes collisions between neutrals and electrons. The effects of radiative pumping of the fundamental vibrational levels by infrared photons from the Sun are considered for the case of HCN. We find an HCN production rate of 2.96(5) × 1026 molec.s-1 for comet C/2001 Q4 (NEAT), corresponding to a mixing ratio with respect to H2O of 1.12(2) × 10-3. The mean HCN production rate during the observing period is 4.54(10) × 1026 molec.s-1 for comet C/2002 T7 (LINEAR), which gives a mixing ratio of 1.51(3) × 10-3. Relative abundances of CO, CH3OH, H2CO

  8. Detecting the polarization signatures of extra-solar planets

    Science.gov (United States)

    Hough, J. H.; Lucas, P. W.; Bailey, J. A.; Tamura, M.; Hirst, E.

    2006-06-01

    Direct detection of the light scattered from extra-solar planets is important in establishing the planet's mass, radius, albedo and nature of the particles in the planetary atmosphere. We describe, and present results from, a new optical polarimeter (PlanetPol) designed to reach fractional polarizations of 10 -6 or better from ground-based telescopes, necessary to detect the polarization signature of unresolved hot-Jupiters.

  9. Anisotropic winds from close-in extra-solar planets

    CERN Document Server

    Stone, James M

    2008-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extra-solar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T > 2 x 10^{4} K) or highly ionized gas, we find strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night-side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day-side is much closer to the planet surface in multidimensions, and the total mass loss rate is reduced by almost a factor of four. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shock...

  10. Retrieval of Extra-Solar Planetary Spectra Using Evolutionary Computational Methods

    Science.gov (United States)

    Terrile, R. J.; Fink, W.; Huntsberger, T.; Lee, S.; Tisdale, E. R.; Tinetti, G.; von Allmen, P.

    2005-12-01

    The spectral information provided by the next generation of extra-solar planet exploration missions will be averaged over the visible disk and the exposure time. Most probably, the interpretation of the observed spectra will not be unique, but families of solutions will provide equally good explanations of the spectral features (degeneracy). Traditional retrieval techniques developed to study the environments of planets in our solar system are inadequate to analyze disk/time-averaged spectra because they assume homogeneous environments, short observational time scales and search only for solutions belonging to the local domain of the initial conditions. We developed an innovative technique that couples evolutionary computational methods to a 3D model that simulates the spectral response of the planet rotating (Tinetti et al., 2005). We have performed a set of preliminary experiments in retrieving the earthshine spectrum recorded by Woolf et al. (2002): nine weighting parameters were retrieved, corresponding to different surface/cloud types (ocean, forest, grass, ground, tundra, ice, high/medium/low clouds) uniformly distributed over 48 planetary pixels. Two distinct retrieval experiments were run: i) evolution of one large solution population with 1000 individuals and ii) evolution of multiple solution islands with 100 individuals in each island. These two experiments returned over 2700 automatically generated retrievals satisfying the error criterion (fitness) of 10% least squares match to the observed spectra. The spectral retrieval procedure with this reduced set of parameters already resulted in a high quality fit of the earthshine spectrum, in agreement with ground truth. The retrieved solutions were divided into classes of spectral fit using clustering tools, which helped visualize the degeneracy in the set of solutions. As a next step we are repeating the experiment using non-uniformly distributed 9 surface/cloud types in 12 planetary pixels (108 retrieved

  11. Retrieval of Earthshine Spectra Using Evolutionary Computational Methods as Analogs for Extra-Solar Planetary Spectra

    Science.gov (United States)

    Terrile, R. J.; Tinetti, G.; Lee, S.; Fink, W.; Huntsberger, T.; von Allmen, P.; Tisdale, E. R.

    2006-05-01

    The spectral information provided by the next generation of extra-solar planet exploration missions will be averaged over the visible disk and the exposure time. Most probably, the interpretation of the observed spectra will not be unique, but families of solutions will provide equally good explanations of the spectral features (degeneracy). Traditional retrieval techniques developed to study the environments of planets in our solar system are inadequate to analyze disk/time-averaged spectra because they assume homogeneous environments, short observational time scales and search only for solutions belonging to the local domain of the initial conditions. We developed an innovative technique that couples evolutionary computational methods to a 3D model that simulates the spectral response of the planet rotating (Tinetti et al., 2005). We have performed a set of preliminary experiments in retrieving the earthshine spectrum recorded by Woolf et al. (2002): nine weighting parameters were retrieved, corresponding to different surface/cloud types (ocean, forest, grass, ground, tundra, ice, high/medium/low clouds) uniformly distributed over 48 planetary pixels. Two distinct retrieval experiments were run: i) evolution of one large solution population with 1000 individuals and ii) evolution of multiple solution islands with 100 individuals in each island. These two experiments returned over 2700 automatically generated retrievals satisfying the error criterion (fitness) of 10% least squares match to the observed spectra. The spectral retrieval procedure with this reduced set of parameters already resulted in a high quality fit of the earthshine spectrum, in agreement with ground truth. The retrieved solutions were divided into classes of spectral fit using clustering tools, which helped visualize the degeneracy in the set of solutions. We have also repeated the experiment using non-uniformly distributed 3 cloud types over ground- truth surface types in 22 illuminated pixels

  12. The André-Oort conjecture

    NARCIS (Netherlands)

    Edixhoven, B.; Taelman, L.

    2015-01-01

    The André-Oort conjecture is a problem in algebraic geometry from around 1990, with arithmetic, analytic and differential geometric aspects. Klingler, Ullmo and Yafaev, as well as Pila and Tsimerman have now shown that the Generalized Riemann Hypothesis implies the Andr´e-Oort conjecture. Both proof

  13. The André-Oort conjecture

    NARCIS (Netherlands)

    Edixhoven, B.; Taelman, L.

    2015-01-01

    The André-Oort conjecture is a problem in algebraic geometry from around 1990, with arithmetic, analytic and differential geometric aspects. Klingler, Ullmo and Yafaev, as well as Pila and Tsimerman have now shown that the Generalized Riemann Hypothesis implies the Andr´e-Oort conjecture. Both proof

  14. Characterization of extra-solar planets with direct-imaging techniques

    NARCIS (Netherlands)

    Tinetti, G.; Cash, W.; Glassman, T.; Keller, C.U.; Oakley, P.; Snik, F.; Stam, D.; Turnbull, M.

    2009-01-01

    In order to characterize the physical properties of an extra-solar planet one needs to detect planetary radiation, either visible (VIS) to near-infrared (NIR) reflected starlight or infrared (IR) thermal radiation. Both the reflected and thermal flux depend on the size of the planet, the distance

  15. Characterization of extra-solar planets with direct-imaging techniques

    NARCIS (Netherlands)

    Tinetti, G.; Cash, W.; Glassman, T.; Keller, C.U.; Oakley, P.; Snik, F.; Stam, D.; Turnbull, M.

    2009-01-01

    In order to characterize the physical properties of an extra-solar planet one needs to detect planetary radiation, either visible (VIS) to near-infrared (NIR) reflected starlight or infrared (IR) thermal radiation. Both the reflected and thermal flux depend on the size of the planet, the distance be

  16. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    Science.gov (United States)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  17. Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability

    CERN Document Server

    Jackson, Brian; Greenberg, Richard

    2008-01-01

    The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

  18. Report by the ESA-ESO Working Group on Extra-Solar Planets

    OpenAIRE

    Perryman, M.; Hainaut, O.; Dravins, D.; Leger, A.; Quirrenbach, A.; Rauer, H.; Kerber, F.; Fosbury, R.; Bouchy, F.; Favata, F.; Fridlund, M.; Gilmozzi, R.; Lagrange, A. -M.; Mazeh, T.; Rouan, D

    2005-01-01

    Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) displacements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical knowledge arising especially from transit and astrometric measurements over the years 2005-15, with some hundreds of terrestrial-type planets expected from transit measurement...

  19. Study by MOA of extra-solar planets in gravitational microlensing events of high magnification

    OpenAIRE

    Bond, I. A.; Rattenbury, N. J.; Skuljan, J.; Abe, F.; Dodd, R. J.; Hearnshaw, J. B.; Honda, M.; Jugaku, J.; Kilmartin, P. M.; Marles, A.; Masuda, K.; Matsubara, Y.; Muraki, Y.(Solar-Terrestrial Environment Laboratory, Nagoya University, Japan); Nakamura, T.; Nankivell, G.

    2001-01-01

    A search for extra-solar planets was carried out in three gravitational microlensing events of high magnification, MACHO 98-BLG-35, MACHO 99-LMC-2, and OGLE 00-BUL-12. Photometry was derived from observational images by the MOA and OGLE groups using an image subtraction technique. For MACHO 98-BLG-35, additional photometry derived from the MPS and PLANET groups was included. Planetary modeling of the three events was carried out in a super-cluster computing environment. The estimated probabil...

  20. Microlensing by Kuiper, Oort, and Free-Floating Planets

    CERN Document Server

    Gould, Andrew

    2016-01-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event. At present, the search for such hosts is restricted to within the "confusion limit" of theta_confus ~ 250 mas, but future WFIRST observations will allow one to probe beyond this confusion limit as well.

  1. The Period-Ratio and Mass-Ratio Correlation in Extra-Solar Multiple Planetary Systems

    CERN Document Server

    Jiang, Ing-Guey; Hung, Wen-Liang

    2015-01-01

    Employing the data from orbital periods and masses of extra-solar planets in 166 multiple planetary systems, the period-ratio and mass-ratio of adjacent planet pairs are studied. The correlation between the period-ratio and mass-ratio is confirmed and found to have a correlation coefficient of 0.5303 with a 99% confidence interval (0.3807, 0.6528). A comparison with the distribution of synthetic samples from a Monte Carlo simulation reveals the imprint of planet-planet interactions on the formation of adjacent planet pairs in multiple planetary systems.

  2. Optimisation of the 3-body dynamics applied to extra-solar planetary systems

    CERN Document Server

    Windmiller, Gur; Orosz, Jerome

    2007-01-01

    The body of work presented here revolves around the investigation of the existence and nature of extra-solar planetary systems. The fitting of stellar radial velocity time series data is attempted by constructing a model to quantify the orbital properties of a star-planetary system. This is achieved with the Planetary Orbit Fitting Process (POFP). Though specific to the investigated problem, the POFP is founded on two separate, more general ideas. One is a Solver producing the gravitational dynamics of a Three-Body system by integrating its Newtonian equations of motion. The other is an independent optimisation scheme. Both have been devised using MATLAB. Applying the optimisation to the Solver results in a realistic Three-Body dynamics that best describes the radial velocity data under the model-specific orbital-observational constraints. Combining these aspects also allows for the study of dynamical instability derived from interaction, which is reaffirmed as a necessary criterion for evaluating the fit. Th...

  3. Report by the ESA-ESO Working Group on Extra-Solar Planets

    CERN Document Server

    Perryman, M; Dravins, D; Léger, A; Quirrenbach, Andreas G; Rauer, H; Kerber, F; Fosbury, R; Bouchy, F; Favata, F; Fridlund, M; Gilmozzi, R; Lagrange, A M; Mazeh, T; Rouan, D; Udry, S; Wambsganss, J

    2005-01-01

    Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) displacements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical knowledge arising especially from transit and astrometric measurements over the years 2005-15, with some hundreds of terrestrial-type planets expected from transit measurements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, `Life Finder' (aiming to produce confirmatory evidence of the presence of life) and `Earth Imager' (some massive interferometric array providing resolved images of a distant Earth) appear as distant visions. This r...

  4. On the equilibrium rotation of Earth-like extra-solar planets

    CERN Document Server

    Correia, Alexandre C M; Laskar, Jacques

    2008-01-01

    The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets is often assumed to be synchronous with their orbital mean motion. The same assumption persisted for Mercury and Venus until radar observations revealed their true spin rates. As many of these planets follow eccentric orbits and are believed to host dense atmospheres, we expect the equilibrium rotation to differ from the synchronous motion. Here we provide a general description of the allowed final equilibrium rotation states of these planets, and apply this to already discovered cases in which the mass is lower than twelve Earth-masses. At low obliquity and moderate eccentricity, it is shown that there are at most four distinct equilibrium possibilities, one of which can be retrograde. Because most presently known "Earth-like" planets present eccentric orbits, their equilibrium rotation is unlikely to be synchronous.

  5. Extra-solar planetary imager (ESPI) for space-based Jovian planetary detection

    Science.gov (United States)

    Lyon, Richard G.; Gezari, Daniel Y.; Melnick, Gary J.; Nisenson, Peter; Papaliolios, Costas D.; Ridgway, Stephen T.; Friedman, Edward J.; Harwit, Martin; Graf, Paul

    2003-02-01

    The Extra-Solar Planetary Imager (ESPI) is envisioned as a space based, high dynamic range, visible imager capable of detecting Jovian like planets. Initially proposed as a NASA Midex (NASA/Medium Class Explorer) mission (PI:Gary Melnick), as a space-based 1.5 x 1.5 m2 Jacquinot apodized square aperture telescope. The combination of apodization and a square aperture telescope reduces the diffracted light from a bright central source increasing the planetary to stellar contrast over much of the telescope focal plane. As a result, observations of very faint astronomical objects next to bright sources with angular separations as small as 0.32 arcseconds become possible. This permits a sensitive search for exo-planets in reflected light. ESPI is capable of detecting a Jupiter-like planet in a relatively long-period orbit around as many as 160 to 175 stars with a signal-to-noise ratio > 5 in observations lasting maximally 100 hours per star out to ~16 parsecs. We discuss the scientific ramifications, an overview of the system design including apodizing a square aperture, signal to noise issues and the effect of wavefront errors and the scalability of ESPI with respect to NASA's Terrestrial Planet Finder mission.

  6. Extra-Solar Planetary Imager (ESPI) for Space Based Jovian Planetary Detection

    Science.gov (United States)

    Lyon, Rick G.; Melnick, Gary J.; Nisenson, Peter; Papaliolios, Costa; Ridgeway, Steve; Friedman, Edward; Gezari, Dan Y.; Harwit, Martin; Graf, Paul

    2002-01-01

    We report on out Extra-Solar Planetary Imager (ESPI) study for a recent Midex (NASA Medium Class Explorer Mission) proposal. Proposed for ESPI was a 1.5 x 1.5 square meter Jacquinot apodized square aperture telescope. The combination of apodization and a square aperture telescope significantly reduces the diffracted light from a bright central source over much of the telescope focal plane. As a result, observations of very faint astronomical objects next to bright sources with angular separations as small as 0.32 arcseconds become possible. This permits a sensitive search for exo-planets in reflected light. The system is capable of detecting a Jupiter-like planet in a relatively long-period orbit around as many as 160 to 175 stars with a signal-to-noise ratio greater than 5 in observations lasting maximally 100 hours per star. We discuss the effects of wavefront error, mirror speckle, pointing error and signal-to-noise issues, as well as the scalability of our ESPI study with respect to NASA's Terrestrial Planet Finder mission.

  7. The New Worlds Observer: a mission for high-resolution spectroscopy of extra-solar terrestrial planets

    Science.gov (United States)

    Simmons, Willard L.; Cash, Webster C.; Seager, Sara; Wilkinson, Erik; Kasdin, N. Jeremy; Vanderbei, Robert J.; Chow, Naomi; Gralla, Erica; Kleingeld, Johanna

    2004-10-01

    The New Worlds Observer (NWO) is a proposed space mission to provide high resolution spectroscopy from the far UV to the near IR of extra-solar terrestrial sized planets. The design of NWO is based on the concept of a large, space-based, pinhole camera made up of two spacecraft flying in formation. The first spacecraft is a large, thin occulting shield (perhaps hundreds of meters in diameter) with a shaped "pinhole" aperture about 10m in diameter. The second spacecraft is a conventional-quality space telescope (possibly with a 10m primary mirror) which "flies" through the pinhole image of the planetary system to observe the extra-solar planets free from stellar background. In this paper we describe the design of the two spacecraft system. In particular, the shaped-pinhole design utilizes the shaped-pupil coronagraph pioneered for the Terrestrial Planet Finder. In this paper we describe some of the NWO's technology challenges and science opportunities. Additionally, we describe an extension of the design to provide 100km resolution images of extra-solar planets.

  8. Could We Detect Molecular Oxygen in the Atmosphere of a Transiting Extra-Solar Earth-Like Planet?

    CERN Document Server

    Webb, J K; Webb, John K.; Wormleaton, Imma

    2001-01-01

    Although the extra-solar planets discovered so far are of the giant, gaseous, type, the increased sensitivity of future surveys will result in the discovery of lower mass planets. The detection of O2 in the atmosphere of a rocky extra-solar planet would be a potential indicator of a life. In this paper we address the specific issue of whether we would be able to detect the O2 A-band absorption feature in the atmosphere of a planet similar to the Earth, if it were in orbit around a nearby star. Our method is empirical, in that we use observations of the Earth's O2 A-band, with a simple geometric modification for a transiting extra-solar planet, allowing for limb-darkening of the host star. We simulate the spectrum of the host star with the superposed O2 A-band absorption of the transiting planet, assuming a spectral resolution of 7 km/s (typical of current echelle spectrographs), for a range of spectral signal-to-noise ratios. The main result is that we could reliably detect the O2 A-band of the transiting pla...

  9. Shaping of the inner Oort cloud by Planet Nine

    CERN Document Server

    Michaely, Erez

    2016-01-01

    We present a numerical calculation of the dynamical interaction between the proposed Planet Nine and an initially thin circular debris disk around the Sun for 4Gyr, accounting the secular perturbation of the four giant planets. We show that Planet Nine governs the dynamics in between 1000-5000AU and forms spherical structure in the inner part (~1000AU) surrounded by an inclined disk aligned to its orbital plane. This structure is the outcome of mean motion resonances and secular interaction with Planet Nine. We compare the morphology of this structure with the outcome from a fly-by encounter of a star with the debris disk and show distinct differences between the two scenarios. We predict that this structure serves as a source of comets and calculate the resulting comet production rate to be detectable.

  10. The Andr\\'e-Oort Conjecture for Drinfeld Modular Varieties

    CERN Document Server

    Hubschmid, Patrik

    2012-01-01

    We consider the analogue of the Andr\\'e-Oort conjecture for Drinfeld modular varieties which was formulated by Breuer. We prove this analogue for special points with separable reflex field over the base field by adapting methods which were used by Klingler and Yafaev to prove the Andr\\'e-Oort conjecture under the generalized Riemann hypothesis in the classical case. Our result extends results of Breuer showing the correctness of the analogue for special points lying in a curve and for special points having a certain behaviour at a fixed set of primes.

  11. Cold Disks around Nearby Stars. An overview of the DUNES search for Extra-Solar Kuiper-Belt Analogs

    Science.gov (United States)

    Augereau, J.-C.; Herchel/DUNES Team

    2010-10-01

    The DUNES Open Time Key Programme on Herschel represents a new opportunity to sensitively probe dusty extra-solar analogs to the Edgeworth-Kuiper Belt about nearby main sequence stars. Science Demonstration Phase and routine Herschel/PACS observations of debris disks have uncovered the imaging capabilities of Herschel, complementing our general understanding of extra-solar planetary systems in the solar vicinity. Direct and deconvolved images reveal rings of cold dust around several stars, some being known to host close-in planets through radial velocity. Unresolved observations furthermore allow to identify among the faintest and coldest Kuiper-Belt like rings ever detected around main sequence stars. An overview of the first observational and modeling results will be presented in this talk. In particular, we will show that some of the observed disk asymmetries, as well as indications of (late?) dynamical stirring of some debris rings, provide hints of the presence of yet unseen distant planets in these systems that can be searched for with future planet finders.

  12. In Memoriam E.D. van Oort 1876 - 1933

    NARCIS (Netherlands)

    Bayer, Ch.

    1933-01-01

    On September 21st last Professor Dr. E. D. van Oort died at Leiden rather suddenly. For a considerable time his health had, indeed, been indifferent; on frequent occasions he had been unwell for shorter or longer periods, and in the spring of this year he was even obliged to apply for a four months'

  13. Detailed theoretical models for extra-solar planet-host stars: The "red stragglers" HD37124 and HD46375

    CERN Document Server

    Fernandes, Joao

    2004-01-01

    In this paper we analyse and discuss the HR Diagram position of two extra-solar planet-host stars - HD37124 and HD46375 - by means of theoretical stellar evolution models. This work was triggered by the results obtained by Laws et al. (2003) who found that these stars were in contradiction to the expectation based on their high metallicity. Fixing the age of both stars with the value based on their chromospheric activity levels and computing our own evolutionary models using the CESAM code, we are able to reproduce the observed luminosity, effective temperature and metallicity of both stars for a set of stellar parameters that are astrophysically reliable even if it is non-trivial to interpret the absolute values for these parameters. Our results are discussed in the context of the stellar properties of low mass stars.

  14. Cloudless atmospheres for L/T dwarfs and extra-solar giant planets

    CERN Document Server

    Tremblin, P; Chabrier, G; Baraffe, I; Drummond, B; Hinkley, S; Mourier, P; Venot, O

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BD) since their first detections twenty years ago, has always been the key role played by micron-size condensates, called "dust" or "clouds", in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this paper, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temper...

  15. The Galactic Exoplanet Survey Telescope A Proposed Space-Based Microlensing Survey for Terrestrial Extra-Solar Planets

    CERN Document Server

    Bennett, D P; Bennett, David P.; Rhie, Sun Hong

    2000-01-01

    We present a conceptual design for a space based Galactic Exoplanet SurveyTelescope (GEST) which will use the gravitational microlensing technique todetect extra solar planets with masses as low as that of Mars at allseparations >~ 1 AU. The microlensing data would be collected by a diffractionlimited, wide field imaging telescope of ~ 1.5m aperture equipped with a largearray of red-optimized CCD detectors. Such a system would be able to monitor$\\sim 2\\times 10^8$ stars in $\\sim 6$ square degrees of the Galactic bulge atintervals of 20-30 minutes, and it would observe $\\sim 12000$ microlensingevents in three bulge seasons. If planetary systems like our own are common,GEST should be able to detect $\\sim 5000$ planets over a 2.5 year lifetime. Ifgas giants like Jupiter and Saturn are rare, then GEST would detect $\\sim 1300$planets in a 2.5 year mission if we assume that most planetary systems aredominated by planets of about Neptune's' mass. Such a mission would alsodiscover $\\sim 100$ planets of an Earth mass ...

  16. Ekedahl-Oort strata of hyperelliptic curves in characteristic 2

    CERN Document Server

    Elkin, Arsen

    2010-01-01

    Suppose $X$ is a hyperelliptic curve of genus $g$ defined over an algebraically closed field $k$ of characteristic $p=2$. We prove that the de Rham cohomology of $X$ decomposes into pieces indexed by the branch points of the hyperelliptic cover. This allows us to compute the isomorphism class of the $2$-torsion group scheme $J_X[2]$ of the Jacobian of $X$ in terms of the Ekedahl-Oort type. The interesting feature is that $J_X[2]$ depends only on some discrete invariants of $X$, namely, on the ramification invariants associated with the branch points. We give a complete classification of the group schemes which occur as the $2$-torsion group schemes of Jacobians of hyperelliptic $k$-curves of arbitrary genus.

  17. 太阳系外行星大气与气候%Atmosphere and Climate of Extra Solar Planets

    Institute of Scientific and Technical Information of China (English)

    胡永云

    2013-01-01

    1995年以来,已有800多颗太阳系外行星(简称系外行星)被确认.系外行星大气和气候的研究正方兴未艾.这篇文章的目的就是为了简要综述系外行星大气和气候的最新研究进展.为了把系外行星大气和气候与太阳系行星大气和气候相比较,我们将首先简要介绍太阳系行星大气的基本知识,就像通常把太阳系行星大气与地球大气相比较一样.然后,我们介绍系外行星观测的进展以及关于恒星的宜居带和系外行星的宜居性等基本概念.文章的重点将放在综述系外行星大气的物理、化学和动力学性质的研究进展,还将介绍系外行星可能的气候环境和系外生命存在的可能性.我们对这些进展的介绍将包括观测、模拟和理论等内容.%More than 800 extra-solar planets (exoplanets) have been identified since 1995. Exoplanetary atmosphere and climate are two of the newest areas in exoplanetary science research. The purpose of the present paper is to review the most recent progresses in these areas. Because Earth's atmosphere and climate are always used as a reference for studies in solar planetary atmospheres and climates, we first briefly introduce basic knowledge of these areas for comparison. We next introduce concepts of habitable zone of stars and habitability of exoplanets. We mainly focus on recent observational, simulation, and theoretical results of physical, chemical, and dynamical properties of exoplanetary atmospheres. Moreover, we introduce possible climate environments of habitable exoplanets around M-type dwarfs.

  18. Execution of novel explicit RKARMS(4,4 technique in determining initial configurations of extra-solar protoplanets formed by disk instability

    Directory of Open Access Journals (Sweden)

    Gour Chandra Paul

    2016-06-01

    Full Text Available Implementation of a novel embedded Runge–Kutta fourth order four stage arithmetic root mean square technique to determine initial configurations of extra-solar protoplanets formed by gravitational instability is the main goal of this present paper. A general mathematical framework for the introduced numerical technique is described in addition to error estimation description. It is noticed that the numerical outputs through the employed novel RKARMS(4,4 method are found to be more effective and efficient in comparison with the results obtained by the classical Runge–Kutta technique.

  19. The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques

    Science.gov (United States)

    Santos, N. C.; Mayor, M.; Naef, D.; Pepe, F.; Queloz, D.; Udry, S.; Blecha, A.

