WorldWideScience

Sample records for externally heated diamond-anvil

  1. A simple external resistance heating diamond anvil cell and its application for synchrotron radiation x-ray diffraction.

    Science.gov (United States)

    Fan, Dawei; Zhou, Wenge; Wei, Shuyi; Liu, Yonggang; Ma, Maining; Xie, Hongsen

    2010-05-01

    A simple external heating assemblage allowing diamond anvil cell experiments at pressures up to 34 GPa and temperatures up to 653 K was constructed. This cell can be connected to the synchrotron radiation conveniently. The design and construction of this cell are fully described, as well as its applications for x-ray diffraction. Heating is carried out by using an external-heating system, which is made of NiCr resistance wire, and the temperature was measured by a NiCr-NiSi or PtRh-Pt thermocouple. We showed the performance of the new system by introducing the phase transition study of cinnabar (alpha-HgS) and thermal equation of state study of almandine at high pressure and temperature with this cell.

  2. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  3. Homoepitaxial Boron Doped Diamond Anvil as Heating Element in a Diamond Anvil Cell

    Science.gov (United States)

    Montgomery, Jeffrey; Samudrala, Gopi; Vohra, Yogesh

    2012-02-01

    Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ˜ 10^20/cm^3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant spatial gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our initial experiments with these diamond anvils we report on the measurement of the thermal conductivity of copper-beryllium using a single diamond heater and two thermocouples. We augment these measurements with measurements of sample pressure via ruby fluorescence and electrical resistance of the sample and diamond heater.

  4. Homoepitaxial Boron Doped Diamond Anvils as Heating Elements in a Diamond Anvil Cell

    Science.gov (United States)

    Montgomery, Jeffrey; Samudrala, Gopi; Smith, Spencer; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel

    2013-03-01

    Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 °C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ~ 1020/cm3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant lateral gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our continuing set of benchmark experiments, we use two newly created matching heater anvils with 500 μm culets to analyze the various fluorescence emission lines of ruby microspheres, which show more complicated behavior than traditional ruby chips. We also report on the temperature dependence of the high-pressure Raman modes of paracetamol (C8H9NO2) up to 20 GPa.

  5. How to detect melting in laser heating diamond anvil cell

    Institute of Scientific and Technical Information of China (English)

    杨留响

    2016-01-01

    Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now, large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.

  6. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.

    Science.gov (United States)

    Shinoda, Keiji; Noguchi, Naoki

    2008-01-01

    A new external heating configuration is presented for high-temperature diamond anvil cell instruments. The supporting rockers are thermally excited by induction from an externally mounted copper coil passing a 30 kHz alternating current. The inductive heating configuration therefore avoids the use of breakable wires, yet is capable of cell temperatures of 1100 K or higher. The diamond anvil cell has no resistive heaters, but uses a single-turn induction coil for elevating the temperature. The induction coil is placed near the diamonds and directly heats the tungsten carbide rockers that support the diamond. The temperature in the cell is determined from a temperature-power curve calibrated by the ratio between the intensities of the Stokes and anti-Stokes Raman lines of silicon. The high-pressure transformation of quartz to coesite is successfully observed by micro-Raman spectroscopy using this apparatus. The induction heating diamond anvil cell is thus a useful alternative to resistively heated diamond anvil cells.

  7. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  8. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  9. CO sub 2 laser-heated diamond-anvil cell methodology revisited

    CERN Document Server

    Hearne, G; Zhao, J

    2002-01-01

    A description is given of CO sub 2 laser heating system for attaining high temperatures at pressure in a diamond-anvil cell (DAC). The main purpose of this paper is to demonstrate that a relatively inexpensive set-up, perhaps affordable to many high-pressure laboratories, may be commissioned for laser-heated DAC experiments to achieve comparable extreme P-T conditions to those attained with more sophisticated stations documented in the literature. A novel idea of using the analogue output of a CCD camera to estimate the peak temperature and map the temperature distribution across the hot-spot has been tested. In an additional initial experiment on cubic zirconia (c-ZrO sub 2) we present evidence from a Raman characterization of the sample that temperatures exceeding 4000 K have been obtained at pressure in the DAC.

  10. Material transport in laser-heated diamond anvil cell melting experiments

    Science.gov (United States)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  11. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  12. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system.

