WorldWideScience

Sample records for externally heated diamond-anvil

  1. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  2. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  3. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell

    DEFF Research Database (Denmark)

    Mezouar, M.; Giampaoli, R.; Garbarino, G.

    2017-01-01

    A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated...

  4. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  5. Image analysis as an improved melting criterion in laser-heated diamond anvil cell

    OpenAIRE

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-01-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500K, our setup allows studying the melt...

  6. CO sub 2 laser-heated diamond-anvil cell methodology revisited

    CERN Document Server

    Hearne, G; Zhao, J

    2002-01-01

    A description is given of CO sub 2 laser heating system for attaining high temperatures at pressure in a diamond-anvil cell (DAC). The main purpose of this paper is to demonstrate that a relatively inexpensive set-up, perhaps affordable to many high-pressure laboratories, may be commissioned for laser-heated DAC experiments to achieve comparable extreme P-T conditions to those attained with more sophisticated stations documented in the literature. A novel idea of using the analogue output of a CCD camera to estimate the peak temperature and map the temperature distribution across the hot-spot has been tested. In an additional initial experiment on cubic zirconia (c-ZrO sub 2) we present evidence from a Raman characterization of the sample that temperatures exceeding 4000 K have been obtained at pressure in the DAC.

  7. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  8. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  9. Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell

    Science.gov (United States)

    Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.

    2017-04-01

    The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.

  10. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.

    Science.gov (United States)

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-09-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.

  11. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell

    Directory of Open Access Journals (Sweden)

    Jiankang Li

    2017-01-01

    Full Text Available Extensive studies of the crystal-rich inclusions (CIs hosted in minerals in pegmatite have resulted in substantially different models for the formation mechanism of the pegmatite. In order to evaluate these previously proposed formation mechanisms, the total homogenization processes of CIs hosted in spodumene from the Jiajika pegmatite deposit in Sichuan, China, were observed in situ under external H2O pressures in a new type of hydrothermal diamond-anvil cell (HDAC. The CIs in a spodumene chip were loaded in the sample chamber of HDAC with water, such that the CIs were under preset external H2O pressures during heating to avoid possible decrepitation. Our in situ observations showed that the crystals within the CIs were dissolved in carbonic-rich aqueous fluid during heating and that cristobalite was usually the first mineral being dissolved, followed by zabuyelite and silicate minerals until their total dissolution at temperatures between 500 and 720°C. These observations indicated that the minerals within the CIs were daughter minerals crystallized from an entrapped carbonate- and silica-rich aqueous solution and therefore provided useful information for evaluating the formation models of granitic pegmatites.

  12. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Alexandra, E-mail: friedrich@kristall.uni-frankfurt.d [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Winkler, Bjoern; Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Juarez Arellano, Erick A. [Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Yan, Jinyuan; Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, MS6R2100, 1 Cyclotron Road, Berkeley, CA 94720-8226 (United States)

    2010-07-16

    Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal {beta}-Ta{sub 2}N and orthorhombic {eta}-Ta{sub 2}N{sub 3}, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of {epsilon}-TaN, {theta}-TaN, {delta}-TaN, Ta{sub 3}N{sub 5}-I or Ta{sub 3}N{sub 5}-II, which was predicted to be the stable phase at P>17 GPa and T=2800 K, at the P,T-conditions of this experiment. The bulk modulus of {eta}-Ta{sub 2}N{sub 3} was determined to be B{sub 0}=319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B{sub 0}=348.0(9) GPa for a 2nd-order fit or B{sub 0}=339(1) GPa and B{sup '}=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

  13. Experimental issues in in-situ synchrotron x-ray diffraction at high pressure and temperature by using a laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Yoo, C.S.

    1997-01-01

    An integrated technique of diamond-anvil cell, laser-heating and synchrotron x-ray diffraction technologies is capable of structural investigation of condensed matter in an extended region of high pressures and temperatures above 100 GPa and 3000 K. The feasibility of this technique to obtain reliable data, however, strongly depends on several experimental issues, including optical and x-ray setups, thermal gradients, pressure homogeneity, preferred orientation, and chemical reaction. In this paper, we discuss about these experimental issues together with future perspectives of this technique for obtaining accurate data

  14. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  15. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Science.gov (United States)

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  16. Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Errandonea, D; Somayazulu, M; Haeusermann, D; Mao, H K

    2003-01-01

    The high-pressure and high-temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 deg. GPa and 3800 deg. K. The melting was observed at nine different pressures, the melting temperature being in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dT m /dP ≅ 24 GPa -1 at 1 deg. bar) and a possible explanation for this behaviour is given. Finally, a P-V -T equation of states is obtained, the temperature dependence of the thermal expansion coefficient and the bulk modulus being estimated

  17. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    Science.gov (United States)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these

  18. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    Science.gov (United States)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and

  19. Implementation of the Peak Scaling Method for Temperature Measurement in the Laser Heated Diamond Anvil Cell at ALS Beamline 12.2.2

    Science.gov (United States)

    Kunz, M.; MacDowell, A. A.; Yan, J.; Beavers, C.; Doran, A.; Williams, Q. C.

    2016-12-01

    The laser-heated diamond anvil cell (LHDAC) is an important tool in the quest to correlate seismologically derived density and velocity profiles of the Earth with mineralogical models. Precise and accurate measurement of pressure and temperature is crucial for the LHDAC to be useful. Measuring accurate temperatures of laser-heated samples is an ongoing problem. One of the more promising approaches is the `peak-scaling method' as proposed by Kavner and Panero [2004]. This method relies on imaging the entire hot spot, rather than only the peak region onto the grating of a spectrometer. The temperature derived from the entire hotspot is an `average' temperature of the full hot spot. Combined with a monochromatic intensity map of the hot spot and a single temperature spot on this map (normally the peak temperature), a complete temperature map of the LHDAC can be derived. The crux of the method is to determine an accurate peak temperature. Using MATLAB, we derived systematic dependences of the relationship between average temperature and peak temperature as a function of peak temperature, deviations from the grey body assumption [ɛ = f(T,λ)], size and shape of hotspot, as well as the size and position of the spectral window used for spectral fitting. We find these average-to-peak deviations to be significant (5 - 25 %) and hard to control. To avoid biases introduced into the temperature map by erroneous assumptions on the peak temperature, we implemented on ALS beamline 12.2.2 an iterative way to fit a correct peak temperature based on the measured average temperature and measured monochromatic (700 nm) intensity map of the hot spot. The method calculates an average temperature by inverting the Planck equation on the intensities extracted from the monochromatic hotspot image and compares this value to the value obtained by fitting the Wien approximation to the averaged spectrum of the entire hotspot. The peak temperature is adjusted until the difference between

  20. i-anvils : in situ measurements of pressure, temperature and conductivity in diamond anvil cells

    Science.gov (United States)

    Munsch, P.; Bureau, H.; Kubsky, S.; Meijer, J.; Datchi, F.; Ninet, S.; Estève, I.

    2011-12-01

    The precise determination of the pressure and temperature conditions during diamond anvils cells (DAC) experiments is of primary importance. Such determinations are critical more especially for the fields corresponding to "low pressures" (micro-structures are implanted in the diamond anvil lattice a few micrometers below the surface, the sensors are located a few μm below the center of the diamond culet (sample chamber position). When conductive electrodes are implanted at the position of the sample chamber on the culet of the anvil, instead of P,T sensors, they allow in situ measurements of electrical properties of the loaded sample at high P,T conditions in a DAC. The principle consists of applying an electrical potential across the structures through external contacts placed on the slopes of the anvil. The resistivity of these structures is sensitive to pressure and temperature applied in the sample chamber. The electrical transport properties of the sample can be measured the same way when electrodes have been implanted on the culet. Here we will present our last progresses, more especially using the focus ion beam (FIB) technology to perform contacts and electrodes. Progresses about the i-anvils connexions with the electronic devices will also be shown. We will present the last P and T sensors calibrations. Furnaces are also introduced through Boron implantation into the anvils, allowing the possibility to reach intermediate temperatures between externally heated DAC (up to 1100°C) and laser heated DAC (from 1500°C to a few thousands). Preliminary tests and the interest of such devices will be discussed at the meeting. A new diamond anvil cell has been especially designed for this purpose. This DAC allows in situ spectroscopies and X-Ray characterisation of geological fluids in their equilibrium conditions in the crust and in the upper mantle. Preliminary results will be presented.

  1. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  2. Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating

    International Nuclear Information System (INIS)

    Hasegawa, Masashi; Yagi, Takehiko

    2005-01-01

    Syntheses of 3d-transition metal (Ti-Cu) nitrides have been tried in a supercritical nitrogen fluid at high pressures (about 10 GPa) and high temperatures (about 1800 K) using diamond anvil cell and YAG laser heating system. Nitrides, such as TiN, VN, CrN, Mn 3 N 2 , Fe 2 N, Co 2 N and Ni 3 N have been successfully synthesized easily by a simple direct nitriding reaction between metal and fluid nitrogen in a short time, while any Cu nitrides were not synthesized. These results indicate that the ratio of nitrogen to metal, N/M, of the nitride decreases from 1 to 0 with the sequence from the early transition metal nitrides to the late transition metal ones. The systematic change of the N/M ratio and crystal structure of the 3d-transition metal nitrides is discussed and interpreted on the basis of the electron arrangement of the 3d-transition metal which is relevant to its coordination number

  3. A Peltier cooling diamond anvil cell for low-temperature Raman spectroscopic measurements

    Science.gov (United States)

    Noguchi, Naoki; Okuchi, Takuo

    2016-12-01

    A new cooling system using Peltier modules is presented for a low-temperature diamond anvil cell instrument. This cooling system has many advantages: it is vibration-free, low-cost, and compact. It consists of double-stacked Peltier modules and heat sinks, where a cooled ethylene glycol-water mixture flows through a chiller. Current is applied to the Peltier modules by two programmable DC power supplies. Sample temperature can be controlled within the range 210-300 K with a precision of ±0.1 K via a Proportional-Integral-Differential (PID) control loop. A Raman spectroscopic study for the H2O ice VII-VIII transition is shown as an example of an application of the Peltier cooling diamond anvil cell system.

  4. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    Science.gov (United States)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  5. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of 151 Eu, 119 Sn and 129 I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs

  6. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  7. Diamond-anvil cell for radial x-ray diffraction

    International Nuclear Information System (INIS)

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-01-01

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ∼54.7 0 , the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants

  8. Hydrostaticity of Pressure Media in Diamond Anvil Cells

    International Nuclear Information System (INIS)

    Shu-Jie, You; Liang-Chen, Chen; Chang-Qing, Jin

    2009-01-01

    Hydrostaticity under high pressure of several materials from solid, fluid to gas, which are widely used as pressure media in modern high-pressure experiments, is investigated in diamond anvil cells. Judging from the R-line widths and R 1 – R 2 peak separation of Ruby fluorescence, the inert argon gas is hydrostatic up to about 30 GPa. The behavior of silicon oil is found to be similar to argon at pressures less than 10 GPa, while the widening of R-lines and increase of R 1 – R 2 peak separation at higher pressure loads indicate a significant degradation of hydrostaticity. Therefore silicon oil is considered as a good pressure medium at pressures less than 10 GPa but poor at higher pressures

  9. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    Science.gov (United States)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  10. Hydrothermal Diamond Anvil Cell Investigations Into the Alumina-Silica-Water System up to 1073 K and 4 GPa

    Science.gov (United States)

    Davis, M. K.; Stixrude, L. P.

    2004-12-01

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubility of different mineral assemblages in predominantly water-rich fluid along with pressure and temperature conditions control the chemical structure of the aqueous fluid and govern the transport opportunities for various chemical components away from the subducting slab. In-situ Raman experiments were performed in the alumina-silica-water system in an externally heated Bassett-type hydrothermal diamond anvil cell in the Department of Geological Sciences at the University of Michigan. Natural quartz samples (from the Owl Creek Mountains, Wyoming) were used as the silica source and synthetic ruby was used for the alumina source. Temperatures inside the diamond cell were monitored using type-K thermocouples wrapped around the diamonds and the pressure calibrated by the Raman shift of diamond or quartz or the fluorescence of ruby depending on conditions. Raman measurements of the aluminosilicate fluid show the presence of multiple alumina, silica, and mixed species. As predicted by calculations an aluminosilicate specie possibly of the form (HO)3SiOAl(OH)32- as well as the silica monomer and dimer specie were observed in the aluminosilicate fluid. There also appeared to be at least one hydrous alumina specie based on the presence of a Raman peaks at 228 cm-1, 339 cm-1 and 970 cm-1 in the fluid and a comparative analysis between Raman peaks in aqueous fluid in the silica-water, alumina-water, and alumina-silica-water systems. Solid phases formed during experiments (diaspore, kyanite) were confirmed with Raman spectroscopy.

  11. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  12. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  13. Prospects of using synchrotron radiation facilities with diamond-anvil cells

    International Nuclear Information System (INIS)

    Manghani, M.H.; Ming, L.C.; Jamieson, J.C.

    1980-01-01

    Diamond-anvil pressure cells have proven versatile and useful for conducting high pressure research in the submegabar range. The interfacing of diamond-anvil cell technology with synchrotron facilities seems a logical new step for carrying out in situ X-ray diffraction studies of materials under extreme conditions of combined high pressure and temperature. The conventional film method of X-ray diffraction has definite limitations which call for the energy dispersive analysis techniques. Various potential high pressure-temperature studies in geophysis and related fields involving the use of diamond-anvil cell, synchrotron facilities and energy dispersive techniques are exemplified. For geophysical studies the conditions prevailing in 86% of the Earth's volume are capable of being simulated completely in pressure, and partially in pressure and temperature, simultaneously. (orig.)

  14. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    International Nuclear Information System (INIS)

    Sinogeikin, Stanislav V.; Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-01-01

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research

  15. Comparison between beryllium and diamond-backing plates in diamond-anvil cells

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci

    2011-01-01

    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  16. Time- and Space-Domain Measurements of the Thermal Conductivity in Diamond Anvil Cells

    Science.gov (United States)

    Goncharov, A. F.

    2011-12-01

    I will give an overview of recent developments of experimental techniques to measure the thermal conductivity in diamond anvil cell (DAC) under conditions of high pressure and high temperature (P-T) which are relevant for the planetary interiors. To measure the lattice contributions to the thermal conductivity, we developed a transient heating technique (THT) in the diamond anvil cell (DAC) [1]. This technique utilizes a periodic front surface temperature variation (measured by the spectroradiometry) of a metallic absorber surrounded by the material of interest and exposed to a pulsed laser radiation (10 nanoseconds pulses). We extract the thermal diffusivity of minerals by fitting the experimental results to the model finite element (FE) calculations. We have recently modified this technique for microseconds laser pulses as this allows avoiding nonequilibrium heat transfer processes. We have measured the thermal conductivity of Ar up to 50 GPa and 2500 K; the results are in agreement with the theoretical calculations [2] in the limit of high temperatures. In collaboration with a group from the University of Illinois we have utilized a time-domain thermoreflectance (TDTR)- ultrafast (femtosecond) laser pump-probe technique for measurement of the lattice thermal conductivity at high P-T conditions. We have measured the thermal conductivity of MgO up to 60 GPa and 300 K and up to 45 GPa at 600 K. The detailed results of this study will be presented in a separate paper at this Meeting. Finally, we have combined static and pulsed laser techniques to determine the thermal conductivity of Fe and its temperature dependence at high pressures up to 70 GPa and 2000 K [3]. A thin plate of Fe was positioned in an Ar medium, laser heated from one side and the temperature is being measured from both sides of the sample radiometrically. The thermal conductivity has been determined by fitting the results of FE calculations to the experimental results. These examples demonstrate

  17. The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell

    Science.gov (United States)

    Davis, M. K.; Panero, W. R.; Stixrude, L. P.

    2003-12-01

    Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the

  18. EXAFS measurements under high pressure conditions using a combination of a diamond anvil cell and synchrotron radiation

    International Nuclear Information System (INIS)

    Sueno, Shigeho; Nakai, Izumi; Imafuku, Masayuki; Morikawa, Hideki; Kimata, Mitsuyoshi; Ohsumi, Kazumasa; Nomura, Masaharu; Shimomura, Osamu.

    1986-01-01

    EXAFS spectra for Fe, Co, Ni K-edges were successfully measured under high pressure conditions using a combination of a set of normal 1/8 carat diamond anvils, synchrotron radiation and a scintillation counter. A newly developed motor controlled goniometer stage was used for adjusting the position of a miniature diamond anvil cell. On the measurement of Cr and Mn spectra, specially designed thinner diamond anvil was necessary. EXAFS analysis of bis(dimethylglyoximato)nickel(II) at pressures from 1 atm to 5.6 GPa was made. (author)

  19. Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell

    Science.gov (United States)

    Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.

    2002-10-01

    Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.

  20. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  1. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    Science.gov (United States)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  2. In situ experimental study of subduction zone fluids using diamond anvil cells

    Science.gov (United States)

    Bureau, H.; Foy, E.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S.

    2008-12-01

    Experiments carried out in diamond anvil cells combined with in situ synchrotron light source measurements represent the only one issue to observe and study fluid equilibria in real time, at the pressure and temperature conditions of the subduction zones. We will present new results recently obtained at the DIFFABS beam line (SOLEIL Synchrotron) aiming at studying equilibria between silica-rich hydrous melts and aqueous fluids in the presence of U, Th, Pb, Ba and Br. We used synchrotron X-Ray fluorescence analysis performed in situ in Bassett-modified hydrothermal diamond anvil cells in order to monitor the chemical transfers of the studied elements between the phases in equilibrium at different pressures (up to 1.6 GPa) and temperatures (up to 900°C). We have calculated the partition coefficients for each studied element (i): Difluid/melt = Cifluid/Cimelt. Results show that U and Th exhibit more affinities for the silica-rich hydrous fluids in the presence or absence of Br, considered here such as an analogue for Cl, (i.e. 0.4 > 10 after decompression) this coefficient decreases with pressure suggesting that Br would not be immediately washed out from the subducted plate during dehydration but may be recycled deeper in the mantle. These new data combined with previous ones obtained for Pb, Ba (Bureau et al., 2007, HPR vol 27, p. 235) and Rb, Sr, Zr (Bureau et al., 2004, Eos Trans. AGU, 85(47), V11C-05), allow us to propose a general outline of the fluid phase transfers through the subduction factory: (1) at shallow level: their nature and composition, the impact of the presence of halogens and the fertilizing role of such fluids in the mantle wedge, where the generation of arc magmas takes place (2) deeper in the mantle: where hydrous silica-rich supercritical fluids may also favour a deep recycling of a fraction of volatiles and trace elements present in the subducted oceanic crust.

  3. A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal

    International Nuclear Information System (INIS)

    Malinowski, M.

    1987-01-01

    A new diamond-anvil high-pressure cell is described which can be used in single-crystal X-ray diffraction instruments to collect X-ray intensity data from single-crystal samples up to hydrostatic pressures of about 10 GPa. A unique design allows two types of diffraction geometry to be applied in single-crystal high-pressure diffraction experiments. More than 85% of the Ewald sphere is accessible, and a continuous range of 2θ values is available from 0 up to about 160 0 . Pressure may be calibrated by the ruby fluorescence technique or by the use of an internal X-ray-standard single crystal. The design of our diamond-anvil cell would allow, with little or no modification, operation at high and low temperatures, optical studies and powder diffractometer work. (orig.)

  4. Calibration of an isotopically enriched carbon-13 layer pressure sensor to 156 GPa in a diamond anvil cell

    International Nuclear Information System (INIS)

    Qiu Wei; Baker, Paul A.; Velisavljevic, Nenad; Vohra, Yogesh K.; Weir, Samuel T.

    2006-01-01

    An isotopically enriched 13 C homoepitaxial diamond layer of 6±1 μm thickness was grown on top of a brilliant cut diamond anvil by a microwave plasma chemical vapor deposition process for application as a pressure sensor. This isotopically enriched diamond tip was then used in conjunction with a natural isotopic abundance diamond anvil to generate high pressure on the sample. We provide a calibration for the 13 C Raman mode of this extremely thin epitaxial layer to 156 GPa using ruby fluorescence and the equation of state of copper as secondary pressure standards. The nonlinear calibration of the 13 C Raman mode pressure sensor is compared with similar calibrations of 12 C Raman edge and a good agreement is obtained. The Raman signal from the 13 C epitaxial layer remained a distinct singlet to 156 GPa, and pressure calibration is independent of sample mechanical strength or the diamond anvil geometry. The use of even thinner layer would allow calibration further into ultrahigh pressure regime where the use of other optical sensors has proven to be difficult

  5. The design and application of a new Bassett-type diamond anvil cell for spectroscopic analysis of supercritical aqueous solutions

    International Nuclear Information System (INIS)

    Anderson, A.J.; Meredith, P.R.; Bassett, W.A.; Mayanovic, R.A.; Benmore, C.

    2010-01-01

    The Bassett-type hydrothermal diamond anvil cell has been modified to facilitate direct x-ray and Raman spectroscopic analysis of aqueous solutions and/or coexisting solid samples at temperatures and pressures above the critical point of water. The new cell provides more sample-detector geometry options for x-ray micro beam analysis and the reduced size of the cell affords a smaller working distance (≥ 14 mm) required for better Raman spectroscopic analysis and microscopic inspection. A shallow recess (300 × 300 × 26.5 μm) milled into one of the diamond anvils is used instead of a metal gasket to contain the aqueous solution. These modifications significantly improve our ability to directly monitor the composition and structure of supercritical fluids and have eliminated the problem of contamination due to the reaction of a metal gasket with supercritical water. The use of the modified hydrothermal diamond anvil cell to characterize the MoO 3 -H 2 O system up to 500 o C will be discussed. (author)

  6. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells

    Science.gov (United States)

    Bureau, Hélène; Foy, Eddy; Raepsaet, Caroline; Somogyi, Andrea; Munsch, Pascal; Simon, Guilhem; Kubsky, Stefan

    2010-07-01

    The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br) fluid/(Br) melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br) fluid/(Br) glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing "fluid" leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.

  7. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  8. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  9. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    International Nuclear Information System (INIS)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun; Butch, Nicholas P.

    2004-01-01

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures (∼1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as

  10. Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J.M.