    2000-09-01

    Activity related phenomena can induce radial-velocity variations, which can be very important when dealing with extra-solar planet search programmes requiring high-precision radial-velocity measurements. In this paper we present a new chromospheric activity index, SCOR, based on the Ca Ii H line central reemission, and constructed using CORALIE spectra. After one year of measurements, values of SCOR are available for a sub-sample of stars of the Geneva extra-solar planet search programme. After transforming the SCOR values into the Mount-Wilson ``S'' scale we obtained values of the Ca Ii H and K flux corrected from photospheric emission (R'HK) for the stars. The first results are presented, and in particular we focus on the study of the relation between the observed radial-velocity scatter and the chromospheric activity index R'HK, for F, G and K dwarfs. Based on observations collected at the La Silla Observatory, ESO (Chile), with the echelle spectrograph CORALIE at the 1.2-m Euler Swiss telescope

  20. On Sedna and the cloud of comets surrounding the Solar System in Milgromian dynamics

    CERN Document Server

    Paučo, R

    2016-01-01

    We reconsider the hypothesis of a vast cometary reservoir surrounding the Solar System - the Oort cloud of comets - within the framework of Milgromian Dynamics (MD or MOND). For this purpose we build a numerical model of the cloud, assuming the theory of modified gravity QUMOND. Adopting popular pair $\

  1. The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543

    CERN Document Server

    Astudillo-Defru, N; Delfosse, X; Segransan, D; Forveille, T; Bouchy, F; Gillon, M; Lovis, C; Mayor, M; Neves, V; Pepe, F; Perrier, C; Queloz, D; Rojo, P; Santos, N C; Udry, S

    2014-01-01

    Context. Planetary companions of a fixed mass induce larger amplitude reflex motions around lower-mass stars, which helps make M dwarfs excellent targets for extra-solar planet searches. State of the art velocimeters with $\\sim$1m/s stability can detect very low-mass planets out to the habitable zone of these stars. Low-mass, small, planets are abundant around M dwarfs, and most known potentially habitable planets orbit one of these cool stars. Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m telescope at La Silla observatory makes a major contribution to this sample. Methods. We present here dense radial velocity (RV) time series for three M dwarfs observed over $\\sim5$ years: GJ 3293 (0.42M$_\\odot$), GJ 3341 (0.47M$_\\odot$), and GJ 3543 (0.45M$_\\odot$). We extract those RVs through minimum $\\chi^2$ matching of each spectrum against a high S/N ratio stack of all observed spectra for the same star. We then vet potential orbital signals against several stellar activity indicators, to dis...

  2. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    Science.gov (United States)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  3. 太阳系外行星系统轨道参数的统计研究%A Statistical Survey of Orbital Parameters of Extra-Solar Planets System

    Institute of Scientific and Technical Information of China (English)

    赵佳; 赵刚

    2012-01-01

    Since the first extra-solar planet around a Sun-like star was detected in 1995,the number of known extra-solar planets has been growing,which makes statistical surveys of characteristics of extra-solar planets and their host stars very important. By February 18 of 2011,527 planets had been discovered. In this paper, major techniques used for detections of extra-solar planets are introduced.Based on the physical and orbital parameters of these extra-solar planets, a statistical analysis has been carried out to investigate their properties, obtaining a number of meaningful conclusions.(1) The minimum mass of planets ranges from 0 to 25 Mjup, with a peak around 1 Mjup. There are very few planets beyond 12 Mjup.(2) A bimodality is shown in the period of extra-solar planets with peaks at 3 days and 300 days and a " flat" distribution in between.(3) There are very few large-mass planets beyond 0.03 AU and the proportion of large-mass planets become larger as the orbital semi-major axis increases.(4) The orbital semi-major axis and planet mass are two key factors that affect the orbital eccentricity of the planet. The orbital eccentricity decreases as the orbital semi-major axis and planet mass decreases.(5) For F-G-K stars, planets tend to be detected around metal-rich stars. When the star is more massive than the Sun, the mass of its planet is in direct proportion to the star's mass.(6) We have discussed the properties of low-mass ( M < 20 M⊕ ) planets and found that their orbital eccentricities are lower than 0.4.In this paper, we briefly introduce current models of planet formation and evolution and test the models with the derived statistical properties of planets. It therefore provides a reference for future detections of extra-solar planets.%自1995年第一颗类太阳恒星周围的系外行星发现以来,随着已发现的系外行星数目的增多,对系外行星性质的统计分析变得重要和有意义.截至2011年6月9日,共发现系外行星555

  4. On the Habitability of Extra-Solar Planets%关于太阳系外行星的宜居性

    Institute of Scientific and Technical Information of China (English)

    胡永云

    2016-01-01

    愈来愈多的太阳系外行星的发现激发了人们对发现太阳系外生命的热情期待。在诸多决定生命存在的因素中,液态水的存在是一个关键性的因素。因此,确定一颗太阳系外行星是否宜居,其首要条件是该行星的表面温度是否能够保证液态水的长期存在。简要介绍位于红矮星宜居带内的行星的宜居性研究进展。由于潮汐锁相作用,该类行星的一面永远面对恒星,较为温暖;而另一面永远背对恒星,极端寒冷。极低的温度有可能导致大气成分和水分完全冻结在背阳面,并导致行星不适宜生命存在。在此,讨论大气和海洋环流能否输送足够多的热量到背阳面,并加热背阳面,从而避免大气和水分的完全冻结。最后,根据地球大气和海洋环流以及热量输送的知识对这些问题加以阐述。%Discoveries of more and more extra-solar planets (exoplanets) stimulate our great enthusiasm in searching for extrasolar life in deep space. Among many factors that life requires, permanent existence of liquid water is considered the most critical one. Thus, the first criterion in determining the habitability of an exoplanet is whether its surface temperature guarantees the existence of liquid water, which is a problem of climate. The present paper will brielfy introduce the progress of research of the habitability of exoplanets in the habitable zone of M dwarfs. Exoplanets in the habitable zone around M dwarfs are very likely tidally-locked planets due to strong gravitational forces, because they are so close to their M dwarfs. That is, such exoplanets are in the synchronous rotating state, with which one side of these exoplanets permanently faces their primaries and is warm, while the other side remains dark and cold. If the nightside temperature is sufifciently low, atmosphere compositions and water would be all frozen over the nightside, and such tidal-locking exoplanets are

  5. The Effect of Spiral Structure on the Measurements of the Oort Constants

    CERN Document Server

    Minchev, I

    2006-01-01

    We perform test-particle simulations in a 2D, differentially rotating stellar disk, subjected to a two-armed steady state spiral density wave perturbation in order to estimate the influence of a spiral structure on the local velocity field. By using Levenberg-Marquardt least-squares fit we decompose the local velocity field (as a result of our simulations) into Fourier components. Thus we obtain simulated measurements of the Oort constants, A, B, C, and K. We get relations between the Fourier coefficients and some galactic parameters, such as the phase angle of the Solar neighborhood and the spiral pattern speed. We show that systematic errors due to the presence of spiral structure are likely to affect the measurements of the Oort constants. Moderate strength spiral tructure causes errors of order 5 km/s. We find a variation of the Fourier coefficients with velocity dispersion and pattern speed. If our location in the Galaxy is near corotation then we expect a vanishing value for C for all phase angles. As o...

  6. Calvin, Augustine of Hippo and South Africa: in discussion with Johannes van Oort

    Directory of Open Access Journals (Sweden)

    J.W. Hofmeyr

    2010-07-01

    Full Text Available In this article the curtain is raised on the interesting and fascinating relation between Augustine of Hippo and John Cal- vin from Geneva, as seen through the eyes of the Dutch scholar Johannes van Oort. The influences of and links between Augustine and Calvin are immense. This has been the focus of various studies in the past. The purpose of this article is, however, not to re-invent the wheel about these relations, but rather to reflect on one of the most eminent scholars on Augustine, i.e. Van Oort’s vision on these links and to enter into a dialogue with him so as to shed some new light on this topic and on some aspects related to ecclesiology. After attention to the use of Augustine by Calvin, the focus is on the discussion with Van Oort and eventually on the relevance of this for us in South(ern Africa. It is concluded that in this era of post- modernism and relativism as well much can be learnt from both Augustine and Calvin, and especially with regard to the well- being of the church.

  7. Water: from clouds to planets

    CERN Document Server

    van Dishoeck, Ewine F; Lis, Dariusz C; Lunine, Jonathan I

    2014-01-01

    Results from recent space missions, in particular Spitzer and Herschel, have lead to significant progress in our understanding of the formation and transport of water from clouds to disks, planetesimals, and planets. In this review, we provide the underpinnings for the basic molecular physics and chemistry of water and outline these advances in the context of water formation in space, its transport to a forming disk, its evolution in the disk, and finally the delivery to forming terrestrial worlds and accretion by gas giants. Throughout, we pay close attention to the disposition of water as vapor or solid and whether it might be subject to processing at any stage. The context of the water in the solar system and the isotopic ratios (D/H) in various bodies are discussed as grounding data point for this evolution. Additional advances include growing knowledge of the composition of atmospheres of extra-solar gas giants, which may be influenced by the variable phases of water in the protoplanetary disk. Further, ...

  8. Observation of the activity of selected Oort Cloud comets with perihelia at large distances from the Sun

    Science.gov (United States)

    Kulyk, Iryna; Rousselot, Philippe; Korsun, Pavlo

    2016-10-01

    Many comets exhibit considerable level of activity at large distances from the Sun, where sublimation of crystalline water ice cannot account for observable comae. Different patterns of physical activity already observed at large heliocentric distances may be related to the primordial differences in the composition of comet nuclei. Therefore, monitoring of physical activity in the wide range of heliocentric distances can potentially contribute to understanding of internal structure of comet-like bodies. We have observed ten long periodic comets with orbital perihelia lying beyond the "water ice sublimation zone" to quantify the level of physical activity in the wide range of heliocentric distances. Pre-perihelion observations were made when targets moved between 16.7 and 6.5 au from the Sun; post perihelion activity was monitored between 5.2 and 10.6 au. The bulk of the data were gathered with the 2-m Robotic Liverpool Telescope (Observatorio del Roque de Los Muchachos, La Palma, Spain). Some targets were observed with the 2-m RC Telescope located at Peak Terskol Observatory and the 6-m Telescope of the Special Astrophysical Observatory (Northern Caucasus, Russia). Since most of recently obtained spectra of distant active objects are continuum dominated, we use B, V, R images to estimate dust production rates, an upper limit on nucleus radii, and color indices of near nucleus region. The comets C/2005 L3 (McNaught) and C/2006 S3 (Boattini), which exhibit the considerable level of activity, have been repeatedly observed. This enables us to infer the heliocentric dependence of dust production rates, perihelion brightness asymmetries, and color variations over the comae caused possibly by small changes in dust particle properties.

  9. Modeling the exchange of comets between the Sun and passing stars in a low stellar density environment

    Science.gov (United States)

    Levine, Stephen; Gosmeyer, Catherine

    2016-10-01

    We investigated the importance of close encounters between our Sun and its Oort cloud and passing stars with similar Oort clouds in the low stellar density environment of the outer portion of our Galaxy. By constructing a set of interaction cross-sections that describe the interchange of material between the two passing Oort clouds, and then randomly computing sets of encounters that a star would have during its orbit in the Galaxy over a period of time equivalent to the life of the Sun after the dissolution of its birth cluster, we have examined how the ensemble of passing encounters could impact the evolution of our Oort cloud. From the set of 1,000 possible realizations of the interactions over a solar lifetime, we find that the resulting solar Oort cloud is likely to be significantly eroded as a result of the set of encounters, and is also likely today to contain a significant amount of material that was formed in passing extra-solar systems.

  10. La formación de la Nube de Oort y el entorno galáctico primitivo

    Science.gov (United States)

    Fernández, J. A.

    Se analizan las condiciones de formación de la nube de Oort en el medio galáctico primitivo, bajo la suposición de que los objetos que alcanzaron la nube fueron planetesimales residuales eyectados por los planetas gigantes durante las etapas finales de su acreción. Los objetos que adquieren órbitas cuasiparabólicas están sujetos a las perturbaciones de estrellas vecinas y al potencial del disco galáctico, las que desacoplan sus perihelios de la región planetaria, dando a los objetos una larga estabilidad dinámica. Se demuestra que un entorno galáctico como el presente pudo, sin embargo, no ser suficiente para formar un reservorio cometario con una vida dinámica comparable a la vida del sistema solar. La existencia de la nube de Oort después de 4600 millones de años es, pues, una fuerte indicación de que el sistema solar se formó en un entorno galáctico mucho mas denso que el presente, tal vez en una nube molecular y/o un cúmulo abierto, que es el modo de producción de la mayoría de las estrellas. Se encuentra que un campo perturbador externo mas intenso, producto de un entorno galáctico mas denso, sería capaz de formar una nube de Oort mas compacta, con un radio del orden de 103- 104 UA. El campo externo mas intenso cesó de actuar una vez que la nube molecular y/o el cúmulo abierto se disiparon, previniendo entonces que ese mismo campo externo disolviera el reservorio cometario.

  11. Observations of mesospheric CO2 and H2O clouds on Mars

    CERN Document Server

    Vincendon, Mathieu; Gondet, Brigitte; Murchie, Scott; Bibring, Jean-Pierre

    2011-01-01

    Carbon dioxide clouds, which are predicted by models on solar and extra-solar planets, have been discovered near the equator of Mars. The most comprehensive identification of Martian CO2 ice clouds has been obtained by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a higher spatial resolution, cannot detect these clouds with the same method due to its shorter wavelength range. Here we present a new method to detect CO2 clouds using near-IR data based on the comparison of H2O and CO2 ice spectral properties. The spatial and seasonal distributions of about 50 CRISM observations containing CO2 clouds are reported, in addition to new OMEGA observations. These clouds are characterized by grain size in the 0.5-2 micrometer range and optical depths between 0.1 and 0.3. The distributions of CO2 clouds inferred from OMEGA and CRISM are consistent with each other and match at first order the distribution of high altitude clouds. At second order, discrepancies are observed. We report the identi...

  12. The Extra-Solar Planet Imager (ESPI)

    CERN Document Server

    Nisenson, P; Geary, J; Holman, M; Korzennik, S G; Noyes, R W; Papaliolios, C; Sasselov, D D; Fischer, D; Gezari, D; Lyon, R G; Gonsalves, R; Hardesty, C; Harwit, M; Marley, M S; Neufeld, D A; Ridgway, S T

    2002-01-01

    ESPI has been proposed for direct imaging and spectral analysis of giant planets orbiting solar-type stars. ESPI extends the concept suggested by Nisenson and Papaliolios (2001) for a square aperture apodized telescope that has sufficient dynamic range to directly detect exo-planets. With a 1.5 M square mirror, ESPI can deliver high dynamic range imagery as close as 0.3 arcseconds to bright sources, permitting a sensitive search for exoplanets around nearby stars and a study of their characteristics in reflected light.

  13. New near-IR observations of mesospheric CO2 and H2O clouds on Mars

    Science.gov (United States)

    Vincendon, Mathieu; Pilorget, Cedric; Gondet, Brigitte; Murchie, Scott; Bibring, Jean-Pierre

    2011-11-01

    Carbon dioxide clouds, which are speculated by models on solar and extra-solar planets, have been recently observed near the equator of Mars. The most comprehensive identification of Martian CO2 ice clouds has been obtained by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a higher spatial resolution, cannot detect these clouds with the same method due to its shorter wavelength range. Here we present a new method to detect CO2 clouds using near-IR data based on the comparison of H2O and CO2 ice spectral properties. The spatial and seasonal distributions of 54 CRISM observations containing CO2 clouds are reported, in addition to 17 new OMEGA observations. CRISM CO2 clouds are characterized by grain size in the 0.5-2 μm range and optical depths lower than 0.3. The distributions of CO2 clouds inferred from OMEGA and CRISM are consistent with each other and match at first order the distribution of high altitude (>60 km) clouds derived from previous studies. At second order, discrepancies are observed. We report the identification of H2O clouds extending up to 80 km altitude, which could explain part of these discrepancies: both CO2 and H2O clouds can exist at high, mesospheric altitudes. CRISM observations of afternoon CO2 clouds display morphologies resembling terrestrial cirrus, which generalizes a previous result to the whole equatorial clouds season. Finally, we show that morning OMEGA observations have been previously misinterpreted as evidence for cumuliform, and hence potentially convective, CO2 clouds.

  14. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  15. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  16. The role of Clouds in Emitted, Reflected and Transmitted Spectra of Terrestrial Exoplanets

    Science.gov (United States)

    Tinetti, G.; Yung, Y. L.; Ehrenreich, D.; Meadows, V. S.; Crisp, D.; Kahn, B.; Lecavelier des Etangs, A.; Vidal-Madjar, A.

    2005-12-01

    Two objectives of the NASA-Terrestrial Planet Finder and ESA-Darwin missions are to characterize the environments of terrestrial planets outside of our solar system and to search for life on these planets. These objectives will be met by measuring the disk-averaged spectra of the radiation reflected or emitted from these planets. Clouds play a significant role in determining these spectra. For Earth, water clouds can reduce the infrared emission by up to 50 and increase the visible reflectance by up to 400%. The disk-averaged spectra of a cloudy planet are also very sensitive to the observed planetary phase. For Earth, we see up to 40% increases of the solar albedo from the gibbous phase to the fully illuminated phase. Moreover, clouds strongly modify the strength of absorption features due to tropospheric trace gases and may impact the detectability of surface biosignatures in the visible (Tinetti et al.,2005). Stellar occultation might provide another effective method for probing the atmospheres of Earth-size extrasolar planets in the not too distant future. In the transmission spectra of terrestrial planets in transit, clouds act, to a first order approximation, as an optically thick layer at a given altitude. A uniform cloud layer will effectively increase the apparent radius of the planet and yield information only about atmospheric components existing above the clouds. The altitude where the cloud deck occurs, changes for Venus-like, Earth-like or highly-condensable-volatile rich planets (Ehrenreich et al.,2005). The radiative properties of clouds are strongly dependent on the chemical species that condense or freeze (e.g. water for present-day Earth, methane for Titan etc.), the particle size distributions present and particle shapes. Therefore, an understanding of aerosol and cloud microphysics on extra-solar terrestrial planets is necessary to properly interpret the spectra of terrestrial planets, emitted, reflected or transmitted. This work was supported

  17. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  18. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  19. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  20. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  1. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  2. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  3. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  4. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  5. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  6. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  7. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  8. Photometry of the Oort Cloud comet C/2009 P1 (Garradd): Pre-perihelion observations at 5.7 and 2.5 AU

    Science.gov (United States)

    Mazzotta Epifani, E.; Snodgrass, C.; Perna, D.; Dall'Ora, M.; Palumbo, P.; Della Corte, V.; Alvarez-Candal, A.; Melita, M.; Rotundi, A.

    2016-11-01

    The aim of this paper is to contribute to the characterization of the general properties of the Long Period Comets (LPCs) family, and in particular to report on the dust environment of comet C/2009 P1 (Garradd). The comet was observed at two epochs pre-perihelion, at ~6 AU and at ~2.5 AU: broad-band images have been used to investigate its coma morphology and properties and to model the dust production rate. Comet C/2009 P1 (Garradd) is one of the most active and "dust producing" LPCs ever observed, even at the large heliocentric distance rh~6 AU. Its coma presents a complex morphology, with subtle structures underlying the classical fan-shaped tail, and, at rh~2.5 AU, also jet-like structures and spiralling outflows. In the reference aperture of radius ρ=5°×104 km, the R-Afρ is 3693±156 cm and 6368±412 cm, in August 2010 (rh~6 AU) and July 2011 (rh~2.5 AU), respectively. The application of a first order photometric model, under realistic assumptions on grain geometric albedo, power-law dust size distribution, phase darkening function and grain dust outflow velocity, yielded a measure of the dust production rate for the two epochs of observation of Qd=7.27×102 kg/s and Qd=1.37×103 kg/s, respectively, for a reference outflow dust velocity of vsmall=25 m/s for small (0.1-10 μm) grains and vlarge=1 m/s for large (10 μm-1 cm) grains. These results suggest that comet Garradd is one of the most active minor bodies observed in recent years, highly contributing to the continuous replenishment of the Interplanetary Dust Complex also in the outer Solar System, and pose important constraints on the mechanism(s) driving the cometary activity at large heliocentric distances.

  9. A survey of volatile species in Oort cloud comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) at millimeter wavelengths

    CERN Document Server

    de Val-Borro, M; Hartogh, P; Rezac, L; Biver, N; Bockelée-Morvan, D; Crovisier, J; Jarchow, C; Villanueva, G L

    2013-01-01

    The line emission in the coma was measured in the comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR), that were observed on five consecutive nights, 7-11 May 2004, at heliocentric distances of 1.0 and 0.7 AU, respectively, by means of high-resolution spectroscopic observations using the 10-m Submillimeter Telescope (SMT). We present a search for six parent- and product-volatile species (HCN, H2CO, CO, CS, CH3OH, and HNC) in both comets. Multiline observations of the CH3OH J = 5-4 series allow us to estimate the rotational temperature using the rotation diagram technique, which is determined from the inverse of the slope of the best linear fit on the observed transitions. We derive rotational temperatures of 54(9) K for C/2001 Q4 (NEAT) and 119(34) K for C/2002 T7 (LINEAR). The gas production rates of material are computed using a spherically symmetric molecular excitation code that includes collisions between neutrals and electrons. We find an HCN production rate of 2.96(5)e26 molec.s-1 for comet C/2001 Q4 (NEAT)...

  10. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  11. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... of resource sharing takes a wider and deeper meaning, creating the foundations for a global real-time multidimensional resource pool, the underlying infrastructure for shareconomy. Above all, this is an inspiring book for anyone who is concerned about the future of wireless and mobile communications networks...... and their relationship with Social networks. Key Features: Provides fundamental ideas and promising concepts for exploiting opportunistic cooperation and cognition in wireless and mobile networks Gives clear definitions of mobile clouds from different perspectives Associates mobile and wireless networks with social...

  12. Cloud radiative properties and aerosol - cloud interaction

    Science.gov (United States)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  13. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  14. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas;

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...

  15. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  16. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    The second half of the 20th century has been characterized by an explosive development in information technology (Maney, Hamm, & O'Brien, 2011). Processing power, storage capacity and network bandwidth have increased exponentially, resulting in new possibilities and shifting IT paradigms. In step...... with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production...

  17. Cloud Interactions

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara

  18. Martian Clouds

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure. Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  19. Cloud Computing (4)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ 8 Case Study Cloud computing is still a new phenomenon. Although many IT giants are developing their own cloud computing infrastructures,platforms, software, and services, few have really succeeded in becoming cloud computing providers.

  20. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  1. Detecting Extra-solar Planets In Reflected Light

    Science.gov (United States)

    Hatzes, A. P.

    To understand the complex system earth and its interchange and interaction processes with the atmosphere a complete digital data basis is an essential requirement. The whole digital data basis consists of distributed and validated data bases wich are con- nected via a world-wide network. Online information systems like the CHAMP-ISDC with its clearinghouse and datawarehouse services allow an aimed search for required data and information. Excellent geoscientific applications using clearinghouse and datawarehouse features make for relevant geoscientific, economic and social services.

  2. Extra Solar Planet Science With a Non Redundant Mask

    Science.gov (United States)

    Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi

    2017-01-01

    To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.

  3. Terrestrial Planet Formation in Extra-Solar Planetary Systems

    CERN Document Server

    Raymond, Sean N

    2008-01-01

    Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moon- to Mars-sized protoplanets, also called "planetary embryos". Finally, full-sized terrestrial planets accrete from protoplanets and planetesimals. This final stage of accretion lasts about 10-100 Myr and is strongly affected by gravitational perturbations from any gas giant planets, which are constrained to form more quickly, during the 1-10 Myr lifetime of the gaseous component of the disk. It is during this final stage that the bulk compositions and volatile (e.g., water) contents of terrestrial planets are set, depending on their feeding zones and the amount of radial mixing that occurs. The main factors that influence terrestrial planet formation are the mass an...

  4. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  5. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  6. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    1900-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  7. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  8. Sedna and the cloud of comets surrounding the solar system in Milgromian dynamics

    Science.gov (United States)

    Paučo, R.; Klačka, J.

    2016-05-01

    We reconsider the hypothesis of a vast cometary reservoir surrounding the solar system - the Oort cloud of comets - within the framework of Milgromian dynamics (MD or MOND). For this purpose we built a numerical model of the cloud, assuming the theory of modified gravity, QUMOND. In modified gravity versions of MD, the internal dynamics of a system is influenced by the external gravitational field in which the system is embedded, even when this external field is constant and uniform, a phenomenon dubbed the external field effect (EFE). Adopting the popular pair ν(x) = [1-exp(-x1 / 2)] -1 for the MD interpolating function and a0 = 1.2 × 10-10 m s-2 for the MD acceleration scale, we found that the observationally inferred Milgromian cloud of comets is much more radially compact than its Newtonian counterpart. The comets of the Milgromian cloud stay away from the zone where the Galactic tide can torque their orbits significantly. However, this does not need to be an obstacle for the injection of the comets into the inner solar system as the EFE can induce significant change in perihelion distance during one revolution of a comet around the Sun. Adopting constraints on different interpolating function families and a revised value of a0 (provided recently by the Cassini spacecraft), the aforementioned qualitative results no longer hold, and, in conclusion, the Milgromian cloud is very similar to the Newtonian in its overall size, binding energies of comets and hence the operation of the Jupiter-Saturn barrier. However, EFE torquing of perihelia still play a significant role in the inner parts of the cloud. Consequently Sedna-like orbits and orbits of large semi-major axis Centaurs are easily comprehensible in MD. In MD, they both belong to the same population, just in different modes of their evolution.

  9. Cloud Computing (1)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series will discuss cloud computing technology in the following aspects: The first part provides a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  10. Cloud Computing (2)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series discusses cloud computing technology in the following aspects: The first part provided a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  11. Cloud storage for dummies

    CERN Document Server

    Xu, Linda; Loughlin, Tanya

    2010-01-01

    Understand cloud computing and save your organization time and money! Cloud computing is taking IT by storm, but what is it and what are the benefits to your organization? Hitachi Data Systems' Cloud Storage For Dummies provides all the answers, With this book, you discover a clear explanation of cloud storage, and tips for how to choose the right type of cloud storage for your organization's needs. You also find out how cloud storage can free up valuable IT resources, saving time and money. Cloud Storage For Dummies presents useful information on setting up a

  12. Robots and sensor clouds

    CERN Document Server

    Shakshuki, Elhadi

    2016-01-01

    This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.  .

  13. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  14. Cloud Computing (3)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: In the preceding two parts of this series, several aspects of cloud computing-including definition, classification, characteristics, typical applications, and service levels-were discussed. This part continues with a discussion of Cloud Computing Oopen Architecture and Market-Oriented Cloud. A comparison is made between cloud computing and other distributed computing technologies, and Google's cloud platform is analyzed to determine how distributed computing is implemented in its particular model.

  15. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  16. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  17. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  18. Cloud Processed CCN Affect Cloud Microphysics

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  19. Brownian Motion in Planetary Migration

    CERN Document Server

    Murray-Clay, R A; Murray-Clay, Ruth A.; Chiang, Eugene I.