    Science.gov (United States)

    Zinin, Pavel V; Prakapenka, Vitali B; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  13. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core.

    Science.gov (United States)

    Jephcoat, Andrew P; Bouhifd, M Ali; Porcelli, Don

    2008-11-28

    The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid-liquid, metal-silicate (M-Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number-helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core-mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.

  14. Probing iron spin state by optical absorption in laser-heated diamond anvil cell

    Science.gov (United States)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Lin, J. F.

    2015-12-01

    Pressure-induced spin-pairing transitions in iron-bearing minerals have been in the focus of geophysical studies1. Modern consensus is that iron spin state in the lower mantle is a complex function of crystal structure, composition, pressure, and temperature. Discontinuities in physical properties of lower mantle minerals have been revealed over the spin transition pressure range, but at room temperature. In this work, we have used a supercontinuum laser source and an intensified CCD camera to probe optical properties of siderite, FeCO3, and post-perovskite, Mg0.9Fe0.1SiO3, across the spin transition in laser-heated diamond anvil cell. Synchronously gating the CCD with the supercontinuum pulses (Fig. 1A) allowed diminishing thermal background to ~8.3*10-4. Utilizing the experimental setup we infer the spin state of ferrous iron in siderite at high pressure and temperature conditions (Fig. 1B). Similar behavior is observed for low spin ferric iron in post-perovskite at 130 GPa indicating that all iron in post-perovskite is high spin at lower mantle conditions. Also, our experimental setup holds promise for measuring radiative thermal conductivity of mantle minerals at relevant mantle conditions. Figure 1. (A) Timing of the optical absorption measurements at high temperature. (B) High temperature siderite absorption spectra at 45 GPa. Before heating and quenched after 1300 K spectra are shown in light and dark blue, respectively. Green and red curves are absorption spectra at 1200 K and 1300 K, respectively. Spectra shown in black represent room temperature absorption data on HS (43 GPa) and LS (45.5 GPa) siderite after Lobanov et al., 2015, shown for comparison.

  15. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature.

    Science.gov (United States)

    Miyagi, Lowell; Kanitpanyacharoen, Waruntorn; Raju, Selva Vennila; Kaercher, Pamela; Knight, Jason; MacDowell, Alastair; Wenk, Hans-Rudolf; Williams, Quentin; Alarcon, Eloisa Zepeda

    2013-02-01

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run#1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run#2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg0.9Fe0.1)O in Run#3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  16. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  17. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline

    Energy Technology Data Exchange (ETDEWEB)

    Petitgirard, Sylvain, E-mail: sylvain.petitgirard@uni-bayreuth.de [ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Bayerisches GeoInstitut (BGI), University of Bayreuth, 95444 Bayreuth (Germany); Salamat, Ashkan, E-mail: sylvain.petitgirard@uni-bayreuth.de [ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Beck, Pierre [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d’Astrophysique de Grenoble (IPAG), 414 rue de la Piscine, 38000 Grenoble (France); Weck, Gunnar [Commissariat à l’Energie Atomique (CEA), DPTA, 91680 Bruyères le Châtel (France); Bouvier, Pierre [Laboratoire des Materiaux et du Genie Physique, CNRS, Grenoble Institute of Technology, 3 parvis Louis Neel, F-38016 Grenoble (France)

    2013-11-08

    An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO{sub 2} and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO{sub 2} laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS{sub 2} (11 GPa, 1100–1650 K)

  18. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.

    Science.gov (United States)

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-09-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.

  19. 3D mapping of chemical distribution from melting at lower mantle conditions in the laser-heated diamond anvil cell

    Science.gov (United States)

    Dorfman, S. M.; Nabiei, F.; Cantoni, M.; Badro, J.; Gaal, R.; Gillet, P.