    1997-07-01

    An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

  11. A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres[reg

    International Nuclear Information System (INIS)

    Picard, Aude; Oger, Phil M.; Daniel, Isabelle; Cardon, Herve; Montagnac, Gilles; Chervin, Jean-Claude

    2006-01-01

    We present an optical pressure sensor suitable for experiments in diamond anvil cell in the 0.1 MPa-2 GPa pressure range, for temperatures between ambient and 323 K. It is based on the pressure-dependent fluorescence spectrum of FluoSpheres[reg], which are commercially available fluorescent microspheres commonly used to measure blood flow in experimental biology. The fluorescence of microspheres is excited by the 514.5 nm line of an Ar + laser, and the resulting spectrum displays three very intense broad bands at 534, 558, and 598 nm, respectively. The reference wavelength and pressure gauge is that of the first inflection point of the spectrum, located at 525.6±0.2 nm at ambient pressure. It is characterized by an instantaneous and large linear pressure shift of 9.93(±0.08) nm/GPa. The fluorescence of the FluoSpheres[reg] has been investigated as a function of pressure (0.1-4 GPa), temperature (295-343 K), pH (3-12), salinity, and pressure transmitting medium. These measurements show that, for pressures comprised between 0.1 MPa and 2 GPa, at temperatures not exceeding 323 K, at any pH, in aqueous pressure transmitting media, pressure can be calculated from the wavelength shift of two to three beads, according to the relation P=0.100 (±0.001) Δλ i (P) with Δλ i (P)=λ i (P)-λ i (0) and λ i (P) as the wavelength of the first inflection point of the spectrum at the pressure P. This pressure sensor is approximately thirty times more sensitive than the ruby scale and responds instantaneously to pressure variations

  12. External corners as heat bridges

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  13. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water

    International Nuclear Information System (INIS)

    Eggert, Jon H.; Weck, Gunnar; Loubeyre, Paul; Mezouar, Mohamed

    2002-01-01

    We report quantitatively accurate high-pressure, structure-factor measurements of fluids in diamond anvil cells (DAC's) using x-ray diffraction. In the analysis of our diffraction data, we found it possible (and necessary) to determine the density directly. Thus, we also present a diffraction-based determination of the equation of state for fluid water. The analysis of these measurements is difficult since the diamond anvils are many times as thick as the sample and excessive care must be taken in the background subtraction. Due to the novel nature of the experiment and the complexity of the analysis, this paper is concerned primarily with a careful exposition of our analytical methods. Our analysis is applicable to both atomic and molecular fluids and glasses, and we present results for the structure factor and density of two relatively low-Z liquids: argon and water. In order to validate our methods we present an extensive comparison of our measurements on water at P≅0 in a DAC to recent state-of-the-art x-ray and neutron diffraction experiments and to first-principles simulations at ambient conditions

  14. Effect of shear strain on the α-ε phase transition of iron: a new approach in the rotational diamond anvil cell

    International Nuclear Information System (INIS)

    Ma Yanzhang; Selvi, Emre; Levitas, Valery I; Hashemi, Javad

    2006-01-01

    The effect of shear strain on the iron α-ε phase transformation has been studied using a rotational diamond anvil cell (RDAC). The initial transition is observed to take place at the reduced pressure of 10.8 GPa under pressure and shear operation. Complete phase transformation was observed at 15.4 GPa. The rotation of an anvil causes limited pressure elevation and makes the pressure distribution symmetric in the sample chamber before the phase transition. However, it causes a significant pressure increase at the centre of the sample and brings about a large pressure gradient during the phase transformation. The resistance to the phase interface motion is enhanced due to strain hardening during the pressure and shear operations on iron and this further increases the transition pressure. The work of macroscopic shear stress and the work of the pressure and shear stress at the defect tips account for the pressure reduction of the iron phase transition

  15. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    International Nuclear Information System (INIS)

    Maple, M. Brian

    2005-01-01

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made

  16. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  17. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  18. Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from -190°C to 1200°C

    Science.gov (United States)

    Bassett, W. A.; Shen, A. H.; Bucknum, M.; Chou, I.-Ming

    1993-06-01

    The new hydrothermal diamond anvil cell (HDAC) has been designed for optical microscopy and X-ray diffraction at pressures up to 10 GPa and temperatures between -190°C and 1200°C. Laser light reffected from the top and bottom anvil faces and the top and bottom solid sample faces produce interference fringes that provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in solid samples due to transitions and reactions. Synchrotron radiation has been used to make X-ray diffraction patterns of samples under hydrothermal conditions. Individual heaters and individual thermocouples provide temperature control with an accuracy of ±0.5°C. Liquid nitrogen directly introduced into the HDAC has been used to reduce the sample temperature to -190°C. The α-β phase boundary of quartz has been used to calculate the transition pressures from measured transition temperatures. With this method we have redetermined 5 isochores of H2O up to 850°C and 1.2 GPa at which the solution rate of the quartz became so rapid that the quartz dissolved completely before the α-β transition could be observed. When silica solutions were cooled, opal spherules and rods formed.

  19. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    Science.gov (United States)

    Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming

    1993-01-01

    A new style of diamond anvil cell(DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from −190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x‐ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X‐ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α‐β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  20. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    Science.gov (United States)

    Bassett, W. A.; Shen, A. H.; Bucknum, M.; Chou, I.-Ming

    1993-08-01

    A new style of diamond anvil cell (DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from -190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x-ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X-ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α-β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  1. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  2. The structural variation of rhombohedral LaAlO3 perovskite under non-hydrostatic stress fields in a diamond-anvil cell

    International Nuclear Information System (INIS)

    Zhao Jing; Angel, Ross J; Ross, Nancy L

    2011-01-01

    The structural variation of LaAlO 3 perovskite under non-hydrostatic stress developed in the pressure medium within a diamond-anvil cell was determined using single-crystal x-ray diffraction. The experimental results show that the lattice of LaAlO 3 becomes more distorted and deviates from the hydrostatic behavior as pressure is increased up to 7.5 GPa. The determination of the crystal structure further confirms that the octahedral AlO 6 groups become more distorted, but the octahedral rotation around the threefold axis decreases as under hydrostatic conditions. These experimental results can be reproduced from knowledge of the elastic tensor of the sample at ambient conditions and the stress state within the pressure medium. Further calculations for two other orientations also indicate that non-hydrostatic stress has only a small effect on the rotation of the AlO 6 octahedra towards zero, but non-hydrostatic stress inevitably leads to distortions in the crystal lattice and the AlO 6 octahedra. As a result, the crystal structure is eventually driven away from cubic symmetry under non-hydrostatic conditions, whereas it evolves towards cubic symmetry under hydrostatic pressure.

  3. Non-hydrostatic behavior of KBr as a pressure medium in diamond anvil cells up to 5.63 GPa

    International Nuclear Information System (INIS)

    Zhao, Jing; Ross, Nancy L

    2015-01-01

    Non-hydrostatic stresses of KBr acting as a pressure–transmitting medium have been investigated by examining their effect on a single crystal of quartz in a diamond anvil cell (DAC). The lattice strains or distortions were measured by single-crystal x-ray diffraction methods, and the non-hydrostatic deviatoric stresses for KBr were determined up to 5.63(2) GPa. The experimental results show that differences between axial stress components in the direction normal to the DAC culet face and the radial stress components in directions parallel to the DAC culet face are about 0.063(24) GPa at pressures below 2.14 GPa, and the pressure-transmitting medium can therefore be considered as quasi-hydrostatic up to this pressure. However above 2.14 GPa, after the phase transition pressure of KBr during which it converts from the B1 phase to the B2 phase, the deviatoric stresses constantly increase with increasing pressure. At the maximum pressure of this study, 5.63(2) GPa, the difference between axial stress and radial stress components reaches 0.93(9) GPa. Different variations in the non-hydrostatic deviatoric stresses were observed during both compression and decompression of the DAC, and are mainly ascribed to the phase-transition-induced volume change of KBr. (paper)

  4. en (Be_3Al_2Si_6O_1_8) by using a diamond anvil cell and in situ synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Fan, Dawei; Xu, Jingui; Kuang, Yunqian; Li, Xiaodong; Li, Yanchun; Xie, Hongsen

    2015-01-01

    High-pressure single-crystal synchrotron X-ray diffraction was carried out on a single crystal of natural beryl compressed in a diamond anvil cell. The pressure-volume (P-V) data from room pressure to 9.51 GPa were fitted by a third-order Birch-Murnaghan equation of state (BM-EoS) and resulted in unit-cell volume V_0 = 675.5 ± 0.1 Aa"3, isothermal bulk modulus K_0 = 180 ± 2 GPa, and its pressure derivative K_0"' = 4.2 ± 0.5. We also calculated V_0 = 675.5 ± 0.1 Aa"3 and K_0 = 181 ± 1GPa with fixed K_0"' at 4.0 and then obtained the axial moduli for a (K_a_0)-axis and c (K_c_0)-axis of 209 ± 1 and 141 ± 2 GPa by ''linearized'' BM-EoS approach. The axial compressibilities of a-axis and c-axis are β_a = 1.59 x 10"-"3 GPa"-"1 and β_c = 2.36 x 10"-"3 GPa"-"1 with an anisotropic ratio of β_a:β_c = 0.67:1.00. On the other hand, the pressure-volume-temperature (P-V-T) EoS of the natural beryl has also been measured at temperatures up to 750 K and at pressures up to 16.81 GPa, using diamond anvil cell in conjunction with in situ synchrotron angle-dispersive powder X-ray diffraction. The P-V data at room temperature and at a pressure range of 0.0001-15.84 GPa were then analyzed by third-order BM-EoS and yielded V_0 = 675.3 ± 0.1 Aa"3, K_0 = 180 ± 2 GPa, K_0"' = 4.2 ± 0.3. With K_0"' fixed to 4.0, we also obtained V_0 = 675.2 ± 0.1 Aa"3 and K_0 = 182 ± 1 GPa. Consequently, we fitted the P-V-T data with high-temperature BM-EoS approach using the resultant K_0"' (4.2) from room-temperature BM-EoS and then obtained the thermoelastic parameters of V_0 = 675.3 ± 0.2 Aa"3, K_0 = 180 ± 1 GPa, temperature derivative of the bulk modulus (∂K/∂T)_P = -0.017 ± 0.004 GPa K"-"1, and thermal expansion coefficient at ambient conditions α_0 = (2.82 ± 0.74) x 10"-"6 K"-"1. Present results were also compared with previous studies for beryl. From the comparison of these fittings, we propose to constrain K_0 = 180 GPa and K_0"' = 4.2 for beryl. And we also observed that

  5. Study of thermal pressure and phase transitions in H2O using optical pressure sensors in the diamond anvil cell

    International Nuclear Information System (INIS)

    Sundberg, Sara; Lazor, Peter

    2004-01-01

    We present results of a study on the phase equilibria and pressure-volume-temperature relations for water and ice VII using an optical system designed for Raman spectroscopy and pressure-temperature measurements. The study shows that the strontium borate sensor represents an important tool for high-pressure-high-temperature manometry for temperatures below 600 K. In the pressure-temperature ranges 0-5 GPa and 240-600 K we detected phase transformations between four phases of H 2 O as documented by Raman spectra, pressure-temperature scans, and visual observations. Analysis of the interference fringes and comparison of the experimental data on thermal pressure with the published equations of state (EOSs) show that the heating/cooling cycles were carried out under quasi-isochoric conditions. The experimental results are discussed/analysed on the basis of different EOSs for water and ice

  6. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  7. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  8. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  9. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  10. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; Park, Changyong; Popov, Dmitry; Trautmann, Christina; Ewing, Rodney C.; Lang, Maik

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron X-ray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performingin situdefect annealing and thermal expansion studies of swift heavy ion irradiated CeO2and ThO2using synchrotron X-ray diffraction. The advantages of thein situHDAC technique over conventional annealing methods include rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature and apparatus stability at high temperatures. Isochronal annealing between 300 and 1100 K revealed two-stage and one-stage defect recovery processes for irradiated CeO2and ThO2, respectively, indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high-temperature defect recovery mechanisms of CeO2and ThO2.

  11. P–V–T equation of state of molybdenite (MoS2) by a diamond anvil cell and in situ synchrotron angle-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Fan, Dawei; Xu, Jingui; Ma, Maining; Liu, Jing; Xie, Hongsen

    2014-01-01

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of a natural molybdenite (MoS 2 ) has been measured at high temperature up to 700 K and high pressures up to 18.26 GPa, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan EoS yields: V 0 =107.0±0.1 Å 3 , K 0 =67±2 GPa and K′ 0 =5.0±0.3. With K′ 0 fixed to 4.0, we obtained: V 0 =106.7±0.1 Å 3 and K 0 =74.5±0.8 GPa. Fitting of our P–V–T data by means of the high-temperature third order Birch–Murnaghan equations of state, gives the thermoelastic parameters: V 0 =107.0±0.1 Å 3 , K 0 =69±2 GPa, K′ 0 =4.7±0.2, (∂K/∂T) P =−0.021±0.003 GPa K −1 , a=(2.2±0.7)×10 −5 K −1 and b=(2.9±0.8)×10 −8 K −2 . The temperature derivative of the bulk modulus and thermal expansion coefficient of MoS 2 are obtained for the first time. Present results are also compared with previously studies determined the elastic properties of MoS 2 and WS 2

  12. P–V–T equation of state of molybdenite (MoS{sub 2}) by a diamond anvil cell and in situ synchrotron angle-dispersive X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Dawei, E-mail: fandawei@vip.gyig.ac.cn [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xu, Jingui [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Maining [University of Chinese Academy of Sciences, Beijing 100049 (China); Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xie, Hongsen [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-10-15

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of a natural molybdenite (MoS{sub 2}) has been measured at high temperature up to 700 K and high pressures up to 18.26 GPa, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan EoS yields: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=67±2 GPa and K′{sub 0}=5.0±0.3. With K′{sub 0} fixed to 4.0, we obtained: V{sub 0}=106.7±0.1 Å{sup 3} and K{sub 0}=74.5±0.8 GPa. Fitting of our P–V–T data by means of the high-temperature third order Birch–Murnaghan equations of state, gives the thermoelastic parameters: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=69±2 GPa, K′{sub 0}=4.7±0.2, (∂K/∂T){sub P}=−0.021±0.003 GPa K{sup −1}, a=(2.2±0.7)×10{sup −5} K{sup −1} and b=(2.9±0.8)×10{sup −8} K{sup −2}. The temperature derivative of the bulk modulus and thermal expansion coefficient of MoS{sub 2} are obtained for the first time. Present results are also compared with previously studies determined the elastic properties of MoS{sub 2} and WS{sub 2}.

  13. External costs and taxes in heat supply systems

    International Nuclear Information System (INIS)

    Karlsson, Aasa; Gustavsson, Leif

    2003-01-01

    A systems approach was used to compare different heating systems from a consumer perspective. The whole energy system was considered from natural resources to the required energy services. District heating, electric heat pumps, electric boilers, natural-gas-, oil- or pellet-fired local boilers were considered when supplying heat to a detached house. The district heat production included wood-chip-fired and natural-gas-fired cogeneration plants. Electricity other than cogenerated electricity was produced in wood-chip- and natural-gas-fired stand-alone power plants. The analysis includes four tax scenarios, as well as the external cost of environmental and health damage arising from energy conversion emission based on the ExternE study of the European Commission. The most cost-efficient systems were the natural-gas and oil boiler systems, followed by the heat pump and district heating systems, when the external cost and taxes were excluded. When including the external costs of CO 2 emission, the wood-fuel-based systems were much more cost efficient than the fossil-fuel-based systems, also when CO 2 capture and storage were applied. The external costs are, however, highly uncertain. Taxes steer towards lowering energy use and lowering CO 2 emission if they are levied solely on all the fossil-fuel-related emission and fuel use in the systems. If consumer electricity and heat taxes are used, the taxes have an impact on the total cost, regardless of the fuel used, thereby benefiting fuel-based local heating systems. The heat pump systems were the least affected by taxes, due to their high energy efficiency. The electric boiler systems were the least cost-efficient systems, also when the external cost and taxes were included

  14. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  15. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    Energy consumption and production can cause air pollution with global impact, such as CO2, and local/regional air pollutants, such as SO2, NOx and PM2.5, as a result of fuel combustion. Use of fossil fuels leads to global CO2 emissions and causes global warming effects, regardless place or height......-related external costs can be internalised, for instance, in energy system modelling. External costs of global warming and human health damage can be of comparable magnitude.However, in contrast to global CO2 impacts, air pollution damage to human health depends on a number of factors, related to location...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...

  16. On a Heat Exchange Problem under Sharply Changing External Conditions

    Science.gov (United States)

    Khishchenko, K. V.; Charakhch'yan, A. A.; Shurshalov, L. V.

    2018-02-01

    The heat exchange problem between carbon particles and an external environment (water) is stated and investigated based on the equations of heat conducting compressible fluid. The environment parameters are supposed to undergo large and fast variations. In the time of about 100 μs, the temperature of the environment first increases from the normal one to 2400 K, is preserved at this level for about 60 μs, and then decreases to 300 K during approximately 50 μs. At the same periods of time, the pressure of the external environment increases from the normal one to 67 GPa, is preserved at this level, and then decreases to zero. Under such external conditions, the heating of graphite particles of various sizes, their phase transition to the diamond phase, and the subsequent unloading and cooling almost to the initial values of the pressure and temperature without the reverse transition from the diamond to the graphite phase are investigated. Conclusions about the maximal size of diamond particles that can be obtained in experiments on the shock compression of the mixture of graphite with water are drawn.

  17. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  18. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  19. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  20. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  1. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  2. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-01-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  4. Experimental study on external condensation heat transfer characteristics of bellows

    International Nuclear Information System (INIS)

    Feng Dianyi; Hu Jiansheng

    2008-01-01

    Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)

  5. Internalising external costs of electricity and heat production in a municipal energy system

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Amiri, Shahnaz

    2007-01-01

    Both energy supply and waste treatment give rise to negative effects on the environment, so-called external effects. In this study, monetary values on external costs collected from the EU's ExternE project are used to evaluate inclusion of these costs in comparison with an energy utility perspective including present policy instruments. The studied object is a municipal district heating system with a waste incineration plant as the base supplier of heat. The evaluation concerns fuels used for heat production and total electricity production, for scenarios with external costs included and for a scenario using the present policy instrument. Impacts of assumptions on marginal power producers (coal or natural gas power plants) are investigated, since locally produced electricity is assumed to replace marginal power and thus is credited for the avoided burden. Varying levels of external costs for carbon dioxide emissions are analysed. The method used is an economic optimisation model, MODEST. The conclusion is that present policy instruments are strong incentives for cogeneration, even when external costs are included. Waste is fully utilised in all scenarios. In cases where coal is the marginal power producer, more electricity is produced; when natural gas is the marginal power producer, less is produced. There are several uncertainties in the data for external costs, both methodological and ethical. In the ExternE data, not all environmental impacts are included. For waste incineration, ashes are not included, and another difficulty is how to treat the avoided burden of other waste treatment methods

  6. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  7. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  8. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  9. New external convective heat transfer coefficient correlations for isolated low-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Emmel, M. G.; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Abadie, M. O. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Laboratoire d' Etude des Phenomenes de Transfert Appliques au batiment (LEPTAB), University of La Rochelle, La Rochelle (France)

    2007-07-01

    Building energy analyses are very sensitive to external convective heat transfer coefficients so that some researchers have conducted sensitivity calculations and proved that depending on the choice of those coefficients, energy demands estimation values can vary from 20% to 40%. In this context, computational fluid dynamics calculations have been performed to predict convective heat transfer coefficients at the external surfaces of a simple shape low-rise building. Effects of wind velocity and orientation have been analyzed considering four surface-to-air temperature differences. Results show that the convective heat transfer coefficient value strongly depends on the wind velocity, that the wind direction has a notable effect for vertical walls and for roofs and that the surface-to-air temperature difference has a negligible effect for wind velocity higher than 2 m/s. External convective heat transfer coefficient correlations are provided as a function of the wind free stream velocity and wind-to-surface angle. (author)

  10. Evaluation of external heat loss from a small-scale expander used in organic Rankine cycle

    International Nuclear Information System (INIS)

    Li Jing; Pei Gang; Li Yunzhu; Ji Jie

    2011-01-01

    With the scaling down of the Organic Rankine Cycle (ORC), the engine shaft power is not only determined by the enthalpy drop in the expansion process but also the external heat loss from the expander. Theoretical and experimental support in evaluating small-scale expander heat loss is rare. This paper presents a quantitative study on the convection, radiation, and conduction heat transfer from a kW-scale expander. A mathematical model is built and validated. The results show that the external radiative or convective heat loss coefficient was about 3.2 or 7.0 W/K.m 2 when the ORC operated around 100 o C. Radiative and convective heat loss coefficients increased as the expander operation temperature increased. Conductive heat loss due to the connection between the expander and the support accounted for a large proportion of the total heat loss. The fitting relationships between heat loss and mean temperature difference were established. It is suggested that low conductivity material be embodied in the support of expander. Mattress insulation for compact expander could be eliminated when the operation temperature is around 100 o C. - Highlights: → A close examination of external heat loss from a small expander is presented. → Theoretical analysis and experimental test were conducted. → The established formulas can be applied to other small ORC expanders. → The results are useful in further research of small-scale ORC.

  11. External heating of electrical cables and auto-ignition investigation

    Energy Technology Data Exchange (ETDEWEB)

    Courty, L., E-mail: leo.courty@univ-orleans.fr [Univ. Orleans, PRISME EA 4229, 63 Avenue de Lattre de Tassigny, 18020 Bourges (France); Garo, J.P. [Institut P’, UPR 3346 CNRS, ENSMA, Univ. Poitiers, 1 Av. Clément Ader, Téléport 2, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2017-01-05

    Highlights: • Electrical cables pyrolysis and flammability have been studied. • Two different experimental setups were used to study cables mass loss and flammability. • A 1-D thermal model for cables mass loss and temperature is proposed. • Spontaneous and piloted ignitions have been investigated. - Abstract: Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables.

  12. External heating of electrical cables and auto-ignition investigation

    International Nuclear Information System (INIS)

    Courty, L.; Garo, J.P.

    2017-01-01

    Highlights: • Electrical cables pyrolysis and flammability have been studied. • Two different experimental setups were used to study cables mass loss and flammability. • A 1-D thermal model for cables mass loss and temperature is proposed. • Spontaneous and piloted ignitions have been investigated. - Abstract: Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables.

  13. External heating of electrical cables and auto-ignition investigation.

    Science.gov (United States)

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Conjugate heat transfer analysis for in-vessel retention with external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong-Woon; Bae, Jae-ho; Song, Hyuk-Jin

    2016-01-01

    Highlights: • A conjugate heat transfer analysis method is applied for in-vessel corium retention. • 3D heat diffusion has a formidable effect in alleviating focusing heat load from metallic layer. • The focusing heat load is decreased by about 2.5 times on the external surface. - Abstract: A conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue for in-vessel retention. The method calculates steady-state three-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel three-layered stratified corium (metallic pool, oxide pool and heavy metal and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel). The three-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method. For the ex-vessel boiling boundary conditions, nucleate, transition and film boiling are considered. The thermal integrity of a reactor vessel is addressed in terms of heat flux at the outer-most nodes of the vessel and remaining thickness profile. The vessel three-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate

  15. Directed motion generated by heat bath nonlinearly driven by external noise

    International Nuclear Information System (INIS)

    Chaudhuri, J Ray; Barik, D; Banik, S K

    2007-01-01

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise

  16. Directed motion generated by heat bath nonlinearly driven by external noise

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, J Ray [Department of Physics, Katwa College, Katwa, Burdwan 713 130, West Bengal (India); Barik, D [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Banik, S K [Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435 (United States)

    2007-12-07

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  17. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  18. Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows

    Science.gov (United States)

    Zhuromskii, V. M.

    2018-01-01

    The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.

  19. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  20. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  1. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  2. Determination of external measurements in aim to solve inverse heat conduction problem in piping

    International Nuclear Information System (INIS)

    Blanc, G.; Raynaud, M.; Chau, T.H.