    2006-01-01

    A residual planetesimal disk of mass 10-100 Earth masses remained in the outer solar system following the birth of the giant planets, as implied by the existence of the Oort cloud, coagulation requirements for Pluto, and inefficiencies in planet formation. Upon gravitationally scattering planetesimal debris, planets migrate. Orbital migration can lead to resonance capture, as evidenced here in the Kuiper and asteroid belts, and abroad in extra-solar systems. Finite sizes of planetesimals render migration stochastic ("noisy"). At fixed disk mass, larger (fewer) planetesimals generate more noise. Extreme noise defeats resonance capture. We employ order-of-magnitude physics to construct an analytic theory for how a planet's orbital semi-major axis fluctuates in response to random planetesimal scatterings. To retain a body in resonance, the planet's semi-major axis must not random walk a distance greater than the resonant libration width. We translate this criterion into an analytic formula for the retention effi...

  20. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  1. In the clouds

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Clouds always used to be the least understood element of the weather system, but that is rapidly changing . Computer clouds increasingly correspond with those in the sky, which promises weather forecasts at street level and more accurate climate scenarios.

  2. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  3. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  4. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  5. Comparing Point Clouds

    Science.gov (United States)

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  6. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  7. Governmental Cloud - Part of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-01-01

    Full Text Available Large IT (Information Technology companies propose cloud government's (G-Cloud development model through investment from the private sector, which will facilitate the access of users from public sector to the new generation IT services. Through the G-Cloud private operators that operate governmental cloud infrastructure by adding specific SaaS (Software as a Service functionalities, proposed model by big companies, supports public institutions in optimizing costs and increased operational efficiency, bringing tangible benefits in relation with citizens and thus with the whole society. These optimizations are achieved by moving the initial investment to the private sector, through type subscription model cost by eliminating dependency on human factors (technical and by providing a low cost [1]. This paper aims to bring to the attention of specialists, some aspects of Governmental Cloud from the European Union (EU countries to be understood and implemented in Romania.

  8. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  9. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  10. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  11. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  12. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  13. Intergalactic HI Clouds

    CERN Document Server

    Briggs, F H

    2005-01-01

    Neutral intergalactic clouds are so greatly out numbered by galaxies that their integral HI content is negligible in comparison to that contained in optically luminous galaxies. In fact, no HI cloud that is not associated with a galaxy or grouping of galaxies has yet been identified. This points to a causal relationship that relies on gravitational potentials that bind galaxies also being responsible for confining HI clouds to sufficient density that they can become self-shielding to the ionizing background radiation. Unconfined clouds of low density become ionized, but confined clouds find themselves vulnerable to instability and collapse, leading to star formation.

  14. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  15. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  16. Cloud Computing Technologies

    Directory of Open Access Journals (Sweden)

    Sean Carlin

    2012-06-01

    Full Text Available This paper outlines the key characteristics that cloud computing technologies possess and illustrates the cloud computing stack containing the three essential services (SaaS, PaaS and IaaS that have come to define the technology and its delivery model. The underlying virtualization technologies that make cloud computing possible are also identified and explained. The various challenges that face cloud computing technologies today are investigated and discussed. The future of cloud computing technologies along with its various applications and trends are also explored, giving a brief outlook of where and how the technology will progress into the future.

  17. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  18. Community Cloud Computing

    CERN Document Server

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  19. Security Problems in Cloud Computing

    OpenAIRE

    Rola Motawie; Mahmoud M. El-Khouly; Samir Abou El-Seoud

    2016-01-01

    Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sh...

  20. Cross-Cloud Testing Strategies Over Cloud Computing

    Directory of Open Access Journals (Sweden)

    Mr. Nageswararao,

    2014-06-01

    Full Text Available Cloud computing is the new paradigm to deliver all the hosted services over internet on demand. The ultimate goal of cloud computing paradigm is to realize computing as a utility. The cloud is rapidly maturing towards its goal to support a wide variety of enterprise and consumer services and real-world applications. Recently a movement towards cross cloud also called as multi-clouds or inters clouds or cloud-of-clouds has emerged which take advantage of multiple independent cloud provider offers for cloud resilience and dependability. This cross cloud represents the next logical wave in computing, enabling complex hybrid applications, cost and performance optimization, enhanced reliability, customer flexibility and lock-in avoidance. Providing testing as a service (TaaS in cross clouds become hot topics in industry. Testing heterogeneous e-commerce sites, Software as a Service solutions, and Cloud based applications is extremely challenging.

  1. Secure Cloud Architecture

    Directory of Open Access Journals (Sweden)

    Kashif Munir

    2013-02-01

    Full Text Available Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. Cloud computing depends on the internet as a medium for users to access the required services at any time on pay-per-use pattern. However this technology is still in its initial stages of development, as it suffers from threats and vulnerabilities that prevent the users from trusting it. Various malicious activitiesfrom illegal users have threatened this technology such as data misuse, inflexible access control and limited monitoring. The occurrence of these threats may result into damaging or illegal access of critical and confidential data of users. In this paper we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know a bout the k ey security threats associated with cloud computing and propose relevant solution directives to strengthen security in the Cloud environment. We also propose secure cloud architecture for organizations to strengthen the security.

  2. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  3. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation......, along with protocols for using the encoding scheme in practice. Protocols for cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not delete their data illegitimately. Current solutions, e.g., based...

  4. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  5. Cloud Robotics Model

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2015-01-01

    Full Text Available Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen active research projects around the world. The presentation summarizes the main idea, the definition, the cloud model composed of essential characteristics, service models and deployment models, planning task execution and beyond. Finally some cloud robotics projects are discussed.

  6. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  7. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  8. Cryptographic Cloud Storage

    Science.gov (United States)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  9. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    DANISH JAMIL,

    2011-04-01

    Full Text Available It is no secret that cloud computing is becoming more and more popular today and is ever increasing inpopularity with large companies as they share valuable resources in a cost effective way. Due to this increasingdemand for more clouds there is an ever growing threat of security becoming a major issue. This paper shalllook at ways in which security threats can be a danger to cloud computing and how they can be avoided.

  10. Geodesics on Point Clouds

    OpenAIRE

    Hongchuan Yu; Zhang, Jian J.; Zheng Jiao

    2014-01-01

    We present a novel framework to compute geodesics on implicit surfaces and point clouds. Our framework consists of three parts, particle based approximate geodesics on implicit surfaces, Cartesian grid based approximate geodesics on point clouds, and geodesic correction. The first two parts can effectively generate approximate geodesics on implicit surfaces and point clouds, respectively. By introducing the geodesic curvature flow, the third part produces smooth and accurate geodesic solution...

  11. Cloud Detection with MATLAB

    OpenAIRE

    P. Shrivastava

    2013-01-01

    The accurate detection of clouds in satellite imagery is important in research and operational applications. Cloud cover influences the distribution of solar radiation reaching the ground where it is absorbed. Resulting fluxes of sensible and latent heat are critical to the accurate characterization of boundary layer behavior and mesoscale circulations that often lead to convective development. Therefore the spatial and temporal variation in cloud cover can greatly affect regional an...

  12. Core of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Prof. C.P.Chandgude

    2017-04-01

    Full Text Available Advancement in computing facilities marks back from 1960’s with introduction of mainframes. Each of the computing has one or the other issues, so keeping this in mind cloud computing was introduced. Cloud computing has its roots in older technologies such as hardware virtualization, distributed computing, internet technologies, and autonomic computing. Cloud computing can be described with two models, one is service model and second is deployment model. While providing several services, cloud management’s primary role is resource provisioning. While there are several such benefits of cloud computing, there are challenges in adopting public clouds because of dependency on infrastructure that is shared by many enterprises. In this paper, we present core knowledge of cloud computing, highlighting its key concepts, deployment models, service models, benefits as well as security issues related to cloud data. The aim of this paper is to provide a better understanding of the cloud computing and to identify important research directions in this field

  13. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  14. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  15. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  16. A cloud storage overlay to aggregate heterogeneous cloud services

    OpenAIRE

    Machado, Guilherme Sperb; Bocek, Thomas; Ammann, Michael; Stiller, Burkhard

    2013-01-01

    Many Cloud services provide generic (e.g., Amazon S3 or Dropbox) or data-specific Cloud storage (e.g., Google Picasa or SoundCloud). Although both Cloud storage service types have the data storage in common, they present heterogeneous characteristics: different interfaces, accounting and charging schemes, privacy and security levels, functionality and, among the data-specific Cloud storage services, different data type restrictions. This paper proposes PiCsMu (Platform-independent Cloud Stora...

  17. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  18. The California Molecular Cloud

    CERN Document Server

    Lada, Charles J; Alves, Joao F

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). From comparison of foreground star counts with Galactic models we derive a distance of 450 +/- 23 parsecs to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of approximately 10^5 solar masses, rivaling the Orion (A) Molecular Cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion Molecular Cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps ...

  19. On Cloud Nine

    Science.gov (United States)

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  20. Cloud speed sensor

    Directory of Open Access Journals (Sweden)

    V. Fung

    2013-10-01

    Full Text Available Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE, and a UC San Diego Sky Imager (USI. The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s−1 when compared to USI and 33° and 1.5 m s−1 when compared to LCE results.

  1. Clouds in Planetary Atmospheres

    Science.gov (United States)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  2. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  3. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  4. Prebiotic chemistry in clouds

    Science.gov (United States)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  5. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available

    Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.

    Keywords: Cloud computing, QoS, quality of cloud computing

  6. Cloud computing security.

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  7. CLOUD COMPUTING AND SECURITY

    Directory of Open Access Journals (Sweden)

    Asharani Shinde

    2015-10-01

    Full Text Available This document gives an insight into Cloud Computing giving an overview of key features as well as the detail study of exact working of Cloud computing. Cloud Computing lets you access all your application and documents from anywhere in the world, freeing you from the confines of the desktop thus making it easier for group members in different locations to collaborate. Certainly cloud computing can bring about strategic, transformational and even revolutionary benefits fundamental to future enterprise computing but it also offers immediate and pragmatic opportunities to improve efficiencies today while cost effectively and systematically setting the stage for the strategic change. As this technology makes the computing, sharing, networking easy and interesting, we should think about the security and privacy of information too. Thus the key points we are going to be discussed are what is cloud, what are its key features, current applications, future status and the security issues and the possible solutions.

  8. Molecular Cloud Evolution

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2010-01-01

    I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by large-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N \\sim 1.5 \\times 10^21 \\psc \\approx 10 \\Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($\\sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall time...

  9. Interstellar molecular clouds

    Science.gov (United States)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  10. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  11. Cloud Scheduler: a resource manager for distributed compute clouds

    CERN Document Server

    Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Fransham, K; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The availability of Infrastructure-as-a-Service (IaaS) computing clouds gives researchers access to a large set of new resources for running complex scientific applications. However, exploiting cloud resources for large numbers of jobs requires significant effort and expertise. In order to make it simple and transparent for researchers to deploy their applications, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. Cloud Scheduler boots and manages the user-customized virtual machines in response to a user's job submission. We describe the motivation and design of the Cloud Scheduler and present results on its use on both science and commercial clouds.

  12. Cloud Computing: A study of cloud architecture and its patterns

    Directory of Open Access Journals (Sweden)

    Mandeep Handa,

    2015-05-01

    Full Text Available Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has evolved as a disruptive technology and picked up speed with the presence of many vendors in cloud computing space. The evolution of cloud computing from numerous technological approaches and business models such as SaaS, cluster computing, high performance computing, etc., signifies that the cloud IDM can be considered as a superset of all the corresponding issues from these paradigms and many more. In this paper we will discuss Life cycle management, Cloud architecture, Pattern in Cloud IDM, Volatility of Cloud relations.

  13. A cybernetics Social Cloud

    OpenAIRE

    Chang, V

    2015-01-01

    © 2015 Elsevier Inc. This paper proposes a Social Cloud, which presents the system design, development and analysis. The technology is based on the BOINC open source software, our hybrid Cloud, Facebook Graph API and our development in a new Facebook API, SocialMedia. The creation of SocialMedia API with its four functions can ensure a smooth delivery of Big Data processing in the Social Cloud, with four selected examples provided. The proposed solution is focused on processing the contacts w...

  14. Cloud Computing Services Accounting

    Directory of Open Access Journals (Sweden)

    Igor Ruiz-Agundez

    2012-06-01

    Full Text Available Cloud computing provides a new promising parading to offer services. It brings the opportunity to develop new business models in the Internet. Classic accounting solutions fail to full fill the new requirements of these services due to their structural design. To understand these new constrains, we study the different actors and processes that interact in the Internet Economics. Specifically, we focus on cloud computing introducing a methodology that allows the deployment of cloud services. Further, we present an Infrastructure as a Service (IaaS use case that applies the proposed system.

  15. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  16. Vertical Distribution of Galactic Disc Stars and Gas Constrained by a Molecular Cloud Complex

    CERN Document Server

    Jog, C J; Jog, Chanda J.; Narayan, Chaitra A.

    2001-01-01

    We investigate the dynamical effects of a molecular cloud complex with a mass of about 10**7 M_sun and a size of a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights. A surprising result is the large radial distance of about 500 pc from the complex centre over which the complex influences the disc. The complex has a comparable effect on the vertical distribution of HI in the galactic disc. This `pinching' or constraining effect should be detectable in the nearby spiral galaxies. Thus the gravitational field of a complex results in local corrugations of the stellar and ...

  17. Cloud computing basics for librarians.

    Science.gov (United States)

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article.

  18. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, G.

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  19. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  20. Cloud Computing (2/2)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  1. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  2. Cloud Computing (1/2)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  3. Security Architecture of Cloud Computing

    Directory of Open Access Journals (Sweden)

    V.KRISHNA REDDY

    2011-09-01

    Full Text Available The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages on the data security of service consumers. This paper aims to emphasize the main security issues existing in cloud computing environments. The security issues at various levels of cloud computing environment is identified in this paper and categorized based on cloud computing architecture. This paper focuses on the usage of Cloud services and security issues to build these cross-domain Internet-connected collaborations.

  4. Reconfigurable Martian Data Cloud

    Science.gov (United States)

    Sheldon, D. J.; Moeller, R. C.; Pingree, P.; Lay, N.; Reeves, G.

    2012-06-01

    The objective is to develop a constellation of small satellites in orbit around Mars that would provide a highly scalable and dynamically allocatable high performance computing resource. Key is use of Field Programmable Gate Arrays for the cloud.

  5. Cloud Computing For Microfinances

    CERN Document Server

    V, Suma; M, Vaidehi; Nair, T R Gopalakrishnan

    2012-01-01

    Evolution of Science and Engineering has led to the growth of several commercial applications. The wide spread implementation of commercial based applications has in turn directed the emergence of advanced technologies such as cloud computing. India has well proven itself as a potential hub for advanced technologies including cloud based industrial market. Microfinance system has emerged out as a panacea to Indian economy since the population encompasses of people who come under poverty and below poverty index. However, one of the key challenges in successful operation of microfinance system in India has given rise to integration of financial services using sophisticated cloud computing model. This paper, therefore propose a fundamental cloud-based microfinance model in order to reduce high transaction risks involved during microfinance operations in an inexpensive and efficient manner.

  6. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  7. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  8. CloudETL

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

    2014-01-01

    Extract-Transform-Load (ETL) programs process data into data warehouses (DWs). Rapidly growing data volumes demand systems that scale out. Recently, much attention has been given to MapReduce for parallel handling of massive data sets in cloud environments. Hive is the most widely used RDBMS...... the powerful Pig platform for data processing on MapReduce does not support such dimensional ETL processing. To remedy this, we present the ETL framework CloudETL which uses Hadoop to parallelize ETL execution and to process data into Hive. The user defines the ETL process by means of high-level constructs...... and transformations and does not have to worry about technical MapReduce details. CloudETL supports different dimensional concepts such as star schemas and SCDs. We present how CloudETL works and uses different performance optimizations including a purpose-specific data placement policy to co-locate data. Further, we...

  9. Cloud Forensics Issues

    Science.gov (United States)

    2014-07-01

    Cloud Computing , Forensics , IT Security, Standards, Monitoring, Virtualization. I. INTRODUCTION LOUD computing has come to mean many different...an efficient re-allocation of resources. VI. ACCOUNTABILITY, MONITORING AND FORENSICS The goal of computer forensics is to perform a structured...away from the concept of cloud computing [12 - 14]. We believe, however, that a precise statement of the high assurance and forensics requirements

  10. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Toward Cloud Computing Evolution

    OpenAIRE

    Susanto, Heru; Almunawar, Mohammad Nabil; Kang, Chen Chin

    2012-01-01

    -Information Technology (IT) shaped the success of organizations, giving them a solid foundation that increases both their level of efficiency as well as productivity. The computing industry is witnessing a paradigm shift in the way computing is performed worldwide. There is a growing awareness among consumers and enterprises to access their IT resources extensively through a "utility" model known as "cloud computing." Cloud computing was initially rooted in distributed grid-based computing. ...

  12. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  13. Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The Cloud Profi ling Radar (CPR) onboard CloudSat is an active sensor specifi cally dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR refl ectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identifi ed as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 km, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 km, and these clouds mostly have evidently small optical depths and droplet eff ective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m−2 . It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.

  14. CLOUD COMPUTING TECHNOLOGY TRENDS

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-05-01

    Full Text Available Cloud computing has been a tremendous innovation, through which applications became available online, accessible through an Internet connection and using any computing device (computer, smartphone or tablet. According to one of the most recent studies conducted in 2012 by Everest Group and Cloud Connect, 57% of companies said they already use SaaS application (Software as a Service, and 38% reported using standard tools PaaS (Platform as a Service. However, in the most cases, the users of these solutions highlighted the fact that one of the main obstacles in the development of this technology is the fact that, in cloud, the application is not available without an Internet connection. The new challenge of the cloud system has become now the offline, specifically accessing SaaS applications without being connected to the Internet. This topic is directly related to user productivity within companies as productivity growth is one of the key promises of cloud computing system applications transformation. The aim of this paper is the presentation of some important aspects related to the offline cloud system and regulatory trends in the European Union (EU.

  15. An approach to identify the optimal cloud in cloud federation

    Directory of Open Access Journals (Sweden)

    Saumitra Baleshwar Govil

    2012-01-01

    Full Text Available Enterprises are migrating towards cloud computing for their ability to provide agility, robustness and feasibility in operations. To increase the reliability and availability of services, clouds have grown into federated clouds i.e., union of clouds. There are still major issues in federated clouds, which when solved could lead to increased satisfaction to both service providers and clients alike. One such issue is to select the optimal foreign cloud amongst the federation, which provides services according to the client requirements. In this paper, we propose a model to select the optimal cloud service provider based on the capability and performance of the available clouds in the federation. We use two matrix models to obtain the capability and performance parametric values. They are matched with the client requirements and the optimal foreign cloud service provider is selected.

  16. Bayesian Exploration of Cloud Microphysical Sensitivities in Mesoscale Cloud Systems

    Science.gov (United States)

    Posselt, D. J.

    2015-12-01

    It is well known that changes in cloud microphysical processes can have a significant effect on the structure and evolution of cloud systems. In particular, changes in water phase and the associated energy sources and sinks have a direct influence on cloud mass and precipitation, and an indirect effect on cloud system thermodynamic properties and dynamics. The details of cloud particle nucleation and growth, as well as the interactions among vapor, liquid, and ice phases, occur on scales too small to be explicitly simulated in the vast majority of numerical models. These processes are represented by approximations that introduce uncertainty into the simulation of cloud mass and spatial distribution and by extension the simulation of the cloud system itself. This presentation demonstrates how Bayesian methodologies can be used to explore the relationships between cloud microphysics and cloud content, precipitation, dynamics, and radiative transfer. Specifically, a Markov chain Monte Carlo algorithm is used to compute the probability distribution of cloud microphysical parameters consistent with particular mesoscale environments. Two different physical systems are considered. The first example explores the multivariate functional relationships between precipitation, cloud microphysics, and the environment in a deep convective cloud system. The second examines how changes in cloud microphysical parameters may affect orographic cloud structure, precipitation, and dynamics. In each case, the Bayesian framework can be shown to provide unique information on the inter-dependencies present in the physical system.

  17. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  18. Security Problems in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rola Motawie

    2016-12-01

    Full Text Available Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sharing, multi-tenancy, and outsourcing, create new challenges for the security community. In this work, we provide a comparable study of cloud computing privacy and security concerns. We identify and classify known security threats, cloud vulnerabilities, and attacks.

  19. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  20. Trust management in cloud services

    CERN Document Server

    Noor, Talal H; Bouguettaya, Athman

    2014-01-01

    This book describes the design and implementation of Cloud Armor, a novel approach for credibility-based trust management and automatic discovery of cloud services in distributed and highly dynamic environments. This book also helps cloud users to understand the difficulties of establishing trust in cloud computing and the best criteria for selecting a service cloud. The techniques have been validated by a prototype system implementation and experimental studies using a collection of real world trust feedbacks on cloud services.The authors present the design and implementation of a novel pro

  1. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  2. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  3. The Serpens Molecular Cloud

    CERN Document Server

    Eiroa, C; Casali, M M

    2008-01-01

    The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mas...

  4. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  5. Cloud processing of soluble gases

    Science.gov (United States)

    Laj, P.; Fuzzi, S.; Facchini, M. C.; Lind, J. A.; Orsi, G.; Preiss, M.; Maser, R.; Jaeschke, W.; Seyffer, E.; Helas, G.; Acker, K.; Wieprecht, W.; Möller, D.; Arends, B. G.; Mols, J. J.; Colvile, R. N.; Gallagher, M. W.; Beswick, K. M.; Hargreaves, K. J.; Storeton-West, R. L.; Sutton, M. A.

    Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2O 2, SO 2, CH 3COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2O 2. The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2O 2. The H 2O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.

  6. Reconstruction of cloud geometry using a scanning cloud radar

    Science.gov (United States)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  7. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  8. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  9. Modeling the Cloud: Methodology for Cloud Computing Strategy and Design

    Science.gov (United States)

    2011-05-17

    Opportunities 4How can you determine which, if any, cloud computing technologies and services are suitable for the company? 4How does cloud technology differ...with existing service types, in terms of functions and characteristics? 4How can cloud technology support current and new service or application

  10. Multi-Cloud Application Design through Cloud Service Composition

    OpenAIRE

    Kyriakos Kritikos; Dimitris Plexousakis

    2015-01-01

    A paper that proposes a cloud service composition approach able to optimally compose different types of cloud services by simultaneously satisfying various types of user requirements. Its novel approach in handling these types, which are not concurrently supported by any cloud design tool, include quality, deployment, security, placement and cost requirements.

  11. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  12. Cloud Computing Strategy

    Science.gov (United States)

    2012-07-01

    delivery and integrated  DevOps .  This test and development cloud  environment will enable applications and services to run in a distributed environment...reducing  time to deliver content to clients.        This cloud development and test environment will:  " DevOps " is an emerging set of principles

  13. Opaque cloud detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  14. Transition to the Cloud

    DEFF Research Database (Denmark)

    Hedman, Jonas; Xiao, Xiao

    2016-01-01

    companies operate. In this paper, we present a case study of an ERP vendor for SMB (small and mediumsize business) in making a transition towards a cloud-based business model. Through the theoretical lens of ecosystem, we are able to analyze the evolution of the vendor and its business network as a whole......The rising of cloud computing has dramatically changed the way software companies provide and distribute their IT product and related services over the last decades. Today, most software is bought offthe-shelf and distributed over the Internet. This transition is greatly influencing how software...

  15. Securing virtual and cloud environments

    CSIR Research Space (South Africa)

    Carroll, M

    2012-01-01

    Full Text Available targets such as reduced costs, scalability, flexibility, capacity utilisation, higher efficiencies and mobility. Many of these benefits are achieved through the utilisation of technologies such as cloud computing and virtualisation. In many instances cloud...

  16. Security Dynamics of Cloud Computing

    OpenAIRE

    Khaled M. Khan

    2009-01-01

    This paper explores various dimensions of cloud computing security. It argues that security concerns of cloud computing need to be addressed from the perspective of individual stakeholder. Security focuses of cloud computing are essentially different in terms of its characteristics and business model. Conventional way of viewing as well as addressing security such as ‘bolting-in’ on the top of cloud computing may not work well. The paper attempts to portray the security spectrum necessary for...

  17. Cloud services, networking, and management

    CERN Document Server

    da Fonseca, Nelson L S

    2015-01-01

    Cloud Services, Networking and Management provides a comprehensive overview of the cloud infrastructure and services, as well as their underlying management mechanisms, including data center virtualization and networking, cloud security and reliability, big data analytics, scientific and commercial applications. Special features of the book include: State-of-the-art content. Self-contained chapters for readers with specific interests. Includes commercial applications on Cloud (video services and games).

  18. Simulator Of A "Weather" Cloud

    OpenAIRE

    Khramenkova, Ksenia; Hermant, Olivier; Pawlak, Renaud

    2012-01-01

    International audience; In this article a cloud simulator for the "weather" cloud is considered. The purpose of such a simulator is evaluating different cloud architectures and algorithms before implementation. The main idea is to analyze the performance beforehand, in order to avoid unsuitable algorithms being implemented in a real cloud. Two methods of request allocation policies to the nodes are considered. Their behavior in terms of interaction with nodes' cachememory is compared. Finally...

  19. Agent-Based Cloud Computing

    OpenAIRE

    Sim, Kwang Mong

    2012-01-01

    Agent-based cloud computing is concerned with the design and development of software agents for bolstering cloud service\\ud discovery, service negotiation, and service composition. The significance of this work is introducing an agent-based paradigm for\\ud constructing software tools and testbeds for cloud resource management. The novel contributions of this work include: 1) developing\\ud Cloudle: an agent-based search engine for cloud service discovery, 2) showing that agent-based negotiatio...

  20. Understanding and monitoring cloud services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance degra

  1. A View from the Clouds

    Science.gov (United States)

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  2. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  3. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  4. Understanding and Monitoring Cloud Services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance

  5. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an ins

  6. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  7. iCloud standard guide

    CERN Document Server

    Alfi, Fauzan

    2013-01-01

    An easy-to-use guide, filled with tutorials that will teach you how to set up and use iCloud, and profit from all of its marvellous features.This book is for anyone with basic knowledge of computers and mobile operations. Prior knowledge of cloud computing or iCloud is not expected.