    2014-12-01

    The laser-heated diamond anvil cell is a unique tool for subjecting materials to pressures over few hundreds of GPa and temperatures of thousands of Kelvins which enables us to experimentally simulate the inaccessible interiors of planets. However, small sample size, laser profile and thermally conductive diamonds cause temperature gradients of 1000s K over a few microns which also affects chemical and structural distribution of phases in the sample. We have examined samples of San Carlos olivine (Mg,Fe)2SiO3 powder melted in the diamond anvil cell by double-sided and single-sided laser heating for 3-6 minutes to ~3000 K at 35-37 GPa. Moreover, MgO is used as an insulating media in one of the sample. Recovered samples were analyzed by a combination of focused ion beam (FIB) and scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) detector. Images and chemical maps were acquired for ~300 slices with ~70 nm depth from each sample, comprising about half of the heated zone. Detailed chemical and structural analysis by transmission electron microscopy (TEM) of lamellas prepared from the remaining section of the samples will also be presented. In all samples the heated zone included (Mg,Fe)SiO3 perovskite-structured bridgmanite (PV) phase and two (Mg, Fe)O phases, one of which, magnesiowüstite (MW), is richer in iron than the other one, ferropericlase (FP). In double-side heated samples we observe a Fe-rich quenched melt core surrounded by MW phase. Our results show that with increasing heating time, Fe migrates to the molten center of the sample. In the single-side heated sample, the Fe-rich MW phase is concentrated in the center of heated zone. In all samples a FP crust was observed around the heated zone. This crust, however, is broken in the upper part (colder part) of the single-side heated sample due the high asymmetrical temperature gradient within the sample. The results confirm the importance of double-side heating and insulating media

  20. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Alexandra, E-mail: friedrich@kristall.uni-frankfurt.d [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Winkler, Bjoern; Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Juarez Arellano, Erick A. [Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Yan, Jinyuan; Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, MS6R2100, 1 Cyclotron Road, Berkeley, CA 94720-8226 (United States)

    2010-07-16

    Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal {beta}-Ta{sub 2}N and orthorhombic {eta}-Ta{sub 2}N{sub 3}, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of {epsilon}-TaN, {theta}-TaN, {delta}-TaN, Ta{sub 3}N{sub 5}-I or Ta{sub 3}N{sub 5}-II, which was predicted to be the stable phase at P>17 GPa and T=2800 K, at the P,T-conditions of this experiment. The bulk modulus of {eta}-Ta{sub 2}N{sub 3} was determined to be B{sub 0}=319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B{sub 0}=348.0(9) GPa for a 2nd-order fit or B{sub 0}=339(1) GPa and B{sup '}=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

  1. Diamond Anvil Cell Techniques

    Science.gov (United States)

    Piermarini, Gasper J.

    It has often been said that scientific advances are made either in a dramatic and revolutionary way, or, as in the case of the diamond anvil cell (DAC), in a slow and evolutionary manner over a period of several years. For more than 2 decades, commencing in 1958, the DAC developed stepwise from a rather crude qualitative instrument to the sophisticated quantitative research tool it is today, capable of routinely producing sustained static pressures in the multi-megabar range and readily adaptable to numerous scientific measurement techniques because of its optical accessibility, miniature size, and portability.

  2. The Metal-Silicate Partitioning of Tungsten at Magma Ocean Conditions Using a Laser-Heated Diamond Anvil Cell

    Science.gov (United States)

    Bennett, N.; Jackson, C.; Fei, Y.; Bullock, E. S.; Armstrong, J. T.

    2015-12-01

    The primitive upper mantle (PUM) represents the silicate residue of terrestrial core formation and should reflect element partitioning between metal and silicate melts that equilibrated in a magma ocean. Laboratory experiments suggest that the W/Mo ratio of PUM is only reproduced if S is added to the Earth during the late stages of accretion (Wade et al. 2012). Core-segregation, however, is posited to occur at >35 GPa and >3000 K; above the pressure range explored by existing W partitioning experiments and conditions under which O may also enter core-forming metal. The effect of light element solutes on a metallic Fe liquid can be modeled using experimentally determined interaction parameters (ɛ). On the basis of ɛ values determined at ambient pressure, both O and S should interact strongly with W (ɛw-o = 4.1, ɛw-s = 6.1), possibly complicating the history of W distribution during accretion. We have performed experiments to assess the metal-silicate partitioning of W at conditions directly relevant to those expected for the base of a magma ocean, under which O enters the metal phase. Experiments were performed at 15-50 GPa in a diamond anvil cell, using Re gaskets and an MgO pressure medium. In several instances, cells were loaded with two sample mixtures, containing W in either oxidized or reduced form. Heating spots subject to the same temperature and heating duration but different initial W oxidation state will be used to assess if heating times were sufficient to approach equilibrium. Samples were laser-heated at sector 13 of the Advanced Photon Source then recovered for analysis using a focused ion beam, to reveal cross-sections through the heated spot. Samples comprise a Fe-rich metal bleb, surrounded by silicate glass. The quenched metal contains exsolved spherules of a Si+O-rich phase, indicating significant solution of these elements at high pressure and temperature. Work is ongoing to quantify the element distribution between metal and silicate phases.