    1995-01-01

    The inverse heat conduction problem (IHCP) to be solved involves with the reconstruction of unknown thermal loadings applied on piping internal wall. Only external temperature measurements are available as data. Different approaches can be found in the literature for solving this ill-posed problem. The most frequently used among them is the function specification method proposed by Professor BECK. However, for multidimensional IHCP, the accuracy of the solution strongly depends on the number of sensors and their location. This work focuses on the determination of minimal number and locations of the external thermocouples to get the most complete estimation of internal heat flux in a straight pipe. It more particularly concerns the preparation of experimental validation tests which will be performed on the ESTHER mock-up of Electricite de France (EDF). (authors). 4 refs., 9 figs

  3. Recirculation within a glass mixture subjected to external and resistive heating

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1985-01-01

    Convective motion within a glass mixture undergoing external and resistive (joule) heating is numerically simulated. A time-split finite element technique and a pseudo-pressure formulation are used to solve the two- and three-dimensional primitive equations of motion. The viscosity, thermal diffusivity, and electrical conductivity vary as a function of temperature; the temperature varies from ambient to 1150 0 C. 15 refs., 4 figs

  4. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  5. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  6. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  7. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation.

    Science.gov (United States)

    Raccuglia, Margherita; Lloyd, Alex; Filingeri, Davide; Faulkner, Steve H; Hodder, Simon; Havenith, George

    2016-02-01

    Passive muscle heating has been shown to reduce the drop in post-warm-up muscle temperature (Tm) by about 25% over 30 min, with concomitant sprint/power performance improvements. We sought to determine the role of leg blood flow in this cooling and whether optimising the heating procedure would further benefit post-warm-up T m maintenance. Ten male cyclists completed 15-min sprint-based warm-up followed by 30 min recovery. Vastus lateralis Tm (Tmvl) was measured at deep-, mid- and superficial-depths before and after the warm-up, and after the recovery period (POST-REC). During the recovery period, participants wore water-perfused trousers heated to 43 °C (WPT43) with either whole leg heating (WHOLE) or upper leg heating (UPPER), which was compared to heating with electrically heated trousers at 40 °C (ELEC40) and a non-heated control (CON). The blood flow cooling effect on Tmvl was studied comparing one leg with (BF) and without (NBF) blood flow. Warm-up exercise significantly increased Tmvl by ~3 °C at all depths. After the recovery period, BF Tmvl was lower (~0.3 °C) than NBF Tmvl at all measured depths, with no difference between WHOLE versus UPPER. WPT43 reduced the post-warm-up drop in deep-Tmvl (-0.12 °C ± 0.3 °C) compared to ELEC40 (-1.08 ± 0.4 °C) and CON (-1.3 ± 0.3 °C), whereas mid- and superficial-Tmvl even increased by 0.15 ± 0.3 and 1.1 ± 1.1 °C, respectively. Thigh blood flow contributes to the post-warm-up Tmvl decline. Optimising the external heating procedure and increasing heating temperature of only 3 °C successfully maintained and even increased T mvl, demonstrating that heating temperature is the major determinant of post-warm-up Tmvl cooling in this application.

  8. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    Science.gov (United States)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  9. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: External humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H.; Hilgers, Frans J. M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  10. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, J.-C.; Charpiot, A.; Langagne, T.; Hémar, P.; Ackerstaff, A.H.; Hilgers, F.J.M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  11. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications.

    Science.gov (United States)

    Aprilis, G; Strohm, C; Kupenko, I; Linhardt, S; Laskin, A; Vasiukov, D M; Cerantola, V; Koemets, E G; McCammon, C; Kurnosov, A; Chumakov, A I; Rüffer, R; Dubrovinskaia, N; Dubrovinsky, L

    2017-08-01

    A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

  12. Analysis of heat transfer from fuel rods with externally attached thermocouples

    International Nuclear Information System (INIS)

    Gill, C.R.; Coddington, P.

    1988-05-01

    This paper describes the development of 2 and 3 dimensional finite element heat conduction models to simulate the behaviour of the external thermocouples attached to the LOFT fuel rods during the blowdown phase of a large break loss-of-coolant accident. To establish the model and determine the thermal coupling between the thermocouple and the fuel rod extensive use was made of two series of experiments performed at INEL in the LOFT Test Support Facility (LTSF). These experiments were high pressure reflood experiments with fluid conditions 'typical' of those seen during the bottom-up flow period of the LOFT experiments. (author)

  13. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  14. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    Science.gov (United States)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  15. Dual-cycle power plant with internal and external heating of a gas turbine circuit

    International Nuclear Information System (INIS)

    Strach, L.

    1976-01-01

    The present proposal, after a preceding invention by the same inventor, aims at making possible the increased use of gas turbines in nuclear and coal-fired power plants. This is to be achieved by bringing the temperature of the combustion easily from a maximum of 900 0 C, as may be supplied, e.g., by the cooling media of nuclear reactors, up to the 1,700 to 2,000 0 C required as inlet temperature for gas turbines, with the aid of a fossil-fired recuperator. In fossil and nuclear power plants, gas turbines will more and more substitute steam turbines which affect the environment because of their high waste-heat losses. In coal power plants, only that part of the coal will be gasified whose resulting gas causes internal combustion within the furnace, while the remaining part of the coal is used for external combustion in a tabular heater. In a nuclear power plant, undisturbed maximum generation of electric power is to be achieved, even at reactor outages and shutdown periods for refuelling and maintenance, by almost inertia-free increase of the fossil fuel supply to the furnace (provided an extension of the latter for the capacity of heating the combustion air from room temperature till 1,700 to 2,000 0 C). The hazard of ruptures in the primary heat exchanging system is very low, because it is operated with a relative pressure of nearly zero between reactor coolant and gas turbine circuit. (RW) [de

  16. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior

    Science.gov (United States)

    Murakami, Motohiko; Asahara, Yuki; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2009-05-01

    Seismic wave velocity profiles in the Earth provide one of the strongest constraints on structure, mineralogy and elastic properties of the Earth's deep interior. Accurate sound velocity data of deep Earth materials under relevant high-pressure and high-temperature conditions, therefore, are essential for interpretation of seismic data. Such information can be directly obtained from Brillouin scattering measurement. Here we describe an in situ Brillouin scattering system for measurements at high pressure and high temperature using a laser heated diamond anvil cell and synchrotron radiation for sample characterization. The system has been used with single-crystal and polycrystalline materials, and with glass and fluid phase. It provided high quality sound velocity and elastic data with X-ray diffraction data at high pressure and/or high temperature. Those combined techniques can potentially offer the essential information for resolving many remaining issues in mineral physics.

  17. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  18. Heat kernel expansion for fermionic billiards in an external magnetic field

    International Nuclear Information System (INIS)

    Antoine, M.; Comtet, A.; Knecht, M.

    1989-05-01

    Using Seeley's heat kernel expansion, we compute the asymptotic density of states of the Dirac operator coupled to a magnetic field on a two dimensional manifold with boundary (fermionic billiard). Local boundary conditions compatible with vector current conservation depend on a free parameter α. It is shown that the perimeter correction identically vanishes for α = 0. In that case, the next order constant term is found to be proportional to the Euler characteristic of the manifold. These results are independent of the external magnetic field and of the shape of the billiard, provided the boundary is sufficiently smooth. For the flat circular billiard, the constant term is found to be - 1/12, in agreement with a numerical result by M.V. BERRY and R.J. MONDRAGON (1987)

  19. Thermal decomposition of woody wastes contaminated with radioactive materials using externally-heated horizontal kiln

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyuki; Kato, Shigeru; Yamasaki, Akihiro; Ito, Takuya; Suzuki, Seiichi; Kojima, Toshinori; Kodera, Yoichi; Hatta, Akimichi; Kikuzato, Masahiro

    2015-01-01

    Thermal decomposition experiments of woody wastes contaminated with radioactive materials were conducted using an externally-heated horizontal kiln in the work area for segregation of disaster wastes at Hirono Town, Futaba County, Fukushima Prefecture. Radioactivity was not detected in gaseous products of thermal decomposition at 923 K and 1123 K after passage through a trap filled with activated carbon. The contents of radioactive cesium ( 134 Cs and 137 Cs) were measured in the solid and liquid products of the thermal decomposition experiments and in the residues in the kiln after all of the experiments. Although a trace amount of radioactive cesium was found in the washing trap during the start-up period of operation at 923 K, most of the cesium remained in the char, including the residues in the kiln. These results suggest that most of the radioactive cesium is trapped in char particles and is not emitted in gaseous form. (author)

  20. Integrated conjugate heat transfer analysis method for in-vessel retention with external reactor vessel cooling - 15477

    International Nuclear Information System (INIS)

    Park, J.W.; Bae, J.H.; Seol, W.C.

    2015-01-01

    An integrated conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue. The method calculates steady-state 3-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel 3-layered stratified corium (metallic pool, oxide pool and heavy metal) and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel. The 3-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method and ex-vessel boiling regimes are parametrically considered. The thermal integrity of a reactor vessel is addressed in terms of un-molten thickness profile. The vessel 3-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate inside the oxide pool and the 3-dimensional vessel heat transfer provides a much larger minimum vessel wall thickness. (authors)

  1. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  2. Numerical model and investigations of the externally heated valve Joule engine

    Energy Technology Data Exchange (ETDEWEB)

    Wojewoda, Jerzy [University of Aberdeen, School of Engineering, Fraser Noble Bldg, Aberdeen AB24 3UE (United Kingdom); Kazimierski, Zbyszko [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska Str., 93-005 Lodz (Poland)

    2010-05-15

    The mineral fuels used recently, i.e., oil and gas, will be soon exploited out. This paper presents an idea of the engine where any fuel or solar heat can be used as a source of energy. The proposed model is an externally heated, 2-stroke, valve engine (EHVE). This is a piston-type engine, entirely different from the well-known Stirling one, which is the best known example of such a solution. It works in a closed Joule cycle and is designed to produce a moderate amount of energy. The engine is composed of typical parts met in piston designs: an expander, a compressor, a heater, a cooler and, additionally, two recirculation blowers, which consume a small amount of produced power. An additional advantage is its working medium, which may be simply atmospheric air and the engine has a conventional crankshaft and an oil lubrication system. It has already been proven that operation of the EHVE is possible with satisfactory power and efficiency at the output. Comparisons of the EHVE action with and without recirculation blowers are performed. (author)

  3. Improvements in Pyrolysis of Wastes in an Externally Heated Rotary Kiln

    Science.gov (United States)

    Suzuki, Tomoko; Okazaki, Teruyuki; Yamamoto, Kenji; Nakata, Hiroyuki; Fujita, Osamu

    The effects of rotating speed and internal structure on the performance of an externally heated rotary kiln for waste pyrolysis were investigated. A newly developed method was adopted to evaluate the overall heat transfer coefficient km-w from the inner wall to the wastes for this purpose. The experimental results revealed that km-w monotonically increased with the number of lifters and their height. When six lifters 200 mm in height were attached to the inner wall of the kiln, the mean value of km-w increased from 38.6 W/m2K to 45.3 W/m2K at 2.7 rpm. In addition, km-w increased to 50.1 W/m2K when the rotating speed was increased to 4.0 rpm. In the water vaporization phase during the course of the pyrolysis process, the height of the lifters had a significant influence on km-w. However, the number of lifters had a significant impact on km-w in the pyrolysis phase of the plastic-based wastes. According to measurements, a 10 % increase in km-w could be obtained when installing lifters to attain a ratio of lifter height Hl to the thickness of the waste layer Hw larger than 0.45 or when arc length between two lifters Ll to the arc length of the interface between the wastes and the kiln wall Lw was larger than 1.

  4. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    Science.gov (United States)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  5. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    Science.gov (United States)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  6. Transfer shuttle for vitrified residue canisters control of risks associated with external exposure and heat release

    Energy Technology Data Exchange (ETDEWEB)

    BIndel, L.; Gamess, A.; Lejeune, E.; Cellier, P.; Maillard, A. [SGN Reseau Eurisys, 78 - Saint Quentin (France)

    1998-07-01

    In the La Hague COGEMA's plant area, nuclear residue isolated by reprocessing are transported by means of specific transfer shuttles between the different processing and/or conditioning facilities and the storage ones. These shuttles are designed by reference to the applicable dose equivalent rate (DER) limits for transport on the site and the thermal behavior limitations of certain mechanical components which guarantee the containment of the transported waste. This paper describes and example of a study conducted on a transfer shuttle for vitrified residue canisters. Concerning the control of risks associated with external exposure and with heat releases, these were handled by the 'Shielding-Criticality-Dispersion' and 'process Modelling and Simulation' Sections of the Technical Division of SGN. The dose profiles around the shuttle, as a function of the shielding heterogeneities and possible radiation leakage, as well as the thermal fields within the shuttle, were calculated using 3D models. These design studies ultimately helped to select and validate the optimal solutions. (authors)

  7. Heat transfer in a laminar separation bubble affected by oscillating external flow

    International Nuclear Information System (INIS)

    Wissink, J.G.; Michelassi, V.; Rodi, W.

    2004-01-01

    A three-dimensional Direct Numerical Simulation (DNS) of passive heat transfer in a Laminar Separation Bubble (LSB) over a flat plate affected by oscillating external flow is presented. The oscillation imposes a periodicity which is employed for phase-averaging. The flat plate is kept at a uniform, low temperature. The local Nusselt number, Nu, is determined as a function of phase. In the dead-air region of the bubble Nu is found to be relatively small, while it peaks in the recirculation region where hot outer fluid gets entrained and is transported towards the flat plate. Each period a new separation bubble is formed, that merges with the old separation bubble. The reverse flow inside the separation bubble reaches values of up to 60% of the local free-stream velocity, which is sufficient to make the separation bubble absolutely unstable such that self-sustained turbulence can exist. For the phase-averaged flow, neither the turbulent viscosity hypothesis nor the temperature gradient-diffusion hypothesis is found to hold

  8. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  9. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface

  10. Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies

    International Nuclear Information System (INIS)

    Fahlen, E.; Ahlgren, E.O.

    2010-01-01

    Sweden has historically had strict emission control by implementation of economic policy instruments with the aim of internalising the external costs of air pollution. This study aims to evaluate how well current Swedish policy instruments reflect the environmental costs associated with heat generation in several district-heating (DH) plants in the DH system of Goeteborg. Furthermore, it aims to simulate and evaluate the operation of the DH system based on its social cost-effectiveness which takes into account the DH system's private and external costs (non-internalised environmental costs). The study shows that the economic policy instruments do not fully internalise all external costs whereas for certain technologies, the costs in terms of taxes, emission permits, environmental fees, etc. are higher than the environmental costs caused by the pollutants, given the environmental cost estimates used in the study. The simulation results show that the deviating internalisation of external costs affects the economic ranking of the different plants within the studied DH system. The estimated loss in social-cost effectiveness of the operation of the DH system of Goeteborg is noticable but relatively small if compared to the variable heat generation costs for most of the studied DH plants.

  11. Physiological responses to incremental exercise in the heat following internal and external precooling.

    Science.gov (United States)

    James, C A; Richardson, A J; Watt, P W; Gibson, O R; Maxwell, N S

    2015-06-01

    Twelve males completed three incremental, discontinuous treadmill tests in the heat [31.9(1.0) °C, 61.9(8.9)%] to determine speed at two fixed blood lactate concentrations (2 and 3.5 mmol/L), running economy (RE), and maximum oxygen uptake ( V ˙ O 2 m a x ). Trials involved 20 min of either internal cooling (ICE, 7.5 g/kg ice slurry ingestion) or mixed-methods external cooling (EXT, cold towels, forearm immersion, ice vest, and cooling shorts), alongside no intervention (CON). Following precooling, participants ran 0.3 km/h faster at 2 mmol/L and 0.2 km/h faster at 3.5 mmol/L (P = 0.04, partial η(2)  = 0.27). Statistical differences were observed vs CON for ICE (P = 0.03, d = 0.15), but not EXT (P = 0.12, d = 0.15). There was no effect of cooling on RE (P = 0.81, partial η(2)  = 0.02), nor on V ˙ O 2 m a x (P = 0.69, partial η(2)  = 0.04). An effect for cooling on physiological strain index was observed (P cooling groups (P cooling. Precooling appears to reduce blood lactate accumulation and reduce thermoregulatory and perceptual strain during incremental exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 3D Numerical study of the external flow effect on the heat transfer in a radiometric calorimeter dedicated to nuclear heating measurements

    International Nuclear Information System (INIS)

    Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.

    2013-06-01

    Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)

  13. Influence of the external heating type in the morphological and structural characteristics of alumina powder prepared by combustion reaction

    International Nuclear Information System (INIS)

    Cordeiro, V.V.; Freitas, N.L.; Viana, K.M.S.; Dias, G.; Costa, A.C.F.M.; Lira, H.L.

    2009-01-01

    The aim of this work is to evaluate the influence of the external heating in the morphological and structural characteristics of the alumina powder prepared by combustion reaction. It was evaluated different types of external heating: muffle oven, microwave oven and ceramic plate with electrical spiral resistance. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric proportion (Φe = 1). During the synthesis parameters such as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluate by XRD, particle size distribution, SEM and nitrogen adsorption (BET). The results showed the production of a-alumina as unique phase and formed by agglomerates with irregular plate shape of thin particles for all studied conditions. The powders prepared by electrical oven presented small particle size, with narrow agglomerates size distribution. (author)

  14. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  15. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    International Nuclear Information System (INIS)

    Noguchi, H.; Sawatari, Y.; Imada, T.

    2000-01-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-ε model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10 16 -10 17 ) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  16. Internal structure and stability of an interstellar cloud heated by an external flux of soft X-rays

    International Nuclear Information System (INIS)

    Sabano, Yutaka; Tosa, Makoto

    1975-01-01

    We study the properties of an interstellar gas cloud which is heated by an external flux of soft X-rays and has a uniform pressure distribution. The heating flux is significantly attenuated inside the cloud even for a rather small cloud, and the central region of the cloud is much cooler and denser than that heated uniformly, hence the cloud can be compressed easier. The stability of such a gas cloud and its implications for the process of star formation are discussed on the basis of the two-phase model of the interstellar medium. The large scale galactic shock seems important as a triggering mechanism for the formation of a dense cloud and for the gravitational collapse leading to star formation. (author)

  17. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S.; Bass, Jay D. [Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhu, Gaohua [Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105 (United States)

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  18. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 2: Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Svensson, Inger-Lise; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden-Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases

  19. Magnetic evaluation of the external surface in cast heat-resistant steel tubes with different aging states

    Science.gov (United States)

    Arenas, Mónica P.; Silveira, Rosa M.; Pacheco, Clara J.; Bruno, Antonio C.; Araujo, Jefferson F. D. F.; Eckstein, Carlos B.; Nogueira, Laudemiro; de Almeida, Luiz H.; Rebello, João M. A.; Pereira, Gabriela R.

    2018-06-01

    Heat-resistant austenitic stainless steels have become the principal alloys for use in steam reformer tubes in the petrochemical industry due to its mechanical properties. These tubes are typically exposed to severe operational conditions leading to microstructural transformations such as the aging phenomenon. The combination of high temperatures and moderate stresses causes creep damages, being necessary to monitor its structural condition by non-destructive techniques. The tube external wall is also subjected to oxidizing atmospheres, favoring the formation of an external surface, composed by an oxide scale and a chromium depleted zone. This external surface is usually not taken into account in the tube evaluation, which can lead to erroneous estimations of the service life of these components. In order to observe the magnetic influence of this layer, two samples, exposed to different operational temperatures, were characterized by non-destructive eddy current testing (ECT), scanning DC-susceptometer and magnetic force microscopy (MFM). It was found that the external surface thickness influences directly in the magnetic response of the samples.

  20. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  1. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  2. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Sawatari, Y.; Imada, T. [Fuji Research Institute Corporation, Tokyo (Japan)

    2000-11-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-{epsilon} model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10{sup 16}-10{sup 17}) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  3. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  4. Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

    Directory of Open Access Journals (Sweden)

    Mochnacki B.

    2016-12-01

    Full Text Available Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered. The external heating (a laser action is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.

  5. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology

    International Nuclear Information System (INIS)

    Svensson, Inger-Lise; Joensson, Johanna; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios

  6. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    Science.gov (United States)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  7. Entropy generation due to external fluid flow and heat transfer from a cylinder between parallel planes

    Directory of Open Access Journals (Sweden)

    Melhem Omar A.

    2017-01-01

    Full Text Available In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.

  8. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  9. Continuous distillation of bituminous shale. [hot gas in chamber and chamber heated externally

    Energy Technology Data Exchange (ETDEWEB)

    1921-04-27

    A process of continuous distillation of bituminous shale is given in which the heat necessary is produced not only on the exterior but also in the interior of the distillation apparatus in the form of hot gas directly bathing the shale. The residual carbon in the shale after distillation, or maybe with other fuel added to it, can be utilized; the fuel may be utilized not only for the heat it furnishes but also for the gas it gives and which adds itself to the incondensable gas from the distillation. The temperature of the zone of distillation of the shale is regulated by the quantity of gas, the temperature of this gas (which can be lowered voluntarily by injecting into the air a certain quantity of water vapor), the length of the zone comprised between the zone of gasification and distillation; the injection of water vapor permits the recovery of part of the nitrogen of the shale in the form of ammonia; the materials are withdrawn continuously in a mechanical way.

  10. Half-Space Temperature Field with a Movable Thermally Thin-Coated Boundary Under External Heat Flux

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2014-01-01

    Full Text Available In engineering practice analytical methods of the mathematical theory of heat conduction hold a special place. This is due to many reasons, in particular, because of the fact that the solutions of the relevant problems represented in analytically closed form, can be used not only for a parametric analysis of the studied temperature field and to explore the specific features of its formation, but also to test the developed computational algorithms, which are aimed at solving real-world application heat and mass transfer problems. Difficulties arising when using the analytical mathematical theory methods of heat conduction in practice are well known. Also they are significantly exacerbated if the boundaries of the system under study are movable, even in the simplest case, when the law of motion is known.The main goal of the conducted research is to have an analytically closed-form problem solution for finding the orthotropic half-space temperature field, a boundary of which has thermally thin coating exposed to extremely concentrated stationary external heat flux and uniformly moves parallel to itself.The assumption that the covering of the boundary is thermally thin, allowed to realize the idea of \\concentrated capacity", that is to accept the hypothesis that the mean-thickness coating temperature is equal to the temperature of its boundaries. This assumption allowed us to reduce the problem under consideration to a mixed problem for a parabolic equation with a specific boundary condition.The Hankel integral transform of zero order with respect to the radial variable and the Laplace transform with respect to the temporal variable were used to solve the reduced problem. These techniques have allowed us to submit the required solution as an iterated integral.

  11. External glass peening of zircaloy calandria tubes to increase the critical heat flux

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Coleman, C.E.; Nitheanandan, T.; Kroeger, V.D.; Moyer, R.G.; Sanderson, D.B.; Root, J.H.; Rogge, R.B.