  8. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  9. Cloud water chemistry and the production of sulfates in clouds

    Science.gov (United States)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  10. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  11. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all - perform

  12. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  13. Seeding the Cloud

    Science.gov (United States)

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  14. CLOUD COMPUTING SECURITY ISSUES

    Directory of Open Access Journals (Sweden)

    Florin OGIGAU-NEAMTIU

    2012-01-01

    Full Text Available The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality is that cloud computing has simplified some technical aspects of building computer systems, but the myriad challenges facing IT environment still remain. Organizations which consider adopting cloud based services must also understand the many major problems of information policy, including issues of privacy, security, reliability, access, and regulation. The goal of this article is to identify the main security issues and to draw the attention of both decision makers and users to the potential risks of moving data into “the cloud”.

  15. Multiscale Cloud System Modeling

    Science.gov (United States)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  16. Resilient Diffusive Clouds

    Science.gov (United States)

    2017-02-01

    were not available on any single platform . For example, Intel processors provided virtualization and protection support for guest operating systems (VT...diversified virtual machines. The concepts lead to a view of cloud computing in which vulnerabilities are different at every host, attackers cannot...Ideas ... . ... ... . .. ..... ..... . ... . . .... . ......... . ........................ . .. . ....... . ....... .. 5 3.2.2 Utility Virtual

  17. Password authentication in cloud

    Directory of Open Access Journals (Sweden)

    Indal Singh

    2015-09-01

    Full Text Available Cloud computing is an Internet-based computing, whereby shared resources, software, and information are provided to computers and other devices on demand. However, adopting a cloud computing paradigm may have positive as well as negative effects on the data security of service consumers [1]. Cloud Computing is a term used to describe both a platform and type of application. As a platform it supplies, configures and reconfigures servers, while the servers can be physical machines or virtual machines. On the other hand, Cloud Computing describes applications that are extended to be accessible through the internet and for this purpose large data centers and powerful servers are used to host the web applications and web services. Authentication is one the most important security primitive [6]. Password authentication is most widely used authentication mechanism. Password provides security mechanism for authentication and protection services against unwanted access to resource. In this paper, we applied a technique to preserve our password using graphical authentication.

  18. Computing in the Clouds

    Science.gov (United States)

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  19. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  20. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  1. Cloud database development and management

    CERN Document Server

    Chao, Lee

    2013-01-01

    Nowadays, cloud computing is almost everywhere. However, one can hardly find a textbook that utilizes cloud computing for teaching database and application development. This cloud-based database development book teaches both the theory and practice with step-by-step instructions and examples. This book helps readers to set up a cloud computing environment for teaching and learning database systems. The book will cover adequate conceptual content for students and IT professionals to gain necessary knowledge and hands-on skills to set up cloud based database systems.

  2. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  3. LOAD MANAGEMENT IN CLOUD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Esha Sarkar

    2014-09-01

    Full Text Available Cloud computing is an on demand service in which shared resources, information, software and other devices are provided to the end user as per their requirement at a specific time. A cloud consists of several elements such as clients, datacenters and distributed servers. There are n number of clients and end users involved in cloud environment. These clients may make requests to the cloud system simultaneously, making it difficult for the cloud to manage the entire load at a time. The load can be CPU load, memory load, delay or network load. This might cause inconvenience to the clients as there may be delay in the response time or it might affect the performance and efficiency of the cloud environment. So, the concept of load balancing is very important in cloud computing to improve the efficiency of the cloud. Good load balancing makes cloud computing more efficient and improves user satisfaction. This paper gives an approach to balance the incoming load in cloud environment by making partitions of the public cloud

  4. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  5. Research Agenda in Cloud Technologies

    CERN Document Server

    Sriram, Ilango

    2010-01-01

    Cloud computing is the latest effort in delivering computing resources as a service. It represents a shift away from computing as a product that is purchased, to computing as a service that is delivered to consumers over the internet from large-scale data centres - or "clouds". Whilst cloud computing is gaining growing popularity in the IT industry, academia appeared to be lagging behind the rapid developments in this field. This paper is the first systematic review of peer-reviewed academic research published in this field, and aims to provide an overview of the swiftly developing advances in the technical foundations of cloud computing and their research efforts. Structured along the technical aspects on the cloud agenda, we discuss lessons from related technologies; advances in the introduction of protocols, interfaces, and standards; techniques for modelling and building clouds; and new use-cases arising through cloud computing.

  6. Lean computing for the cloud

    CERN Document Server

    Bauer, Eric

    2016-01-01

    Applies lean manufacturing principles across the cloud service delivery chain to enable application and infrastructure service providers to sustainably achieve the shortest lead time, best quality, and value This book focuses on lean in the context of cloud computing capacity management of applications and the physical and virtual cloud resources that support them. Lean Computing for the Cloud considers business, architectural and operational aspects of efficiently delivering valuable services to end users via cloud-based applications hosted on shared cloud infrastructure. The work also focuses on overall optimization of the service delivery chain to enable both application service and infrastructure service providers to adopt leaner, demand driven operations to serve end users more efficiently. The book’s early chapters analyze how capacity management morphs with cloud computing into interlocked physical infrastructure capacity management, virtual resou ce capacity management, and application capacity ma...

  7. Cloud Computing Utility and Applications

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Tiwari

    2011-12-01

    Full Text Available Cloud Architecture provides services on demand basis via internet (WWW services. Application design in cloud computing environment or the applications which support cloud paradigm are on demand on the basis of user requirement. Those applications provide the support on various hardware, software and other resource requirement on demand. API used in the cloud computing provide the greater advantage to provide industrial strength, where the complex reliability and scalability logic of the underlying services remains implemented and hidden in the cloud environment. Cloud Computing provide the highest utilization in terms of utilization, resource sharing, requirement gathering and utility to the other needful resources. In this paper we discuss several utility and their applications. We provide a broad discussion which is useful for cloud computing research.

  8. Jupiter Clouds in Depth

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nmImages from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter bright near the pole

  9. Cloud and Cloud Shadow Masking Using Multi-Temporal Cloud Masking Algorithm in Tropical Environmental

    Science.gov (United States)

    Candra, D. S.; Phinn, S.; Scarth, P.

    2016-06-01

    A cloud masking approach based on multi-temporal satellite images is proposed. The basic idea of this approach is to detect cloud and cloud shadow by using the difference reflectance values between clear pixels and cloud and cloud shadow contaminated pixels. Several bands of satellite image which have big difference values are selected for developing Multi-temporal Cloud Masking (MCM) algorithm. Some experimental analyses are conducted by using Landsat-8 images. Band 3 and band 4 are selected because they can distinguish between cloud and non cloud. Afterwards, band 5 and band 6 are used to distinguish between cloud shadow and clear. The results show that the MCM algorithm can detect cloud and cloud shadow appropriately. Moreover, qualitative and quantitative assessments are conducted using visual inspections and confusion matrix, respectively, to evaluate the reliability of this algorithm. Comparison between this algorithm and QA band are conducted to prove the reliability of the approach. The results show that MCM better than QA band and the accuracy of the results are very high.

  10. The Clouds of Isidore

    Science.gov (United States)

    2002-01-01

    These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function of

  11. Point clouds in BIM

    Science.gov (United States)

    Antova, Gergana; Kunchev, Ivan; Mickrenska-Cherneva, Christina

    2016-10-01

    The representation of physical buildings in Building Information Models (BIM) has been a subject of research since four decades in the fields of Construction Informatics and GeoInformatics. The early digital representations of buildings mainly appeared as 3D drawings constructed by CAD software, and the 3D representation of the buildings was only geometric, while semantics and topology were out of modelling focus. On the other hand, less detailed building representations, with often focus on ‘outside’ representations were also found in form of 2D /2,5D GeoInformation models. Point clouds from 3D laser scanning data give a full and exact representation of the building geometry. The article presents different aspects and the benefits of using point clouds in BIM in the different stages of a lifecycle of a building.

  12. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  13. Ion Cloud Modeling

    Science.gov (United States)

    1977-11-11

    detailed examination of the photographic image of the Spruce neutral cloud at 20 seconds after release. Technology International Corporation kindly...seconds after release as recorded on film record #71715. (Original densitometer tracing courtesy of W. Boquist, Technology International Corporation.) 29...C., and R. N. Bybee , "Secede H Chemical Payloads," RADC-TR-71-232, pp. 1-21, Thiokol Chemical Corporation, Ogden, Utah, 84402, June 1971. 6. Boquist

  14. Positron clouds within thunderstorms

    CERN Document Server

    Dwyer, Joseph R; Hazelton, Bryna J; Grefenstette, Brian W; Kelley, Nicole A; Lowell, Alexander W; Schaal, Meagan M; Rassoul, Hamid K

    2015-01-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 seconds apart, each lasting approximately 0.2 seconds. The enhancements, which were about a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometer across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were ca...

  15. Clouds over Mars!

    Science.gov (United States)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Icebergs in the Clouds: the Other Risks of Cloud Computing

    CERN Document Server

    Ford, Bryan

    2012-01-01

    Cloud computing is appealing from management and efficiency perspectives, but brings risks both known and unknown. Well-known and hotly-debated information security risks, due to software vulnerabilities, insider attacks, and side-channels for example, may be only the "tip of the iceberg." As diverse, independently developed cloud services share ever more fluidly and aggressively multiplexed hardware resource pools, unpredictable interactions between load-balancing and other reactive mechanisms could lead to dynamic instabilities or "meltdowns." Non-transparent layering structures, where alternative cloud services may appear independent but share deep, hidden resource dependencies, may create unexpected and potentially catastrophic failure correlations, reminiscent of financial industry crashes. Finally, cloud computing exacerbates already-difficult digital preservation challenges, because only the provider of a cloud-based application or service has the ability to archive a "live," functional copy of a cloud...

  17. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  18. Cloud Computing Security: A Survey

    Directory of Open Access Journals (Sweden)

    Issa M. Khalil

    2014-02-01

    Full Text Available Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing and outsourcing, create new challenges to the security community. Addressing these challenges requires, in addition to the ability to cultivate and tune the security measures developed for traditional computing systems, proposing new security policies, models, and protocols to address the unique cloud security challenges. In this work, we provide a comprehensive study of cloud computing security and privacy concerns. We identify cloud vulnerabilities, classify known security threats and attacks, and present the state-of-the-art practices to control the vulnerabilities, neutralize the threats, and calibrate the attacks. Additionally, we investigate and identify the limitations of the current solutions and provide insights of the future security perspectives. Finally, we provide a cloud security framework in which we present the various lines of defense and identify the dependency levels among them. We identify 28 cloud security threats which we classify into five categories. We also present nine general cloud attacks along with various attack incidents, and provide effectiveness analysis of the proposed countermeasures.

  19. Clouds and Dust Storms

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote

  20. A Catalog of HI Clouds in the Large Magellanic Cloud

    CERN Document Server

    Kim, S; Lee, Y; Kim, Y; Jung, Y C; Dopita, M A; Elmegreen, B G; Freeman, K C; Sault, R J; Kesteven, M J; McConnell, D; Chu, Y -H

    2007-01-01

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 ...

  1. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  2. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Xu, Haitao, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen (Germany)

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  3. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time...

  4. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    LIU,Y.; DAUM,P.H.; CHAI,S.K.; LIU,F.

    2002-02-12

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments.

  5. Future of Cloud Computing in India

    OpenAIRE

    Pradeep Kumar Tiwari

    2012-01-01

    This paper shows the future of cloud computing in India. This paper also help to understand of future of cloud computing in Indian market .This paper also show the benefits of cloud computing .Cloud computing is not very buzz in India. This paper give the new idea to understand cloud computing and cloud computing future in India. This paper also show the importance of cloud computing. Ito show the growth rate of cloud computing. This paper not only show the cloud computing market it also show...

  6. Studi Perbandingan Layanan Cloud Computing

    Directory of Open Access Journals (Sweden)

    Afdhal Afdhal

    2014-03-01

    Full Text Available In the past few years, cloud computing has became a dominant topic in the IT area. Cloud computing offers hardware, infrastructure, platform and applications without requiring end-users knowledge of the physical location and the configuration of providers who deliver the services. It has been a good solution to increase reliability, reduce computing cost, and make opportunities to IT industries to get more advantages. The purpose of this article is to present a better understanding of cloud delivery service, correlation and inter-dependency. This article compares and contrasts the different levels of delivery services and the development models, identify issues, and future directions on cloud computing. The end-users comprehension of cloud computing delivery service classification will equip them with knowledge to determine and decide which business model that will be chosen and adopted securely and comfortably. The last part of this article provides several recommendations for cloud computing service providers and end-users.

  7. Cloud Vertical Structure variability within MODIS Cloud Regimes according to CloudSat-CALIPSO

    Science.gov (United States)

    Cho, N.; Oreopoulos, L.; Lee, D.

    2016-12-01

    To advance the understanding of the relationships and associations between active and passive views of cloud systems systematic comparisons are needed. We take advantage of A-Train's capability to collect a multitude of coincident measurements of atmospheric hydrometeors to develop a framework for examining cloud vertical structure (CVS). The backbone of our comparisons are cloud regimes (CRs) derived from co-varying cloud optical thickness and cloud top pressure retrieved from the MODIS radiometer. CloudSat and CALIPSO observations containing information about cloud occurrence throughout atmospheric layers are segregated and composited according to the MODIS regime classification for Aqua-only CR occurrences. With this approach, vertical profiles of cloud systems are organized in a way that allows them to be thoroughly studied and compared. We examine the frequency of occurrence within each MODIS CR of coarsely resolved CVS permutations (namely the possible combinations of clouds occurring at high, middle, and low altitudes either in isolation or in various configurations of contiguous or non-contiguous overlap). We look for similarities and extreme contrasts in CVS among MODIS CRs, dependence of CVS on the degree of deviation from the CR centroid, and regional dependences within the occurrences of the same CR. The presentation aims to demonstrate pathways towards a better knowledge of the information content of each type (i.e., active/passive) of measurement and to expose categories of cloud systems where the combination of measurements with different strengths and sensitivities is helping rather than confounding interpretations of the nature of cloudiness.

  8. Shock Waves in Cloud Cavitation

    OpenAIRE

    Brennen, C. E.; Reisman, G. E.; Wang, Y.-C.

    1997-01-01

    Thie paper described experimental and computational investigations of the dynamics of clouds of cavitation bubbles. Recent studies have confirmed that the interactions between bubbles as they are manifest in the dynamics of bubble clouds lead to generation of very large impulsive pressures which, in turn, cause substantial enhancement of the radiated noise and the material damage which results from this form of cavitation. The experimental program focuses on cloud cavitation formed on th...

  9. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (> 273 K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (similar to1%) a liquid cloud...

  10. Cloud computing theory and practice

    CERN Document Server

    Marinescu, Dan C

    2013-01-01

    Cloud Computing: Theory and Practice provides students and IT professionals with an in-depth analysis of the cloud from the ground up. Beginning with a discussion of parallel computing and architectures and distributed systems, the book turns to contemporary cloud infrastructures, how they are being deployed at leading companies such as Amazon, Google and Apple, and how they can be applied in fields such as healthcare, banking and science. The volume also examines how to successfully deploy a cloud application across the enterprise using virtualization, resource management and the ri

  11. The Ethics of Cloud Computing.

    Science.gov (United States)

    de Bruin, Boudewijn; Floridi, Luciano

    2017-02-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.

  12. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    Science.gov (United States)

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  13. Heroku cloud application development

    CERN Document Server

    Hanjura, Anubhav

    2014-01-01

    An easy-to-follow, hands-on guide that clearly explains the various components of the Heroku platform and provides step-by-step guidance as well as numerous examples on how to build and troubleshoot robust and scalable production-ready web applications on the Heroku platform.This book is intended for those who want to learn Heroku the right way. Perhaps you are new to Heroku or are someone who has heard about Heroku but have not built anything significant with it. You should have knowledge or familiarity with cloud computing and basic knowledge of database and network deployment.

  14. Berkeley Nuclear Data Cloud

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-27

    The software was developed to serve and curate arbitrarily large datasets comprising data acquired from various mobile platforms. The software is contained in a number of server and client libraries. The former manage the ingestion, indexing, querying, and serving of the data. The latter libraries are distributed for Linux, Mac OSX, and Windows and enable users to interact with data downloaded from the service either in the form of an HDF5 file or streamed in a BSON data chunk. Using the Berkeley Data Cloud, researchers from varying fields can collaborate, compare results and curate both their raw data and the derived products of their analysis.

  15. Mapping in the cloud

    CERN Document Server

    Peterson, Michael P

    2014-01-01

    This engaging text provides a solid introduction to mapmaking in the era of cloud computing. It takes students through both the concepts and technology of modern cartography, geographic information systems (GIS), and Web-based mapping. Conceptual chapters delve into the meaning of maps and how they are developed, covering such topics as map layers, GIS tools, mobile mapping, and map animation. Methods chapters take a learn-by-doing approach to help students master application programming interfaces and build other technical skills for creating maps and making them available on the Internet. Th

  16. Grids, Clouds and Virtualization

    CERN Document Server

    Cafaro, Massimo

    2011-01-01

    Research into grid computing has been driven by the need to solve large-scale, increasingly complex problems for scientific applications. Yet the applications of grid computing for business and casual users did not begin to emerge until the development of the concept of cloud computing, fueled by advances in virtualization techniques, coupled with the increased availability of ever-greater Internet bandwidth. The appeal of this new paradigm is mainly based on its simplicity, and the affordable price for seamless access to both computational and storage resources. This timely text/reference int

  17. Defining the cloud battlefield - supporting security assessments by cloud customers

    NARCIS (Netherlands)

    Bleikertz, Sören; Mastelic, Toni; Pape, Sebastian; Pieters, Wolter; Dimkov, Trajce

    2013-01-01

    Cloud computing is becoming more and more popular, but security concerns overshadow its technical and economic benefits. In particular, insider attacks and malicious insiders are considered as one of the major threats and risks in cloud computing. As physical boundaries disappear and a variety of pa

  18. Defining the cloud battlefield - supporting security assessments by cloud customers

    NARCIS (Netherlands)

    Bleikertz, Sören; Mastelic, Toni; Pape, Sebastian; Pieters, Wolter; Dimkov, T.

    Cloud computing is becoming more and more popular, but security concerns overshadow its technical and economic benefits. In particular, insider attacks and malicious insiders are considered as one of the major threats and risks in cloud computing. As physical boundaries disappear and a variety of

  19. A Simple Cloud Reflectance Model for Ship Tracks in Clouds

    Science.gov (United States)

    1991-11-01

    A Simple Cloud Reflectance Model 01 for Ship Tracks in Clouds I OTIOSt 9L1, FIF MAR 16 1992J R. A. Siquig Forecast Guidance and Naval Systems...because of increased absorption. Note that this is based on the results for four wavelengths. Because of the undulatory nature of the imaginary part of

  20. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    Science.gov (United States)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  1. Cloud ERP and Cloud Accounting Software in Romania

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2015-05-01

    Full Text Available Nowadays, Cloud Computing becomes a more and more fashionable concept in the IT environment. There is no unanimous opinion on the definition of this concept, as it covers several versions of the newly emerged stage in the IT. But in fact, Cloud Computing should not suggest anything else than simplicity. Thus, in short, simple terms, Cloud Computing can be defined as a solution to use external IT resources (servers, storage media, applications and services, via Internet. Cloud computing is nothing more than the promise of an easy accessible technology. If the promise will eventually turn into something certain yet remains to be seen. In our opinion it is too early to make an assertion. In this article, our purpose is to find out what is the Romanian offer of ERP and Accounting software applications in Cloud and / or as services in SaaS version. Thus, we conducted an extensive study whose results we’ll present in the following.

  2. Statistical properties of cloud lifecycles in cloud-resolving models

    Directory of Open Access Journals (Sweden)

    R. S. Plant

    2008-12-01

    Full Text Available A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30 min, but events can lengthen the typical lifetime considerably.

  3. CloudGenius: Decision Support for Web Server Cloud Migration

    CERN Document Server

    Menzel, Michael

    2012-01-01

    Cloud computing is the latest computing paradigm that delivers hardware and software resources as virtualized services in which users are free from the burden of worrying about the low-level system administration details. Migrating Web applications to Cloud services and integrating Cloud services into existing computing infrastructures is non-trivial. It leads to new challenges that often require innovation of paradigms and practices at all levels: technical, cultural, legal, regulatory, and social. The key problem in mapping Web applications to virtualized Cloud services is selecting the best and compatible mix of software images (e.g., Web server image) and infrastructure services to ensure that Quality of Service (QoS) targets of an application are achieved. The fact that, when selecting Cloud services, engineers must consider heterogeneous sets of criteria and complex dependencies between infrastructure services and software images, which are impossible to resolve manually, is a critical issue. To overcom...

  4. Performance Evaluation of the CloudStack Private Cloud

    Directory of Open Access Journals (Sweden)

    Mumtaz M.Ali AL-Mukhtar

    2014-02-01

    Full Text Available The number of open source cloud platforms is increasing day by day.The features of these platforms vary significantly and this creates a difficulty for cloud consumers to choose the platforms based on their requirments.In this paper we build a private cloud using Cloudstack , a popular open source platform used to built Infrastructure as a Service(IaaS cloud.We presents its architecure and analyze performance of virtual machines initiated and managed by the Cloudstack in terms of CPU usage,memory bandwidth,disk I/O speed and networking performance using suitable benchmarks.Different vitual machine management operations such as add ,delete and live migration are also evaluated .The performance evaluation of Cloudstack can help to determine its suability to be adopted as on premise cloud solution.

  5. Daytime Land Cloud Detection Enhancements For The VIIRS Cloud Mask

    Science.gov (United States)

    Frey, R. A.; Heidinger, A. K.; Hutchinson, K. D.; Iisager, B.

    2005-12-01

    The first in a new series of polar-orbiting satellites, National Polar-Orbiting Operational Satellite System (NPOESS), is scheduled to be launched in 2008. The Visible/Infrared Imager/Radiometer Suite (VIIRS) is a major component of the series and will replace the AVHRR instrument on operational polar orbiters. A crucial piece of the VIIRS data processing chain is the VIIRS Cloud Mask (VCM). A high quality cloud detection system is necessary as a first step for most if not all of the algorithms which produce the 18 EDRs (Environmental Data Records) from VIIRS. A cloud detection scheme similar to the one developed for MODIS data (MOD35) will be implemented for VIIRS, but several enhancements have been investigated for daytime land scenes. During daylight hours over vegetated surfaces and in the absence of snow cover, use of the high contrast between clouds and surface in visible wavelengths offers the most sensitive clear/cloud discrimination. However, visible surface reflectances vary from about 10% over tropical rain forests to as high as 50% in arid regions, making the use of a single cloud test threshold very difficult. A set of reflectance thresholds based on NDVI and scattering angle has been developed from historical AVHRR data. Clear-sky NDVIs were accumulated as a function of scattering angle over a multi-year period and from morning and afternoon satellites, from which cloud test thresholds were developed. The thresholds were then tested on several AVHRR scenes. For extremely arid scenes, where visible reflectances from clouds and surface are similar, a cloud test using 0.4 μm data has been devised. This poster describes the development of both new cloud tests and associated thresholds, from initial tests using MODIS data to the calculation and implementation of the thresholds.

  6. Cloud Native Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    “It is not necessary to change. Survival is not mandatory.” -W. Edwards Deming Work takes time to flow through an organization and ultimately be deployed to production where it captures value. It’s critical to reduce time-to-production. Software – for many organizations and industries – is a competitive advantage. Organizations break their larger software ambitions into smaller, independently deployable, feature -centric batches of work – microservices. In order to reduce the round-trip between stations of work, organizations collapse or consolidate as much of them as possible and automate the rest; developers and operations beget “devops,” cloud-based services and platforms (like Cloud Foundry) automate operations work and break down the need for ITIL tickets and change management boards. But velocity, for velocity’s sake, is dangerous. Microservices invite architectural complexity that few are prepared to address. In this talk, we’ll look at how high performance organizations like Tic...

  7. Reviewing Molecular Clouds

    Science.gov (United States)

    Fernandez Lopez, Manuel

    2017-07-01

    The star formation process involves a wide range of spatial scales, densities and temperatures. Herschel observations of the cold and low density molecular gas extending tens of parsecs, that constitutes the bulk of the molecular clouds of the Milky Way, have shown a network of dense structures in the shape of filaments. These filaments supposedly condense into higher density clumps to form individual stars or stellar clusters. The study of the kinematics of the filaments through single-dish observations suggests the presence of gas flows along the filaments, oscillatory motions due to gravity infall, and the existence of substructure inside filaments that may be threaded by twisted fibers. A few molecular clouds have been mapped with interferometric resolutions bringing more insight into the filament structure. Compression due to large-scale supersonic flows is the preferred mechanism to explain filament formation although the exact nature of the filaments, their origin and evolution are still not well understood. Determining the turbulence drivers behind the origin of the filaments, the relative importance of turbulence, gravity and magnetic fields on regulating the filament structure and evolution, and providing detailed insight on the substructure inside the filaments are among the current open questions in this research area.

  8. Growing Cloud Computing Efficiency

    Directory of Open Access Journals (Sweden)

    Dr. Mohamed F. AlAjmi, Dr. Arun Sharma, Shakir Khan

    2012-05-01

    Full Text Available Cloud computing is basically altering the expectation for how and when computing, storage and networking assets should be allocated, managed and devoted. End-users are progressively more sensitive in response time of services they ingest. Service Developers wish for the Service Providers to make sure or give the ability for dynamically assigning and managing resources in respond to alter the demand patterns in real-time. Ultimately, Service Providers are under anxiety to build their infrastructure to facilitate real-time end-to-end visibility and energetic resource management with well grained control to decrease total cost of tenure for improving quickness. What is required to rethink of the underlying operating system and management infrastructure to put up the on-going renovation of data centre from the traditional server-centric architecture model to a cloud or network centric model? This paper projects and describes a indication model for a network centric data centre infrastructure management heap that make use of it and validates key ideas that have enabled dynamism, the quality of being scalable, reliability and security in the telecommunication industry to the computing engineering. Finally, the paper will explain a proof of concept classification that was implemented to show how dynamic resource management can be enforced to enable real-time service guarantee for network centric data centre architecture.