  3. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  4. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.

    Science.gov (United States)

    Kimura, T; Kuwayama, Y; Yagi, T

    2014-02-21

    The melting curve of H2O from 49 to 72 GPa was determined by using a laser-heated diamond anvil cell. Double-sided CO2 laser heating technique was employed in order to heat the sample directly. Discontinuous changes of the heating efficiency attributed to the H2O melting were observed between 49 and 72 GPa. The obtained melting temperatures at 49 and 72 GPa are 1200 and 1410 K, respectively. We found that the slope of the melting curve significantly decreases with increasing pressure, only 5 K/GPa at 72 GPa while 44 K/GPa at 49 GPa. Our results suggest that the melting curve does not intersect with the isentropes of Uranus and Neptune, and hence, H2O should remain in the liquid state even at the pressure and temperature conditions found deep within Uranus and Neptune.

  5. Determining the melting curves of NiSi using the laser-heated diamond anvil cell and the multi-anvil press

    Science.gov (United States)

    Wann, E.; Lord, O. T.; Dobson, D. P.; Hunt, S. A.; Wood, I. G.; Vocadlo, L.; Ahmed, J.; Walker, A. M.; Santangeli, J. R.; Walter, M. J.

    2012-12-01

    It is believed that the cores of terrestrial planets consist primarily of an iron-nickel alloy with a small fraction of light elements1. In the case of the Earth, the possible candidates for the light elements are constrained by cosmochemical arguments2. However, although the exact nature of the light element is in dispute, it is widely believed that Si is a significant light element in the core3. Research into the iron-nickel-silicon ternary system is therefore invaluable for our understanding of the composition of the Earth's core and of planetary cores in general. We have initially focused on the FeSi and NiSi end-members as a first step in understanding the ternary system. Recent work on NiSi4,5 has revealed a more complicated phase diagram than that of FeSi, with a range of stable phases found at high pressure and temperature. In order to constrain the liquidus of NiSi, we have carried out experiments in the laser-heated diamond anvil cell (LHDAC) using perturbations in the power versus temperature function as the melting criterion6. Thus far we have determined the melting curve of the room-pressure MnP structured phase to ~20 GPa, which agrees closely with an in situ multi-anvil press experiment in which the melting criteria were 1) the appearance of diffuse scattering during X-ray diffraction and 2) the appearance of convection during X-ray videography. We have also detected the break-in-slope of the melting curve associated with the MnP+ɛ-FeSi+liquid triple point, and extended the melting curve of the ɛ-FeSi structure of NiSi to 50 GPa. We are currently undertaking further experimental work to extend the melting curve above 100 GPa, beyond the pressure at which the CsCl structure becomes the liquid phase. Previous studies indicate that the CsCl structure is likely stable to inner core conditions4,5 making the results of relevance to planetary cores including that of the Earth. (1) Birch, F. Journal of Geophysical Research 1952, 57, 227. (2) Poirier, J. P

  6. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  7. A Peltier cooling diamond anvil cell for low-temperature Raman spectroscopic measurements

    Science.gov (United States)

    Noguchi, Naoki; Okuchi, Takuo

    2016-12-01

    A new cooling system using Peltier modules is presented for a low-temperature diamond anvil cell instrument. This cooling system has many advantages: it is vibration-free, low-cost, and compact. It consists of double-stacked Peltier modules and heat sinks, where a cooled ethylene glycol-water mixture flows through a chiller. Current is applied to the Peltier modules by two programmable DC power supplies. Sample temperature can be controlled within the range 210-300 K with a precision of ±0.1 K via a Proportional-Integral-Differential (PID) control loop. A Raman spectroscopic study for the H2O ice VII-VIII transition is shown as an example of an application of the Peltier cooling diamond anvil cell system.