    1997-12-01

    Glass-peening the outside surfaces of Zircaloy calandria tubes increases the nucleation sites available for boiling heat transfer and has been demonstrated to enhance the critical heat flux (CHF) in pool-boiling experiments. The objective of this study is to optimise the heat-transfer enhancement by glass peening while ensuring that the microstructure of the peened tube is acceptable for reactor use. Pool-boiling tests were done using small Zircaloy tubes with as-received ('smooth') surfaces and variously peened surfaces, to evaluate two peening parameters, glass-bead size and the coverage of peened surface. Our results showed that the maximum enhancement of CHF (by 60% compared with as-received tubes) was obtained using a glass-bead size of 90-125 μm with a coverage of 100%. The CHF enhancement was found to be insensitive to glass-bead size over a wide range (from 60-90 μm to 125-180 μm). Using a fixed glass-bead size of 125-180 μm to evaluate the influence of peening coverage, the maximum effect on the CHF response was obtained with a coverage of 1 00%. The microstructures of the peened tubes were evaluated using light microscopy, X-ray and neutron diffraction, and mechanical tests. After peening, the microstructure in the subsurface layer (-30 μm) consisted of deformed α-Zr grains, and the crystallographic texture of the grains changed slightly. After stress-relieving at 500 degrees C for 1 h, some recrystallisation had occurred and the residual strains remaining in the tube were low. The tensile and burst properties of glass-peened and stress-relieved tubes were similar to those of as-received tubes. The microstructures introduced by peening and stress relieving were judged to have little effect on creep and growth behaviour. Since there are no deleterious consequences of the glass-peening treatment, the peened and stress-relieved tubes are found to be acceptable for reactor use. (author)

  12. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    Science.gov (United States)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  13. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  14. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  15. EXTERNALLY HEATED PROTOSTELLAR CORES IN THE OPHIUCHUS STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A. [NASA Goddard Space Flight Center, Astrochemistry Laboratory, Mail Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Jørgensen, Jes K.; Bjerkeli, Per, E-mail: johan.lindberg@nasa.gov [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark)

    2017-01-20

    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H{sub 2}CO and c -C{sub 3}H{sub 2} rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H{sub 2}CO temperatures range between 16 K and 124 K, with the highest H{sub 2}CO temperatures toward the hot corino source IRAS 16293-2422 (69–124 K) and the sources in the ρ Oph A cloud (23–49 K) located close to the luminous Herbig Be star S1, which externally irradiates the ρ Oph A cores. On the other hand, the c -C{sub 3}H{sub 2} rotational temperature is consistently low (7–17 K) in all sources. Our results indicate that the c -C{sub 3}H{sub 2} emission is primarily tracing more shielded parts of the envelope whereas the H{sub 2}CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS 16293-2422, where the hot corino emission dominates. In some sources, a secondary velocity component is also seen, possibly tracing the molecular outflow.

  16. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO 2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  17. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  18. External heating and current drive source requirements towards steady-state operation in ITER

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  19. Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions

    CERN Document Server

    Garion, C; Seyvet, F; Sitko, M; Skoczen, B; Tock, J P

    2006-01-01

    The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a loca...

  20. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    Science.gov (United States)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina

  1. Chiral and parity symmetry breaking for planar fermions: Effects of a heat bath and uniform external magnetic field

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Bashir, Adnan; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity-violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion antifermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength, and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→-iE.

  2. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger.

    Science.gov (United States)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H; Hilgers, Frans J M

    2012-02-01

    Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Randomized controlled trial (RCT). Fifty-three patients were randomized into the standard (control) EH (N = 26) or the experimental HME arm (N = 27). Compliance, pulmonary and sleeping problems, patients' and nursing staff satisfaction, nursing time, and cost-effectiveness were assessed with trial-specific structured questionnaires and tally sheets. In the EH arm data were available for all patients, whereas in the HME arm data were incomplete for four patients. The 24/7 compliance rate in the EH arm was 12% and in the HME arm 87% (77% if the four nonevaluable patients are considered noncompliant). Compliance and patients' satisfaction were significantly better, and the number of coughing episodes, mucus expectoration for clearing the trachea, and sleeping disturbances were significantly less in the HME arm (P humidification by means of an HME over the use of an EH after TLE. This study therefore underlines that HMEs presently can be considered the better option for early postoperative airway humidification after TLE. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    International Nuclear Information System (INIS)

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  4. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  5. Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic behaviour of building walls subjected to sinusoidal and actual loadings. • The joint action of more temperature and heat flux loadings has been considered. • Dynamic parameters were defined by the internal and external fluctuating heat flux. • Use of the Total Harmonic Distortion to determine the number of harmonics required. • Study of the influence of external and internal loadings on dynamic parameters. - Abstract: The dynamic behaviour of opaque components of the building envelope in steady periodic regime is investigated using parameters defined by the fluctuating heat flux that is transferred in the wall. The use of the heat flux allows for the joint action of the loadings that characterise both the outdoor environment and the indoor air-conditioned environment to be taken into account. The analysis was developed in sinusoidal conditions to determine the frequency response of the wall and in non-sinusoidal conditions to identify the actual dynamic behaviour of the wall. The use of non-dimensional periodic thermal transmittance is proposed for the sinusoidal analysis in order to evaluate the decrement factor and the time lag that the heat flux undergoes in crossing the wall as well as the efficiency of heat storage. In the presence of non-sinusoidal loadings, the identification of the dynamic behaviour of the wall is obtained using several dynamic parameters: the decrement factor in terms of energy, defined as the ratio between the energy in a semi-period entering and exiting the wall; the decrement factor and the time lag in terms of heat flux, considering the maximum peak and the minimum peak. These parameters allow for the identification of how the form of the heat flux trend crossing the wall is modified. The number of harmonics to be considered for an accurate representation of heat fluxes is determined by means of the introduction of the Total Harmonic Distortion (THD), which quantifies the distortion of a non

  6. Effect of pressure on arsenic diffusion in germanium

    International Nuclear Information System (INIS)

    Mitha, S.; Theiss, S.D.; Aziz, M.J.; Schiferl, D.; Poker, D.B.

    1994-01-01

    We report preliminary results of a study of the activation volume for diffusion of arsenic in germanium. High-temperature high-pressure anneals were performed in a liquid argon pressure medium in a diamond anvil cell capable of reaching 5 GPa and 750 C,l which is externally heated for uniform and repeatable temperature profiles. Broadening of an ion-implanted arsenic profile was measured by Secondary Ion Mass Spectrometry. Hydrostatic pressure retards the diffusivity at 575 C, characterized by an activation volume that is +15% of the atomic volume of Ge. Implications for diffusion mechanisms are discussed

  7. Human health-related externalities in energy system modelling the case of the Danish heat and power sector

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2011-01-01

    and power sector verifies that it is cheaper for the society to include externalities in the planning of an energy system than to pay for the resulting damages later. Total health costs decrease by around 18% and total system costs decrease by nearly 4% when health externalities are included...

  8. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    Science.gov (United States)

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  9. Total heat loss coefficient of flat roof constructions with external insulation in tapered layers including the effects of thermal bridges

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    In order to achieve durability of flat roofs with external insulation, it is necessary to secure proper drainage of the roof, i.e. to avoid water leaking into the insulation. The design of the tapered insulation of the roof is quite difficult as requirements with respect to both drainage...

  10. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    . Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved.......A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers...... and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy...

  11. Study of the effect of external heating and internal temperature build-up during polymerization on the morphology of porous polymethacrylate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com [Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylate monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.

  12. Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors. (3) Numerical simulations of forest fire spread and smoke transport as an external hazard assessment methodology development

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamano, Hidemasa

    2015-01-01

    As a part of a development of the risk assessment methodologies against external hazards, a new methodology to assess forest fire hazards is being developed. Frequency and consequence of the forest fire are analyzed to obtain the hazard intensity curve and then Level 1 probabilistic safety assessment is performed to obtain the conditional core damage probability due to the challenges by the forest fire. 'Heat', 'flame', 'smoke' and 'flying object' are the challenges to a nuclear power plant. For a sodium-cooled fast reactor, a decay heat removal under accident conditions is operated with an ultimate heat sink of air, then, the challenge by 'smoke' will potentially be on the air filter of the system. In this paper, numerical simulations of forest fire propagation and smoke transport were performed with sensibility studies to weather conditions, and the effect by the smoke on the air filter was quantitatively evaluated. Forest fire propagation simulations were performed using FARSITE code. A temporal increase of a forest fire spread area and a position of the frontal fireline are obtained by the simulation, and 'reaction intensity' and 'frontal fireline intensity' as the indexes of 'heat' are obtained as well. The boundary of the fire spread area is shaped like an ellipse on the terrain, and the boundary length is increased with time and fire spread. The sensibility analyses on weather conditions of wind, temperature, and humidity were performed, and it was summarized that 'forest fire spread rate' and 'frontal fireline intensity' depend much on wind speed and humidity. Smoke transport simulations were performed by ALOFT-FT code where three-dimensional spatial distribution of smoke density, especially of particle matters of PM2.5 and PM10, are evaluated. The snapshot outputs, namely 'reaction intensity' and 'position of frontal fireline', from the sensibility studies of the FARSITE were directly utilized as the input data for ALOFT-FT, whereas it is assumed that the

  13. Induction heating of thin metal plates in time-varying external magnetic field solved as nonlinear hard-coupled problem

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Kropík, P.; Ulrych, B.

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7159-7169 ISSN 0096-3003 R&D Projects: GA ČR GA102/09/1305 Grant - others:GA MŠk(CZ) MEB051041 Institutional support: RVO:61388998 Keywords : induction heating * electric field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.sciencedirect.com/science/article/pii/S0096300311010824

  14. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    Olsson, F.; Svensson, S.-A.; Duncan, R.

    2001-01-01

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 o C and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MW e ). (author)

  15. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)

    2016-06-15

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  16. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    International Nuclear Information System (INIS)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2016-01-01

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re a ranged from 1.8 x 10 3 to 9.7 x 10 3 . The fin height (h f ) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu a , St a , and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re a and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu a from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re a range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G a ) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re a for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re a <= 4200) while the opposite is true for (6950 < Re a <= 9700). δ has negligible effect on Nu a and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  17. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  18. A study on transient heat transfer of the EU-ABWR external core catcher using the phase-change effective convectivity model

    International Nuclear Information System (INIS)

    Tran Chi Thanh; Nguyen Viet Hung; Tahara, Mika; Kojima, Yoshihiro; Hamazaki, Ryoichi; Kudinov, Pavel

    2015-01-01

    In advanced designs of Nuclear Power Plants (NPPs), for mitigation of severe accident consequences, on the one hand, the In-Vessel Retention (IVR) concept has been implemented. On the other hand in other new NPP designs (Generation III and III+) with large power reactors, the External Core Catcher (ECC) has been widely adopted. Assessment of ECC design robustness is largely based on analysis of heat transfer of a melt pool formed in the ECC. Transient heat transfer analysis of an ECC is challenging due to (i) uncertainty in the in-vessel accident progression and subsequent vessel failure modes; (ii) long transient, (iii) high Rayleigh number and complex flows involving phase change of the melt pool formed in an ECC. The present paper is concerned with analysis of transient melt pool heat transfer in the ECC of new Advanced Boiling Water Reactor (ABWR) designed by Toshiba Corporation (Japan). According to the ABWR severe accident management strategy, the ECC is initially dry. In order to prevent steam explosion flooding is initiated after termination of melt relocation from the vessel. The ECC full of melt is cooled from the top directly by water and from the bottom through the ECC walls. In order to assess sustainability of the ECC, heat transfer simulation of a stratified melt pool formed in the ECC is carried out. The problem addressed in this work is heat flux distribution at ECC boundaries when cooling is applied (i) from the bottom, (ii) from the top and from the bottom. To perform melt pool heat transfer simulation, we employ Phase-change Effective Convectivity Model (PECM) which was originally developed as a computationally efficient, sufficiently accurate, 2D/3D accident analysis tools for simulation of transient melt pool heat transfer in the reactor lower plenum. Thermal loads from the melt pool to ECC boundaries are determined for selected ex-vessel accident scenarios. Performance of the ECC, efficiency of severe accident management (SAM) measures and

  19. Studying the effects of combining internal and external heat recovery on techno-economic performances of gas–steam power plants

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena

    2016-01-01

    Highlights: • Effects of gas-cycle regeneration on steam–gas power plants are investigated. • Power plant performances are evaluated varying gas turbine operative parameters. • The power plant operational flexibility is assessed through an off-design analysis. • Gas-cycle regeneration improves energy and economic performance parameters. • Power increase due to regenerator by-pass depends on steam section design. - Abstract: Thermodynamic regeneration is regarded as a conventional technique to enhance the efficiency of gas turbines, by means of an internal recovery of waste heat from exhaust gases. In combined cycle power plants (CCGTs), only external heat recovery is usually applied, in order to achieve the highest steam cycle power. Combining internal and external recovery, while decreasing the power plant rated capacity, has the potential to boost the efficiency of CCGTs. This paper aims to examine the effects of thermodynamic regeneration on steam–gas power plants from the energy and economic point of view. First, a dual pressure combined cycle based on a regenerative gas turbine is designed using GateCycle software and effects on energy and economic performances are evaluated varying gas turbine operating parameters. Then, an off-design simulation of different CCGT configurations is carried out, in order to evaluate the power increase achieved by-passing the regenerator and its effects on efficiency and cost of electricity. The study has shown that the improvement of energy and economic performances of regenerative CCGTs is more and more pronounced with the increase of turbine inlet temperature (TIT). Additionally, regeneration enhances the power plant operational flexibility, allowing to obtain a 30% power increase with respect to the design value, if the regenerator is fully by-passed and the bottoming steam cycle is designed to manage the increased flue gas temperature.

  20. Regional Externalities

    NARCIS (Netherlands)

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  1. Prediction of the heat gain of external walls: An innovative approach for full-featured excitations based on the simplified method of Mackey-and-Wright

    International Nuclear Information System (INIS)

    Ruivo, C.R.; Vaz, D.C.

    2015-01-01

    Highlights: • The transient thermal behaviour of external multilayer walls of buildings is studied. • Reference results for four representative walls, obtained with a numerical model, are provided. • Shortcomings of approaches based on the Mackey-and-Wright method are identified. • Handling full-feature excitations with Fourier series decomposition improves accuracy. • A simpler, yet accurate, promising novel approach to predict heat gain is proposed. - Abstract: Nowadays, simulation tools are available for calculating the thermal loads of multiple rooms of buildings, for given inputs. However, due to inaccuracies or uncertainties in some of the input data (e.g., thermal properties, air infiltrations flow rates, building occupancy), the evaluated thermal load may represent no more than just an estimate of the actual thermal load of the spaces. Accordingly, in certain practical situations, simplified methods may offer a more reasonable trade-off between effort and results accuracy than advanced software. Hence, despite the advances in computing power over the last decades, simplified methods for the evaluation of thermal loads are still of great interest nowadays, for both the practicing engineer and the graduating student, since these can be readily implemented or developed in common computational-tools, like a spreadsheet. The method of Mackey and Wright (M&W) is a simplified method that upon values of the decrement factor and time lag of a wall (or roof) estimates the instantaneous rate of heat transfer through its indoor surface. It assumes cyclic behaviour and shows good accuracy when the excitation and response have matching shapes, but it involves non negligible error otherwise, for example, in the case of walls of high thermal inertia. The aim of this study is to develop a simplified procedure that considerably improves the accuracy of the M&W method, particularly for excitations that noticeably depart from the sinusoidal shape, while not

  2. Effect of Various External Shading Devices on Windows for Minimum Heat Gain and Adequate Day lighting into Buildings of Hot and Dry Climatic Zone in India

    Directory of Open Access Journals (Sweden)

    Kirankumar Gorantla

    2018-01-01

    Full Text Available Glass is the major component of the building envelope to provide visual comfort to inside the buildings. In général clear and bronze glass was used as a main building envelope for both residential and commercial buildings to provide better day lighting into the buildings. If we use more glass area as a building envelope more radiation allows into the buildings. So that it is necessary to reduce more solar radiation and provide sufficient daylight factor inside the building's through glass windows with the help of external devices called shading devices. In this work four shading devices was tried on bronze glass window to find the heat gain and daylighting into buildings. This paper presents the experimental measurement of spectral characteristics of bronze glass which include transmission and reflection in entire solar spectrum region (300nm-2500nm based on ASTM standards. A MATLAB code was developed to compute visible and solar optical properties as per the British standards. A building model was designed by design builder software tool. 40% window to wall ratio was considered for building models, thermal and day lighting analysis of buildings through windows was carried out in Energy plus software tool for hot and dry climatic zone of India.

  3. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    Science.gov (United States)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  4. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  5. ExternE National Implementation Finland

    International Nuclear Information System (INIS)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  6. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  7. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  8. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  9. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  10. The condensation of steam on the external surfaces of the shells of HIFAR heavy water heat exchangers during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Chapman, A.G.

    1987-03-01

    A study of steam condensation rates on the HIFAR heavy water heat exchangers was undertaken to predict thermohydraulic conditions in the HIFAR containment during a postulated loss-of-coolant accident (LOCA). The process of surface condensation from a mixture of air and steam, and methods for calculating the rate of condensation, are briefly reviewed. Suitable experimental data are used to estimate coefficients of condensation heat transfer to cool surfaces in a reactor containment during a LOCA. The relevance of the available data to a LOCA in the HIFAR materials testing reactor is examined, and two sets of data are compared. The differences between air/H 2 O and air/D 2 O mixtures are discussed. Formulae are derived for the estimation of the coefficient of heat transfer from the heat exchanger shells to the cooling water, and a method of calculating the rate of condensation per unit area of surface is developed

  11. Exergy applied to the heat conduction analysis in glass covers of a solar cooker box-type with internal and external reflectors

    International Nuclear Information System (INIS)

    Terres, H; Lizardi, A; Chávez, S; López, R; Vaca, M

    2017-01-01

    In this work, an exergy evaluation to determine the energy availability across to glass covers, place where the solar radiation enters toward a solar cooker box-type is done. Considering the heating process of water, the energy not used is quantified by means of exergy. The results allow identifying the glasses in the cover as the zone where the solar cooker could be improved. The conduction heat transfer losses for the glasses is most big than 75%. Because the values for the conduction heat losses are around 90%, which are very important, this allows to identify the cover glass as the area where improvements could be made in this type of solar cookers. (paper)

  12. Combining coal gasification, natural gas reforming, and external carbonless heat for efficient production of gasoline and diesel with CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Salkuyeh, Yaser Khojasteh; Adams, Thomas A.

    2013-01-01

    Highlights: • Several systems are presented which convert NG, coal, and carbonless heat to fuel. • Using nuclear heat can reduce the direct fossil fuel consumption by up to 22%. • The use of CCS depended on the carbon tax: above $20-30/t is sufficient to use CCS. • CTL is only the most economical when the price of NG is more than $5 /MMBtu. • Compared to a traditional CTL plant, total CO 2 emission can be reduced up to 79%. - Abstract: In this paper, several novel polygeneration systems are presented which convert natural gas, coal, and a carbonless heat source such as high-temperature helium to gasoline and diesel. The carbonless heat source drives a natural gas reforming reaction to produce hydrogen rich syngas, which is mixed with coal-derived syngas to produce a syngas blend ideal for the Fischer–Tropsch reaction. Simulations and techno-economic analyses performed for 16 different process configurations under a variety of market conditions indicate significant economic and environmental benefits. Using a combination of coal, gas, and carbonless heat, it is possible to reduce CO 2 emissions (both direct and indirect) by 79% compared to a traditional coal-to-liquids process, and even achieve nearly zero CO 2 emissions when carbon capture and sequestration technology is employed. Using a carbonless heat source, the direct fossil fuel consumption can be reduced up to 22% and achieve a carbon efficiency up to 72%. Market considerations for this analysis include prices of coal, gas, high-temperature helium, gasoline, and CO 2 emission tax rates. The results indicate that coal-only systems are never the most economical choice, unless natural gas is more than 5 $/MMBtu

  13. Novel instrument for high-pressure research at ultra-high temperatures

    International Nuclear Information System (INIS)

    Schiferl, D.; Katz, A.I.; Mills, R.L.

    1985-01-01

    A resistively heated diamond-anvil cell has been used to achieve pressures of 110 kbar at temperatures exceeding 1200 0 C for periods long enough to collect x-ray powder diffraction data with energy-dispersive techniques using ''white'' x-radiation produced at the Stanford Synchrotron Radiation Laboratory. 9 refs., 1 fig

  14. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  15. Thermodynamics of Silica Dissolution From In-situ Raman +Spectroscopy

    Science.gov (United States)

    Davis, M. K.; Fumagalli, P.; Stixrude, L. P.

    2001-12-01

    Solubilities of cations, such as silicon, in water strongly effect both the physical and thermodynamical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In-situ Raman experiments of the silica-water system were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples (from Owl Creek Mountains, Wyoming) were loaded in the sample chamber with de-ionized or spectrographic water. All experiments used doubly polished rhenium gaskets with a thickness of 200 μ m, diameter of 1.0 mm, and a 500 μ m drillhole for the sample chamber. Temperature was measured using K-type thermocouples wrapped around both the upper and lower diamond anvils. Pressures are obtained on the basis of the shift of the 464 cm-1 Raman mode of quartz. In-situ Raman spectra were collected from 250-1200 cm-1, focusing on the vibrational modes of aqueous silica species at temperatures up to 700 ° C and pressures up to 14 kbar. We observed Si-O stretching modes attributable to dimer (H6Si2O7, 965 cm-1) and monomer (H4SiO4, 771 cm-1) aqueous silica species. The relative intensities of these two bands as a function of isochoric heating place constraints on the energetics of the polymerization reaction, if we assume that the intensity ratio is linearly related to concentration ratio. We have been able to perform experiments along two different isochores (0.9 and 0.75 g/cm3, respectively) from which we are able to derive the enthalpy of reaction.

  16. High pressure research at CHESS

    International Nuclear Information System (INIS)

    Brister, K.

    1992-01-01

    Since February 1990 there has been a dedicated high pressure line at the Cornell High Energy Synchrotron Source (CHESS). This facility provides X-ray instrumentation for energy dispersive X-ray diffraction and Laue diffraction using diamond anvil cells. Both hard-bend magnet and wiggler radiation are available as well as focused monochromatic radiation. In addition, support instrumentation is also available; a ruby system, laser heating, sample loading, and data analysis software. Experienced users need only to bring their diamond anvil cells and samples and can leave with the initial data analysis finished. Research using diamond anvil cells will be introduced and the facility will be described. Some of the diamond anvil cell research done at CHESS will be reviewed, including crystalline to amorphous transitions (R.R. Winters et al., Chem. Phys, in press), properties of C 6 0 under stress (S.J. Duclos et al., Nature 351 (1991) 380), deep earthquakes (T.C. Wu et al., submitted to J. Geophys. Res.)l, and reaching pressures of the center of Earth (A.L. Ruoff et al., Rev. Sci. Instr. 61 (1990) 3830). (orig.)

  17. Coupled calculation of external heat transfer and material temperatures of convection-cooled turbine blades. Final report; Gekoppelte Berechnung des aeusseren Waermeuebergangs und der Materialtemperaturen konvektionsgekuehlter Turbinenschaufeln. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heselhaus, A.