  9. The ethics of cloud computing

    NARCIS (Netherlands)

    de Bruin, Boudewijn; Floridi, Luciano

    2016-01-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informa

  10. Enhancing accountability in the cloud

    NARCIS (Netherlands)

    Jaatun, M.; Pearson, S.; Gittler, F.; Leenes, Ronald; van der Zwet, Maartje

    2016-01-01

    This article focuses on the role of accountability within information management, particularly in cloud computing contexts. Key to this notion is that an accountable Cloud Provider must demonstrate both willingness and capacity for being a responsible steward of other people's data. More generally,

  11. Cloud $_{Micro}$Atlas$^{∗}$

    Indian Academy of Sciences (India)

    Rama Govindarajan; S Ravichandran

    2017-03-01

    We begin by outlining the life cycle of a tall cloud, and thenbriefly discuss cloud systems. We choose one aspect of thislife cycle, namely, the rapid growth of water droplets in ice freeclouds, to then discuss in greater detail. Taking a singlevortex to be a building block of turbulence, we demonstrateone mechanism by which we believe droplets grow rapidly.

  12. Cloud computing assessing the risks

    CERN Document Server

    Carstensen, Jared; Golden, Bernard

    2012-01-01

    Cloud Computing: Assessing the risks answers these questions and many more. Using jargon-free language and relevant examples, analogies and diagrams, it is an up-to-date, clear and comprehensive guide the security, governance, risk, and compliance elements of Cloud Computing.

  13. Chemical evolution of molecular clouds

    Science.gov (United States)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  14. Big Data in der Cloud

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2014-01-01

    Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)......Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)...

  15. How to govern the cloud?

    NARCIS (Netherlands)

    Prüfer, J.; Diamond, S.; Wainwright, N.

    2013-01-01

    This paper applies economic governance theory to the cloud computing industry. We analyze which governance institution may be best suited to solve the problems stemming from asymmetric information about the true level of data protection, security, and accountability offered by cloud service provider

  16. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; Sinderen, van Marten; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  17. The ethics of cloud computing

    NARCIS (Netherlands)

    de Bruin, Boudewijn; Floridi, Luciano

    2016-01-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the

  18. Teaching Cybersecurity Using the Cloud

    Science.gov (United States)

    Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali

    2015-01-01

    Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…

  19. Cloud formation in giant planets

    CERN Document Server

    Helling, Christiane

    2007-01-01

    We calculate the formation of dust clouds in atmospheres of giant gas-planets. The chemical structure and the evolution of the grain size distribution in the dust cloud layer is discussed based on a consistent treatment of seed formation, growth/evaporation and gravitational settling. Future developments are shortly addressed.

  20. International Satellite Cloud Climatology Project (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of the...

  1. Climate Effects of Cloud Modified CCN-Cloud Interactions

    Science.gov (United States)

    Noble, S. R., Jr.; Hudson, J. G.

    2015-12-01

    Cloud condensation nuclei (CCN) play an important role in the climate system through the indirect aerosol effect (IAE). IAE is one of the least understood aspects of the climate system as many cloud processes are complicated. Many studies of aerosol-cloud interaction involve CCN interaction with cloud droplet concentrations (Nc), cloud microphysics, and radiative properties. However, fewer studies investigate how cloud processes modify CCN. Upon evaporation from non-precipitating clouds, CCN distributions develop bimodal shaped distributions (Hoppel et al. 1986). Activated CCN participate in cloud processing that is either chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Chemical processing does not change CCN concentration (NCCN) but reduces critical supersaturations (Sc; larger size) (Feingold and Kreidenweis, 2000) while physical processing reduces NCCN and Sc. These processes create the minima in the bimodal CCN distributions (Hudson et al., 2015). Updraft velocity (W) and NCCN are major factors on how these modified CCN distributions affect clouds. Panel a shows two nearby CCN distributions in the MArine Stratus/stratocumulus Experiment (MASE), which have similar concentrations, but the bimodal one (red) has been modified by cloud processing. In a simplified cloud droplet model, the modified CCN then produces higher Nc (panel b) and smaller droplet mean diameters (MD; panel c) when compared to the unmodified CCN (black) for W lower than 50 cm/s. The better CCN (lower Sc) increase competition among droplets reducing MD and droplet distribution spread (σ) which acts to reduce drizzle. Competition is created by limited available condensate due to lower S created by the low W (50 cm/s) typical of cumuli, Ncis reduced and MD is increased from the modified CCN distribution (panels b & c). Here, CCN cloud processing increases MD and σ leading to increased drizzle. Improved climate prediction requires a better understanding

  2. Cloud Computing: Exploring the scope

    CERN Document Server

    Pandey, Abhinav; Tandon, Ankit; Maurya, Brajesh Kr; Kushwaha, Upendra

    2010-01-01

    Cloud computing refers a paradigm shift to overall IT solutions while raising the accessibility, scalability and effectiveness through its enabling technologies. However, migrated cloud platforms and services cost benefits as well as performances are neither clear nor summarized. Globalization and the recessionary economic times have not only raised the bar of a better IT delivery models but also have given access to technology enabled services via internet. Cloud computing has vast potential in terms of lean Retail methodologies that can minimize the operational cost by using the third party based IT capabilities, as a service. It will not only increase the ROI but will also help in lowering the total cost of ownership. In this paper we have tried to compare the cloud computing cost benefits with the actual premise cost which an organization incurs normally. However, in spite of the cost benefits, many IT professional believe that the latest model i.e. "cloud computing" has risks and security concerns. This ...

  3. Cloud Database Management System (CDBMS

    Directory of Open Access Journals (Sweden)

    Snehal B. Shende

    2015-10-01

    Full Text Available Cloud database management system is a distributed database that delivers computing as a service. It is sharing of web infrastructure for resources, software and information over a network. The cloud is used as a storage location and database can be accessed and computed from anywhere. The large number of web application makes the use of distributed storage solution in order to scale up. It enables user to outsource the resource and services to the third party server. This paper include, the recent trend in cloud service based on database management system and offering it as one of the services in cloud. The advantages and disadvantages of database as a service will let you to decide either to use database as a service or not. This paper also will highlight the architecture of cloud based on database management system.

  4. The Future of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Anamaroa SIclovan

    2011-12-01

    Full Text Available

    Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered
    to the consumers as a product delivered online. This represents an advantage for the organization both regarding the cost and the opportunity for the new business. This paper presents the future perspectives in cloud computing. The paper presents some issues of the cloud computing paradigm. It is a theoretical paper.

    Keywords: Cloud Computing, Pay-per-use

  5. Trusted computing strengthens cloud authentication.

    Science.gov (United States)

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  6. Trusted Computing Strengthens Cloud Authentication

    Directory of Open Access Journals (Sweden)

    Eghbal Ghazizadeh

    2014-01-01

    Full Text Available Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM. Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  7. The Future of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Anamaroa SIclovan

    2011-12-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offeredto the consumers as a product delivered online. This represents an advantage for the organization both regarding the cost and the opportunity for the new business. This paper presents the future perspectives in cloud computing. The paper presents some issues of the cloud computing paradigm. It is a theoretical paper.Keywords: Cloud Computing, Pay-per-use

  8. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    Science.gov (United States)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  9. Cloud-Ground Interaction

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 30 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image of the North Polar water-ice clouds shows how surface topography can affect the linear form. Notice that the crater at the bottom of the image is causing a deflection in the linear form. Image information: VIS instrument. Latitude 68.4, Longitude 100.7 East (259.3 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and

  10. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  11. Cloud and Star Formation in Spiral Arms

    CERN Document Server

    Dobbs, Clare

    2014-01-01

    We present the results from simulations of GMC formation in spiral galaxies. First we discuss cloud formation by cloud-cloud collisions, and gravitational instabilities, arguing that the former is prevalent at lower galactic surface densities and the latter at higher. Cloud masses are also limited by stellar feedback, which can be effective before clouds reach their maximum mass. We show other properties of clouds in simulations with different levels of feedback. With a moderate level of feedback, properties such as cloud rotations and virial parameters agree with observations. Without feedback, an unrealistic population of overly bound clouds develops. Spiral arms are not found to trigger star formation, they merely gather gas into more massive GMCs. We discuss in more detail interactions of clouds in the ISM, and argue that these are more complex than early ideas of cloud-cloud collisions. Finally we show ongoing work to determine whether the Milky Way is a flocculent or grand design spiral.

  12. Evolution of Cloud Storage as Cloud Computing Infrastructure Service

    OpenAIRE

    Rajan, Arokia Paul; Shanmugapriyaa

    2013-01-01

    Enterprises are driving towards less cost, more availability, agility, managed risk - all of which is accelerated towards Cloud Computing. Cloud is not a particular product, but a way of delivering IT services that are consumable on demand, elastic to scale up and down as needed, and follow a pay-for-usage model. Out of the three common types of cloud computing service models, Infrastructure as a Service (IaaS) is a service model that provides servers, computing power, network bandwidth and S...

  13. Cloud Security A Comprehensive Guide to Secure Cloud Computing

    CERN Document Server

    Krutz, Ronald L

    2010-01-01

    Well-known security experts decipher the most challenging aspect of cloud computing-security. Cloud computing allows for both large and small organizations to have the opportunity to use Internet-based services so that they can reduce start-up costs, lower capital expenditures, use services on a pay-as-you-use basis, access applications only as needed, and quickly reduce or increase capacities. However, these benefits are accompanied by a myriad of security issues, and this valuable book tackles the most common security challenges that cloud computing faces. The authors offer you years of unpa

  14. Horizontal distribution of mixed cloud type scene

    Science.gov (United States)

    Guillaume, A.; Kahn, B. H.; Yue, Q.; Wong, S.; Manipon, G.; Hua, H.; Wilson, B. D.; Wang, T.; Fetzer, E. J.

    2016-12-01

    We describe a novel method to uniquely characterize and quantify the scale dependence of mixed cloud scene geometry using cloud type classification reported with the 94GHz CloudSat radar. Only a fraction of all possible combinations of cloud types are observed at any along-track length scale considered. Cloud scenes most frequently contain only one or two cloud types. We show how cloud occurrence depends on the grid cell spatial resolution used to define cloud scenes. A maximum number of observed cloud scenes occur near 100 km with fewer cloud type combinations at smaller and larger scales. We then quantify the cloud lengths along the CloudSat track using both the cloud top classification and the vertical structure of cloud classification separately for each of the nine cloud types defined by CloudSat and for all clouds considered independent of cloud type. While the individual cloud types do not follow a clear power law behavior as a function of horizontal or vertical scale, a robust power law scaling of cloud geometry is observed when cloud type is not considered. The power law scaling exponent of horizontal length is approximated by β ≈ -5/3 over two to three orders of magnitude. The power law scaling exponent of vertical length is approximated by β ≈ -7/3 over two orders of magnitude. These exponents are in agreement with previous studies using numerical models, satellite, and in situ aircraft observations. In particular, the anisotropy in the horizontal and vertical scaling are nearly identical to recent aircraft observations of wind kinetic energy spectra, suggesting the underlying three-dimensional cloud geometry is strongly related to kinetic energy spectra.

  15. Molecular clouds without detectable CO

    Science.gov (United States)

    Blitz, Leo; Bazell, David; Desert, F. Xavier

    1990-03-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to ben an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase

  16. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  17. Data mining in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ruxandra-Ştefania PETRE

    2012-10-01

    Full Text Available This paper describes how data mining is used in cloud computing. Data Mining is used for extracting potentially useful information from raw data. The integration of data mining techniques into normal day-to-day activities has become common place. Every day people are confronted with targeted advertising, and data mining techniques help businesses to become more efficient by reducing costs.Data mining techniques and applications are very much needed in the cloud computing paradigm. The implementation of data mining techniques through Cloud computing will allow the users to retrieve meaningful information from virtually integrated data warehouse that reduces the costs of infrastructure and storage.

  18. Cloud computing for enterprise architectures

    CERN Document Server

    Mahmood, Zaigham

    2011-01-01

    This important text provides a single point of reference for state-of-the-art cloud computing design and implementation techniques. The book examines cloud computing from the perspective of enterprise architecture, asking the question; how do we realize new business potential with our existing enterprises? Its topics and features are: with a Foreword by Thomas Erl; contains contributions from an international selection of preeminent experts; presents the state-of-the-art in enterprise architecture approaches with respect to cloud computing models, frameworks, technologies, and applications; di

  19. Mobile Cloud Computing and Applications

    Institute of Scientific and Technical Information of China (English)

    Chengzhong Xu

    2011-01-01

    @@ In 2010, cloud computing gained momentum.Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources.It has matured from a promising business concept to a working reality in both the private and public IT sectors.The U.S.government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.

  20. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    Science.gov (United States)

    2013-09-30

    prevent sticking. They were dispersed using a mechanism that auger fed particles into fluidized bed of grit before emitting them to the outside in a...objectives are to: 1) document the structure and characteristics of entrainment circulations in marine stratocumulus and fair-weather-cumuli, 2...characterize the vertical distribution of drizzle and how it relates to cloud and mesoscale circulations ; 3) investigate the relative role of cloud

  1. Towards a service centric contextualized vehicular cloud

    NARCIS (Netherlands)

    Hu, Xiping; Wang, Lei; Sheng, Zhengguo; TalebiFard, Peyman; Zhou, Li; Liu, Jia; Leung, Victor C.M.

    2014-01-01

    This paper proposes a service-centric contextualized vehicular (SCCV) cloud platform to facilitate the deployment and delivery of cloud-based mobile applications over vehicular networks. SCCV cloud employs a multi-tier architecture that consists of the network, mobile device, and cloud tiers. Based

  2. New diagnostic for X-ray diffraction measurements at extra-solar planets conditions (Invited)

    Science.gov (United States)

    Coppari, F.; Smith, R.; Eggert, J.; Rygg, J. R.; Lazicki, A.; Hawreliak, J.; Wang, J.; Duffy, T. S.; Hicks, D. G.; Boehly, T.; Collins, G. W.

    2013-12-01

    A method for obtaining powder diffraction data on dynamically-compressed solids at multi-megabar pressures has been implemented at the OMEGA Laser Facility [1]. We use laser-driven ramp-compression to generate pressures well within the multi-megabar regime. The drive laser pulse shape is designed so to avoid generation of lots of heating (as in shock-compression) so that the material stays into the solid state. Quasi-monochromatic x-ray radiation is generated by illumination of a metallic foil by laser beams and the diffraction patterns are recorded in transmission geometry by image plates. Simultaneous velocimetry measurements using VISAR allow pressure estimation. This diagnostic has been used to study the structure and phase transitions of a variety of materials (low and high-Z), including Ta, Sn and Mo. We have also studied elements and compounds relevant to geophysics and planetary science at unprecedented high pressures, providing experimental constraints to the equations of states of matter at conditions previously accessible to theoretical simulations only. Performing experiments at the pressure and temperature conditions expected in the interiors of massive planets is of fundamental importance for constraining models describing their interior structure and evolution [2]. These models are currently based on extrapolation of lower pressure-temperature experiments and untested theoretical simulations, resulting in large uncertainties [3]. Here I will present results obtained on MgO, Fe and preliminary analysis of recent FeO data. MgO has been ramp-compressed up to 9 Mbar and diffraction measurements provided the first structural evidence for the occurrence of the B1-B2 phase transition at 6 Mbar [4]. Fe has been studied up to 5 Mbar and the stability of the ɛ phase (hcp-Fe) has been demonstrated by x-ray diffraction measurements. Ramp-compression of FeO in the 3 and 7 Mbar pressure regime significantly extended the knowledge of the phase diagram of this material, showing that the B2 structure is stable in this pressure range. We thank the Omega staff at LLE for assistance during experiments and the Target Engineering Team at LLNL for targets preparation. This work was performed under the auspices of the U.S. Department of Energy by Livermore National Laboratory under contract No. DE-AC52-07NA27344. Part of the research was supported by NNSA/DOE through the National Laser Users' Facility Program under contracts DE-NA0000856 and DE-FG52-09NA29037 and by the Laboratory Directed Research and Development program at LLNL (project number 12-SI-007). References: [1] J. R. Rygg, et al, Rev. Sci. Instr., 83, 113904 (2012). [2] D. C. Swift, et al, Astrophys. J., 541, A103 (2012). [3] D. Valencia, et al, Icarus, 181, 545 (2006). [4] F. Coppari. et al, accepted Nature Geoscience (2013).

  3. Spectroscopic direct detection of reflected light from extra-solar planets

    CERN Document Server

    Martins, Jorge H C; Santos, Nuno; Lovis, Christophe

    2013-01-01

    At optical wavelengths, an exoplanet's signature is essentially reflected light from the host star - several orders of magnitude fainter. Since it is superimposed on the star spectrum its detection has been a difficult observational challenge. However, the development of a new generation of instruments like ESPRESSO and next generation telescopes like the E-ELT put us in a privileged position to detect these planets' reflected light as we will have access to extremely high signal-to-noise ratio spectra. With this work, we propose an alternative approach for the direct detection of the reflected light of an exoplanet. We simulated observations with ESPRESSO@VLT and HIRES@E-ELT of several star+planet systems, encompassing 10h of the most favourable orbital phases. To the simulated spectra we applied the Cross Correlation Function to operate in a much higher signal-to-noise ratio domain than when compared with the spectra. The use of the Cross-Correlation Function permitted us to recover the simulated the planet...

  4. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    Science.gov (United States)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.

  5. The HARPS search southern extra-solar planets. VII. A very hot jupiter orbiti HD 212301

    DEFF Research Database (Denmark)

    Lo Curto, G.; Mayor, M.; Clausen, J.V.;

    2006-01-01

    Stars: individual : HD212301 - stars : planetary systems - techniques : radial velocities - techniques: spectroscopic - instrumentation : spectrographs......Stars: individual : HD212301 - stars : planetary systems - techniques : radial velocities - techniques: spectroscopic - instrumentation : spectrographs...

  6. An observational signature of evolved oceans on extra-solar terrestrial planets

    OpenAIRE

    Jura, M.

    2004-01-01

    The increase in luminosity with time of a main sequence star eventually can lead to substantial evaporation of the oceans on an orbiting terrestrial planet. Subsequently, the gas phase water in the planet's upper atmosphere can be photodissociated by stellar ultraviolet and the resulting atomic hydrogen then may be lost in a wind. This gaseous envelope may pass in front of the host star and produce tansient, detectable ultraviolet absorption in the Lyman lines in systems older than 1 Gyr.

  7. A New Channel to Search for Extra-solar Systems with Multiple Planets via Gravitational Microlensing

    CERN Document Server

    Han, C; Han, Cheongho; Park, Myeong-Gu

    2002-01-01

    Gaudi, Naber & Sackett pointed out that if an event is caused by a lens system containing more than two planets, all planets will affect the central region of the magnification pattern, and thus the existence of the multiple planets can be inferred by detecting additionally deformed anomalies from intensive monitoring of high magnification events. Unfortunately, this method has important limitations in identifying the existence of multiple planets and determining their parameters due to the degeneracy of the resulting light curve anomalies from those induced by a single planet and the complexity of multiple planet lensing models. In this paper, we propose a new channel to search for multiple planets via microlensing. The method is based on the fact that the anomalies induced by multiple planets are well approximated by the superposition of those of the single planet systems where the individual planet-primary pairs act as independent lens systems. Then, if the source trajectory passes both of the outer de...

  8. Direct Imaging of Extra-Solar Planets – Homogeneous Comparison of Detected Planets and Candidates

    OpenAIRE

    Neuhäuser, Ralph; Schmidt, Tobias

    2012-01-01

    Searching the literature, we found 25 stars with directly imaged planets and candidates. We gathered photometric and spectral information for all these objects to derive their luminosities in a homogeneous way, taking a bolometric correction into account. Using theoretical evolutionary models, one can then estimate the mass from luminosity, temperature, and age. According to our mass estimates, all of them can have a mass below 25 Jup masses, so that they are considered as planets.

  9. Hidden in the Clouds: New Ideas in Cloud Computing

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Abstract: Cloud computing has become a hot topic. But 'cloud' is no newer in 2013 than MapReduce was in 2005: We've been doing both for years. So why is cloud more relevant today than it ever has been? In this presentation, we will introduce the (current) central thesis of cloud computing, and explore how and why (or even whether) the concept has evolved. While we will cover a little light background, our primary focus will be on the consequences, corollaries and techniques introduced by some of the leading cloud developers and organizations. We each have a different deployment model, different applications and workloads, and many of us are still learning to efficiently exploit the platform services offered by a modern implementation. The discussion will offer the opportunity to share these experiences and help us all to realize the benefits of cloud computing to the fullest degree. Please bring questions and opinions, and be ready to share both!   Bio: S...

  10. Secure Data Sharing in Cloud Computing using Hybrid cloud

    Directory of Open Access Journals (Sweden)

    Er. Inderdeep Singh

    2015-06-01

    Full Text Available Cloud computing is fast growing technology that enables the users to store and access their data remotely. Using cloud services users can enjoy the benefits of on-demand cloud applications and data with limited local infrastructure available with them. While accessing the data from cloud, different users may have relationship among them depending on some attributes, and thus sharing of data along with user privacy and data security becomes important to get effective results. Most of the research has been done to secure the data authentication so that user’s don’t lose their private data stored on public cloud. But still data sharing is a significant hurdle to overcome by researchers. Research is going on to provide secure data sharing with enhanced user privacy and data access security. In this paper various research and challenges in this area are discussed in detail. It will definitely help the cloud users to understand the topic and researchers to develop a method to overcome these challenges.

  11. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  12. The design of cloud workflow systems

    CERN Document Server

    Liu, Xiao; Zhang, Gaofeng

    2011-01-01

    Cloud computing is the latest market-oriented computing paradigm which brings software design and development into a new era characterized by ""XaaS"", i.e. everything as a service. Cloud workflows, as typical software applications in the cloud, are composed of a set of partially ordered cloud software services to achieve specific goals. However, due to the low QoS (quality of service) nature of the cloud environment, the design of workflow systems in the cloud becomes a challenging issue for the delivery of high quality cloud workflow applications. To address such an issue, this book presents

  13. Characterization of Cloud Water-Content Distribution

    Science.gov (United States)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  14. Research computing in a distributed cloud environment

    Energy Technology Data Exchange (ETDEWEB)

    Fransham, K; Agarwal, A; Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J, E-mail: fransham@uvic.ca

    2010-11-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  15. Trust level of Clouds by Scheduling

    Directory of Open Access Journals (Sweden)

    Deva Sinha K.

    2015-11-01

    Full Text Available Cloud computing is a virtual storage which is used to store the data and information in secure manner. This project which gives a trustworthy to the cloud user from Admin without knowing the infrastructure and its properties of cloud. Cloud scheduled safety-critical data processing needs are beginning to push back strongly against using cloud computing, users will find that cloud scheduling will be maintained by the user to store their data on the cloud to create trust them . We have overcome this problem; a trusted cloud computing platform (TCCP proposed design. TCCP guarantees the implementation of the guest virtual machines to provide a closed box execution environment as a Service (IaaS providers such as Amazon EC2 allowing infrastructure. To protect a data in a secured way, while cloud user uploading a data it will get encrypted which means non readable format and when cloud user downloading a data it will get decrypted.

  16. Trust level of Clouds by Scheduling

    Directory of Open Access Journals (Sweden)

    Deva Sinha K

    2014-03-01

    Full Text Available Cloud computing is a virtual storage which is used to store the data and information in secure manner. This project which gives a trustworthy to the cloud user from Admin without knowing the infrastructure and its properties of cloud. Cloud scheduled safety-critical data processing needs are beginning to push back strongly against using cloud computing, users will find that cloud scheduling will be maintained by the user to store their data on the cloud to create trust them . We have overcome this problem; a trusted cloud computing platform (TCCP proposed design. TCCP guarantees the implementation of the guest virtual machines to provide a closed box execution environment as a Service (IaaS providers such as Amazon EC2 allowing infrastructure. To protect a data in a secured way, while cloud user uploading a data it will get encrypted which means non readable format and when cloud user downloading a data it will get decrypted.

  17. Research computing in a distributed cloud environment

    Science.gov (United States)

    Fransham, K.; Agarwal, A.; Armstrong, P.; Bishop, A.; Charbonneau, A.; Desmarais, R.; Hill, N.; Gable, I.; Gaudet, S.; Goliath, S.; Impey, R.; Leavett-Brown, C.; Ouellete, J.; Paterson, M.; Pritchet, C.; Penfold-Brown, D.; Podaima, W.; Schade, D.; Sobie, R. J.

    2010-11-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  18. Cloud Infrastructure Service Management - A Review

    Directory of Open Access Journals (Sweden)

    A. Anasuya Threse Innocent

    2012-03-01

    Full Text Available The new era of computing called Cloud Computing allows the user to access the cloud services dynamically over the Internet wherever and whenever needed. Cloud consists of data and resources; and the cloud services include the delivery of software, infrastructure, applications, and storage over the Internet based on user demand through Internet. In short, cloud computing is a business and economic model allowing the users to utilize high-end computing and storage virtually with minimal infrastructure on their end. Cloud has three service models namely, Cloud Software-as-a-Service (SaaS, Cloud Platform-as-a-Service (PaaS, and Cloud Infrastructure-as-a-Service (IaaS. This paper talks in depth of cloud infrastructure service management.

  19. Graph kernels between point clouds

    CERN Document Server

    Bach, Francis

    2007-01-01

    Point clouds are sets of points in two or three dimensions. Most kernel methods for learning on sets of points have not yet dealt with the specific geometrical invariances and practical constraints associated with point clouds in computer vision and graphics. In this paper, we present extensions of graph kernels for point clouds, which allow to use kernel methods for such ob jects as shapes, line drawings, or any three-dimensional point clouds. In order to design rich and numerically efficient kernels with as few free parameters as possible, we use kernels between covariance matrices and their factorizations on graphical models. We derive polynomial time dynamic programming recursions and present applications to recognition of handwritten digits and Chinese characters from few training examples.

  20. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  1. Unidata Cyberinfrastructure in the Cloud

    Science.gov (United States)

    Ramamurthy, M. K.; Young, J. W.

    2016-12-01

    Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers

  2. VMware vCloud director cookbook

    CERN Document Server

    Langenhan, Daniel

    2013-01-01

    VMware vCloud Director Cookbook will adopt a Cookbook-based approach. Packed with illustrations and programming examples, this book explains the simple as well as the complex recipes in an easy-to-understand language.""VMware vCloud Director Cookbook"" is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments. Familiarity with cloud computing platforms and some knowledge of virtualization and managing cloud environments is expected.