  8. Thermal Diffusivity and Conductivity Measurements in Diamond Anvil Cells

    Energy Technology Data Exchange (ETDEWEB)

    Antonangeli, D; Farber, D L

    2007-02-22

    We have undertaken a study of the feasibility of an innovative method for the determination of thermal properties of materials at extreme conditions. Our approach is essentiality an extension of the flash method to the geometry of the diamond-anvil cell and our ultimate goal is to greatly enlarge the pressure and temperature range over which thermal properties can be investigated. More specifically, we have performed test experiments to establish a technique for probing thermal diffusivity on samples of dimensions compatible with the physical constraints of the diamond anvil cell.

  9. Some possible astrophysical aplications of diamond anvil cells

    CERN Document Server

    Celebonovic, V

    1993-01-01

    This is a short review of the methodology of static high pressure exeperiments in diamond anvil cells,and some of their possible applications an astrophysics.As the paper was originally published in 1993.,an addendum hints at some of the recent developements in the field.

  10. Plasma etching of cavities into diamond anvils for experiments at high pressures and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S.T.; Cynn, H.; Falabella, S.; Evans, W.J.; Aracne-Ruddle, C.; Farber, D.; Vohra, Y.K. (LLNL); (UAB)

    2012-10-23

    We describe a method for precisely etching small cavities into the culets of diamond anvils for the purpose of providing thermal insulation for samples in experiments at high pressures and high temperatures. The cavities were fabricated using highly directional oxygen plasma to reactively etch into the diamond surface. The lateral extent of the etch was precisely controlled to micron accuracy by etching the diamond through a lithographically fabricated tungsten mask. The performance of the etched cavities in high-temperature experiments in which the samples were either laser heated or electrically heated is discussed.

  11. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of /sup 151/Eu, /sup 119/Sn and /sup 129/I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs.

  12. New Micro-Raman Spectroscopy Systems for High-Temperature Studies in the Diamond Anvil Cell

    Science.gov (United States)

    Shim, S.; Lamm, R.; Rekhi, S.; Catalli, K.; Santillan, J.; Lundin, S.

    2005-12-01

    In order to measure high-quality Raman spectra at high temperature and pressure in either the resistance- or laser-heated diamond-anvil cell, we have developed two Raman systems at MIT, a dispersive and a nanosecond time-resolved Raman spectroscopy systems. The excitation source of the dispersive Raman system is an Ar/Kr mixed ion laser which has nine available laser lines with wavelengths between 457 and 752 nm. Near UV laser lines allow us to measure Raman spectra up to 1200 K by shifting the spectral range of Raman modes away from intense thermal radiation. Near IR lines can be used for highly fluorescent materials. Three 500 mm spectrometers (Trivista spectrometer, Acton Research) are configured to operate in either single, triple subtractive, or triple additive mode combined with a liquid nitrogen cooled CCD detector. Holographic notch filters allow for high throughput in the single mode, which is ideal for weak Raman scattering. The subtractive triple mode allows detection of phonon modes to 5 cm-1 from the Raleigh line. The nanosecond time-resolved Raman system is designed for measurements above 1000 K. Previous studies at ambient pressure have shown that time-resolved Raman spectroscopy is the most effective technique to reject strong thermal radiation above 1000 K. We achieve nanosecond time resolution by synchronizing a frequency-doubled pulse Nd:YLF laser (527 nm, 0.1-10 kHz rep rate, 10-100 ns pulse width) with an intensified gated CCD detector (>5 ns gate width). This system is combined with a laser heating system (Nd:YLF laser, 1053 nm, TEM00, 45 W). Temperature is measured using both spectroradiometry and Raman thermometry methods. Our systems are designed to study phase relations and thermodynamic properties of mantle minerals at high P-T. Using these systems, we have measured the phase transition in (Mg0.9Fe0.1)SiO3 pyroxene at 300-1700 K and 0 GPa, and the dehydration of serpentine at 2-8 GPa and 300-900 K. We also have found that the time

  13. Hydrostaticity of Pressure Media in Diamond Anvil Cells

    Science.gov (United States)

    You, Shu-Jie; Chen, Liang-Chen; Jin, Chang-Qing

    2009-09-01

    Hydrostaticity under high pressure of several materials from solid, fluid to gas, which are widely used as pressure media in modern high-pressure experiments, is investigated in diamond anvil cells. Judging from the R-line widths and R1 - R2 peak separation of Ruby fluorescence, the inert argon gas is hydrostatic up to about 30 GPa. The behavior of silicon oil is found to be similar to argon at pressures less than 10 GPa, while the widening of R-lines and increase of R1 - R2 peak separation at higher pressure loads indicate a significant degradation of hydrostaticity. Therefore silicon oil is considered as a good pressure medium at pressures less than 10 GPa but poor at higher pressures.