    1997-05-01

    In this work a hybrid program system consisting of a 3D finite-volume Navier-Stokes flow solver and a 3D finite-element heat conduction solver has been developed. It enables the coupled calculation of structure temperatures in diabatic solid/fluid configurations. The grids of both the finite element and the finite volume computational domain may be completely independent. The coupled program fully resolves the thermal interaction between heat transfer and the resulting material temperatures. The developed coupling algorithm is numerically stable, conservative and works without the need to define ambient temperatures in the flowfield. This allows for the simulation of any solid/fluid configuration. When simulating combined blade/endwall cooling or filmcooling, only a coupled procedure is capable to completely account for the interaction between all relevant thermal parameters. It is found that the coupled calculation of convective cooling in a realistic guide vane leads locally to 45 K higher and 107 K lower blade temperatures than the uncoupled calculation. This shows that accounting for the thermal interaction between the flow and the structure offers both potential to save cooling air and a lower margin of safety when designing cooling systems close to the thermal limits of the blade material. (orig.) [Deutsch] Im Rahmen der vorliegenden Arbeit wurde ein Verfahren zur Berechnung der Temperaturverteilung in diabat umstroemten Koerpern entwickelt, bei dem ein 3D-Finite Volumen Navier-Stokes Stroemungsloeser und ein 3D-Finite Elemente Waermeleitungsloeser zu einem hybriden Programmsystem gekoppelt werden. Dabei besteht die Moeglichkeit, voellig unabhaengige Rechennetze fuer Stroemung und Struktur zu verwenden. Mit dem gekoppelten Verfahren kann die Wechselwirkung zwischen resultierenden Materialtemperaturen und dem davon rueck-beeinflussten Waermeuebergang beruecksichtigt werden. Weiterhin ist der hier entwickelte, stabile und konservative Kopplungsalgorithmus nicht

  18. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  19. Theory and design of heat exchanger : Double pipe and heat exchanger in abnormal condition

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book introduces theory and design of heat exchanger, which includes HTRI program, multiple tube heat exchanger external heating, theory of heat transfer, basis of design of heat exchanger, two-phase flow, condensation, boiling, material of heat exchanger, double pipe heat exchanger like hand calculation, heat exchanger in abnormal condition such as Jackets Vessel, and Coiled Vessel, design and summary of steam tracing.

  20. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  1. Externalities of energy. Swedish implementation of the ExternE methodology

    International Nuclear Information System (INIS)

    Nilsson, Maans; Gullberg, M.

    1998-01-01

    The growing interest for developing economic instruments for efficient environmental policies has opened up a large area of multi-disciplinary research. ExternE is an example of this research, combining disciplines such as engineering, ecology, immunology and economics expertise to create new knowledge about how environmental pressures from energy production affect our nature and society. The ExternE Project aims to identify and, as far as possible quantify the externalities of energy production in Europe. The Stockholm Environment Institute has carried out a preliminary aggregation: -Coal Fuel Cycle: centred around Vaesteraas Kraftvaermeverk, Vaesteraas. This is the largest co-generation plant in Sweden, with four blocks and a maximum co-generation output of 520 MW electricity and 950 MW heat. The analysis is carried out on boiler B4. -Biomass Fuel Cycle: centred around Haendeloeverket, Norrkoeping. This plant predominately burns forestry residues, but a variety of fuels are combusted. Haendeloeverket has an installed capacity of 100 MW electricity and 375 MW heat, in a total of three boilers and two back-pressure turbines. The analysis is carried out on boiler P13. -Hydro Fuel Cycle: Klippens Kraftstation, Storuman. Built in 1990-1994, it is the youngest hydro power station in Sweden. It has been designed and built with significant efforts to account for and protect environmental values. Installed capacity is 28 MW. The environmental impact assessment from the construction of this plant is carried out, but the evaluation is still not finalized. The preliminary aggregation aimed to test whether ExternE results could be used to make estimates for the entire Swedish electricity production system. Hence, national results as well as results from other partner countries in ExternE has been applied

  2. External Measures of Cognition

    Directory of Open Access Journals (Sweden)

    Osvaldo eCairo

    2011-10-01

    Full Text Available The human brain is undoubtedly the most impressive, complex and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind.

  3. The analysis of the external factors influence on the efficiency of the absorption heat pumps inclusion in the scheme of a two-stage line installation of a STP

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of the efficiency of a two-stage line installation in a heating turbine before and after the inclusion of absorption heat pumps into its scheme with a decrease in the outside air temperature. The research shows the dependence of the efficiency of the line installation on its heat load while using AHP in its scheme, as well as on the heat conversion factor of the absorption heat pumps.

  4. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  5. Heat recovery in industry

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F; Paul, J [Essen Univ. (Gesamthochschule) (Germany, F.R.)

    1977-05-01

    The waste heat of industrial furnaces and other heat-consuming installations can be utilized by recuperative processes in the furnace and by energy cascades. Economy and the need for an external supply of energy are closely connected. Straight cascades can hardly be realized and if the required temperature gradient is too great such heat should be utilized repeatedly if possible by recycling through heat pumps. The possibilities depend on the relevant temperature since the technology available for this differs in its state of development. The low-temperature waste heat from the final stage can be used for space-heating and water heating by heat exchangers and heat pumps and thus be put to a useful purpose.

  6. Research on cooling of ultra high critical heat flux with external flow boiling of water. Challenge to achieve ultra high critical heat flux and improvement in estimation of critical heat flux. JAERI's nuclear research promotion program, H11-004 (Contract research)

    International Nuclear Information System (INIS)

    Monde, Masanori; Mitsutake, Yuichi; Ishida, Kenji; Hino, Ryutaro

    2003-03-01

    An ultra high critical heat flux (CHF) has been challenged with a highly subcooled water jet impinging on a small rectangular heated surface. Major objective of the study is to achieve an ultra high heat flux cooling as large as 100 MW/m 2 and to establish an accurate estimation method of the CHF. The experiments were carried out over the experimental range; a fixed jet diameter of 2 mm, jet velocity of 5 - 35 m/s, degree of subcooling of 80 - 170 K and system pressure of 0.1 - 1.0 MPa. The rectangular heated surface with a thin nickel foil of 0.03 - 0.3 mm in thickness, 5 and 10 mm in length, and 4 mm in width and heated by a direct current. Effects of thickness of heater wall, jet velocity and subcooling on the CHF were experimentally elucidated. The experimental results show that the CHF decreases about 50% as the heater thickness, namely heat capacity of heater decreases. Characteristics of the CHF with heater length of 10 mm are correlated within ±20% by the generalized correlation of subcooled CHF proposed by the authors. However, the CHF with the shorter heater length of 5 mm shows large deviation of -40% especially at lower subcooling and higher velocity. The maximum CHF of 212 MW/m 2 was achieved at the subcooling of 151 K, the jet velocity of 35 m/s and system pressure of 0.5 MPa. The maximum CHF under atmospheric pressure approaches to 48% of the ultimate maximum heat flux given by the assumptions that vapor molecules leave a liquid-vapor interface at the average speed of a Boltzman-Maxwellian gas and any molecules returning to the interface are not permitted. The ratio of the CHF and ultimate maximum heat flux was considerably enhanced from the existing record of 30%. This study can give the feasibility of ultra high heat flux removal facing in a development of components such as a diverter of a fusion reactor. (author)

  7. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  8. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  9. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...

  10. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... otitis. Fungal external otitis (otomycosis), typically caused by Aspergillus niger or Candida albicans, is less common. Boils are ... in the ear. Fungal external otitis caused by Aspergillus niger usually causes grayish black or yellow dots (called ...

  11. ExternE: Externalities of energy Vol. 2. Methodology

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  12. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  13. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  14. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  15. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  16. Studies of unavoidable heat production and valorisation in Ile-de-France from non-hazardous waste incineration units (UIDNDs), industries, data centres and waste waters. Local communities - External synthesis phase 1, September 2015 + Synthesis May 2017

    International Nuclear Information System (INIS)

    Florette, Claire; Louillat, Stefan; Lopes, Marie; Jacquemin, L.A.

    2017-09-01

    After a presentation of the study and of its context (more particularly phase I of the study which addresses the identification and characterisation of existing operations and of maximum deposits of unavoidable heat), a first report presents characteristics of industrial non-avoidable heat: deposit description, data collection and deposit assessment methodology, synthesis and deposit map. In the same way, it addresses others deposits: non-hazardous waste incineration plants, data centres, and waste waters. The second report aims at defining a strategy for the recovery of unavoidable heat at a regional scale (Ile-de-France). It focuses on processes for which heat production is not the main purpose. For the same deposits as in the first report, the study aims at identifying and characterizing existing operations and maximum deposits of heat recovery at the regional scale, at assessing and characterizing potential recovery of non avoidable heat while taking technical, legal and economic obstacles into account, and then at defining areas for priority actions

  17. Heat Pumps in Subarctic Areas

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  18. ExternE: Externalities of energy Vol. 1. Summary

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  19. Externalities of fuel cycles 'ExternE' project. Summary report

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  20. External radiation surveillance

    International Nuclear Information System (INIS)

    Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site

  1. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  2. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  3. External and Internal Irreversibility

    Indian Academy of Sciences (India)

    Professor in the Department of Mechanical Engineering, ... In this process, heat transfer occurs due to ... our hands, mechanical work is converted into heat which increases the temperature of ..... Address for Correspondence. Arnab Sarkar1.

  4. ExternE: Externalities of energy Vol. 5. Nuclear

    International Nuclear Information System (INIS)

    Dreicer, M.; Tort, V.; Manen, P.

    1995-01-01

    Since the early 1970s, there has been increased interest in the environmental impacts that are caused by the generation of electricity. The comparative risk assessment studies at that time used mainly deaths and injuries as impact indicators. By the end of the 1980s studies changed to the assessment of the costs imposed on society and the environment that were not included in the market price of the energy produced, the so-called external costs. The preliminary studies that were published set the conceptual basis, grounded in neo-classical economics, for the valuation of the health and environmental impacts that could be assessed. As a consequence of the many questions raised by the methodologies employed by these early studies, Directorate General XII (DG XII) of the Commission of the European Communities established a collaborative research programme with the United States Department of Energy to identify an appropriate methodology for this type of work. Following the completion of this collaboration, the DG XII programme has continued as the ExternE project. The main objective of the work carried out at CEPN was to develop an impact pathway methodology for the nuclear fuel cycle that would be consistent with the methodologies developed for other fuel cycles, without loosing the nuclear-specific techniques required for a proper evaluation. In this way, comparisons between the different fuel cycles would be possible. This report presents the methodology and demonstration of the results in the context of the French nuclear fuel cycle. The United States team at Oak Ridge National Laboratory has previously issued a draft report on the results of their assessment. The French fuel cycle was broken down into 8 separate stages. Reference sites and 1990s technology were chosen to represent the total nuclear fuel cycle, as it exists today. In addition, the transportation of material between the sites was considered. The facilities are assessed for routine operation, except

  5. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  6. [External cephalic version].

    Science.gov (United States)

    Navarro-Santana, B; Duarez-Coronado, M; Plaza-Arranz, J

    2016-08-01

    To analyze the rate of successful external cephalic versions in our center and caesarean sections that would be avoided with the use of external cephalic versions. From January 2012 to March 2016 external cephalic versions carried out at our center, which were a total of 52. We collected data about female age, gestational age at the time of the external cephalic version, maternal body mass index (BMI), fetal variety and situation, fetal weight, parity, location of the placenta, amniotic fluid index (ILA), tocolysis, analgesia, and newborn weight at birth, minor adverse effects (dizziness, hypotension and maternal pain) and major adverse effects (tachycardia, bradycardia, decelerations and emergency cesarean section). 45% of the versions were unsuccessful and 55% were successful. The percentage of successful vaginal delivery in versions was 84% (4% were instrumental) and 15% of caesarean sections. With respect to the variables studied, only significant differences in birth weight were found; suggesting that birth weight it is related to the outcome of external cephalic version. Probably we did not find significant differences due to the number of patients studied. For women with breech presentation, we recommend external cephalic version before the expectant management or performing a cesarean section. The external cephalic version increases the proportion of fetuses in cephalic presentation and also decreases the rate of caesarean sections.

  7. Piezosurgery in External Dacryocystorhinostomy.

    Science.gov (United States)

    Czyz, Craig N; Fowler, Amy M; Dutton, Jonathan J; Cahill, Kenneth V; Foster, Jill A; Hill, Robert H; Everman, Kelly R; Nabavi, Cameron B

    Dacryocystorhinostomy (DCR) can be performed via an external or endoscopic approach. The use of ultrasonic or piezosurgery has been well described for endoscopic DCRs but is lacking for external DCRs. This study presents a case series of external DCRs performed using piezosurgery evaluating results and complications. Prospective, consecutive case series of patients undergoing primary external DCR for lacrimal drainage insufficiency. A standard external DCR technique was used using 1 of 2 piezosurgery systems for all bone incision. All patients received silicone intubation to the lacrimal system. Surgical outcome was measured in terms of patient-reported epiphora as follows: 1) complete resolution, 2) improvement >50%, 3) improvement 50% improvement. There were 4 patients (7%) who had <50% improvement. There was 1 (2%) intraoperative complication and 2 (4%) postoperative complications recorded. Piezourgery is a viable modality for performing external DCRs. The lack of surgical complications shows a potential for decreased soft tissues damage. The surgical success rate based on patient-reported epiphora is similar to those published for mechanical external DCRs. This modality may benefit the novice surgeon in the reduction of soft and mucosal tissue damage.

  8. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  9. Automated External Defibrillator

    Science.gov (United States)

    ... leads to a 10 percent reduction in survival. Training To Use an Automated External Defibrillator Learning how to use an AED and taking a CPR (cardiopulmonary resuscitation) course are helpful. However, if trained ...

  10. Energy policy and externalities

    International Nuclear Information System (INIS)

    Bertel, E.; Fraser, P.

    2002-01-01

    External costs of energy have been assessed in a number of authoritative and reliable studies based upon widely accepted methodologies such as life cycle analysis (LCA). However, although those costs are recognised by most stakeholders and decision makers, results from analytical work on externalities and LCA studies are seldom used in policy making. The International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) convened a joint workshop in November 2001 to offer experts and policy makers an opportunity to present state-of-the-art results from analytical work on externalities and debate issues related to the relevance of external costs and LCA for policy-making purposes. The findings from the workshop highlight the need for further work in the field and the potential rote of international organisations like the IEA and the NEA in this context. (authors)

  11. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  12. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  13. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  14. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  15. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  16. Apparatus for manufacturing heating gas

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R

    1899-12-09

    Treating bituminous fuel, peat, or shale, is described for the production of a non-condensible heating gas by a three-stage but continuous process comprising: (1) a preliminary distillation operation under external heating, (2) a further distillation operation under the action of direct internal heating, (3) a combustion and gasification operation on the distilled hot fuel under the action of air or steam and air.

  17. Malignant external otitis

    International Nuclear Information System (INIS)

    Dupuch, K.M.; Iryboz, T.; Firat, M.; Levy, C.; Tubiana, J.M.

    1991-01-01

    This paper illustrates the value of CT and MR in early diagnosis and spread of malignant external otitis. The authors retrospectively analyzed 15 patients with proved malignant external otitis examined with postcontrast high-resolution CT (15/15) and MR (6/15) (T1- and T2-weighting). Gallium studies were done in 6/15 patients. Early diagnosis was made when CT demonstrated a soft-tissue mass of the external auditory canal associated with scattered zones of cortical bone erosions (13/15). Spread of the disease was better delineated by MR than CT, especially skull base extension (6/15). Temporomandibular joint involvement with extension into parotid or/and masticator spaces 6/15 was as well detected with CT as with MR. If CT remains the first and best procedure for diagnosis, MR - despite its cost - appears a good procedure to depict exact anatomic spread, allowing therapeutic management

  18. Productivity Change and Externalities

    DEFF Research Database (Denmark)

    Kravtsova, Victoria

    2014-01-01

    This paper contributes to the analysis of the impact of externalities on the host country's total factor productivity by taking into account different dimensions of spillover effects. Namely, engagement in exporting and foreign ownership is generally perceived as being beneficial to individual...... firms and the economy as a whole. The approach used in the current research accounts for different internal as well as external factors that individual firms face and evaluates the effect on changes in productivity, technology as well as the efficiency of domestic firms. The empirical analysis focuses...... on Hungary. While the country leads the group of post-socialist countries in the amount of attracted foreign direct investments (FDI) the effect of this policy on the economy remains unclear. The research finds that different externalities play a different role in productivity, technological and efficiency...

  19. Externality or sustainability economics?

    International Nuclear Information System (INIS)

    Bergh, Jeroen C.J.M. van den

    2010-01-01

    In an effort to develop 'sustainability economics' Baumgaertner and Quaas (2010) neglect the central concept of environmental economics-'environmental externality'. This note proposes a possible connection between the concepts of environmental externality and sustainability. In addition, attention is asked for other aspects of 'sustainability economics', namely the distinction weak/strong sustainability, spatial sustainability and sustainable trade, distinctive sustainability policy, and the ideas of early 'sustainability economists'. I argue that both sustainability and externalities reflect a systems perspective and propose that effective sustainability solutions require that more attention is given to system feedbacks, notably other-regarding preferences and social interactions, and energy and environmental rebound. The case of climate change and policy is used to illustrate particular statements. As a conclusion, a list of 20 insights and suggestions for research is offered. (author)

  20. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  1. The External Mind

    DEFF Research Database (Denmark)

    , Extended Mind and Distributed Cognition by Claudio Paolucci pp. 69-96 The Social Horizon of Embodied Language and Material Symbols by Riccardo Fusaroli pp. 97-123 Semiotics and Theories of Situated/Distributed Action and Cognition: a Dialogue and Many Intersections by Tommaso Granelli pp. 125-167 Building......The External Mind: an Introduction by Riccardo Fusaroli, Claudio Paolucci pp. 3-31 The sign of the Hand: Symbolic Practices and the Extended Mind by Massimiliano Cappuccio, Michael Wheeler pp. 33-55 The Overextended Mind by Shaun Gallagher pp. 57-68 The "External Mind": Semiotics, Pragmatism...

  2. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  3. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  4. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  5. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  6. Externalities - an analysis using the EU ExternE-results

    International Nuclear Information System (INIS)

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case

  7. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  8. External costs of electricity

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2005-01-01

    This article presents a synthesis of the ExternE project (External costs of Energy) of the European community about the external costs of power generation. Pollution impacts are calculated using an 'impact pathways' analysis, i.e. an analysis of the emission - dispersion - dose-response function - cost evaluation chain. Results are presented for different fuel cycles (with several technological variants) with their confidence intervals. The environmental impact costs are particularly high for coal: for instance, in France, for coal-fired power plants it is of the same order as the electricity retail price. For natural gas, this cost is about a third of the one for coal. On the contrary, the environmental impact costs for nuclear and renewable energies are low, typically of few per cent of the electricity price. The main part of these costs corresponds to the sanitary impacts, in particular the untimely mortality. In order to avoid any controversy about the cost evaluation of mortality, the reduction of the expectation of life due to the different fuel cycles is also indicated and the risks linked with nuclear energy are presented using several comparisons. (J.S.)

  9. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  10. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  11. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  12. Thermally induced coloration of KBr at high pressures

    Science.gov (United States)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  13. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  14. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  15. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  16. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke

    2014-01-01

    to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...... of 38 checklist items. Empirical support was considered the most valid methodology for item inclusion. Assessment of methodological justification showed that none of the items were supported empirically. Other kinds of literature justified the inclusion of 22 of the items, and 17 items were included...

  17. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  18. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment......The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  19. [External pancreatic fistulas management].

    Science.gov (United States)

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  20. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  1. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  2. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  3. Bevalac external beamline optics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, J.G.; Krebs, G.F.; Tekawa, M.M.; Alonso, J.R.

    1987-04-01

    This handbook is intended as an aid for tuning the external particle beam (EPB) lines at the Lawrence Berkeley Laboratory's Bevalac. The information contained within will be useful to the Bevalac's Main Control Room and experimenters alike. First, some general information is given concerning the EPB lines and beam optics. Next, each beam line is described in detail: schematics of the beam line components are shown, all the variables required to run a beam transport program are presented, beam envelopes are given with wire chamber pictures and magnet currents, focal points and magnifications. Some preliminary scaling factors are then presented which should aid in choosing a given EPB magnet's current for a given central Bevalac field. Finally, some tuning hints are suggested.

  4. Bevalac external beamline optics

    International Nuclear Information System (INIS)

    Kalnins, J.G.; Krebs, G.F.; Tekawa, M.M.; Alonso, J.R.

    1987-04-01

    This handbook is intended as an aid for tuning the external particle beam (EPB) lines at the Lawrence Berkeley Laboratory's Bevalac. The information contained within will be useful to the Bevalac's Main Control Room and experimenters alike. First, some general information is given concerning the EPB lines and beam optics. Next, each beam line is described in detail: schematics of the beam line components are shown, all the variables required to run a beam transport program are presented, beam envelopes are given with wire chamber pictures and magnet currents, focal points and magnifications. Some preliminary scaling factors are then presented which should aid in choosing a given EPB magnet's current for a given central Bevalac field. Finally, some tuning hints are suggested

  5. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  6. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  7. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  8. Assessment of environmental external effects in power generation

    International Nuclear Information System (INIS)

    Meyer, H.; Morthorst, P.E.; Schleisner, L.; Meyer, N.I.; Nielsen, P.S.; Nielsen, V.

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs

  9. Assessment of environmental external effects in power generation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H.; Morthorst, P.E.; Schleisner, L. [Risoe National Lab. (Denmark); Meyer, N.I.; Nielsen, P.S.; Nielsen, V. [The Technical Univ. of Denmark (Denmark)

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs.

  10. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  11. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    OpenAIRE

    Marian Brázdil; Ladislav Šnajdárek; Petr Kracík; Jirí Pospíšil

    2014-01-01

    This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generat...

  12. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  13. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  14. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  15. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  16. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  17. The ExternE project: methodology, objectives and limitations

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2002-01-01

    This paper presents a summary of recent studies on external costs of energy systems, in particular the ExternE (External Costs of Energy) Project of the European Commission. To evaluate the impact and damage cost of a pollutant, one needs to carry out an impact pathway analysis; this involves the calculation of increased pollutant concentrations in all affected regions due to an incremental emission (e.g. μg/m 3 of particles, using models of atmospheric dispersion and chemistry), followed by the calculation of physical impacts (e.g. number of cases of asthma due to these particles, using a dose-response function). The entire so-called fuel chain (or fuel cycle) is evaluated and compared on the basis of delivered end use energy. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, NO x and SO x ) from the combustion of fossil fuels impose a heavy toll, in addition to the cost of global warming. The external costs are especially large for coal; even for 'good current technology' they may be comparable to the price of electricity. For natural gas the external costs are about a third to a half of coal. The external costs of nuclear are small compared to the price of electricity (at most a few %), and so are the external costs of most renewable energy systems. (authors)

  18. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  19. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  20. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  1. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  2. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  3. Retrofitting Systems for External Walls

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report, 9 different external and internal retrofitting systems are analyzed using numerical calculations. The analysis focuses on the thermal bridge effects in the different systems, and on this basis it is discussed whether internal or external retrofitting has the most advantages...