  3. Cloud Security: Issues and Research Directions

    Science.gov (United States)

    2014-11-18

    al. present two storage isolation schemes that enable cloud users with high security requirements to verify that their disk storage is isolated from...Proof of Isolation for Cloud Storage Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing 6. Selective and Fine-Grained Access to Data in the Cloud ... Cloud Security: Issues and Research Directions We organized an invitational workshop at George Mason University on Cloud Security: Issues and Research

  4. Cloud computing methods and practical approaches

    CERN Document Server

    Mahmood, Zaigham

    2013-01-01

    This book presents both state-of-the-art research developments and practical guidance on approaches, technologies and frameworks for the emerging cloud paradigm. Topics and features: presents the state of the art in cloud technologies, infrastructures, and service delivery and deployment models; discusses relevant theoretical frameworks, practical approaches and suggested methodologies; offers guidance and best practices for the development of cloud-based services and infrastructures, and examines management aspects of cloud computing; reviews consumer perspectives on mobile cloud computing an

  5. Cloud Top Scanning radiometer (CTS)

    Science.gov (United States)

    1978-01-01

    A scanning radiometer to be used for measuring cloud radiances in each of three spectral regions is described. Significant features incorporated in the Cloud Top Scanner design are: (1) flexibility and growth potential through use of easily replaceable modular detectors and filters; (2) full aperture, multilevel inflight calibration; (3) inherent channel registration through employment of a single shared field stop; and (4) radiometric sensitivity margin in a compact optical design through use of Honeywell developed (Hg,Cd)Te detectors and preamplifiers.

  6. Horizontally oriented plates in clouds

    CERN Document Server

    Bréon, François-Marie

    2011-01-01

    Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as "subsun". This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud top layer and their characteristic tilt angle to the horizontal. We make use of spaceborne measurements from the POLDER instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10-3 and 10-2. For those oriented plates, the characteristic tilt angle is less than 1 degree in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500-700 hPa, in agreement with typical in situ observation of p...

  7. Considerations about Cloud Services: Learning

    Directory of Open Access Journals (Sweden)

    Riccardo Cognini

    2013-05-01

    Full Text Available Cloud services are ubiquitous: for small to large companies the phenomenon of cloud service is nowadays a standard business practice. This paper would compile an analysis over a possible implementation of a cloud system, treating especially the legal aspect of this theme. In the Italian market has a large number of issues arise form cloud computing. First of all, this paper investigates the legal issues associated to cloud computing, specific contractual scheme that is able to define rights a duties both of user (private and/or public body and cloud provider. On one side there is all the EU legislative production related to privacy over electronic communication and, furthermore, the Privacy Directive is under a revision process to be more adaptable to new challenges of decentralized data treatment, but concretely there are no any structured and well defined legal instruments. Objectives: we present a possible solution to address the uncertainty of this area, starting from the EU legislative production with the help of the specific Italian scenario that could offer an operative solution. Indeed the Italian legal system is particularly adaptable to changing technologies and it could use as better as possible to adapt the already existing legal tools to this new technological era. Prior work: after an introduction to the state of the art, we show the main issues and their critical points that must be solved. Approach: observation of the state of the art to propose a new approach to find the suitable disciple

  8. Cloud computing for comparative genomics.

    Science.gov (United States)

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  9. Evolution of molecular clouds

    Science.gov (United States)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  10. Geometric characteristics of clouds from ceilometer measurements and radiosounding methods

    OpenAIRE

    Costa Surós, Montse

    2014-01-01

    Improving methods for automatic and continuous description of cloud has a huge importance in order to determine the role of clouds in climate and their contribution to climate change. The geometric characteristics of clouds, such as the cloud cover and the cloud vertical structure (CVS), including the cloud base height (CBH) which is linked to cloud type, are very important for describing the impact clouds have on the atmosphere. It is presented a complete study of the cloud cover and the...

  11. The Community Cloud Atlas - Building an Informed Cloud Watching Community

    Science.gov (United States)

    Guy, N.; Rowe, A.

    2014-12-01

    The sky is dynamic, from long lasting cloud systems to ethereal, fleeting formations. After years of observing the sky and growing our personal collections of cloud photos, we decided to take to social media to share pictures, as well as build and educate a community of cloud enthusiasts. We began a Facebook page, the Community Cloud Atlas, described as "...the place to show off your pictures of the sky, identify clouds, and to discuss how specific cloud types form and what they can tell you about current and future weather." Our main goal has been to encourage others to share their pictures, while we describe the scenes from a meteorological perspective and reach out to the general public to facilitate a deeper understanding of the sky. Nearly 16 months later, we have over 1400 "likes," spanning 45 countries with ages ranging from 13 to over 65. We have a consistent stream of submissions; so many that we decided to start a corresponding blog to better organize the photos, provide more detailed explanations, and reach a bigger audience. Feedback from users has been positive in support of not only sharing cloud pictures, but also to "learn the science as well as admiring" the clouds. As one community member stated, "This is not 'just' a place to share some lovely pictures." We have attempted to blend our social media presence with providing an educational resource, and we are encouraged by the response we have received. Our Atlas has been informally implemented into classrooms, ranging from a 6th grade science class to Meteorology courses at universities. NOVA's recent Cloud Lab also made use of our Atlas as a supply of categorized pictures. Our ongoing goal is to not only continue to increase understanding and appreciation of the sky among the public, but to provide an increasingly useful tool for educators. We continue to explore different social media options to interact with the public and provide easier content submission, as well as software options for

  12. Zen of cloud learning cloud computing by examples on Microsoft Azure

    CERN Document Server

    Bai, Haishi

    2014-01-01

    Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides comprehensive coverage of the essential theories behind cloud computing and the Windows Azure cloud platform. Sharing the author's insights gained while working at Microsoft's headquarters, it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical cloud-based scenarios.The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and cloud, and system integration and project management. Each chapter contains detailed exercises that provide readers w

  13. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  14. Guidelines for Building a Private Cloud Infrastructure

    DEFF Research Database (Denmark)

    Ali Babar, Muhammad; Pantić, Zoran

    Cloud computing has become an extremely attractive area of research and practice over the last few years. An increasing number of public and private sector organizations have either adopted cloud computing based solutions or are seriously considering a move to cloud computing. However...... concepts of cloud computing and then elaborate on the practical aspects concerning the design, installation and implementation of a private cloud using open source solution. It is expected that organizations looking at the possibilities for implementing cloud solutions would benefit from getting the basics......, there are many concerns about adopting and using public cloud solutions. Hence, private cloud solutions are becoming an attractive alternative to a large number of companies. We initiated a project aimed at designing and setting up a private cloud infrastructure in an academic and scientific environment based...

  15. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  16. Cloud computing development in Armenia

    Directory of Open Access Journals (Sweden)

    Vazgen Ghazaryan

    2014-10-01

    Full Text Available Purpose – The purpose of the research is to clarify benefits and risks in regards with data protection, cost; business can have by the use of this new technologies for the implementation and management of organization’s information systems.Design/methodology/approach – Qualitative case study of the results obtained via interviews. Three research questions were raised: Q1: How can company benefit from using Cloud Computing compared to other solutions?; Q2: What are possible issues that occur with Cloud Computing?; Q3: How would Cloud Computing change an organizations’ IT infrastructure?Findings – The calculations provided in the interview section prove the financial advantages, even though the precise degree of flexibility and performance has not been assessed. Cloud Computing offers great scalability. Another benefit that Cloud Computing offers, in addition to better performance and flexibility, is reliable and simple backup data storage, physically distributed and so almost invulnerable to damage. Although the advantages of Cloud Computing more than compensate for the difficulties associated with it, the latter must be carefully considered. Since the cloud architecture is relatively new, so far the best guarantee against all risks it entails, from a single company's perspective, is a well-formulated service-level agreement, where the terms of service and the shared responsibility and security roles between the client and the provider are defined.Research limitations/implications – study was carried out on the bases of two companies, which gives deeper view, but for more widely applicable results, a wider analysis is necessary.Practical implications:Originality/Value – novelty of the research depends on the fact that existing approaches on this problem mainly focus on technical side of computing.Research type: case study

  17. Liquid Cloud Responses to Soot

    Science.gov (United States)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  18. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications

    Science.gov (United States)

    Wang, Tao; Fetzer, Eric J.; Wong, Sun; Kahn, Brian H.; Yue, Qing

    2016-10-01

    Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud observations (MYD06) at 1 km are collocated with daytime CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (C-C) cloud vertical structures (2B-CLDCLASS-LIDAR). For 2007-2010, over 267 million C-C cloud profiles are used to (1) validate MODIS cloud mask and cloud multilayer flag and (2) cross-reference between C-C cloud types and MODIS cloud regimes defined by joint histograms of cloud top pressure (CTP) and cloud optical depth (τ). Globally, of total observations, C-C reports 27.1% clear and 72.9% cloudy, whereas MODIS reports 30.0% confidently clear and 58.7% confidently cloudy, with the rest 7.1% as probably clear and 4.2% as probably cloudy. Agreement between MODIS and C-C is 77.8%, with 20.9% showing both clear and 56.9% showing both cloudy. The 9.1% of observations are clear in MODIS but cloudy in C-C, indicating clouds missed by MODIS; 1.8% of observations are cloudy in MODIS but clear in C-C, likely due to aerosol/dust or surface snow layers misidentified by MODIS. C-C reports 47.4/25.5% single-layer/multilayer clouds, while MODIS reports 26.7/14.0%. For C-C single-layer clouds, 90% of tropical MODIS high (CTP 23) clouds are recognized as deep convective in C-C. Approximately 70% of MODIS low-level (CTP > 680 hPa) clouds are classified as stratocumulus in C-C regardless of region and optical thickness. No systematic relationship exists between MODIS middle-level (680 < CTP < 440 hPa) clouds and C-C cloud types, largely due to different definitions adopted.

  19. How small is a small cloud?

    Directory of Open Access Journals (Sweden)

    I. Koren

    2008-07-01

    Full Text Available The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds.

    Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing.

    The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels.

    We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS the average "cloud-free" reflectance at 1.65 μm increases from 0.0095 to 0.0115 (>20%, the cloud reflectance decreases from 0.13 to 0.066 (~50%, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.

  20. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Science.gov (United States)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  1. Intensification of convective extremes driven by cloud-cloud interaction

    CERN Document Server

    Moseley, Christopher; Berg, Peter; Haerter, Jan O

    2015-01-01

    In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if precipitation intensities will increase mainly due to modified thermodynamic forcing or due to stronger convective dynamics. In gradual self-organization, convective events produce highest intensities late in the day. Tracking rain cells throughout their life cycles, we find that interacting events respond strongly to changes in boundary conditions. Conversely, events without interaction remain unaffected. Increased surface temperature indeed leads to more interaction and higher precipitation extremes. However, a similar intensification occurs when leaving temperature unchanged but simply granting more time for self-organization.Our study implies that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. Our results implicate that the dynamical interaction between convective clouds must be incorpor...

  2. Generalized scale invariance, clouds and radiative transfer on multifractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S.; Schertzer, D. [Univ. Pierre et Marie Curie, Paris (France)

    1995-09-01

    Recent systematic satellite studies (LANDSAT, AVHRR, METEOSAT) of cloud radiances using (isotropic) energy spectra have displayed excellent scaling from at least about 300m to about 4000km, even for individual cloud pictures. At first sight, this contradicts the observed diversity of cloud morphology, texture and type. The authors argue that the explanation of this apparent paradox is that the differences are due to anisotropy, e.g. differential stratification and rotation. A general framework for anisotropic scaling expressed in terms of isotropic self-similar scaling and fractals and multifractals is needed. Schertzer and Lovejoy have proposed Generalized Scale Invariance (GSI) in response to this need. In GSI, the statistics of the large and small scales of system can be related to each other by a scale changing operator T{sub {lambda}} which depends only on the scale ratio {lambda}{sub i} there is no characteristic size. 3 refs., 1 fig.

  3. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings or citat......Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...

  4. Radiation feedback in dusty clouds

    CERN Document Server

    Ishiki, Shohei

    2016-01-01

    We have investigated the impact of photoionization and radiation pressure on a dusty star-forming cloud by one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. We find that even in a moderately dusty cloud with the infrared optical depth of 0.15, radiation pressure has strong impact on driving an outflow, while the effect of radiation pressure is negligible in a dustless cloud. The radiation pressure on dust creates an HII region whose density is much lower than that in a dustless cloud where an outflow is driven by thermal pressure of ionized gas. Due to the radiation pressure, a shocked shell expands with high velocity, > 100 km s^-1. Absorption of re-emitted photons by dust plays a significant role in driving an outflow when the infrared optical depth becomes unity and it increases the importance of radiation pressure. The column density of clouds decreases with very short timescale owing to the shell expansion. Because of the decline of the infra...

  5. Advances in the TRIDEC Cloud

    Science.gov (United States)

    Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven

    2016-04-01

    The TRIDEC Cloud is a platform that merges several complementary cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The platform offers a modern web-based graphical user interface so that operators in warning centres and stakeholders of other involved parties (e.g. CPAs, ministries) just need a standard web browser to access a full-fledged early warning and information system with unique interactive features such as Cloud Messages and Shared Maps. Furthermore, the TRIDEC Cloud can be accessed in different modes, e.g. the monitoring mode, which provides important functionality required to act in a real event, and the exercise-and-training mode, which enables training and exercises with virtual scenarios re-played by a scenario player. The software system architecture and open interfaces facilitate global coverage so that the system is applicable for any region in the world and allow the integration of different sensor systems as well as the integration of other hazard types and use cases different to tsunami early warning. Current advances of the TRIDEC Cloud platform will be summarized in this presentation.

  6. Chemistry in Infrared Dark Clouds

    CERN Document Server

    Vasyunina, T; Henning, Th; Zinchenko, I; Beuther, H; Voronkov, M

    2010-01-01

    Massive stars play an important role in shaping the structure of galaxies. Infrared dark clouds (IRDCs), with their low temperatures and high densities, have been identified as the potential birthplaces of massive stars. In order to understand the formation processes of massive stars the physical and chemical conditions in infrared dark clouds have to be characterized. The goal of this paper is to investigate the chemical composition of a sample of southern infrared dark clouds. One important aspect of the observations is to check, if the molecular abuncances in IRDCs are similar to the low-mass pre-stellar cores, or whether they show signatures of more evolved evolutionary stages. We performed observations toward 15 IRDCs in the frequency range between 86 and 93 GHz using the 22-m Mopra radio telescope. We detect HNC, HCO$^+$ and HNC emission in all clouds and N$_2$H$^+$ in all IRDCs except one. In some clouds we detect SiO emission. Complicated shapes of the HCO$^+$ emission line profile are found in all IR...

  7. Towards Successful Cloud Ordering Service

    Directory of Open Access Journals (Sweden)

    Chen Yan-Kwang

    2015-03-01

    Full Text Available Background: The rise of cloud services has led to a drastic growth of e-commerce and a greater investment in development of new cloud services systems by related industries. For SaaS developers, it is important to understand customer needs and make use of available resources at as early as the system design and development stage. Objectives: This study integrates E-commerce Systems (ECS Success model and Importance-Performance Analysis (IPA into empirical research of the critical factors for cloud ordering system success. Methods/Approach: A survey research is conducted to collect data on customer perceptions of the importance and performance of each attribute of the particular cloud ordering service. The sample is further divided according to the degree of use of online shopping into high-usage users and low-usage users in order to explore their views regarding the system and generate adequate coping strategies. Results: Developers of online ordering systems can refer to the important factors obtained in this study when planning strategies of product/service improvement. Conclusions: The approach proposed in this study can also be applied to evaluation of other kinds of cloud services systems.

  8. AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS/AMSU retrievals at AMSU footprints, CloudSat radar reflectivities,...

  9. FAME-C: Retrieval of cloud top pressure with vertically inhomogeneous cloud profiles

    Science.gov (United States)

    Henken, Cintia Carbajal; Lindstrot, Rasmus; Filipitsch, Florian; Walther, Andi; Preusker, Rene; Fischer, Jürgen

    2013-05-01

    A synergistic FAME-C (Freie Universität Berlin AATSR-MERIS Cloud Retrieval) algorithm is developed within the frame of the ESA CCI Cloud project. Within FAME-C the ratio of two MERIS measurements (the Oxygen-A absorption channel and a window channel) is used to retrieve cloud top pressure. In case of high, extended clouds the retrieved cloud top pressure is generally too high. This can be understood as an overestimation of extinction in upper cloud layers due to the assumption of vertical homogeneous clouds in the radiative transfer simulations. To include more realistic cloud vertical profiles, one year of data from the Cloud Profiling Radar (CPR) onboard CloudSat has been used to determine average normalized cloud vertical extinction profiles with a fixed pressure thickness for nine cloud types. The nine cloud types are based on the ISCCP COT-CTP classification table. The retrieved cloud top pressure, now using CloudSat cloud profiles in the forward model, is compared to CPR reflectivities as well as the retrieved cloud top pressure using vertically homogeneous cloud profiles. In the first number of cases under examination the overestimation of cloud top pressure, and therefore the bias, is reduced by a large amount when using CloudSat vertical cloud profiles. Another advantage is that no assumption about the cloud geometrical thickness has to be made in the new retrieval. It should be noted that comparisons between FAME-C products and A-train products can only be made at high latitudes where A-train and ENVISAT have overlapping overflights.

  10. Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2012-03-01

    Full Text Available The cloud Optical Centroid Pressure (OCP is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosols. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals, from the Ozone Monitoring Instrument (OMI, with estimates based on collocated cloud extinction profiles from a combination of CloudSat radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, cases of low clouds obscurred by ground-clutter in CloudSat observations and by opaque high clouds in CALIPSO lidar observations, and the fact that CloudSat/CALIPSO only observes a relatively small fraction of an OMI field-of-view.

  11. Efficient Resource Management in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rushikesh Shingade

    2015-12-01

    Full Text Available Cloud computing, one of the widely used technology to provide cloud services for users who are charged for receiving services. In the aspect of a maximum number of resources, evaluating the performance of Cloud resource management policies are difficult to optimize efficiently. There are different simulation toolkits available for simulation and modelling the Cloud computing environment like GridSim CloudAnalyst, CloudSim, GreenCloud, CloudAuction etc. In proposed Efficient Resource Management in Cloud Computing (EFRE model, CloudSim is used as a simulation toolkit that allows simulation of DataCenter in Cloud computing system. The CloudSim toolkit also supports the creation of multiple virtual machines (VMs on a node of a DataCenter where cloudlets (user requests are assigned to virtual machines by scheduling policies. This paper represents, allocation policies, Time-Shared and Space-Shared are used for scheduling the cloudlets and compared with the constraints (metrics like total execution time, a number of resources and resource allocation algorithm. CloudSim has been used for simulations and the result of simulation demonstrate that Resource Management is effective.

  12. Security Policy Enforcement in Cloud Infrastructure

    Directory of Open Access Journals (Sweden)

    Arijit Ukil

    2013-05-01

    Full Text Available Cloud computing is a computing environment consisti ng of different facilitating components like hardware, software, firmware, networking, and servi ces. Internet or a private network provides the required backbone to deliver the cloud services . The benefits of cloud computing like “on- demand, customized resource availability and perfor mance management” are overpowered by the associated security risks to the cloud system, particularly to the cloud users or clients. Existing traditional IT and enterprise security are not adequate to address the cloud security issues. In order to deploy different cloud applicat ions, it is understood that security concerns of cloud computing are to be effectively addressed. Cl oud security is such an area which deals with the concerns and vulnerabilities of cloud comp uting for ensuring safer computing environment. This paper explores the challenges and issues of security concerns of cloud computing through different standard and novel solu tions. This paper proposes architecture for incorporating different security schemes, technique s and protocols for cloud computing, particularly in Infrastructure-as-a-Service (IaaS and Platform-as-a-Service (PaaS systems. The proposed architecture is generic in nature, not dependent on the type of cloud deployment, application agnostic and is not coupled with the un derlying backbone. This would facilitate to manage the cloud system more effectively and provid e the administrator to include the specific solution to counter the threat.

  13. The evolution of molecular clouds

    Science.gov (United States)

    Shu, Frank H.; Lizano, Susana

    1988-01-01

    The problem of the structure and evolution of molecular clouds is reviewed, with particular emphasis given to the relationship with star formation. The basic hypothesis is that magnetic fields are the primary agents for supporting molecular clouds, although damped Alfven waves may play an important role in the direction parallel to the field lines. This picture naturally leads to a conception of 'bimodal star formation'. It is proposed that high-mass stars form from the overall gravitational collapse of a supercritical cloud, whereas low-mass stars form from small individual cores that slowly condense by ambipolar diffusion from a more extended envelope until they pass the brink of graviational instability and begin to collapse dynamically from 'inside-out'. The evidence that the infall stage of protostellar evolution is terminated by the development of a powerful stellar wind is reviewed.

  14. Cloud-Based Mobile Learning

    Directory of Open Access Journals (Sweden)

    Alexandru BUTOI

    2013-01-01

    Full Text Available As the cloud technologies are largely studied and mobile technologies are evolving, new di-rections for development of mobile learning tools deployed on cloud are proposed.. M-Learning is treated as part of the ubiquitous learning paradigm and is a pervasive extension of E-Learning technologies. Development of such learning tools requires specific development strategies for an effective abstracting of pedagogical principles at the software design and implementation level. Current paper explores an interdisciplinary approach for designing and development of cloud based M-Learning tools by mapping a specific development strategy used for educational programs to software prototyping strategy. In order for such instruments to be user effective from the learning outcome point of view, the evaluation process must be rigorous as we propose a metric model for expressing the trainee’s overall learning experience with evaluated levels of interactivity, content presentation and graphical user interface usability.

  15. Rain initiation in warm clouds

    CERN Document Server

    Dallas, Vassilios

    2010-01-01

    Assuming perfect collision efficiency, we demonstrate that turbulence can initiate and sustain rapid growth of very small water droplets in air even when these droplets are too small to cluster, and even without having to take gravity and small-scale intermittency into account. This is because the range of local Stokes numbers of identical droplets in the turbulent flow field is broad enough even when small-scale intermittency is neglected. This demonstration is given for turbulence which is one order of magnitude less intense than typically in warm clouds but with a volume fraction which, even though small, is nevertheless large enough for an estimated a priori frequency of collisions to be ten times larger than in warm clouds. However, the time of growth in these conditions turns out to be one order of magnitude smaller than in warm clouds.

  16. A comparison of shock-cloud and wind-cloud interactions: the longer survival of clouds in winds

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2017-09-01

    The interaction of a hot, high-velocity wind with a cold, dense molecular cloud has often been assumed to resemble the evolution of a cloud embedded in a post-shock flow. However, no direct comparative study of these two processes currently exists in the literature. We present 2D adiabatic hydrodynamical simulations of the interaction of a Mach 10 shock with a cloud of density contrast χ = 10 and compare our results with those of a commensurate wind-cloud simulation. We then investigate the effect of varying the wind velocity, effectively altering the wind Mach number Mwind, on the cloud's evolution. We find that there are significant differences between the two processes: 1) the transmitted shock is much flatter in the shock-cloud interaction; 2) a low-pressure region in the wind-cloud case deflects the flow around the edge of the cloud in a different manner to the shock-cloud case; 3) there is far more axial compression of the cloud in the case of the shock. As Mwind increases, the normalized rate of mixing is reduced. Clouds in winds with higher Mwind also do not experience a transmitted shock through the cloud's rear and are more compressed axially. In contrast with shock-cloud simulations, the cloud mixing time normalized by the cloud-crushing time-scale tcc increases for increasing Mwind until it plateaus (at tmix ≃ 25 tcc) at high Mwind, thus demonstrating the expected Mach scaling. In addition, clouds in high Mach number winds are able to survive for long durations and are capable of being moved considerable distances.

  17. DR-Cloud: Multi-Cloud Based Disaster Recovery Service

    National Research Council Canada - National Science Library

    Yu Gu DongshengWang Ghuanyi Liu

    2014-01-01

    .... This paper presents a practical multi-cloud based disaster recovery service model: DR- Cloud. With DR-Cloud, resources of multiple cloud service providers can be utilized cooperatively by the disaster recovery service provider...

  18. MISR Level 2 TOA/Cloud Classifier parameters V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Level 2 TOA/Cloud Classifiers Product. It contains the Angular Signature Cloud Mask (ASCM), Regional Cloud Classifiers, Cloud Shadow Mask, and...

  19. Fractal Structure of Molecular Clouds

    OpenAIRE

    Datta, Srabani

    2001-01-01

    Compelling evidence exists to show that the structure of molecular clouds is fractal in nature. In this paper, the author reiterates this view and, in addition, asserts that not only is cloud geometry fractal, but that they also have a common characteristic - they are similar in shape to the Horsehead nebula in Orion. This shape can be described by the Julia function f(x)= z^2 + c,where both z and c are complex quantities and c = -0.745429 + 0.113008i. The dynamical processes responsible for ...

  20. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas;

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...... describe a new algorithm that avoids the problems of previous local-neighbourhood based algorithms. Our algorithm is theoretically I/O-efficient, that is, it is capable of efficiently processing massive sonar point clouds that do not fit in internal memory but must reside on disk. The algorithm is also...

  1. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations....

  2. Cosmic rays and molecular clouds

    OpenAIRE

    2012-01-01

    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a giv...

  3. Cloud Computing Principles and Paradigms

    CERN Document Server

    Buyya, Rajkumar; Goscinski, Andrzej M

    2010-01-01

    The primary purpose of this book is to capture the state-of-the-art in Cloud Computing technologies and applications. The book will also aim to identify potential research directions and technologies that will facilitate creation a global market-place of cloud computing services supporting scientific, industrial, business, and consumer applications. We expect the book to serve as a reference for larger audience such as systems architects, practitioners, developers, new researchers and graduate level students. This area of research is relatively recent, and as such has no existing reference boo

  4. Instant CloudFlare starter

    CERN Document Server

    Dickey, Jeff

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Written as a practical guide, CloudFlare Starter will show you all you need to know in order to effectively improve your online presence in a multitude of different ways. ""Instant CloudFlare Starter"" is a practical yet accessible guide for website owners looking to optimize their site for optimum security and maximum performance.

  5. Information Leakage Prevention In Cloud Computing

    Directory of Open Access Journals (Sweden)

    Raziqa Masood

    2014-11-01

    Full Text Available The cloud computing is still in it infancy.this is an emerging technology which will bring about innovations in terms of businessmodels and applications.the widespread penetration of smartphones will be a major factor in driving the adoption of cloude computing.however, cloud computing faces challenges related to privacy and security. Due to varied degree of security features and management schemes within the cloud entities security in the cloud is challenging. Security issues ranging from system misconfiguration, lack of proper updates, or unwise user behaviour from remote data storage that can expose user ̳s private data and information to unwanted access can plague a Cloud Computing. The intent of this paper is to investigate the security related issues and challenges in Cloud computing environment . We also proposed a security scheme for protecting services keeping in view the issues and challenges faced by cloud computing.