  14. High-pressure studies with x-rays using diamond anvil cells

    Science.gov (United States)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  15. High-pressure studies with x-rays using diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  16. An apparatus to load gaseous materials to the diamond-anvil cell

    Science.gov (United States)

    Yagi, Takehiko; Yusa, Hitoshi; Yamakata, Masa-aki

    1996-08-01

    An apparatus to load gases to the sample chamber of the diamond-anvil cell has been devised. The apparatus is driven by a conventional 50 ton hydraulic press and no gas compressor is required. The gas from a commercial gas bomb is compressed to 150 MPa and loaded into the diamond-anvil cell sample chamber. After loading, the pressure of the diamond-anvil cell is increased further using the lever and spring mechanism. This kind of gas loading apparatus will become indispensable not only for studying gaseous materials themselves, but also for making precision measurements at high pressures and high temperatures under hydrostatic conditions.

  17. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    Science.gov (United States)

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  18. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  19. New Experimental Method for In Situ Determination of Material Textures at Simultaneous High-Pressure and -Temperature by Means of Radial Diffraction in the Diamond Anvil Cell.

    Energy Technology Data Exchange (ETDEWEB)

    Liermann, H; Merkel, S; Miyagi, L; Wenk, H; Shen, G; Cynn, H; Evans, W J

    2009-07-15

    We introduce the design and capabilities of a new resistive heated diamond anvil cell that can be used for side diffraction at simultaneous high-pressure and -temperature. The device can be used to study lattice-preferred orientations in polycrystalline samples up to temperatures of 1100 K and pressures of 36 GPa. Capabilities of the instrument are demonstrated with preliminary results on the development of textures in the BCC, FCC and HCP polymorphs of iron during a non-hydrostatic compression experiment at simultaneous high-pressure and -temperature.

  20. Pressure estimation for diamond anvils cell under very-low pressures, hydrostatic conditions -evaluation for quartz Raman peak shifts-

    Science.gov (United States)

    Kubo, K.; Okamoto, K.

    2016-12-01

    Pressure shift of the ruby R1 luminescent shift has been used as primary pressure gauge in diamond-anvils experiments. However, the pressure calibration under low-pressure conditions (Ruby pressure gauge at 1 GPa.

  1. Cryogenic loading of argon pressure medium in diamond anvil high pressure cells with in situ pressure determination

    Science.gov (United States)

    Pugh, E.

    2017-06-01

    A versatile system for cryogenic loading of argon pressure medium into the sample space of a diamond anvil cell has been developed. The system has been designed such that, with suitable adaptors, a wide range of diamond anvil cell designs can be pressurized. The pressure in the cell can be monitored during pressurization using the ruby fluorescence method via optical fiber access into the loading chamber. This enables the precise and accurate setting of the loading pressure in the cell.

  2. The determination of ionic transport properties at high pressures in a diamond anvil cell

    Science.gov (United States)

    Wang, Qinglin; Liu, Cailong; Han, Yonghao; Gao, Chunxiao; Ma, Yanzhang

    2016-12-01

    A two-electrode configuration was adopted in an in situ impedance measurement system to determine the ionic conductivity at high pressures in a diamond anvil cell. In the experimental measurements, Mo thin-films were specifically coated on tops of the diamond anvils to serve as a pair of capacitance-like electrodes for impedance spectrum measurements. In the spectrum analysis, a Warburg impedance element was introduced into the equivalent circuit to reveal the ionic transport property among other physical properties of a material at high pressures. Using this method, we were able to determine the ionic transport character including the ionic conductivity and the diffusion coefficient of a sodium azide solid to 40 GPa.