  4. Theoretical study of melting curves on Ta, Mo, and W at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Xi Feng [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)], E-mail: hawk_0816@yahoo.com.cn; Cai Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)

    2008-06-01

    The melting curves of tantalum (Ta), molybdenum (Mo), and tungsten (W) are calculated using a dislocation-mediated melting model. The calculated melting curves are in good agreement with shock-wave data, and partially in agreement with wire explosion and piston-cylinder data, but show large discrepancies with diamond-anvil cell (DAC) data. We propose that the melting mechanism caused by shock-wave and laser-heated DAC techniques are probably different, and that a systematic difference exists in the two melting processes.

  5. Extreme conditions synthesis, processing and characterization of metal-nitrides and alloys of mechanical and optoelectronic importance

    International Nuclear Information System (INIS)

    Serghiou, G; McGaff, A J; Russell, N; Morniroli, J P; Frost, D J; Odling, N; Boehler, R; Troadec, D; Lathe, C

    2010-01-01

    High density nitrides and group IV alloys are of growing importance for both ceramic and optoelectronic applications. We present here new data and processes in our ongoing preparation of alkaline earth and transition metal nitrides as well as group IV alloys, here, up to 25 GPa and 2300 K. We employ large volume and laser-heated diamond anvil cell techniques for synthesis, processing tools including focused ion beam, and synchrotron X-ray diffraction, transmission electron microscopy and scanning electron microscopy for characterization.

  6. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...

  7. Malignant external otitis: CT evaluation

    International Nuclear Information System (INIS)

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-01-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull

  8. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  9. Structural Mineral Physics at Extreme Conditions

    Science.gov (United States)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  10. Irreversible Brownian Heat Engine

    Science.gov (United States)

    Taye, Mesfin Asfaw

    2017-10-01

    We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

  11. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs

  12. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs.

  13. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  14. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  15. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  16. External effects in Swiss hydropower

    International Nuclear Information System (INIS)

    Hauenstein, W.; Bonvin, J.; Vouillamoz, J.

    1999-01-01

    The article discusses the external costs and benefits of hydropower that are not internalised in normal book-keeping. Several negative and positive effects are discussed. The results of a study that addressed the difficult task of quantifying these external effects are presented. An assessment of the results gained shows that difficulties are to be met regarding system limits, methods of expressing the effects in monetary terms and ethical factors. The report also examines the consideration of external effects as a correction factor for falsified market prices for electricity

  17. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  18. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  19. Control of external radiation exposure

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following subjects are discussed - Control of external radiation exposure: working time, working distance, shielding: Total Linear Attenuation Coefficient, Half-Value Layer (HVL), Tenth-Value Layer (TVL); Build-up Factor

  20. The use of ferrofluids for heat removal: Advantage or disadvantage?

    Energy Technology Data Exchange (ETDEWEB)

    Krauzina, Marina T., E-mail: krauzina@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Bozhko, Aleksandra A., E-mail: bozhko@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Krauzin, Pavel V., E-mail: krauzin@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Suslov, Sergey A., E-mail: ssuslov@swin.edu.au [Department of Mathematics H38, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2017-06-01

    It is shown experimentally that, depending on the relative orientation of the gravity and the thermal gradient and on the pre-history of experiment, the application of a uniform external vertical magnetic field to a spherical cavity filled with magnetic ferrofluid can either enhance or suppress a convective heat transfer. - Highlights: • Conduction heat transfer in magnetic fluid heated from above is stronger than that in a fluid not containing nanoparticles. • The application of a uniform vertical magnetic field enhances heat transfer when magnetic fluid is heated from above. • Heat transfer in a magnetic fluid heated from below is weaker than that in a fluid not containing nanoparticles.

  1. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs

  2. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P [eds.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs.

  3. High pressure behavior of complex phosphate K2Ce[PO4]2: Grüneisen parameter and anharmonicity properties

    Science.gov (United States)

    Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.

    2018-02-01

    Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.

  4. Urban Sprawl and Transportation Externalities

    OpenAIRE

    Holcombe, Randall G.; Williams, DeEdgra W.

    2010-01-01

    One argument in support of minimizing urban sprawl is that sprawl creates transportation externalities. A problem with empirically examining the relationship between sprawl and transportation externalities is that sprawl is a difficult concept to quantify. This paper uses a measure of sprawl designed by Ewing, Pendall, and Chen (2002) to examine the relationship between sprawl and commute times, automobile ownership, miles driven, fatal auto accidents, air pollution, and highway expenditures....

  5. Conceptual challenges for internalising externalities

    DEFF Research Database (Denmark)

    Miguel, Brandão; Weidema, Bo Pedersen

    2013-01-01

    We analyse a number of different externalities to identify conceptual challenges for the practical implementation of their internalisation. Three issues were identified: i) The balance between compensation and technology change and the respective effects on the nominal and real GDP; ii...... geographical and especially temporal distance between the benefitting actor and the victim of the external cost, the involvement of a non-governmental intermediate actor becomes increasingly necessary to provide the short-term capital required to ensure a successful implementation....

  6. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  7. Internal hiring or external recruitment?

    OpenAIRE

    DeVaro, Jed

    2016-01-01

    Hiring is one of a firm’s most important decisions. When an employer fills a vacancy with one of its own workers (through promotion or lateral transfer), it forgoes the opportunity to fill the position with a new hire from outside the firm. Although both internal and external hiring methods are used, firms frequently have a bias favoring insiders. Internal and external hires differ in observable characteristics (such as skill levels), as do the employers making each type of hiring decision. U...

  8. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  9. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  10. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  11. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  12. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  13. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  14. Approaches in estimation of external cost for fuel cycles in the ExternE project

    International Nuclear Information System (INIS)

    Afanas'ev, A.A.; Maksimenko, B.N.

    1998-01-01

    The purposes, content and main results of studies realized within the frameworks of the International Project ExternE which is the first comprehensive attempt to develop general approach to estimation of external cost for different fuel cycles based on utilization of nuclear and fossil fuels, as well as on renewable power sources are discussed. The external cost of a fuel cycle is treated as social and environmental expenditures which are not taken into account by energy producers and consumers, i.e. these are expenditures not included into commercial cost nowadays. The conclusion on applicability of the approach suggested for estimation of population health hazards and environmental impacts connected with electric power generation growth (expressed in money or some other form) is made

  15. Role of external torque in the formation of ion thermal internal transport barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  16. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  17. Development of heat-resistant magnetic sensor

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Arakawa, Hisashi; Keyakida, Satoshi

    2013-01-01

    A heat-resistant flux gate magnetic sensor has been developed. Permendur, which has high Curie point, is employed as the magnetic core material and the detection method of the external magnetic field is modified. The characteristics of the developed magnetic sensor up to 500degC were evaluated. The sensor output increased linearly with the external magnetic field in the range of ±5 G and the standard deviation at 500degC was about 0.85G. (author)

  18. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  19. Lessons learned from external hazards

    Energy Technology Data Exchange (ETDEWEB)

    Peinador, Miguel; Zerger, Benoit [European Commisison Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Ramos, Manuel Martin [European Commission Joint Research Centre, Brussels (Belgium). Nuclear Safety and Security Coordination; Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2014-01-15

    This paper presents a study performed by the European Clearinghouse of the Joint Research Centre on Operational Experience for nuclear power plants in cooperation with IRSN and GRS covering events reported by nuclear power plants in relation to external hazards. It summarizes the review of 235 event reports from 3 different databases. The events were grouped in 9 categories according to the nature of the external hazard involved, and the specific lessons learned and recommendations that can be derived from each of these categories are presented. Additional 'cross-cutting' recommendations covering several or all the external hazards considered are also discussed. These recommendations can be useful in preventing this type of events from happening again or in limiting their consequences. The study was launched in 2010 and therefore it does not cover the Fukushima event. This paper presents the main findings and recommendations raised by this study. (orig.)

  20. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  1. Unwanted heat

    International Nuclear Information System (INIS)

    Benka, M.

    2006-01-01

    The number of small heating plants using biomass is growing. According to TREND's information, Hrinovska energeticka, is the only one that controls the whole supplier chain in cooperation with its parent company in Bratislava. Starting with the collection and processing of wood chips by burning, heat production and heat distribution to the end user. This gives the company better control over costs and consequently its own prices. Last year, the engineering company, Hrinovske storjarne, decided to focus only on its core business and sold its heating plant, Hrinovske tepelne hospodarstvo, to Intech Slovakia and changed the company name to Hrinovska energeticka. Local companies and inhabitants were concerned that the new owner would increase prices. But the company publicly declared and kept promises that the heat price for households would remain at 500 Slovak crowns/gigajoule (13.33 EUR/gigajoule ), one of the lowest prices in Slovakia. This year the prices increased slightly to 570 Slovak crowns (15.2 EUR). 'We needed - even at the cost of lower profit - to satisfy our customers so that we would not lose them. We used this time for transition to biomass. This will allow us to freeze our prices in the coming years,' explained the statutory representative of the company, Ivan Dudak. (authors)

  2. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  3. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  4. Monopole heat

    International Nuclear Information System (INIS)

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  5. Heat exchanger

    International Nuclear Information System (INIS)

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  6. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  7. Effects of Ohmic Heating on Microbial Counts and Denaturatiuon of Proteins in Milk

    OpenAIRE

    SUN, Huixian; KAWAMURA, Shuso; HIMOTO, Jun-ichi; ITOH, Kazuhiko; WADA, Tatsuhiko; KIMURA, Toshinori

    2008-01-01

    The aim of this study was to compare the inactivation effects of ohmic heating (internal heating by electric current) and conventional heating (external heating by hot water) on viable aerobes and Streptococcus thermophilus 2646 in milk under identical temperature history conditions. The effects of the two treatments on quality of milk were also compared by assessing degrees of protein denaturation in raw and sterilized milk (raw milk being sterilized by ohmic heating or conventional heating)...

  8. Environmental externalities related to power production on biogas and natural gas based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Ibsen, Liselotte Schleisner

    1998-01-01

    This paper assesses the environmental impacts and external costs from selected electricity generation systems in Denmark. The assessment is carried out as part of the ExternE National Implementation, which is the second phase of the ExternE project and involves case studies from all Western...... European countries. The project use a “bottom-up” methodology to evaluate the external costs associated with a wide range of different fuel cycles. The project has identified priority impacts, where most are impacts from air emissions. Externalities due to atmospheric emissions are calculated through...

  9. The effect of low ceiling on the external combustion of the cabin fire

    Science.gov (United States)

    Su, Shichuan; Chen, Changyun; Wang, Liang; Wei, Chengyin; Cui, Haibing; Guo, Chengyu

    2018-06-01

    External combustion is a phenomenon where the flame flares out of the window and burns outside. Because of the particularity of the ship's cabin structure, there is a great danger in the external combustion. In this paper, the numerical calculation and analysis of three kinds of low ceiling ship cabin fire are analyzed based on the large eddy numerical simulation technique. Through the analysis of temperature, flue gas velocity, heat flux density and so on, the external combustion phenomenon of fire development is calculated. The results show that when external combustion occurs, the amount of fuel escaping decreases with the roof height. The temperature above the window increases with the height of the ceiling. The heat flux density in the external combustion flame is mainly provided by radiation, and convection is only a small part; In the plume area there is a time period, in this time period, the convective heat flux density is greater than the radiation heat flux, this time with the ceiling height increases. No matter which ceiling height, the external combustion will seriously damage the structure of the ship after a certain period of time. The velocity distribution of the three roof is similar, but with the height of the ceiling, the area size is also increasing.

  10. PHOSPHORUS SORPTION ISOTHERMS AND EXTERNAL ...

    African Journals Online (AJOL)

    ACSS

    Zhang et al., 2005). For instance, in strongly acidic soils with pH<5.5 and high P sorbing soils, application of rock phosphate is more effective and cheaper than using TSP (Bationo et al., 2011). Moreover, it enables determination of the external P.

  11. Hydropower externalities: a meta analysis

    NARCIS (Netherlands)

    Mattmann, M.; Logar, I.; Brouwer, R.

    2016-01-01

    This paper presents a meta-analysis of existing research related to the economic valuation of the external effects of hydropower. A database consisting of 81 observations derived from 29 studies valuing the non-market impacts of hydropower electricity generation is constructed with the main aim to

  12. Matching Games with Additive Externalities

    DEFF Research Database (Denmark)

    Branzei, Simina; Michalak, Tomasz; Rahwan, Talal

    2012-01-01

    Two-sided matchings are an important theoretical tool used to model markets and social interactions. In many real life problems the utility of an agent is influenced not only by their own choices, but also by the choices that other agents make. Such an influence is called an externality. Whereas ...

  13. Organizing for External Knowledge Sourcing

    DEFF Research Database (Denmark)

    Rabbiosi, Larissa; Reichstein, Toke

    2011-01-01

    The aim of this article is to provide an introduction to the special issue. We briefly consider the external knowledge sourcing and organizing for innovation literatures, which offer a background for the special issue, and we highlight their mutual dialogue. We then illustrate the main findings o...

  14. Externally studentized normal midrange distribution

    Directory of Open Access Journals (Sweden)

    Ben Dêivide de Oliveira Batista

    Full Text Available ABSTRACT The distribution of externally studentized midrange was created based on the original studentization procedures of Student and was inspired in the distribution of the externally studentized range. The large use of the externally studentized range in multiple comparisons was also a motivation for developing this new distribution. This work aimed to derive analytic equations to distribution of the externally studentized midrange, obtaining the cumulative distribution, probability density and quantile functions and generating random values. This is a new distribution that the authors could not find any report in the literature. A second objective was to build an R package for obtaining numerically the probability density, cumulative distribution and quantile functions and make it available to the scientific community. The algorithms were proposed and implemented using Gauss-Legendre quadrature and the Newton-Raphson method in R software, resulting in the SMR package, available for download in the CRAN site. The implemented routines showed high accuracy proved by using Monte Carlo simulations and by comparing results with different number of quadrature points. Regarding to the precision to obtain the quantiles for cases where the degrees of freedom are close to 1 and the percentiles are close to 100%, it is recommended to use more than 64 quadrature points.

  15. Measuring Externalities in Program Evaluation

    NARCIS (Netherlands)

    Janssens, Wendy

    2005-01-01

    Impact evaluations of development programmes usually focus on a comparison of participants with a control group. However, if the programme generates externalities for non-participants such an approach will capture only part of the programme's impact. Based on a unique large-scale quantitative survey

  16. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  17. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  18. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  19. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  20. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  1. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  2. External noise distinguishes attention mechanisms.

    Science.gov (United States)

    Lu, Z L; Dosher, B A

    1998-05-01

    We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.

  3. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  4. Technical basis document for external events

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    This document supports the Tank Farms Documented Safety Analysis and presents the technical basis for the FR-equencies of externally initiated accidents. The consequences of externally initiated events are discussed in other documents that correspond to the accident that was caused by the external event. The external events include aircraft crash, vehicle accident, range fire, and rail accident

  5. Thermal performance analysis of heat exchanger for closed wet cooling tower using heat and mass transfer analogy

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck

    2010-01-01

    In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower

  6. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  7. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    Science.gov (United States)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  8. Formation of scandium carbides and scandium oxycarbide from the elements at high-(P, T) conditions

    International Nuclear Information System (INIS)

    Juarez-Arellano, Erick A.; Winkler, Bjoern; Bayarjargal, Lkhamsuren; Friedrich, Alexandra; Milman, Victor; Kammler, Daniel R.; Clark, Simon M.; Yan Jinyuan; Koch-Mueller, Monika; Schroeder, Florian; Avalos-Borja, Miguel

    2010-01-01

    Synchrotron diffraction experiments with in situ laser heated diamond anvil cells and multi-anvil press synthesis experiments have been performed in order to investigate the reaction of scandium and carbon from the elements at high-(P,T) conditions. It is shown that the reaction is very sensitive to the presence of oxygen. In an oxygen-rich environment the most stable phase is ScO x C y , where for these experiments x=0.39 and y=0.50-0.56. If only a small oxygen contamination is present, we have observed the formation of Sc 3 C 4 , Sc 4 C 3 and a new orthorhombic ScC x phase. All the phases formed at high pressures and temperatures are quenchable. Experimentally determined elastic properties of the scandium carbides are compared to values obtained by density functional theory based calculations. - Graphical Abstract Legend (TOC Figure): Table of Contents Figure Selected images recorded with a MAR345 image plate detector show the reaction of α-Sc and graphite at high-(P,T) conditions. Left: mixture of α-Sc and graphite. Right: recovered sample after laser heated the diamond anvil cell.

  9. External costs of energy - do the answers match the questions? Looking back at 10 years of ExternE

    International Nuclear Information System (INIS)

    Krewitt, W.

    2002-01-01

    While the claim for 'getting prices right' is quite popular in conceptual policy papers, the implementation of appropriate internalisation strategies is still hampered by a lack of reliable external cost data. Great expectations were set into the ExternE project, a major research programme launched by the European Commission at the beginning of the 1990s to provide a scientific basis for the quantification of energy related externalities and to give guidance supporting the design of internalisation measures. After more than a decade of research, the ExternE label became a well recognised standard source for external cost data. Looking back into the ExternE history, the paper pursues how emerging new scientific insights and changing background assumptions affected external cost estimates and related recommendations to policy over time. Based on ExternE results, the usefulness and inherent limitations of external cost estimates for impact categories like climate change or nuclear waste disposal is discussed. The paper also gives examples on how external costs in spite of remaining uncertainties are successfully used to support environmental policy. (Author)

  10. Firm Search for External Knowledge

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Grimpe, Christoph

    2012-01-01

    ignored the institutional context that provides or denies access to external knowledge at the country level. Combining institutional and knowledge search theory, we suggest that the market orientation of the institutional environment and the magnitude of institutional change influence when firms begin......The innovation performance of modern firms is increasingly determined by their ability to search and absorb external knowledge. However, after a certain threshold firms "oversearch" their environment and innovation performance declines. In this paper, we argue that prior literature has largely...... to experience the negative performance effects of oversearch. Based on a comprehensive sample of almost 8,000 firms from ten European countries, we find that institutions matter considerably for firms' search activity. Higher market orientation of institutions increases the effectiveness of firms' search...

  11. MGR External Events Hazards Analysis

    International Nuclear Information System (INIS)

    Booth, L.

    1999-01-01

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses

  12. Leveraging External Sources of Innovation

    DEFF Research Database (Denmark)

    West, Joel; Bogers, Marcel

    2014-01-01

    , it suggests a four-phase model in which a linear process—(1) obtaining, (2) integrating, and (3) commercializing external innovations—is combined with (4) interaction between the firm and its collaborators. This model is used to classify papers taken from the top 25 innovation journals, complemented by highly...... cited work beyond those journals. A review of 291 open innovation-related publications from these sources shows that the majority of these articles indeed address elements of this inbound open innovation process model. Specifically, it finds that researchers have front-loaded their examination...... external innovations create value rather than how firms capture value from those innovations. Finally, the interaction phase considers both feedback for the linear process and reciprocal innovation processes such as cocreation, network collaboration, and community innovation. This review and synthesis...

  13. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  14. Induction Hardening of External Gear

    Science.gov (United States)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  15. Personnel external dose monitoring system

    International Nuclear Information System (INIS)

    Zhao Hengyuan

    1989-01-01

    The status and trend of personnel external dose monitoring system are introduced briefly. Their characteristics, functions and TLD bedges of some commercially available automatic TLD system, including UD-710A (Matsushita, Japan), Harshaw-2271, 2276 (Harshaw, USA), Harshaw-8000 (Harshaw/Filtrol), Studsvik-1313 (Sweden) and Pitman-800 (UK) were depicted in detail. Finally, personnel dose management and record keeping system were presented and two examples were given

  16. Patterning of alloy precipitation through external pressure

    Science.gov (United States)

    Franklin, Jack A.

    Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.

  17. External fixation of "intertrochanteric" fractures.

    Science.gov (United States)

    Gani, Naseem Ul; Kangoo, Khursheed Ahmed; Bashir, Arshad; Muzaffer, Rahil; Bhat, Mohammad Farooq; Farooq, Munir; Badoo, Abdul Rashid; Dar, Imtiyaz Hussian; Wani, Mudassir Maqbool

    2009-10-10

    In developing countries, due to limited availability of modern anesthesia and overcrowding of the hospitals with patients who need surgery, high-risk patients with "intertrochanteric" fractures remain unsuita ble for open reduction and internal fixation.The aim of this study was to analyze the results of external fixation of "intertrochanteric" fractures in high-risk geriatric patients in a developing country.The results of 62 ambulatory high-risk geriatric patients with a mean age of 70 years (range 58-90 years) with "intertrochanteric" fractures, in whom external fixation was performed, are reported.Eight patients died during follow-up due to medical causes unrelated to the surgical procedure. So only 54 patients were available for final assessment. Procedure is simple, performed under local anesthesia, requires less time for surgery and is associated with less blood loss. Good fixation and early ambulation was achieved in most of the patients. Average time to union was 14 weeks. Thirty-one patients developed superficial pin tract infection and 28 patients had average shortening of 15 mm due to impaction and varus angulation. Functional outcome was assessed using Judet's point system. Good to excellent results were achieved in 44 patients.This study demonstrated that external fixation of "intertrochantric" fractures performed under local anesthesia offers significant advantage in ambulatory high-risk geriatric patients especially in a developing country.

  18. An experimental study of the effect of external thermocouples on rewetting during reflood

    International Nuclear Information System (INIS)

    Shires, G.L.; Butcher, A.A.; Carpenter, B.G.; McCune, D.S.; Pearson, K.G.

    1980-04-01

    The validation of computer codes used for PWR safety assessment often depends upon experiments carried out with either real fuel pins or electrically heated fuel pin simulators. In some cases, and this applies particularly to in-pile tests, temperatures are measured by means of sheathed thermocouples attached externally to the pins and this raises the question of the possible effect of such thermocouples on the two phase hydraulics and heat transfer which are being studied. This paper describes the experiments which subjected two realistic fuel pin simulators, one with and one without external thermocouples, to identical bottom flooding conditions. They demonstrate very clearly that external thermocouples act as preferential rewetting sites and thereby increase the rate of propagation of the quench front. In the view of the authors of this paper the facts described raise serious doubts about the validity of rewetting data obtained from experiments employing external thermocouples. (U.K.)

  19. Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

    OpenAIRE

    H. Hazar; S. Sap

    2017-01-01

    In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating th...

  20. ExternE: Externalities of energy Vol. 4. Oil and gas

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.