  6. Electron cloud effects in hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [TU-Darmstadt, Institut fuer Theorie Elektromagnetischer Felder,Schlossgartenstr. 8 64289 Darmstadt (Germany)

    2013-07-01

    Accelerators operating with intense positively charged beams can suffer from the electron cloud phenomenon. For example, it is the intensity limiting factor in CERN LHC and SPS. In past decades a lot of progress in understanding the electron cloud effects was made worldwide. Methods to suppress or weaken the electron cloud phenomenon were proposed. Theories governing the bunch stability in presence of the electron cloud were developed. Recently the theory was introduced to describe the bunch energy loss due to the electron cloud. However, most of the publications concern the single bunch electron cloud effects. In reality bunches are packed into trains. A disturbance of the cloud caused by the bunch in the beginning of the train affects the subsequent bunches. We present a further investigation of single-bunch electron cloud effects and planned activities to study the phenomenon in case of multiple bunches.

  7. Cloud Technology May Widen Genomic Bottleneck - TCGA

    Science.gov (United States)

    Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.

  8. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  9. Academic Training Lecture Regular Programme: Cloud Computing

    CERN Multimedia

    2012-01-01

    Cloud Computing (1/2), by Belmiro Rodrigues Moreira (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part).   Wednesday, May 30, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  10. Research Challenges for Enterprise Cloud Computing

    CERN Document Server

    Khajeh-Hosseini, Ali; Sriram, Ilango

    2010-01-01

    Cloud computing represents a shift away from computing as a product that is purchased, to computing as a service that is delivered to consumers over the internet from large-scale data centers - or "clouds". This paper discusses some of the research challenges for cloud computing from an enterprise or organizational perspective, and puts them in context by reviewing the existing body of literature in cloud computing. Various research challenges relating to the following topics are discussed: the organizational changes brought about by cloud computing; the economic and organizational implications of its utility billing model; the security, legal and privacy issues that cloud computing raises. It is important to highlight these research challenges because cloud computing is not simply about a technological improvement of data centers but a fundamental change in how IT is provisioned and used. This type of research has the potential to influence wider adoption of cloud computing in enterprise, and in the consumer...

  11. Project management for cloud computing development

    Directory of Open Access Journals (Sweden)

    Paul POCATILU

    2010-04-01

    Full Text Available This article deals with the impact of employing cloud computing architectures in the field of software systems development. We analyze the individual influence of the cloud computing model characteristics on the project development process.

  12. Learning content and the creative cloud

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 18 April). Learning content and the creative cloud. Presentation given at the workshop for creative cloud CLICK workshop Faculteit Bouwkunde & Architectuur TU Delft, Delft, The Netherlands.

  13. DESIGN OF GOVERNMENT CLOUD NETWORK FOR A ...

    African Journals Online (AJOL)

    user

    the design of a Government Cloud (G-Cloud) network for Ondo State Government which will provide Infrastructure .... heat energy, and used up by air-conditioning systems. [7]. ...... [18] Brown, K., "DELL m905 Poweredge 4-Socket Blade.

  14. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; Berghaus, Frank; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  15. Rackspace: Significance of Cloud Computing to CERN

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The research collaboration between Rackspace and CERN is contributing to how OpenStack cloud computing will move science work around the world for CERN, and to reducing the barriers between clouds for Rackspace.

  16. Infrared Dark Clouds in the Small Magellanic Cloud?

    CERN Document Server

    Lee, Min-Young; Ott, Jürgen; van Loon, Jacco Th; Bolatto, Alberto D; Jones, Paul A; Cunningham, Maria R; Devine, Kathryn E; Oliveira, Joana M

    2009-01-01

    We have applied the unsharp-masking technique to the 24 $\\mu$m image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty five candidate regions of high-extinction, namely high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H2. HCRs have a peak-contrast at 24 $\\mu$m of 2 - 2.5 % and a size of 8 - 14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2 - 3 times darker at 24 $\\mu$m than our HCRs. To constrain the physical properties of the HCRs, we have performed NH3, N2H+, HNC, HCO+, and HCN observations toward one of the HCRs, HCR LIRS36-EAST, using the Aust...

  17. Evaluating stratiform cloud base charge remotely

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Aplin, Karen L.

    2017-06-01

    Stratiform clouds acquire charge at their upper and lower horizontal boundaries due to vertical current flow in the global electric circuit. Cloud charge is expected to influence microphysical processes, but understanding is restricted by the infrequent in situ measurements available. For stratiform cloud bases below 1 km in altitude, the cloud base charge modifies the surface electric field beneath, allowing a new method of remote determination. Combining continuous cloud height data during 2015-2016 from a laser ceilometer with electric field mill data, cloud base charge is derived using a horizontal charged disk model. The median daily cloud base charge density found was -0.86 nC m-2 from 43 days' data. This is consistent with a uniformly charged region 40 m thick at the cloud base, now confirming that negative cloud base charge is a common feature of terrestrial layer clouds. This technique can also be applied to planetary atmospheres and volcanic plumes.Plain Language SummaryThe idea that clouds in the atmosphere can charge electrically has been appreciated since the time of Benjamin Franklin, but it is less widely recognized that it is not just thunderclouds which contain electric charge. For example, water droplets in simple layer clouds, that are abundant and often responsible for an overcast day, carry electric charges. The droplet charging arises at the upper and lower edges of the layer cloud. This occurs because the small droplets at the edges draw charge from the air outside the cloud. Understanding how strongly layer clouds charge is important in evaluating electrical effects on the development of such clouds, for example, how thick the cloud becomes and whether it generates rain. Previously, cloud charge measurement has required direct measurements within the cloud using weather balloons or aircraft. This work has monitored the lower cloud charge continuously using instruments placed at the surface beneath. From measurements made over 2 years, the

  18. Seasonal cycle of cloud cover analyzed using Meteosat images

    OpenAIRE

    Massons, J.; Domingo, D.; Lorente, J.

    1998-01-01

    A cloud-detection method was used to retrieve cloudy pixels from Meteosat images. High spatial resolution (one pixel), monthly averaged cloud-cover distribution was obtained for a 1-year period. The seasonal cycle of cloud amount was analyzed. Cloud parameters obtained include the total cloud amount and the percentage of occurrence of clouds at three altitudes. Hourly variations of cloud cover are also analyzed. Cloud properties determined are coherent with those obtained in previous studies....

  19. Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud

    Science.gov (United States)

    Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib

    2014-01-01

    Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…

  20. MVC for content management on the cloud

    OpenAIRE

    McGruder, Crystal A.

    2011-01-01

    Approved for public release; distribution is unlimited. Cloud computing portrays a new model for providing IT services over the Internet. In cloud computing, resources are accessed from the Internet through web-based tools. Although cloud computing offers reduced cost, increased storage, high automation, flexibility, mobility, and the ability of IT to shift focus, there are other concerns such as the management, organization and structure of content on the cloud that large organizations sh...

  1. Getting started with Citrix CloudPortal

    CERN Document Server

    U, Puthiyavan

    2013-01-01

    The book will follow a step-by-step, tutorial-based approach and show readers how to take advantage of Citrix CloudPortal's capabilities.This book is ideal for administrators and engineers new to the Citrix Cloud Solution CPSM, CPBM, and who are looking to get a good grounding in Citrix's new product. It's assumed that you will have some experience in the basics of cloud computing already. No prior knowledge of CloudPortal is expected.

  2. Cloud Computing Security Latest Issues amp Countermeasures

    OpenAIRE

    Shelveen Pandey; Mohammed Farik

    2015-01-01

    Abstract Cloud computing describes effective computing services provided by a third-party organization known as cloud service provider for organizations to perform different tasks over the internet for a fee. Cloud service providers computing resources are dynamically reallocated per demand and their infrastructure platform and software and other resources are shared by multiple corporate and private clients. With the steady increase in the number of cloud computing subscribers of these shar...

  3. Implement Security using smart card on Cloud

    Directory of Open Access Journals (Sweden)

    Amish Kumar Aman

    2013-04-01

    Full Text Available Cloud is a concept of accessing the data from theirown datacenters such that the chances ofeavesdropping have been reduced and storage costis reduced. Here in this paper we are giving a briefsurvey of various cloud based techniqueimplemented so far. Although there are varioustechniques implemented so far for the cloudcomputing but here we are giving a survey of notonly cloud based techniques but also the concept ofsmart cards for the authentication between onecloud to another cloud.

  4. Is Cloud Computing Steganography-proof?

    CERN Document Server

    Mazurczyk, Wojciech

    2011-01-01

    The paper focuses on characterisation of information hiding possibilities in Cloud Computing. After general introduction to cloud computing and its security we move to brief description of steganography. In particular we introduce classification of steganographic communication scenarios in cloud computing which is based on location of the steganograms receiver. These scenarios as well as the threats that steganographic methods can cause must be taken into account when designing secure cloud computing services.

  5. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...... adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building...

  6. Secure Documents Sharing System for Cloud Environments

    OpenAIRE

    Abolafya, Natan

    2012-01-01

    With the current trend of cloud services available in every market area in IT business, it is somewhat surprising that security services are not migrated to the cloud widely. Security as a Service (SECaaS) model is hardly popular at the moment even though the infrastructure of the cloud, or web, can support most of the functionalities of conventional distributed security services. Another uncommon phenomenon in the cloud is sharing secure files with multi-tenant support. This kind of service ...

  7. Cloud Variations under Subtropical High Conditions

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.

  8. Cloud Variations under Subtropical High Conditions

    Institute of Scientific and Technical Information of China (English)

    FENG Sha; LIU Qi; FU Yun-Fei

    2011-01-01

    The cloud variations under subtropical high (STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction. The results reveal that clouds mainly experience an isolated evolution in the STHs, which is designated in this study by the 1540 gpm geopotential lines at 850 hPa. In the STH domain throughout the Northern Hemisphere, the average amount of total clouds exceeds 30%. Low clouds dominate in the STH domain, contributing over 60% of total cloud amount within the Pacific subtropical high and over 40% within the Atlantic subtropical high. The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa, which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface. Furthermore, clouds present great geographical incoherence within the STH domain. In the eastern STHs, the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon, while the amount of high clouds remains stable throughout the day. Conversely, in the western STHs, the diurnal amplitude of low and middle clouds is less than three, while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening. Among the nine cloud categories, stratocumulus clouds with greater optical thickness account for the most under STH conditions, no matter their occurrence or amount, causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.

  9. Authentication Methods in Cloud Computing: A Survey

    Directory of Open Access Journals (Sweden)

    Mahnoush Babaeizadeh

    2015-03-01

    Full Text Available This study presents a review on the various methods of authentication in cloud environment. Authentication plays an important role in security of Cloud Computing (CC. It protects Cloud Service Providers (CSP against various types of attacks, where the aim is to verify a user’s identity when a user wishes to request services from cloud servers. There are multiple authentication technologies that verify the identity of a user before granting access to resources.

  10. Cloud Standardization: Consistent Business Processes and Information

    Directory of Open Access Journals (Sweden)

    Razvan Daniel ZOTA

    2013-01-01

    Full Text Available Cloud computing represents one of the latest emerging trends in distributed computing that enables the existence of hardware infrastructure and software applications as services. The present paper offers a general approach to the cloud computing standardization as a mean of improving the speed of adoption for the cloud technologies. Moreover, this study tries to show out how organizations may achieve more consistent business processes while operating with cloud computing technologies.

  11. A Privacy Manager for Cloud Computing

    Science.gov (United States)

    Pearson, Siani; Shen, Yun; Mowbray, Miranda

    We describe a privacy manager for cloud computing, which reduces the risk to the cloud computing user of their private data being stolen or misused, and also assists the cloud computing provider to conform to privacy law. We describe different possible architectures for privacy management in cloud computing; give an algebraic description of obfuscation, one of the features of the privacy manager; and describe how the privacy manager might be used to protect private metadata of online photos.

  12. Cloud Computing for DoD

    Science.gov (United States)

    2012-05-01

    media applications 16 Air Force Cloud Computing •  IBM effort to Design and Demonstrate Mission-Oriented Cloud Architecture for Cyber Security (2010...Universities •  IBM /Google Cloud Computing University Initiative •  Employ SW and services on IBM /Google cloud to explore innovative research ideas...in data-intensive computing, including: –  Image processing –  Large scale data analysis –  Internet improvement studies –  Human genome

  13. Clouds caused by human activities: the anthropoclouds

    Science.gov (United States)

    Mazon, Jordi; Costa, Marcel; Pino, David; Lorente, Jeroni

    2013-04-01

    The classification of clouds is based on the pioneering classification carried out by Howard (1804). In this classification, and also in the successive editions of the International Classification of Clouds published by the World Meteorological Organization (WMO, 1975, 1987) 10 basic cloud genera are included and described. In all cases, the cause that leads to the formation of clouds remains as a secondary issue. It is assumed that all of them are exclusively produced by natural mechanisms without any human intervention. However, aerosol and water vapour emissions produced by human activity may increase cloud formation having an increasing importance in the atmospheric energy budget and consequently in the earth's climate. Effectively, since the end of the Nineteenth century, human activity has been injecting large amounts of water vapour into the atmosphere, cloud condensation nuclei and hot air mainly generated in the combustion processes that under certain spatial and temporal conditions can enhance cloud formation. These anthropogenic aerosols are linked to the climate and the water cycle (Kaufman et al, 2002). The aim of this communication is to point out the anthropic origin of some clouds in the cloud classification. Several cases of the 7 basic genera cloud caused by human activities will be shown to discuss the importance of differentiating the origin of clouds in weather observations. This differentiation would improve the understanding the contribution of these clouds to climate change. To differentiate the clouds formed by human activity, we propose to use the prefix anthropo- before the scientific name (and a- before the abbreviation) in some of the 10 basic clouds defined by the International Classification of Clouds, those which could have an anthropic origin, and thus begin new data of cloud observations that could help future research to improve the effect of human activity in the troposphere.

  14. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building......The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...

  15. Delivering Unidata Technology via the Cloud

    Science.gov (United States)

    Fisher, Ward; Oxelson Ganter, Jennifer

    2016-04-01

    Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.

  16. Molecular cloud evolution - V. Cloud destruction by stellar feedback

    Science.gov (United States)

    Colín, Pedro; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.

    2013-10-01

    We present a numerical study of the evolution of molecular clouds, from their formation by converging flows in the warm interstellar medium, to their destruction by the ionizing feedback of the massive stars they form. We improve with respect to our previous simulations by including a different stellar-particle formation algorithm, which allows them to have masses corresponding to single stars rather than to small clusters, and with a mass distribution following a near-Salpeter stellar initial mass function. We also employ a simplified radiative-transfer algorithm that allows the stellar particles to feedback on the medium at a rate that depends on their mass and the local density. Our results are as follows: (a) contrary to the results from our previous study, where all stellar particles injected energy at a rate corresponding to a star of ˜10 M⊙, the dense gas is now completely evacuated from 10 pc regions around the stars within 10-20 Myr, suggesting that this feat is accomplished essentially by the most massive stars. (b) At the scale of the whole numerical simulations, the dense gas mass is reduced by up to an order of magnitude, although star formation (SF) never shuts off completely, indicating that the feedback terminates SF locally, but new SF events continue to occur elsewhere in the clouds. (c) The SF efficiency (SFE) is maintained globally at the ˜10 per cent level, although locally, the cloud with largest degree of focusing of its accretion flow reaches SFE ˜30 per cent. (d) The virial parameter of the clouds approaches unity before the stellar feedback begins to dominate the dynamics, becoming much larger once feedback dominates, suggesting that clouds become unbound as a consequence of the stellar feedback, rather than unboundness being the cause of a low SFE. (e) The erosion of the filaments that feed the star-forming clumps produces chains of isolated dense blobs reminiscent of those observed in the vicinity of the dark globule B68.

  17. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  18. Microphysical Effects of Cloud Seeding in Supercooled Stratiform Clouds Observed from NOAA Satellite

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15μm, while that within the cloud track ranged from 15 to 26 μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7 μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds,and the maximum temperature differences reached 4.2 and 3.9℃ at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃ of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track.The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22min after seeding. The formation of a cloud track in the supercooled stratiform clouds was

  19. Cloud-Based RFID Mutual Authentication Protocol without Leaking Location Privacy to the Cloud

    OpenAIRE

    Qingkuan Dong; Jiaqing Tong; Yuan Chen

    2015-01-01

    With the rapid developments of the IoT (Internet of Things) and the cloud computing, cloud-based RFID systems attract more attention. Users can reduce their cost of deploying and maintaining the RFID system by purchasing cloud services. However, the security threats of cloud-based RFID systems are more serious than those of traditional RFID systems. In cloud-based RFID systems, the connection between the reader and the cloud database is not secure and cloud service provider is not trusted. Th...

  20. DIGITAL ERA: UTILIZE OF CLOUD COMPUTING TECHNOLOGY IN DIGITAL LIBRARY

    OpenAIRE

    T. RAGHUNADHA REDDY

    2012-01-01

    With the purpose of applying cloud computing to digital library, the paper initially describes cloud computing and analyzes current status of cloud computing in digital library. Then it proposes the architecture of cloud computing in digital library and summarises the application of cloud computing in digital library. Finally the author brings out the future improvement in digital library using cloud computing technology.

  1. Cloud computing: An innovative tool for library services

    OpenAIRE

    R. Sahu

    2015-01-01

    Cloud computing is a new technique of information communication technology because of its potential benefits such as reduced cost, accessible anywhere any time as well as its elasticity and flexibility. In this Paper defines cloud Computing, definition, essential characteristics, model of cloud computing, components of cloud, advantages & drawbacks of cloud computing and also describe cloud computing in libraries.

  2. Cloud computing services: taxonomy and comparison

    NARCIS (Netherlands)

    Höfer, C.N.; Karagiannis, G.

    2011-01-01

    Cloud computing is a highly discussed topic in the technical and economic world, and many of the big players of the software industry have entered the development of cloud services. Several companies what to explore the possibilities and benefits of incorporating such cloud computing services in the

  3. Enhancing Data Integrity in Multi Cloud Storage

    Directory of Open Access Journals (Sweden)

    Alisha Jindal

    2014-09-01

    Full Text Available Cloud computing is a way to increase the capacity or add capabilities dynamically without investing in new infrastructure, training new personnel, or licensing new software. Cloud is surrounded by many security issues like securing data and examining the utilization of cloud by the cloud computing vendors. Security is one of the major issues which reduce the growth of cloud computing. A large number of clients or data owners store their data on servers in the cloud and it is provided back to them whenever needed. The data provided should not be jeopardized. Data integrity should be taken into account so that the data is correct, consistent and accessible. For ensuring the integrity in cloud computing environment, cloud storage providers should be trusted. Dealing with single cloud providers is predicted to become less secure with customers due to risks of service availability, failure and the possibility of malicious insiders in the single cloud. This paper deals with multi cloud environments to resolve these issues. The integrity of the data in multi cloud storage has been provided with the help of trusted third party using cryptographic algorithm.

  4. Learning VMware vCloud Air

    CERN Document Server

    Wadia, Yohan Rohinton

    2015-01-01

    This book is intended for cloud engineers or administrators who wish to explore and gain hands-on experience of VMware vCloud Air. To make the most of this book, it would be beneficial to have a bit of familiarity with basic VMware vCloud concepts, but no prior experience is required.

  5. Cloud Computing. Technology Briefing. Number 1

    Science.gov (United States)

    Alberta Education, 2013

    2013-01-01

    Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…

  6. Introducing Cloud Computing Topics in Curricula

    Science.gov (United States)

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  7. Cloud manufacturing: from concept to practice

    Science.gov (United States)

    Ren, Lei; Zhang, Lin; Tao, Fei; Zhao, Chun; Chai, Xudong; Zhao, Xinpei

    2015-02-01

    The concept of cloud manufacturing is emerging as a new promising manufacturing paradigm, as well as a business model, which is reshaping the service-oriented, highly collaborative, knowledge-intensive and eco-efficient manufacturing industry. However, the basic concepts about cloud manufacturing are still in discussion. Both academia and industry will need to have a commonly accepted definition of cloud manufacturing, as well as further guidance and recommendations on how to develop and implement cloud manufacturing. In this paper, we review some of the research work and clarify some fundamental terminologies in this field. Further, we developed a cloud manufacturing systems which may serve as an application example. From a systematic and practical perspective, the key requirements of cloud manufacturing platforms are investigated, and then we propose a cloud manufacturing platform prototype, MfgCloud. Finally, a public cloud manufacturing system for small- and medium-sized enterprises (SME) is presented. This paper presents a new perspective for cloud manufacturing, as well as a cloud-to-ground solution. The integrated solution proposed in this paper, including the terminology, MfgCloud, and applications, can push forward this new paradigm from concept to practice.

  8. Moving window segmentation framework for point clouds

    NARCIS (Netherlands)

    Sithole, G.; Gorte, B.G.H.

    2012-01-01

    As lidar point clouds become larger streamed processing becomes more attractive. This paper presents a framework for the streamed segmentation of point clouds with the intention of segmenting unstructured point clouds in real-time. The framework is composed of two main components. The first componen

  9. Cloud computing services: taxonomy and comparison

    NARCIS (Netherlands)

    Höfer, C.N.; Karagiannis, Georgios

    2011-01-01

    Cloud computing is a highly discussed topic in the technical and economic world, and many of the big players of the software industry have entered the development of cloud services. Several companies what to explore the possibilities and benefits of incorporating such cloud computing services in

  10. Introducing Cloud Computing Topics in Curricula

    Science.gov (United States)

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  11. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  12. Scaling the CERN OpenStack cloud

    Science.gov (United States)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  13. The Education Value of Cloud Computing

    Science.gov (United States)

    Katzan, Harry, Jr.

    2010-01-01

    Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…

  14. The arrival of the CLOUD chamber

    CERN Multimedia

    CERN AVC

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D; and design, and the start of preparations for data taking later this year.

  15. Quantitative Cloud Analysis using Meteorological Satellites

    NARCIS (Netherlands)

    Feijt, A.J.

    2000-01-01

    This thesis is about observations of clouds from satellite and ground based instruments. The aim is to reconstruct the three dimensional cloud distributions. This information is used both in climate research and operational meteorological applications. In climate research, cloud observations provide

  16. In situ exhaust cloud measurements. [particle size distribution and cloud physics of rocket exhaust clouds

    Science.gov (United States)

    Wornom, D.

    1980-01-01

    Airborne in situ exhaust cloud measurements were conducted to obtain definitions of cloud particle size range, Cl2 content, and HCl partitioning. Particle size distribution data and Cl2 measurements were made during the May, August, and September 1977 Titan launches. The measurements of three basic effluents - HCl, NO sub X, and particles - against minutes after launch are plotted. The maximum observed HCl concentration to the maximum Cl2 concentration are compared and the ratios of the Cl2 to the HCl is calculated.

  17. Cloud-Based Data Storage

    Science.gov (United States)

    Waters, John K.

    2011-01-01

    The vulnerability and inefficiency of backing up data on-site is prompting school districts to switch to more secure, less troublesome cloud-based options. District auditors are pushing for a better way to back up their data than the on-site, tape-based system that had been used for years. About three years ago, Hendrick School District in…

  18. Secure Architectures in the Cloud

    NARCIS (Netherlands)

    De Capitani di Vimercati, Sabrina; Pieters, Wolter; Probst, Christian W.

    2011-01-01

    This report documents the outcomes of Dagstuhl Seminar 11492 “Secure Architectures in the Cloud”. In cloud computing, data storage and processing are offered as services, and data are managed by external providers that reside outside the control of the data owner. The use of such services reduces th

  19. HPC on Competitive Cloud Resources

    Science.gov (United States)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  20. ORAT FOR GREEN CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    K.L.Giridas

    2012-10-01

    Full Text Available As the IT trade progress towards game-changing expertise, a cloud Eco-system is gradually increasing in the country with expertise corporation ramping up employing and guiding for cloud computing. An accomplishment of green IT is probable to assist an organization in several ways like operating cost, stakeholder value, sustainability, employee morale and so on. In this paper, we propose an optimal resource allocation method for cloud computing environments. This paper progress a resource allocation representation of green cloud computing environments, considering both bandwidth and processing capability, allocated concurrently to every service request and returned it on an hourly basis. The owed resources are committed to every service request. It is established that, by simulationevaluation, the proposed ORAT method can diminish the request loss possibility and therefore, decrease the total resource obligatory, compared with the predictable allocation method. Various performancecharacteristics are compared to estimate the performance of the proposed ORAT in terms of processing ability, resource utilization, and bandwidth.

  1. Personal lifelong user model clouds

    DEFF Research Database (Denmark)

    Dolog, Peter; Kay, Judy; Kummerfeld, Bob

    This paper explores an architecture for very long term user modelling, based upon personal user model clouds. These ensure that the individual's applications can access their model whenever it is needed. At the same time, the user can control the use of their user model. So, they can ensure...

  2. DICOM relay over the cloud.

    Science.gov (United States)

    Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis

    2013-05-01

    Healthcare institutions worldwide have adopted picture archiving and communication system (PACS) for enterprise access to images, relying on Digital Imaging Communication in Medicine (DICOM) standards for data exchange. However, communication over a wider domain of independent medical institutions is not well standardized. A DICOM-compliant bridge was developed for extending and sharing DICOM services across healthcare institutions without requiring complex network setups or dedicated communication channels. A set of DICOM routers interconnected through a public cloud infrastructure was implemented to support medical image exchange among institutions. Despite the advantages of cloud computing, new challenges were encountered regarding data privacy, particularly when medical data are transmitted over different domains. To address this issue, a solution was introduced by creating a ciphered data channel between the entities sharing DICOM services. Two main DICOM services were implemented in the bridge: Storage and Query/Retrieve. The performance measures demonstrated it is quite simple to exchange information and processes between several institutions. The solution can be integrated with any currently installed PACS-DICOM infrastructure. This method works transparently with well-known cloud service providers. Cloud computing was introduced to augment enterprise PACS by providing standard medical imaging services across different institutions, offering communication privacy and enabling creation of wider PACS scenarios with suitable technical solutions.