  3. Phase diagram determination up to 823K in minerals using Diamond Anvil Cell

    Science.gov (United States)

    Raju, S. V.; Knight, J.; Pawley, A. R.; Clark, S. M.

    2008-12-01

    : The ruby fluorescence technique is widely used for pressure measurement inside the diamond anvil cell. However, at higher temperatures estimation of pressure becomes complex due to the broadening of the fluorescence peaks. There are other fluorescence markers upon which temperature has a lower effect. For example Sm: SrB2O7. Here, we present a high pressure - high temperature calibration of Samarium doped SrB2O7. In order to minimize the error in determining the pressure, Strontium Borate along with Ruby were loaded in diamond anvil cell under hydrostatic conditions and fluorescence measurements were carried out upto temperatures of 823K under pressure. An equation routine is obtained to fit the peaks at various temperatures upto 823K under pressure. Using this data for pressure determination, phase diagram of Lawsonite was studied and the results are discussed.

  4. Note: Compact optical fiber coupler for diamond anvil high pressure cells

    Science.gov (United States)

    Pugh, E.

    2013-10-01

    A compact optical fiber coupler has been developed to allow transmission of light through an optical fiber to and from the high pressure region of a diamond anvil high pressure cell. Despite its small size the coupler has focusing adjustments and optics, which allows the light to be focused precisely on the sample within the pressure cell. The coupler is suitable for a wide range of optical measurements and particularly for high pressure measurements at low temperatures in cryostats with no optical windows. The use of the coupler to determine the pressure in a diamond anvil cell at 1.2 K using the ruby fluorescence spectra of ruby is demonstrated. The small size of the coupler and its construction out of nonmagnetic beryllium copper makes it suitable for use in high magnetic fields and for magnetization experiments.

  5. Measurement of R Line Fluorescence in Ruby Using the Diamond Anvil Cell at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    XU Li-Wen; CHE Rong-Zheng; JIN Chang-Qing

    2000-01-01

    Using our custom-built high-pressure cryostat we have performed the measurements of the R line fluorescence of ruby in the diamond anvil cell from room temperature down to 90K. The maximum pressure was 11.1 GPa. By computer curve fitting, different equations have been found for functions of wavenumber versus temperature between ambient pressure and 2.7 GPa. The changes of the shape and linewidth of R lines were observed.

  6. Raman spectroscopy measurements of the vibrational properties of uv-polymerized C60 thin film and C60 powder compressed in a diamond anvil cell

    Science.gov (United States)

    Li, Y.; Singh, D.; Sharma, S. C.

    2002-03-01

    We present results from a series of experiments designed to further study the effects of pressure on the vibrational properties of C60 compressed under high pressures (10 GPa) in a diamond anvil cell. The Raman scattering measurements were made by using a high resolution optical spectrometer that consists of a 1.25 m, f/11 monochromator, 2400 g/mm, ion-etched blazed holographic diffraction grating, 2048x512 pixel back illuminated liquid nitrogen cooled CCD camera, Super-Notch-Plus filter, argon-ion laser operating at 514.5 nm, and SpectraMax for Windows software. The Raman scattering measurements on C60 thin films show a large ( 10 cm-1) and characteristic red shift in the pentagonal pinch mode Ag(2) of pristine C60 upon irradiation by 21.2 eV photons. Upon heating this film under 10(-3) Torr vacuum at 413 and 473 K, the Raman spectra shift towards the pentagonal pinch mode of pristine C60. These results are in agreement with previously published data (1,2) and they show that the film is polymerized because of uv irradiation. We have also measured spectra for C60 powder compressed under high pressures in a diamond anvil cell. We present results for several frequencies of the Raman active modes of C60. 1. A. M. Rao et al, Science 259, 955 (1993); 2. S. C. Sharma et al, Mat. Res. Symp. Proc. 695, L3.10 (2002)

  7. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Ryuichi, E-mail: nomura@sci.ehime-u.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-04-15

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  8. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    Science.gov (United States)

    Nomura, Ryuichi; Uesugi, Kentaro

    2016-04-01

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  9. Cryogenic implementation of charging diamond anvil cells with H2 and D2

    Science.gov (United States)

    Chi, Zhenhua; Nguyen, Huyen; Matsuoka, Takahiro; Kagayama, Tomoko; Hirao, Naohisa; Ohishi, Yasuo; Shimizu, Katsuya

    2011-10-01

    A cryogenic loading system for introducing H2 and D2 into the diamond anvil cell has been designed and constructed. The integration of pressure loading mechanism, ruby fluorescence spectrometer, and microscope camera allows for in situ tuning and calibrating the pressure. The performance of the system has been demonstrated by successful synthesis of hydride and deuteride of transition metal and rare earth metal. Our cryogenic methodology features facile start-over of loading and in situ electrical resistance measurement of as-synthesized sample.