    1995-01-01

    Awareness of the environmental damage resulting from human activity, particularly commencing energy use, has grown greatly in recent years. Effects such as global warming, ozone depletion and acid rain are now the subjects of much research and public debate. It is now known that these and other effects damage a wide range of receptors, including human health, forests, crops, freshwater ecosystems and buildings. Such damages are typically not accounted for by the producers and consumers of the good in question (in this case energy). They are thus referred to as 'external costs' or 'externalities', to distinguish them from the private costs which account for the construction of plant, cost of fuel, wages, etc. In recent years there has been a growing interest in the assessment of the environmental and health impacts of energy, and the related external costs. This concern is driven by a number of different factors: the need to integrate environmental concerns in decision making over the choice between different fuels and energy technologies; the need to evaluate the costs and benefits of stricter environmental standards; increased attention to the use of economic instruments for environmental policy, the need to develop overall indicators of environmental performance of different technologies; major changes in the energy sector, including privatisation, liberalisation of markets, reduction of subsidies, etc. An agreed methodology for calculation and integration of external costs has not been established. Earlier work is typically of a preliminary nature and tends to be deficient with respect to both the methods employed and the quality of models and data used. In consequence of this a collaborative project, the EC/US Fuel Cycles Study, was established between Directorate General XLI (Science, Research and Technology) of the European Commission and the United States Department of Energy. This ran for the period 1991 to 1993, and good agreement on a variety of

  1. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  2. Unidirectional spin-wave heat conveyer.

    Science.gov (United States)

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  3. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    Science.gov (United States)

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  4. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    side ... For irreversible cycle, the internal irreversibility, i.e., non-isentropic losses in the ... constant thermal capacitance rate (the product of mass flow rate and specific heat), .... reversed Brayton cycle is dependent on the external heat transfer ...

  5. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  6. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  7. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  8. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  9. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  10. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  11. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  12. FREQUENCY OF MALASSEZIA SPP. IN DOGS PRESENTING EXTERNAL OTITIS

    Directory of Open Access Journals (Sweden)

    N. R. Magalhães

    2017-12-01

    Full Text Available The external otitis is defined as an inflammation of the dog external ear canal and it is considered a common disease in dogs. It is a disease of multifactorial etiology, where one of the main microrganisms associated to the illness is the Malassezia ssp. Therefore, this work aimed to determine the frequency of Malassezia spp. by auricular cytology in dogs that present clinical signs of external otitis. Were used 23 dogs attended in a veterinary clinic located in Sinop-MT. The material was collected using a dry swab, where each extremity was inserted in one of the auditory canal (right and left, which was rotated, removed from the ear and rolled on the glass slide. First the glass slide was microscopically observed (objective 4X, for viewing mites, and then, the sample was fixed by heat and stained with Panoptic. Once stained, the glass slide was examined (objective 40X and 100X. Among the 23 dogs evaluated, 60.9% were positive for Malassezia spp., 8.7% were positive for the Otodectes cynotis mite, and also 30,4% of the animals showed mixed infection with Malassezia ssp. and bacteria. With this study, it can be concluded that Malassezia ssp. was found more frequently in at the auditory canal of dogs with that presents external otitis, associated or acting alone, indicating the importance of this yeast in cases of otitis.

  13. Estimating location without external cues.

    Directory of Open Access Journals (Sweden)

    Allen Cheung

    2014-10-01

    Full Text Available The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system.

  14. Matchings with Externalities and Attitudes

    DEFF Research Database (Denmark)

    Branzei, Simina; Michalak, Tomasz; Rahwan, Talal

    2013-01-01

    Two-sided matchings are an important theoretical tool used to model markets and social interactions. In many real-life problems the utility of an agent is influenced not only by their own choices, but also by the choices that other agents make. Such an influence is called an externality. Whereas ...... where agents take different attitudes when reasoning about the actions of others. In particular, we study optimistic, neutral and pessimistic attitudes and provide both computational hardness results and polynomial-time algorithms for computing stable outcomes....

  15. Nuclear energy and external constraints

    International Nuclear Information System (INIS)

    Lattes, R.; Thiriet, L.

    1983-01-01

    The structural factors of this crisis probably predominate over factors arising out the economic situation, even if explanations vary in this respect. In this article devoted to nuclear energy, a possible means of Loosering external constraints the current international economic environment is firstly outlined; the context in which the policies of industrialized countries, and therefore that of France, must be developed. An examination of the possible role of energy policies in general and nuclear policies in particular as an instrument of economic policy in providing a partial solution to this crisis, will then enable to quantitatively evaluate the effects of such policies at a national level [fr

  16. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  17. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  18. Radiofrequency plasma heating: proceedings

    International Nuclear Information System (INIS)

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  19. Influence of external action and structural factors on radiation blistering

    International Nuclear Information System (INIS)

    Kalin, B.A.; Chernov, I.I.; Fomina, E.P.; Korshunov, S.H.; Polsky, V.I.; Skorov, D.M.; Yakushin, V.L.

    1985-01-01

    A survey of experimental results is presented, pertaining to radiation blistering of a considerable number of materials (stainless steels, alloys with high nickel content, alloys of refractory metals) under helium ion irradiation with energies of 20-100 keV under conditions corresponding to the plasma-wall interaction: bombardment at various angles of incidence and cyclic irradiation in a wide spectrum of ion incidence angles; influence of external action, including thermocyclic; influence of preceding neutron and proton irradiation. It has been shown that external factors have a complex influence on blister parameters and erosion coefficients of materials. A study has been carried out on the influence of aluminium coatings, alloying additions, phase state of material and microstructure on the nature and degree of surface erosion. Complex influence of element and phase composition, as well as microstructural changes during heat treatment and welding on radiation erosion have been established. (orig.)

  20. Stabilization of the external kink and the resistive wall mode

    International Nuclear Information System (INIS)

    Chu, M S; Okabayashi, M

    2010-01-01

    The pursuit of steady-state economic production of thermonuclear fusion energy has led to research on the stabilization of the external kink and the resistive wall mode. Advances in both experiment and theory, together with improvements in diagnostics, heating and feedback methods have led to substantial and steady progress in the understanding and stabilization of these instabilities. Many of the theory and experimental techniques and results that have been developed are useful not only for the stabilization of the resistive wall mode. They can also be used to improve the general performance of fusion confinement devices. The conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed. (topical review)

  1. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  2. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  3. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  4. Externalized ileocolic anastomosis: case report.

    Science.gov (United States)

    Simcock, James; Kuntz, Charles A; Newman, Raquel

    2010-01-01

    A 6-year-old, spayed female Labrador retriever was presented 48 hours after an intestinal resection and anastomosis for management of a small intestinal foreign body. Abdominal ultrasound confirmed the presence of peritoneal effusion. Cytology of fluid collected by abdominocentesis revealed a large number of degenerate neutrophils with intracellular cocci. A diagnosis of septic peritonitis was made, presumably because of dehiscence of the anastomosis. Upon repeat exploratory celiotomy, the intestinal anastomosis (located 4 cm orad to the cecum) was found to be leaking intestinal contents into the abdomen. The distal ileum, cecum, and proximal colon were resected. An end-to-end, ileocolic anastomosis was performed and subsequently exteriorized into the subcutaneous space via a paramedian incision through the abdominal wall. The anastomosis was inspected daily for 4 days before it was returned to the abdomen and the subcutaneous defect was closed. Serial cytology of the peritoneal fluid, which was performed during this 4-day postoperative period, confirmed progressive resolution of peritonitis. The dog was discharged from the hospital 2 days following return of the anastomosis into the abdomen. Externalized intestinal anastomosis is used with good success in human medicine for repair of colonic injuries. In this case, externalization of the anastomosis permitted healing of the intestinal anastomosis in an environment isolated from the detrimental effects created by septic peritonitis. In addition, direct visualization of the anastomosis allowed assessment of healing. To our knowledge, this procedure has not been previously reported in companion animals.

  5. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  6. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  7. Effects of Externalities on Patterns of Exchange

    NARCIS (Netherlands)

    Dijkstra, J.; van Assen, M.A.L.M.

    Many real−life examples of exchanges with externalities exist. Externalities of exchange are defined as direct consequences of exchanges for the payoff of actors who are not involved in the exchange. This paper focuses on how externalities influence the partner choice in exchange networks. In an

  8. The external cruising costs of parking

    NARCIS (Netherlands)

    Inci, E.; van Ommeren, J.N.; Kobus, Martijn

    2017-01-01

    Existing work emphasizes the importance of traffic congestion externalities, but typically ignores cruising-for-parking externalities. We estimate the marginal external cruising costs of parking—that is, the time costs that an additional parked car imposes on drivers by inducing them to cruise for

  9. ExternE: Externalities of energy Vol. 3. Coal and lignite

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Lee, D.

    1995-01-01

    Awareness of the environmental damage resulting from human activity, particularly concerning energy use, has grown greatly in recent years. Effects such as global warming, ozone depletion and acid rain are now the subjects of much research and public debate. It is now known that these and other effects damage a wide range of receptors, including human health, forests, crops, freshwater ecosystems and buildings. Such damages are typically not accounted for by the producers and consumers of the good in question (in this case energy). They are thus referred to as 'external costs' or 'externalities', to distinguish them from the private costs which account for the construction of plant, cost of fuel, wages, etc. In recent years there has been a growing interest in the assessment of the environmental and health impacts of energy, and the related external costs. This concern is driven by a number of different factors: the need to integrate environmental concerns in decision making over the choice between different fuels and energy technologies; the need to evaluate the costs and benefits of stricter environmental standards; increased attention to the use of economic instruments for environmental policy; the need to develop overall indicators of environmental performance of different technologies; major changes in the energy sector, including privatisation, liberalisation of markets, reduction of subsidies, etc. An agreed methodology for calculation and integration of external costs has not been established. Earlier work is typically of a preliminary nature and tends to be deficient with respect to both the methods employed and the quality of models and data used. In consequence of this a collaborative project, the EC/US Fuel Cycles Study, was established between Directorate General XII (Science, Research and Technology) of the European Commission and the United States Department of Energy. This ran for the period 1991 to 1993, and good agreement on a variety of

  10. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  11. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay

    Science.gov (United States)

    Yoon, Seokjin; Kasai, Akihide

    2017-11-01

    The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.

  12. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  13. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  14. Equatorial electrojet and its response to external electromagnetic effects

    Science.gov (United States)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  15. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  16. External radiotherapy in thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.; Shah, D.H.

    1999-01-01

    In the management of thyroid carcinoma (TC) of any histological type, surgery is the primary mode of treatment. The second modality for the management is treatment with radioactive iodine ( 131 I), especially, when the tumor has the ability to concentrate 131 I. External radiotherapy has a limited use in differentiated thyroid carcinoma (DTC). It is useful in the management of bulky residual tissue which is not completely resected, metastatic disease which does not concentrated radioiodine and as a palliative treatment for reliving pain in patients with distant metastases. The ER as an adjuvant treatment in both anaplastic and medullary carcinoma has a significant role to play and should be used more frequently than is presently being advocated and practiced

  17. Next decade in external dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1988-01-01

    In recent years, a number of external dosimetry problems have been solved. However, changes in standards and legal concepts relating to the application of dosimetry results will require further enhancements in measurement techniques and philosophy in the next 10 y. The introduction of effective dose equivalent and the legal use of probability of causation will require that much greater attention be given to determination of weighted organ dose from external exposure. An imminent change--an increase in the fast neutron quality factor--will require a new round of technology development in a field that has just received a decade of close scrutiny. For the future, we must take advantage of developments in microelectronics. The use of random access memory (RAM) and metal-on-silicon (MOS) devices as detector elements, particularly for neutron dosimetry, has exciting possibilities that are just beginning to be explored. Advances in microcircuitry are leading, and will continue to lead, in the development of a new generation of small, rugged and smart radiation survey instruments that will make the most of detector data. It has become possible with very compact instruments to obtain energy spectra, linear-energy-transfer (LET) spectra, and quality factors in addition to the usual integrated dosimetric quantities: exposure, absorbed dose, and dose equivalent. These instruments will be reliable and easy to use. The user will be able to select the level of sophistication that is required for any specific application. Moreover, since the processing algorithms can be changed, changes in conversion factors can be accommodated with relative ease. During the next decade, the use of computers will continue to grow in value to the health physicist

  18. Analysis of External Treatment Methods and Technical Characteristics of External Treatment

    Science.gov (United States)

    Zhang, Rui; Miao, Mingsan; Bai, Ming

    2018-01-01

    Chinese medicine external therapy is a treatment method of Chinese medicine with Chinese characteristics. The effect of traditional Chinese medicine external treatment, convenient operation, external treatment and technology has great prospects for development. The traditional Chinese medicine external treatment method and technical characteristics were analyzed.

  19. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  20. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  1. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  2. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  3. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  4. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M K

    1999-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  5. Externalities of fuel cycles 'ExternE' project. Economic valuation. Economical valuation: An impact pathway approach

    International Nuclear Information System (INIS)

    Markandya, A.

    1994-01-01

    The EC/US study of the external costs of fuel cycles is designed to trace through all the environmental impacts arising from the use of a particular fuel, from the 'cradle' to the 'grave'; to quantify these impacts as far as possible (giving priority to those that are the considered the most important) and to value the damages arising from them in money terms as far as possible (again keeping to the priority listing established by the physical quantification). The fuel cycle has been identified as consisting of the following elements: activities -> emissions/burdens; emissions/burdens -> physical environmental impacts; physical impacts -> external environmental impacts; external impacts -> costs of these impacts. The activities consist of all the operations that are carried out in connection with the extraction transportation, use in electricity generation and finally disposal of the fuel. The emissions or burdens arising from the cycle result in physical impacts, which in turn imply certain environmental impacts. An illustration of a typical fuel cycle (coal) audits environmental impacts is given in Figures. The work of the fuels cycle study teams is to complete the valuation of the shaded areas but giving priority to those impacts that are likely to be quantitatively important. .Each fuel cycle is evaluated in a location-specific context, so that it refers to the impacts arising from the use of coal, or gas or whatever fuel is being considered at an actual plant that is operating. The purpose of this report on economic valuation is to: (a) examine the literature or economic valuation of environmental externalities in Europe; (b) assess its relevance to the fuel cycle study and (c) make recommendations on how the detailed analysis of the individual fuel cycles should use the economic valuation. It is important to recognize that the report is not a complete survey of all the research ever done on environmental valuation. Although as complete a survey of all the

  6. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  7. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  8. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Omara, Z.M.; Essa, F.A.

    2014-01-01

    Highlights: • The effect of using nanofluids on the solar still performance is investigated. • The solar still with external condenser increases the productivity by about 53.2%. • Using nanofluids improves the solar still water productivity by about 116%. - Abstract: The distilled water productivity of the single basin solar still is very limited. In this context, the design modification of a single basin solar still has been investigated to improve the solar still performance through increasing the productivity of distilled water. The experimental attempts are made to enhance the solar still productivity by using nanofluids and also by integrating the still basin with external condenser. The used nanofluid is the suspended nanosized solid particles of aluminum-oxide in water. Nanofluids change the transport properties, heat transfer characteristics and evaporative properties of the water. Nanofluids are expected to exhibit superior evaporation rate compared with conventional water. The effect of adding external condenser to the still basin is to decrease the heat loss by convection from water to glass as the condenser acts as an additional and effective heat and mass sink. So, the effect of drawn vapor at different speeds was investigated. The results show that integrating the solar still with external condenser increases the distillate water yield by about 53.2%. And using nanofluids improves the solar still water productivity by about 116%, when the still integrated with the external condenser

  9. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  10. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  11. Externally finned circular tube immerse in a phase-change material

    International Nuclear Information System (INIS)

    Alves, C.L.F.; Ismail, K.A.R.

    1985-01-01

    In an attempt to increase the heat transfer rate and reduce the convective currents during the freezing of phase change materials (PCM) in storage tanks, externally finned circular tubes are studied experimentally. The parameters analysed in this work include number of fins, fin length, initial degree of superheat and freezing time

  12. New Cooperative Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  13. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  14. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  15. Intermittent heating of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kohonen, K

    1983-02-01

    Conditions for intermittent heating of buildings are considered both theoretically and experimentally. Thermal behaviour of buildings adn rooms in intermittent heating is simulated by a program based on the convective heat balance equation and by simplified RC-models. The preheat times and the heating energy savings compared with continuous heating are presented for typical lightweight, mediumweight and heavyweight classroom and office modules. Formulaes for estimating the oversizing of the radiator network, the maximum heat output of heat exchangers in district heating and the efficiency of heating boilers in intermittent heating are presented. The preheat times and heating energy savings with different heating control systems are determined also experimentally in eight existing buildings. In addition some principles for the planning and application of intermittent heating systems are suggested.

  16. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  17. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  18. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  19. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  20. Heat-Related Illnesses

    Science.gov (United States)

    ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  1. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  2. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  3. Clinical governance and external audit.

    Science.gov (United States)

    Glazebrook, S G; Buchanan, J G

    2001-01-01

    This paper describes a model of clinical governance that was developed at South Auckland Health during the period 1995 to 2000. Clinical quality and safety are core objectives. A multidisciplinary Clinical Board is responsible for the development and publicising of sound clinical policies together with monitoring the effects of their implementation on quality and safety. The Clinical Board has several committees, including an organization-wide Continuous Quality Improvement Committee to enhance the explicit nature of the quality system in terms of structure, staff awareness and involvement, and to develop the internal audit system. The second stream stems from the Chief Medical Officer and clinical directors in a clinical management sense. The Audit Committee of the Board of Directors covers both clinical and financial audit. The reporting lines back to that committee are described and the role of the external auditor of clinical standards is explained. The aim has been to create a supportive culture where quality initiatives and innovation can flourish, and where the emphasis is not on censure but improvement.

  4. External auditory canal carcinoma treatment

    International Nuclear Information System (INIS)

    Matsuda, Yoichi; Ueda, Yoshihisa; Kurita, Tomoyuki; Nakashima, Tadashi

    2010-01-01

    External auditory canal (EAC) carcinomas are relatively rare conditions lack on established treatment strategy. We analyzed a treatment modalities and outcome in 32 cases of EAC squamous cell carcinoma treated between 1980 and 2008. Subjects-17 men and 15 women ranging from 33 to 92 years old (average: 66) were divided by Arriaga's tumor staging into 12 T1, 5 T2, 6 T3, and 9 T4. Survival was calculated by the Kaplan-Meier method. Disease-specific 5-year survival was 100% for T1, T2, 44% for T3, and 33% for T4. In contrast to 100% 5-year survival for T1+T2 cancer, the 5-year survival for T3+T4 cancer was 37% with high recurrence due to positive surgical margins. The first 22 years of the 29 years surveyed, we performed surgery mainly, and irradiation or chemotherapy was selected for early disease or cases with positive surgical margins as postoperative therapy. During the 22-years, 5-year survival with T3+T4 cancer was 20%. After we started superselective intra-arterial (IA) rapid infusion chemotherapy combined with radiotherapy in 2003, we achieved negative surgical margins for advanced disease, and 5-year survival for T3+T4 cancer rise to 80%. (author)

  5. The external costs of electricity

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2001-01-01

    This article presents an overview of the ExtrenE project (external costs of electricity) of the European Commission (EC). The damage caused by pollution has been calculated through analyses of the impact pathways which involve an analysis of the emission - dispersion - dose-response function - monetary estimation chain. The results are introduced for various cycles of combustible fuels (with several technological variants), indicating the confidence intervals. The cost of the damage is particularly high for coal. For example, for the coal-fired power stations in France (with the emission levels of 1995) it is approximately equal to the sales price of electricity. For natural gas, the cost of damage is approximately one-third that of coal. On the other hand, the damage costs for nuclear fuel and most forms of renewable energy are low, at a maximum just a few percent of the electricity price. The greatest part of these costs arises from health impact, particularly premature death. In order to avoid the controversy inherent in making a monetary assessment of mortality, especially if this is imposed upon future generations, the reduction in life expectancy due to the various combustible cycles is also indicated and the risks of nuclear energy are put into perspective via several comparisons. (authors)

  6. EXTERNAL ELEMENTS OF INTERCULTURAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ruxandra GEORGESCU

    2017-12-01

    Full Text Available Because nowadays we attach a great importance to our look, this article wants to highlight certain aspects of intercultural management that are external to us, the personal label with which we "come into contact with the whole world” and also this article gives some suggestions that I want to consider for business success. As speakers of a language, we are both "producers" and "consumers" of it. In a sense, this is also the case for the dress code, the "language" of clothing: we dress in a certain way and this send messages to others; We perceive how others are dressed and so we receive messages from them. But there is no difference: we are not the ones who produce the signs. Beyond fashion, myths and motes, clothing, accessories, gesture, face expression, posture and body lines are the first elements that give visual identity to any person. In the business environment, as in the world of fashion, immediate visual identity is the one that generates the first impression.

  7. External plans for radiological emergency

    International Nuclear Information System (INIS)

    Suarez, G.; Vizuet G, J.; Benitez S, J.A.

    1999-01-01

    Since 1989, the National Institute of Nuclear Research in Mexico shares in the task of Food and Water Control corresponding to the FT-86 task force of External Plans for Radiological Emergency (PERE), in charge of the Veracruz Health Services. In the PERE preparation stage previous actions are necessary developed for the preparation and updating of this plan and the task organization with the purpose to maintaining standing and operable in any time and circumstance, the capability to response in the face of an emergency. This stage englobes activities which must be realized before to carry out the Plan as they are the specialized training of personnel which participates and the execution of exercises and simulacrums. Until 1998, training and exercises for this task had been realized under diverse possible sceneries but in conditions that simulated the presence of radioactive material. For this reason, it should be emphasized the training realized during the days 6th, 7th, 8th July, 1999, in the emergency planning zone of the Plan, which to carry out using radioactive material. The National Institute of Nuclear Research had in charge of the training. This work describes all the activities for the realization of this training. (Author)

  8. Bone scanning in severe external otitis

    International Nuclear Information System (INIS)

    Levin, W.J.; Shary, J.H. III; Nichols, L.T.; Lucente, F.E.

    1986-01-01

    Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans with many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis

  9. Human Sound Externalization in Reverberant Environments

    DEFF Research Database (Denmark)

    Catic, Jasmina

    In everyday environments, listeners perceive sound sources as externalized. In listening conditions where the spatial cues that are relevant for externalization are not represented correctly, such as when listening through headphones or hearing aids, a degraded perception of externalization may...... occur. In this thesis, the spatial cues that arise from a combined effect of filtering due to the head, torso, and pinna and the acoustic environment were analysed and the impact of such cues for the perception of externalization in different frequency regions was investigated. Distant sound sources...... were simulated via headphones using individualized binaural room impulse responses (BRIRs). An investigation of the influence of spectral content of a sound source on externalization showed that effective externalization cues are present across the entire frequency range. The fluctuation of interaural...