  3. Digital Forensics in the Cloud

    Science.gov (United States)

    2013-10-01

    traditional computer forensics, investigators have full control over the evidence (e.g., router logs, process logs, and hard disks). Unfortunately, in a cloud...forensics: computer crime scene investigation. Delmar Thomson Learning, 2005, vol. 1. 8. S. Zawoad and R. Hasan, “Towards building proofs of past

  4. More than a Word Cloud

    Science.gov (United States)

    Filatova, Olga

    2016-01-01

    Word cloud generating applications were originally designed to add visual attractiveness to posters, websites, slide show presentations, and the like. They can also be an effective tool in reading and writing classes in English as a second language (ESL) for all levels of English proficiency. They can reduce reading time and help to improve…

  5. A Survey on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Poulami dalapati

    2013-06-01

    Full Text Available Cloud Computing is a very recent term which is mainly based on distributed computing, virtualization, utility computing, networking and web and software services. This kind of service oriented architecture reduces information technology overhead for end user, total cost of ownership, supports flexibility and on-demand services.

  6. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  7. Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud

    Directory of Open Access Journals (Sweden)

    Minjuan Wang

    2014-04-01

    Full Text Available Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing changes traditional mobile learning. A case study of the usage of Moodle in the cloud via mobile learning in Khalifa University was conducted.

  8. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    OpenAIRE

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting wea...

  9. Death of an Arctic Mixed Phase Cloud: How Changes in the Arctic Environment Influence Cloud Properties and Cloud Radiative Feedbacks

    Science.gov (United States)

    Roesler, E. L.; Posselt, D. J.

    2012-12-01

    Arctic mixed phase stratocumulus clouds exert an important influence on the radiative budget over the Arctic ocean and sea ice. Field programs and numerical experiments have shown the properties of these clouds to be sensitive to changes in the surface properties, thermodynamic environment, and aerosols. While it is clear that Arctic mixed-phase clouds respond to changes in the Arctic environment, uncertainty remains as to how climate warming will affect the cloud micro- and macrophysical properties. This is in no small part due to the fact that there are nonlinear interactions between changes in atmospheric and surface properties and changes in cloud characteristics. In this study, large-eddy simulations are performed of an arctic mixed phase cloud observed during the Indirect and Semi-Direct Aerosol Campaign. A parameter-space-filling uncertainty quantification technique is used to rigorously explore how simulated arctic mixed phase clouds respond to changes in the properties of the environment. Specifically, the cloud ice and aerosol concentration, surface sensible and latent heat fluxes, and large scale temperature, water vapor, and vertical motion are systematically changed, and the properties of the resulting clouds are examined. It is found that Arctic mixed phase clouds exhibit four characteristic behaviors: stability, growth, decay, and dissipation. Sets of environmental and surface properties that lead to the emergence of each type of behavior are presented, and the implications for the response of Arctic clouds to changes in climate are explored.

  10. Comparison of different cloud types from surface and satellite cloud classification products over China

    Science.gov (United States)

    Wang, Minyan; Zeng, Le; Wang, Shengjie; Gu, Junxia; Yang, Runzhi

    2016-04-01

    Different cloud types usually have different cloud dynamic process and micro-physical characteristics, and the relative cloud radiation forcing effects vary much. In recent years, the focus of cloud classification is the algorithm development, as well as the analysis on total cloud amount, high/middle/low cloud amount. While, research on the different cloud types (like cirrus, stratus, and cumulonimbus) is not enough. In this research, we use multi-resources cloud classification products including FY-2, Cloudsat and surface observation to obtain the temporal-spatial distribution characteristics and evolvement of different cloud types in different regions of China, analyze the quantitative difference of multi-source products and the reasons. According to the temporal and spatial scales of cloud, and temporal-spatial representation of cloud classification products based on CloudSat, etc, the scaling is necessary to explore in temporal-spatial matching/validation research. This research have important scientific significances on understanding the regional characteristics of different cloud types in China, improving the remote sensing retrieve algorithms on cloud classification, temporal-spatial matching/validation techniques of satellite data, and cloud vertical structure parameterized methods in numerical models.

  11. The frequency and nature of `cloud-cloud collisions' in galaxies

    Science.gov (United States)

    Dobbs, C. L.; Pringle, J. E.; Duarte-Cabral, A.

    2015-02-01

    We investigate cloud-cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8-10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud-cloud interactions in our results, including synthetic CO maps. We would expect cloud-cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds' typical geometries, and moderate velocity dispersions, cloud-cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.

  12. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  13. Privacy Protection in Cloud Using Rsa Algorithm

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur

    2014-05-01

    Full Text Available The cloud computing architecture has been on high demand nowadays. The cloud has been successful over grid and distributed environment due to its cost and high reliability along with high security. However in the area of research it is observed that cloud computing still has some issues in security regarding privacy. The cloud broker provide services of cloud to general public and ensures that data is protected however they sometimes lag security and privacy. Thus in this work of research an architecture is developed to preserve the security in two phases that is by RSA algorithm and auto-backup policy. Keywords:-

  14. Potential New Lidar Observations for Cloud Studies

    Science.gov (United States)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  15. Snapshot Based Virtualization Mechanism for Cloud Computing

    Directory of Open Access Journals (Sweden)

    A.Rupa

    2012-09-01

    Full Text Available Virtualization in cloud computing has been the latest evolutionary technology in current applications of various industries and IT firms are adopting Cloud Technology. The concept of cloud computing was introduced long back. Since its inception there have been many number of new innovations implemented by different experts and researchers etc. Virtualization in cloud computing is very effective approach to gain different operational advantages in cloud computing. In this paper we have proposed the concept of virtualization using Snapshot based Mechanism, where the Memory virtualization and Storage virtualization are discussed in this paper.

  16. Resource Management in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Andrei IONESCU

    2015-01-01

    Full Text Available Mobile cloud computing is a major research topic in Information Technology & Communications. It integrates cloud computing, mobile computing and wireless networks. While mainly built on cloud computing, it has to operate using more heterogeneous resources with implications on how these resources are managed and used. Managing the resources of a mobile cloud is not a trivial task, involving vastly different architectures. The process is outside the scope of human users. Using the resources by the applications at both platform and software tiers come with its own challenges. This paper presents different approaches in use for managing cloud resources at infrastructure and platform levels.

  17. Precipitating Condensation Clouds in Substellar Atmospheres

    Science.gov (United States)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  18. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  19. Securing Data Transfer in Cloud Environment

    Directory of Open Access Journals (Sweden)

    K. S. Wagh

    2014-05-01

    Full Text Available Data security and access control is one of the most challenging ongoing research work in cloud computing, due to users outsourcing their sensitive data to cloud providers. The various existing solutions that use pure cryptographic techniques to mitigate these security and access control problems suffer from heavy computational overhead on the data owner as well as the cloud service provider for key distribution and management. Cloud storage moves the user’s data to large data centers, that are remotely located, on which user does not have any control. This unique feature of the cloud poses many new security challenges which need to be clearly understood and resolved.

  20. Ontology-based Cloud Services Representation

    Directory of Open Access Journals (Sweden)

    Abdullah Ali

    2014-07-01

    Full Text Available The advancement of cloud computing has enabled service providers to provide diversity of cloud services to users with different attributes at a range of costs. Finding the suitable service from the increasing numbers of cloud services that satisfy the user requirements such as performance, cost and security has become a big challenge. The variety on services description none uniformed naming conventions and the heterogeneous types and features of cloud services led to make the cloud service discovery a hard problem. Therefore, an intelligent service discovery system is necessary for searching and retrieving appropriate services accurately and quickly. Many studies have been conducted to discover the cloud services using different techniques, such as ontology model and agents technology. The existing ontology for cloud services does not cover the cloud concepts and it is intended to be used for specific tasks only. This study represents the cloud concepts in a comprehensive way that can be used for cloud services discovery or cloud computing management.

  1. The Evolution of Cloud Computing in ATLAS

    Science.gov (United States)

    Taylor, Ryan P.; Berghaus, Frank; Brasolin, Franco; Domingues Cordeiro, Cristovao Jose; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; LeBlanc, Matthew; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-12-01

    The ATLAS experiment at the LHC has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing Infrastructure as a Service resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, a system for dynamic location-based discovery of caching proxy servers, and the usage of a data federation to unify the worldwide grid of storage elements into a single namespace and access point. The usage of the experiment's high level trigger farm for Monte Carlo production, in a specialized cloud environment, is presented. Finally, we evaluate and compare the performance of commercial clouds using several benchmarks.

  2. Automating NEURON Simulation Deployment in Cloud Resources.

    Science.gov (United States)

    Stockton, David B; Santamaria, Fidel

    2017-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.

  3. Global Cloud Liquid Water Path Simulations(.

    Science.gov (United States)

    Lemus, Lilia; Rikus, Lawrie; Martin, C.; Platt, R.

    1997-01-01

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model's simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model's diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system.

  4. A Framework for Secure Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ahmed E. Youssef

    2012-07-01

    Full Text Available Cloud computing is one of the most discussed topics today in the field of information technology. It introduces a new Internet-based environment for on-demand, dynamic provision of reconfigurable computing resources. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. In this paper, we propose a framework that identifies security and privacy challenges in cloud computing. It highlights cloud-specific attacks and risks and clearly illustrates their mitigations and countermeasures. We also propose a generic cloud computing security model that helps satisfy security and privacy requirements in the clouds and protect them against various vulnerabilities. The purpose of this work is to advise on security and privacy considerations that should be taken and solutions that might be considered when using the cloud environment by individuals and organizations.

  5. Dust cloud lightning in extraterrestrial atmospheres

    CERN Document Server

    Helling, Christiane; Diver, Declan; Witte, Soeren

    2012-01-01

    Lightning is present in all solar system planets which form clouds in their atmospheres. Cloud formation outside our solar system is possible in objects with much higher temperatures than on Earth or on Jupiter: Brown dwarfs and giant extrasolar gas planets form clouds made of mixed materials and a large spectrum of grain sizes. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events and that the upper cloud layers are most suitable for powerful lightning-like discharge events. We discuss various sources of atmospheric ionisation, including thermal ionisation and a first estimate of ionisation by cosmic rays, and argue that we should expect thunderstorms also in the atmospheres of brown dwarfs and giant gas planets which contain mineral clouds.

  6. Survey: Risk Assessment for Cloud Computing

    Directory of Open Access Journals (Sweden)

    Drissi S.

    2013-01-01

    Full Text Available with the increase in the growth of cloud computing and the changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers, the cloud consumers should be aware of the risks and vulnerabilities present in the current cloud computing environment. An information security risk assessment is designed specifically for that task. However, there is lack of structured risk assessment approach to do it. This paper aims to survey existing knowledge regarding risk assessment for cloud computing and analyze existing use cases from cloud computing to identify the level of risk assessment realization in state of art systems and emerging challenges for future research.

  7. Cloud Computing-Software as Service

    Directory of Open Access Journals (Sweden)

    Gurudatt Kulkarni

    2012-01-01

    Full Text Available Cloud Computing,” to put it simply, means “Internet Computing.” The Internet is commonly visualized as clouds; hence the term “cloud computing” for computation done through the Internet. With Cloud Computing users can access database resources via the Internet from anywhere, for as long  as they need, without worrying about any maintenance or management  of actual resources. Besides, databases in cloud are very dynamic and scalable. Cloud computing is unlike grid computing, utility computing, or autonomic computing. In fact, it is a very independent platform in terms of computing. The best Example of cloud   computing is Google Apps where any application can be accessed using a browser and it can be deployed on thousands of computer through the Internet.

  8. Molecular cloud evolution and star formation

    Science.gov (United States)

    Silk, J.

    1985-01-01

    The present state of knowledge of the relationship between molecular clouds and young stars is reviewed. The determination of physical parameters from molecular line observations is summarized, and evidence for fragmentation of molecular clouds is discussed. Hierarchical fragmentation is reviewed, minimum fragment scales are derived, and the stability against fragmentation of both spherically and anisotropically collapsing clouds is discussed. Observational evidence for high-velocity flows in clouds is summarized, and the effects of winds from pre-main sequence stars on molecular gas are discussed. The triggering of cloud collapse by enhanced pressure is addressed, as is the formation of dense shells by spherical outflows and their subsequent breakup. A model for low-mass star formation is presented, and constraints on star formation from the initial mass function are examined. The properties of giant molecular clouds and massive star formation are described. The implications of magnetic fields for cloud evolution and star formation are addressed.

  9. Magnetohydrodynamic stability of broad line region clouds

    CERN Document Server

    Krause, Martin; Burkert, Andreas

    2012-01-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and colu...

  10. Cloud Computing Security Latest Issues amp Countermeasures

    Directory of Open Access Journals (Sweden)

    Shelveen Pandey

    2015-08-01

    Full Text Available Abstract Cloud computing describes effective computing services provided by a third-party organization known as cloud service provider for organizations to perform different tasks over the internet for a fee. Cloud service providers computing resources are dynamically reallocated per demand and their infrastructure platform and software and other resources are shared by multiple corporate and private clients. With the steady increase in the number of cloud computing subscribers of these shared resources over the years security on the cloud is a growing concern. In this review paper the current cloud security issues and practices are described and a few innovative solutions are proposed that can help improve cloud computing security in the future.

  11. The Distance to the Draco Cloud

    CERN Document Server

    Gladders, M D; Burns, C R; Attard, A; Casey, M P; Hamilton, D; Mallén-Ornelas, G; Karr, J L; Poirier, S M; Sawicki, M; Barrientos, L F; Mochnacki, S W; Gladders, Michael D.; Burns, Christopher R.; Hamilton, Devon; Mallén-Ornelas, Gabriela; Poirier, Sara M.; Sawicki, Marcin; Mochnacki, Stefan W.

    1998-01-01

    The understanding of the nature of intermediate and high velocity gas in the Milky Way is hampered by a paucity of distance estimates to individual clouds. A project has been started at the David Dunlap Observatory to address this lack of distance measures by observing early-type stars along the line of sight towards these clouds and searching for sodium doublet absorption at the clouds' systemic velocities. Distances to foreground stars (no absorption) and background stars (with absorption) are estimated from spectroscopic parallax, and thus the distance to the bracketed cloud is estimated. In this Letter, we present the first result from this ongoing project, a measurement of the distance to the Draco Cloud, which is the most studied of the intermediate velocity clouds. The result presented here is the first distance bracket which tightly constrains the position of the Draco Cloud. We briefly describe our target selection and observing methodology, and then demonstrate absorption at the velocity of the Drac...

  12. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  13. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  14. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  15. Cloud Application Architectures Building Applications and Infrastructure in the Cloud

    CERN Document Server

    Reese, George

    2009-01-01

    If you're involved in planning IT infrastructure as a network or system architect, system administrator, or developer, this book will help you adapt your skills to work with these highly scalable, highly redundant infrastructure services. Cloud Application Architectures will help you determine whether and how to put your applications into these virtualized services, with critical guidance on issues of cost, availability, performance, scaling, privacy, and security.

  16. Jovian Lightning and Moonlit Clouds

    Science.gov (United States)

    1997-01-01

    Jovian lightning and moonlit clouds. These two images, taken 75 minutes apart, show lightning storms on the night side of Jupiter along with clouds dimly lit by moonlight from Io, Jupiter's closest moon. The images were taken in visible light and are displayed in shades of red. The images used an exposure time of about one minute, and were taken when the spacecraft was on the opposite side of Jupiter from the Earth and Sun. Bright storms are present at two latitudes in the left image, and at three latitudes in the right image. Each storm was made visible by multiple lightning strikes during the exposure. Other Galileo images were deliberately scanned from east to west in order to separate individual flashes. The images show that Jovian and terrestrial lightning storms have similar flash rates, but that Jovian lightning strikes are a few orders of magnitude brighter in visible light.The moonlight from Io allows the lightning storms to be correlated with visible cloud features. The latitude bands where the storms are seen seem to coincide with the 'disturbed regions' in daylight images, where short-lived chaotic motions push clouds to high altitudes, much like thunderstorms on Earth. The storms in these images are roughly one to two thousand kilometers across, while individual flashes appear hundreds of kilometer across. The lightning probably originates from the deep water cloud layer and illuminates a large region of the visible ammonia cloud layer from 100 kilometers below it.There are several small light and dark patches that are artifacts of data compression. North is at the top of the picture. The images span approximately 50 degrees in latitude and longitude. The lower edges of the images are aligned with the equator. The images were taken on October 5th and 6th, 1997 at a range of 6.6 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office

  17. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  18. Large Eddy Simulation Study on Arctic Marine Clouds: the Effect of Aerosol-Cloud Interactions

    Science.gov (United States)

    Raatikainen, T.; Ahola, J.; Tonttila, J.; Romakkaniemi, S.; Laaksonen, A.; Korhonen, H.

    2016-12-01

    Dynamics of marine stratocumulus clouds depend on radiative cooling from cloud tops, turbulent transport of moisture and heat from the sea surface, and the availability of atmospheric aerosols to act as cloud condensation nuclei (CCN). These processes and especially aerosol-cloud interactions can be examined with a recently developed Large Eddy Simulation (LES) model UCLALES-SALSA (Tonttila et al., Geosci. Model Dev. Discuss., 2016). Unlike most other LES models, UCLALES-SALSA has fully interactive sectional description for aerosols and liquid and frozen cloud species. UCLALES-SALSA simulations are initialized using atmospheric observations from the Arctic Summer Cloud Ocean Study (ASCOS). First, the model is used to examine the effects of initial total aerosol number concentration on cloud properties. In agreement with several observations, lowering aerosol number concentration decreases cloud lifetime by increasing drizzle and precipitation rates, which further decreases aerosol number concentration. The second test includes comparison between model versions with different microphysics. The new sectional approach seems to produce thicker and more persistent clouds than a two moment model version (Stevens et al., J. Atmos. Sci., 1999) even when the models are tuned to have equal cloud droplet number concentrations. The third part of the study is focused on the effect of ice on cloud properties. Preliminary results indicate that the current cloud case is so warm that the liquid phase dominates, but further studies are ongoing. In general, the results show that cloud evolution depends on aerosol-cloud interactions.

  19. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  20. Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations

    Institute of Scientific and Technical Information of China (English)

    ZONG Rong; LIU Liping; YIN Yan

    2013-01-01

    Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong,Jilin,Northeast China.The aircraft provided in situ measurements of cloud droplet size distribution,while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated.The reflectivity factor calculated from aircraft measurements was compared in detail with simultaneous radar observations.The results showed that the two reflectivities were comparable in warm clouds,but in ice cloud there were more differences,which were probably associated with the occurrence of liquid water.The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data,and hence for cloud radar to remotely sense cloud properties.Based on the dataset collected in warm clouds,the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops.The relationship between reflectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle.In comparison with cloud droplets,the relationship for drizzle was blurred by many scatter points and thus was less evident.However,these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius.Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.

  1. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    Science.gov (United States)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  2. Structures in Molecular Clouds: Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  3. Radiation feedback in dusty clouds

    Science.gov (United States)

    Ishiki, Shohei; Okamoto, Takashi

    2017-03-01

    We have investigated the impact of photoionization and radiation pressure on a dusty star-forming cloud using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. We find that, in a cloud of mass 105 M⊙ and radius 17 pc, the effect of radiation pressure is negligible when star formation efficiency is 2 per cent. The importance of radiation pressure increases with increasing star formation efficiency or an increasing dust-to-gas mass ratio. The net effect of radiation feedback, however, becomes smaller with the increasing dust-to-gas mass ratio, since the absorption of ultraviolet photons by dust grains suppresses photoionization and hence photoheating.

  4. Prototyping manufacturing in the cloud

    Science.gov (United States)

    Ciortea, E. M.

    2017-08-01

    This paper attempts a theoretical approach to cloud systems with impacts on production systems. I call systems as cloud computing because form a relatively new concept in the field of informatics, representing an overall distributed computing services, applications, access to information and data storage without the user to know the physical location and configuration of systems. The advantages of this approach are especially computing speed and storage capacity without investment in additional configurations, synchronizing user data, data processing using web applications. The disadvantage is that it wants to identify a solution for data security, leading to mistrust users. The case study is applied to a module of the system of production, because the system is complex.

  5. OH+ in Diffuse Molecular Clouds

    CERN Document Server

    Porras, A J; Welty, D E; Ritchey, A M

    2013-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with differen...

  6. Fragmentation in filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Rathborne, Jill M; Sanhueza, Patricio

    2015-01-01

    Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the over-densities (clumps). In this paper, we present a multi-wavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage' instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find t...

  7. !CHAOS: A cloud of controls

    Science.gov (United States)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  8. The Effect of Surface Heterogeneity on Cloud Absorption Estimates

    Science.gov (United States)

    Chiu, Jui-Yuan C.; Marshak, Alexander; Wiscombe, Warren J.

    2004-01-01

    This study presents a systematic and quantitative analysis of the effect of inhomogeneous surface albedo on shortwave cloud absorption estimates. We use 3D radiative transfer modeling with gradually complex clouds over a simplified surface to calculate cloud absorption. We find that averaging surface albedo always underestimates cloud absorption, and thus accounting for surface heterogeneity always enhances cloud absorption. However, the impact on cloud absorption estimates is not enough to explain the discrepancy between measured and model calculated shortwave cloud absorptions.

  9. Molecular Clouds: Observation to Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J O; Ryutov, D D; Mizuta, A; Remington, B A; Pound, M W

    2004-05-06

    Our ongoing investigation of how 'Pillars' and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh-Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can address these issues.

  10. The basics of cloud computing understanding the fundamentals of cloud computing in theory and practice

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    As part of the Syngress Basics series, The Basics of Cloud Computing provides readers with an overview of the cloud and how to implement cloud computing in their organizations. Cloud computing continues to grow in popularity, and while many people hear the term and use it in conversation, many are confused by it or unaware of what it really means. This book helps readers understand what the cloud is and how to work with it, even if it isn't a part of their day-to-day responsibility. Authors Derrick Rountree and Ileana Castrillo explains the concepts of cloud computing in prac

  11. Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing

    Science.gov (United States)

    Wyld, David C.

    Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.

  12. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  13. OH+ in Diffuse Molecular Clouds

    Science.gov (United States)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.

  14. Exploiting Virtualization and Cloud Computing in ATLAS

    Science.gov (United States)

    Harald Barreiro Megino, Fernando; Benjamin, Doug; De, Kaushik; Gable, Ian; Hendrix, Val; Panitkin, Sergey; Paterson, Michael; De Silva, Asoka; van der Ster, Daniel; Taylor, Ryan; Vitillo, Roberto A.; Walker, Rod

    2012-12-01

    The ATLAS Computing Model was designed around the concept of grid computing; since the start of data-taking, this model has proven very successful in the federated operation of more than one hundred Worldwide LHC Computing Grid (WLCG) sites for offline data distribution, storage, processing and analysis. However, new paradigms in computing, namely virtualization and cloud computing, present improved strategies for managing and provisioning IT resources that could allow ATLAS to more flexibly adapt and scale its storage and processing workloads on varied underlying resources. In particular, ATLAS is developing a “grid-of-clouds” infrastructure in order to utilize WLCG sites that make resources available via a cloud API. This work will present the current status of the Virtualization and Cloud Computing R&D project in ATLAS Distributed Computing. First, strategies for deploying PanDA queues on cloud sites will be discussed, including the introduction of a “cloud factory” for managing cloud VM instances. Next, performance results when running on virtualized/cloud resources at CERN LxCloud, StratusLab, and elsewhere will be presented. Finally, we will present the ATLAS strategies for exploiting cloud-based storage, including remote XROOTD access to input data, management of EC2-based files, and the deployment of cloud-resident LCG storage elements.

  15. Challenges and Proposed Solutions for Cloud Forensic

    Directory of Open Access Journals (Sweden)

    Puraj Desai

    2015-01-01

    Full Text Available Cloud computing is a heavily evolving topic in information technology (IT. Rather than creating, deploying and managing a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. Due to this large scale, in case an attack over the network of cloud, it’s a great challenge to investigate to cloud. There is a very low research done to develop the theory and practice of cloud forensic. The investigator has huge challenge of getting the IP address of the culprit as there is dynamic IP in cloud computing. Also one among many problems is that the customer is only concerned of security and threat of unknown. The cloud service provider never lets customer see what is behind "virtual curtain" which leads customer more doubting for the security and threat issue. In cloud forensics, the lack of physical access leads to big challenge for investigator. In this paper we are presenting few common challenges which arise in cloud forensic and proposed solution to it. We will also discuss the in brief about cloud computing and cloud forensic.

  16. Cloud Auditing With Zero Knowledge Privacy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilip Sapatnekar,

    2015-07-01

    Full Text Available The Cloud computing is a latest technology which provides various services through internet. The Cloud server allows user to store their data on a cloud without worrying about correctness & integrity of data. Cloud data storage has many advantages over local data storage. User can upload their data on cloud and can access those data anytime anywhere without any additional burden. The User doesn’t have to worry about storage and maintenance of cloud data. But as data is stored at the remote place how users will get the confirmation about stored data. Hence Cloud data storage should have some mechanism which will specify storage correctness and integrity of data stored on a cloud. The major problem of cloud data storage is security .Many researchers have proposed their work or new algorithms to achieve security or to resolve this security problem. In this paper, we proposed a Shamir’s Secrete sharing algorithm for Privacy Preservation for data Storage security in cloud computing. We can achieve confidentiality, integrity and availability of the data. It supports data dynamics where the user can perform various operations on data like insert, update and delete as well as batch auditing where multiple user requests for storage correctness will be handled simultaneously which reduce communication and computing cost.

  17. STUDY& ANALYSIS OF CLOUD BASED ERP SERVICES

    Directory of Open Access Journals (Sweden)

    Rajeev Sharma

    2013-09-01

    Full Text Available The purpose of this research paper is to explore the knowledge of the existing studies related to cloud computing current trend. The outcome of my work will be demonstrated in the form of diagram which will exemplify the ERP integration process for in-house and cloud eco-system. It will provide a conceptual view to the new client or entrepreneurs using ERP services and explain them how to deal with two stages of ERP systems (cloud and in-house. Also suggest how to improve knowledge about ERP services and implementation process for both stages. The work recommends which ERP services can be outsourced over the cloud. Cloud ERP is a mix of standard ERP services along with cloud flexibility and low cost to afford these services. This is a recent phenomenon in enterprise service offering. For most of non IT background entrepreneurs it is unclear and broad concept, since all the research work related to it are done in couple of years. Most of cloud ERP vendors describe their products as straight forward tasks. The process and selection of Cloud ERP Services and vendors is not clear. This research work draws a framework for selecting non-core business process from preferred ERP service partners. It also recommends which ERP services outsourced first over the cloud, and the security issues related to data or information moved out from company premises to the cloud eco-system.

  18. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  19. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-07-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  20. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.