  10. Limiting Factors for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Cheung, F.B.

    2005-01-01

    The method of external reactor vessel cooling (ERVC) that involves flooding of the reactor cavity during a severe accident has been considered a viable means for in-vessel retention (IVR). For high-power reactors, however, there are some limiting factors that might adversely affect the feasibility of using ERVC as a means for IVR. In this paper, the key limiting factors for ERVC have been identified and critically discussed. These factors include the choking limit for steam venting (CLSV) through the bottleneck of the vessel/insulation structure, the critical heat flux (CHF) for downward-facing boiling on the vessel outer surface, and the two-phase flow instabilities in the natural circulation loop within the flooded cavity. To enhance ERVC, it is necessary to eliminate or relax these limiting factors. Accordingly, methods to enhance ERVC and thus improve margins for IVR have been proposed and demonstrated, using the APR1400 as an example. The strategy is based on using two distinctly different methods to enhance ERVC. One involves the use of an enhanced vessel/insulation design to facilitate steam venting through the bottleneck of the annular channel. The other involves the use of an appropriate vessel coating to promote downward-facing boiling. It is found that the use of an enhanced vessel/insulation design with bottleneck enlargement could greatly facilitate the process of steam venting through the bottleneck region as well as streamline the resulting two-phase motions in the annular channel. By selecting a suitable enhanced vessel/insulation design, not only the CLSV but also the CHF limits could be significantly increased. In addition, the problem associated with two-phase flow instabilities and flow-induced mechanical vibration could be minimized. It is also found that the use of vessel coatings made of microporous metallic layers could greatly facilitate downward-facing boiling on the vessel outer surface. With vessel coatings, the local CHF limits at

  11. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Bohi, D.; Toman, M.

    1994-01-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  12. Measuring External Face Appearance for Face Classification

    OpenAIRE

    Masip, David; Lapedriza, Agata; Vitria, Jordi

    2007-01-01

    In this chapter we introduce the importance of the external features in face classification problems, and propose a methodology to extract the external features obtaining an aligned feature set. The extracted features can be used as input to any standard pattern recognition classifier, as the classic feature extraction approaches dealing with internal face regions in the literature. The resulting scheme follows a top-down segmentation approach to deal with the diversity inherent to the extern...

  13. Risk analysis of external radiation therapy

    International Nuclear Information System (INIS)

    Arvidsson, Marcus

    2011-09-01

    External radiation therapy is carried out via a complex treatment process in which many different groups of staff work together. Much of the work is dependent on and in collaboration with advanced technical equipment. The purpose of the research task has been to identify a process for external radiation therapy and to identify, test and analyze a suitable method for performing risk analysis of external radiation therapy

  14. Externality-correcting taxes and regulation

    OpenAIRE

    Christiansen, V.; Smith, S.

    2009-01-01

    Much of the literature on externalities has considered taxes and direct regulation as alternative policy instruments. Both instruments may in practice be imperfect, reflecting informational deficiencies and other limitations. We analyse the use of taxes and regulation in combination, to control externalities arising from individual consumption behaviour. We consider cases where taxes are either imperfectly differentiated to reflect individual differences in externalities, or where some consum...

  15. Energy security externalities and fuel cycle comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Bohi, D; Toman, M

    1994-07-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons.

  16. Early discharge after external anal sphincter repair

    DEFF Research Database (Denmark)

    Rosenberg, J; Kehlet, H

    1999-01-01

    PURPOSE: The aim of this study was to describe an accelerated-stay program for repair of the external anal sphincter. METHODS: Twenty consecutive patients undergoing overlapping repair of the external anal sphincter were included in the study. Effect parameters were length of hospitalization....... CONCLUSION: We have described a safe accelerated-stay program (24 to 48 hours) for overlapping repair of external anal sphincter....

  17. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    Science.gov (United States)

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (Tesla.

  18. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N

    2006-01-01

    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  20. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  1. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  2. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  3. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  4. Proceedings: National conference on environmental externalities

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the proceedings of the National Conference on Environmental Externalities. A environmental externality is the environmental impact of a process or a plant that society must endure. It is a social cost and is paid, but not by the company who produced it or the company's customers who endure it. The main purpose of this report is to gather the many designs and ideas of how and why to internalize the externalities into the pricing systems of the public utility commissions, especially that of the electric utilities. Economic and sociological aspects of the internalization of these externalities are given in these proceedings. Individual papers are processed separately for databases. (MB)

  5. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  6. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  7. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  8. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  9. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  10. Cost minimization of generation, storage, and new loads, comparing costs with and without externalities

    DEFF Research Database (Denmark)

    Noel, Lance Douglas; Brodie, Joseph; Kempton, Willett

    2017-01-01

    G) technology, and building heat) are modeled within the PJM Interconnection. The corresponding electric systems are then operated and constrained to meet the load every hour over four years. The total cost of each energy system is calculated, both with and without externalities, to find the least...... cost energy systems. Using today’s costs of conventional and renewable electricity and without adding any externalities, the cost-minimum system includes no renewable generation, but does include EVs. When externalities are included, however, the most cost-effective to system covers 50% of the electric...... load with renewable energy and runs reliably without need for either new conventional generation or purpose-built storage. The three novel energy policy implications of this research are: (1) using today’s cost of renewable electricity and estimates of externalities, it is cost effective to implement...

  11. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document that suc......The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...

  13. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    Arteconi, A; Giuliani, G; Tartuferi, M; Polonara, F

    2014-01-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  14. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  15. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  16. Energy policy and externalities: an overview

    International Nuclear Information System (INIS)

    Pearce, D.

    2002-01-01

    Substantial progress has been made in estimating the monetary value of the environmental impacts of different energy systems. Perhaps the best known study in Europe is that sponsored by the European Commission and known as the ExternE programme. In the USA a comparable project is that jointly sponsored by the US Department of Energy and the European Commission. There are many others. In each case what is sought is a monetary value of an environmental impact arising from a unit of energy, usually standardised as a kilowatt hour. These environmental impacts are usually termed 'externalities'. An externality exists if two conditions are met. First, some negative (or positive) impact is generated by an economic activity and imposed on third parties. Second, that impact must not be priced in the market place, i.e. if the effect is negative, no compensation is paid by the generator of the externality to the sufferer. If the effect is positive, the generator of the externality must not appropriate the gains to the third party, e.g. via some price that is charged. In the energy externality literature, the procedure of expressing the externalities in, say, cents or milli-euros (1000 th of an Euro = m-euro) per kWh results in an 'adder'. An adder is simply the unit externality cost added to the standard resource cost of energy. Thus, if an electricity source costs X m/euros to produce or deliver, the final social cost of it is (X+y) m-euros where y is the externality adder. While externality adders have been researched most in the context of energy, they are increasingly being estimated for other economic sectors, notably transport and agriculture. This paper presents the uses of such figures. (author)

  17. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  18. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  19. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...... for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results...... indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs...

  20. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...... savings become more expensive than the cost of sustainable heat supply, so society does not overinvest in heat saving measures. This study first investigates the heat saving potentials for different countries in Europe, along with their associated costs, followed by a comparison with alternative ways...... of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...

  1. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...

  2. Heat exchanger, head and shell acceptance criteria

    International Nuclear Information System (INIS)

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  3. Forms of Spanking and Children's Externalizing Behaviors

    Science.gov (United States)

    Lansford, Jennifer E.; Wager, Laura B.; Bates, John E.; Pettit, Gregory S.; Dodge, Kenneth A.

    2012-01-01

    Research suggests that corporal punishment is related to higher levels of child externalizing behavior, but there has been controversy regarding whether infrequent, mild spanking predicts child externalizing or whether more severe and frequent forms of corporal punishment account for the link. Mothers rated the frequency with which they spanked…

  4. External and internal anatomy of mandibular molars.

    Science.gov (United States)

    Rocha, L F; Sousa Neto, M D; Fidel, S R; da Costa, W F; Pécora, J D

    1996-01-01

    The external and internal anatomy of 628 extracted, mandibular first and second molars was studied. The external anatomy was studied by measuring each tooth and by observing the direction of the root curvatures from the facial surface. The internal anatomy of the pulp cavity was studied by a method of making the teeth translucent.

  5. External Evaluation Measures for Subspace Clustering

    DEFF Research Database (Denmark)

    Günnemann, Stephan; Färber, Ines; Müller, Emmanuel

    2011-01-01

    research area of subspace clustering. We formalize general quality criteria for subspace clustering measures not yet addressed in the literature. We compare the existing external evaluation methods based on these criteria and pinpoint limitations. We propose a novel external evaluation measure which meets...

  6. Crossing boundaries : Involving external parties in innovation

    NARCIS (Netherlands)

    Slot, J.H.

    2013-01-01

    To improve the return on investments in innovation, firms increasingly open up their new product development (NPD) processes by inviting external parties to participate. This dissertation focuses on the involvement of three different types of external parties in the NPD process: suppliers,

  7. Wind power externalities: A meta-analysis

    NARCIS (Netherlands)

    Mattmann, M.; Logar, I.; Brouwer, R.

    2016-01-01

    This study presents the first quantitative meta-analysis of the non-market valuation literature on the external effects associated with wind power production. A data set of 60 observations drawn from 32 studies is constructed. The relative economic values of different types of externalities as well

  8. Energy and externality environmental regional model

    International Nuclear Information System (INIS)

    Baldi, L.; Bianchi, A.; Peri, M.

    2000-01-01

    The use of environmental externalities in both territorial management and the direction of energy and environment, faces the difficulties arising from their calculation. The so-called MACBET regional model, which has been constructed for Lombardy, is a first brand new attempt to overcome them. MACBET is a calculation model to assess environmental and employment externalities connected to energy use [it

  9. An Indicator for ecosystem externalities in fishing

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars; Andersen, Ken Haste; Vestergaard, Niels

    Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem.We use simulations from a size-spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon...

  10. Computing betweenness centrality in external memory

    DEFF Research Database (Denmark)

    Arge, Lars; Goodrich, Michael T.; Walderveen, Freek van

    2013-01-01

    Betweenness centrality is one of the most well-known measures of the importance of nodes in a social-network graph. In this paper we describe the first known external-memory and cache-oblivious algorithms for computing betweenness centrality. We present four different external-memory algorithms...

  11. Hydropower externalities: A meta-analysis

    International Nuclear Information System (INIS)

    Mattmann, Matteo; Logar, Ivana; Brouwer, Roy

    2016-01-01

    This paper presents a meta-analysis of existing research related to the economic valuation of the external effects of hydropower. A database consisting of 81 observations derived from 29 studies valuing the non-market impacts of hydropower electricity generation is constructed with the main aim to quantify and explain the economic values for positive and negative hydropower externalities. Different meta-regression model specifications are used to test the robustness of significant determinants of non-market values, including different types of hydropower impacts. The explanatory and predictive power of the estimated models is relatively high. Whilst controlling for sample and study characteristics, we find significant evidence for public aversion towards deteriorations of landscape, vegetation and wildlife caused by hydropower projects. There is however only weak evidence of willingness to pay for mitigating these effects. The main positive externality of hydropower generation, the avoidance of greenhouse gas emission, positively influences welfare estimates when combined with the share of hydropower in national energy production. Sensitivity to scope is detected, but not linked to specific externalities or non-market valuation methods. - Highlights: • A global meta-analysis of valuation studies of hydropower externalities is presented. • Positive and negative externalities are distinguished. • Welfare losses due to environmental deteriorations outweigh gains of GHG reductions. • There is only weak evidence of public WTP for mitigating negative externalities. • The non-market values of hydropower externalities are sensitive to scope.

  12. External Beam Radiation Therapy for Cancer

    Science.gov (United States)

    External beam radiation therapy is used to treat many types of cancer. it is a local treatment, where a machine aims radiation at your cancer. Learn more about different types of external beam radiation therapy, and what to expect if you're receiving treatment.

  13. Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks

    International Nuclear Information System (INIS)

    Kusiima, Jamil M.; Powers, Susan E.

    2010-01-01

    This research is aimed at monetizing the life cycle environmental and health externalities associated with production of ethanol from corn, corn stover, switchgrass, and forest residue. The results of this study reveal current average external costs for the production of 1 l of ethanol ranged from $0.07 for forest residue to $0.57 for ethanol production from corn. Among the various feedstocks, the external costs of PM 10 , NO X , and PM 2.5 are among the greatest contributors to these costs. The combustion of fossil fuels in upstream fertilizer and energy production processes is the primary source of these emissions and their costs, especially for corn ethanol. The combined costs of emissions associated with the production and use of nitrogen fertilizer also contribute substantially to the net external costs. For cellulosic ethanol production, the combustion of waste lignin to generate heat and power helps to keep the external costs lower than corn ethanol. Credits both for the biogenic carbon combustion and displacement of grid electricity by exporting excess electricity substantially negate many of the emissions and external costs. External costs associated with greenhouse gas emissions were not significant. However, adding estimates of indirect GHG emissions from land use changes would nearly double corn ethanol cost estimates.

  14. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Aladayleh, Wail; Alahmer, Ali

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  15. Performance of a LiBr water absorption chiller operating with plate heat exchangers

    OpenAIRE

    Vega Blázquez, Mercedes de; Almendros Ibáñez, José Antonio; Ruiz, G.

    2006-01-01

    This paper studies the performance of a lithium bromide water absorption chiller operating with plate heat exchangers (PHE). The overall heat transfer coefficients in the desorber, the condenser and the solution heat recoverer are calculated using the correlations provided in the literature for evaporation, condensation and liquid to liquid heat transfer in PHEs. The variable parameters are the external driving temperatures. In the desorber, the inlet temperature of the hot fluid ranges from ...

  16. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    Directory of Open Access Journals (Sweden)

    Marian Brázdil

    2014-02-01

    Full Text Available This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generated by one segment. Higher output power can be achieved by linking thermoelectric segments. The maximum output power is given by the dew point of the flue gas. The electrical energy that is generated can be used, e.g., for power supply or for charging batteries. In the near future, thermoelectric generators could completely eliminate the dependence an automated domestic boiler system on the power supply from the electricity grid, and could ensure comfortable operation in the event of an unexpected power grid failure.

  17. Externalities of energy and atomic power

    International Nuclear Information System (INIS)

    2006-09-01

    Energy technology ensures not only energy supply but also has great impacts on society and environments. Economical value and effect evaluation alone doesn't mean appropriate so the evaluation of 'externalities' should be appreciated. In order to assess atomic power in this context, the Atomic Energy Society of Japan set up a research committee on 'externalities of energy and atomic power' from April 2002 to March 2006, whose activities were described in this report. In addition to environmental effects and environmental externalities, four areas were newly studied as follows: (1) biological effects of low dose rate exposure and externalities, (2) externalities as social/economical effects including stable supply and security, (3) energy technologies evaluation and (4) social choice and decision-making. (T. Tanaka)

  18. Internal and External Readings of Same

    DEFF Research Database (Denmark)

    Hardt, Daniel

    2016-01-01

    Same is an anaphoric element that performs a comparison, which can either be external or internal to a sentence. Hardt and Mikkelsen (2015) show that same, unlike other anaphoric expressions, imposes a parallelism constraint, and they present three types of examples showing that same...... is infelicitous in the absence of parallelism. Hardt and Mikkelsen propose an account that applies uniformly to internal and external readings; however, the evidence they present largely targets external readings – they don’t offer empirical evidence that clearly supports the uniform approach. Furthermore, Barker...... (2007) argues that internal readings must be treated differently than external readings. In this paper, I show that the parallelism effects observed by Hardt and Mikkelsen in fact apply to internal readings as well. This provides support for a uniform treatment of internal and external readings of same...

  19. Technical review of externalities issues. Final report

    International Nuclear Information System (INIS)

    Niemeyer, V.

    1994-12-01

    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions

  20. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  1. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  2. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  3. An innovative pool with a passive heat removal system

    International Nuclear Information System (INIS)

    Vitale Di Maio, Damiano; Naviglio, Antonio; Giannetti, Fabio; Manni, Fabio

    2012-01-01

    Heat removal systems are of primary importance in several industrial processes. As heat sink, a water pool or atmospheric air may be selected. The first solution takes advantage of high heat transfer coefficient with water but it requires active systems to maintain a constant water level; the second solution takes benefit from the unlimited heat removal capacity by air, but it requires a larger heat exchanger to compensate the lower heat transfer coefficient. In NPPs (nuclear power plants) during a nuclear reactor shutdown, as well as in some chemical plants to control runaway reactions, it is possible to use an innovative heat sink that joins the advantages of the two previous solutions. This solution is based on a special heat exchanger submerged in a water pool designed so that when heat removal is requested, active systems are not required to maintain the water level; due to the special design, when the pool is empty, atmospheric air becomes the only heat sink. The special heat exchanger design allows to have a heat exchanger without being oversized and to have a system able to operate for unlimited period without external interventions. This innovative system provides an economic advantage as well as enhanced safety features.

  4. A comparative study of open and closed heat-engines for small-scale CHP applications

    OpenAIRE

    Eames, Ian W.; Evans, Kieran; Pickering, Stephen

    2016-01-01

    In this paper the authors compare and contrast open and closed-cycle heat engines. First of all, by way of example and to aid discussion, the performance of proprietary externally heated closed-cycle Stirling engines is compared with that of internally heated open Otto cycle engines. Both types of engine have disadvantages and merits and this suggested that in order to accommodate the best of both engine types an externally-heated open-cycle engine might offer a more satisfactory solution for...

  5. High pressure Moessbauer spectroscopy with nuclear resonant forward scattering of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Saburo [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1996-04-01

    The first observation of the pressure-induced transition from the antiferromagnetic to the ferromagnetic SrFeO{sub 3} was succeeded by measuring Moessbauer spectroscopy under high pressure produced by the diamond anvil cell (DAC). Sample is a polycrystal powder of antiferromagnetic SrFe0{sub 3} with the Neel temperature T{sub N}=140 K, the cubic system and perovskite type crystal. The average pressures used were 44 GPa and 74 GPa (300 K). SrFeO{sub 3} is paramagnetic material at 300 K, but the Neel temperature increases more than 300 K under high pressure and the quantized axis turns to the external magnetic field, so that we take it as it means the system displaying the phase transition to the ferromagnet. By the method, we can practice the measurement at low and high temperature under the external magnetic field by using the polarized light source. (S.Y.)

  6. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  7. Use of Automated External Defibrillators

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K Christensen

    2009-02-01

    In an effort to improve survival from cardiac arrest, the American Heart Association (AHA) has promoted the Chain of Survival concept, describing a sequence of prehospital steps that result in improved survival after sudden cardiac arrest. These interventions include immediate deployment of emergency medical services, prompt cardiopulmonary resuscitation, early defibrillation when indicated, and early initiation of advanced medical care. Early defibrillation has emerged as the most important intervention with survival decreasing by 10% with each minute of delay in defibrillation. Ventricular Fibrillation (VF) is a condition in which there is uncoordinated contraction of the heart cardiac muscle of the ventricles in the heart, making them tremble rather than contract properly. VF is a medical emergency and if the arrhythmia continues for more than a few seconds, blood circulation will cease, and death can occur in a matter of minutes. During VF, contractions of the heart are not synchronized, blood flow ceases, organs begin to fail from oxygen deprivation and within 10 minutes, death will occur. When VF occurs, the victim must be defibrillated in order to establish the heart’s normal rhythm. On average, the wait for an ambulance in populated areas of the United States is about 11 minutes. In view of these facts, the EFCOG Electrical Safety Task Group initiated this review to evaluate the potential value of deployment and use of automated external defibrillators (AEDs) for treatment of SCA victims. This evaluation indicates the long term survival benefit to victims of SCA is high if treated with CPR plus defibrillation within the first 3-5 minutes after collapse. According to the American Heart Association (AHA), survival rates as high as 74% are possible if treatment and defibrillation is performed in the first 3 minutes. In contrast survival rates are only 5% where no AED programs have been established to provide prompt CPR and defibrillation. ["CPR statistics

  8. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  9. District heating in Switzerland

    International Nuclear Information System (INIS)

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  10. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  11. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  12. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  13. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  14. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  15. Internalisation of external costs in the Polish power generation sector: A partial equilibrium model

    International Nuclear Information System (INIS)

    Kudelko, Mariusz

    2006-01-01

    This paper presents a methodical framework, which is the basis for the economic analysis of the mid-term planning of development of the Polish energy system. The description of the partial equilibrium model and its results are demonstrated for different scenarios applied. The model predicts the generation, investment and pricing of mid-term decisions that refer to the Polish electricity and heat markets. The current structure of the Polish energy sector is characterised by interactions between the supply and demand sides of the energy sector. The supply side regards possibilities to deliver fuels from domestic and import sources and their conversion through transformation processes. Public power plants, public CHP plants, industry CHP plants and municipal heat plants represent the main producers of energy in Poland. Demand is characterised by the major energy consumers, i.e. industry and construction, transport, agriculture, trade and services, individual consumers and export. The relationships between the domestic electricity and heat markets are modelled taking into account external costs estimates. The volume and structure of energy production, electricity and heat prices, emissions, external costs and social welfare of different scenarios are presented. Results of the model demonstrate that the internalisation of external costs through the increase in energy prices implies significant improvement in social welfare

  16. Estimation of Externalities for Juragua Nuclear Project

    International Nuclear Information System (INIS)

    Mora, H. R.; Carbonell, L. T.

    2002-01-01

    Estimation of externalities allows taking into account environmental impacts due to any activity in total costs calculation. In the present work, the external costs of electricity generation from nuclear energy were calculated considering three scenarios: normal operation (routine releases), accident situation and solid waste disposal. A comparison between these results and those obtained for electricity generation from fossil fuels was made. IAEA proposals of Simplified methodologies were used for externality calculations. The Juragua project was selected as a study case; it is based in two energetic blocks both PWR, VVER 440/318 type with a plant capacity of 417 MWe each. Four impact ways were considered for all scenarios: (1) Inhalation of radionuclides in the air, (2) External irradiation from radionuclides immersed in clouds, (3) External irradiation from deposited radionuclides and (4) Ingestion of radionuclides in agricultural products. Besides, two impact categories (local and regional) for all scenarios were considered. The total cost of externalities was 0.01425 c/kWh, value smaller than the one obtained for electricity generation from fossil fuel (0.256 c/kWh). For the normal operation scenario, the external cost calculated was 0.00112 c/kWh, for accident situation 0.01103 c/kWh, and for the solid wastes management scenario 0.0021 c/kWh. The high value obtained for solid waste disposal scenario is due to repository placement features. (author)

  17. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  18. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  19. Environment and externalization; Environnement et externalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kremlis, G.; Renaud, R. [Association francaise des ingenieurs et techniciens de l' environnement, AFITE, 75 - Paris (France); Touron, M. [Veritas, 75 - Paris (France)] [and others

    2001-07-01

    This document presents the discussions of the 16 may 2000, concerning the externalization and the environment and proposes to answer the following questions: is the externalization a new strategy to better perceive, hopeful engineering department, the technological risks problems, the environment or the land pollution? Does the externalization allow a better organization of the enterprise? To analyse the situation, the document presents the white book of the environmental liability, the administration point of view, some enterprises examples and the importance of the environmental management. (A.L.B.)

  20. Parasitic infections of the external eye.

    Science.gov (United States)

    Pahuja, Shivani; Puranik, Charuta; Jelliti, Bechir; Khairallah, Moncef; Sangwan, Virender S

    2013-08-01

    To review the published literature on parasitic infections of external eye. Published articles and case reports on parasitic infections of external eye were reviewed and relevant information was collected. Parasitic infections of the eye are rare. However, being more commonly seen in developing nations, they require active measures for screening, diagnosis, and therapy. Parasites of importance causing external ocular disease are protozoan parasites, such as Leishmania; metazoans, such as nematodes (roundworms), cestodes (tapeworms), and trematodes (flatworms); or ectoparasites, such as Phthirus pubis and Demodex.