  10. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils

    Directory of Open Access Journals (Sweden)

    Shuangmeng Zhai

    2011-01-01

    Full Text Available The tried and tested multianvil apparatus has been widely used for high-pressure and high-temperature experimental studies in Earth science. As a result, many important results have been obtained for a better understanding of the components, structure and evolution of the Earth. Due to the strength limitation of materials, the attainable multianvil pressure is generally limited to about 30 GPa (corresponding to about 900 km of the depth in the Earth when tungsten carbide cubes are adopted as second-stage anvils. Compared with tungsten carbide, the sintered diamond is a much harder material. The sintered diamond cubes were introduced as second-stage anvils in a 6–8 type multianvil apparatus in the 1980s, which largely enhanced the capacity of pressure generation in a large volume press. With the development of material synthesis and processing techniques, a large sintered diamond cube (14 mm is now available. Recently, maximum attainable pressures reaching higher than 90 GPa (corresponding to about 2700 km of the depth in the Earth have been generated at room temperature by adopting 14-mm sintered diamond anvils. Using this technique, a few researches have been carried out by the quenched method or combined with synchrotron radiation in situ observation. In this paper we review the properties of sintered diamond and the evolution of pressure generation using sintered diamond anvils. As-yet unsolved problems and perspectives for uses in Earth Science are also discussed.

  11. Effect of Laser Annealing of Common Solid Pressure Media on Pressure Gradients in a Diamond Anvil Cell

    Science.gov (United States)

    Uts, I.; Glazyrin, K.; Lee, K. K.

    2012-12-01

    Advances in experimental techniques allow for the studying of geophysics and planetary science related materials under high pressure and high temperature conditions. With the intrinsic limits of the multianvil apparatus, compression in a diamond anvil cell (DAC) has become the preferred method for creating the extreme conditions of planetary interiors. High pressures up to 1 Mbar can be routinely obtained in laboratories with the use of DACs. Additionally, as in situ laser heating is becoming progressively more affordable for DACs, it is becoming more common to find laser heating setups in many large scale facilities. After the sample material, the pressure medium is the second most important ingredient for a successful high pressure DAC experiment. Not every pressure medium is equally suitable for every experiment. For example, solid pressure media are more persistent than gaseous pressure media if high temperature heating is required. The melting point of the former is much higher, and melting of pressure media may induce undesirable sample shift in the pressure chamber. However, the most important characteristic of a pressure medium is its ability to maintain hydrostaticity in the DAC. The media, particularly solid pressure media, become less effective with increasing pressure. One of the most popular ways of alleviating pressure gradients is through laser annealing of the sample. We explore the effectiveness of this technique in relation to common pressure media, namely, alkali metal halides NaCl, CsCl, KCl, LiF, and oxide MgO. The samples were laser annealed at temperatures above 2000 K. Pressure gradients were determined through the analysis of diamond Raman and ruby fluorescence peaks before and after annealing the sample with a near-infrared laser. We find that the effect of annealing varies for different materials. For some (NaCl and KCl), it reduces pressure gradients considerably, but for the others (MgO), the effect of annealing is less profound.

  12. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    Science.gov (United States)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  13. Electrical conductivity measurements of aqueous fluids under pressure with a hydrothermal diamond anvil cell.

    Science.gov (United States)

    Ni, Huaiwei; Chen, Qi; Keppler, Hans

    2014-11-01

    Electrical conductivity data of aqueous fluids under pressure can be used to derive the dissociation constants of electrolytes, to assess the effect of ionic dissociation on mineral solubility, and to interpret magnetotelluric data of earth's interior where a free fluid phase is present. Due to limitation on the tensile strength of the alloy material of hydrothermal autoclaves, previous measurements of fluid conductivity were mostly restricted to less than 0.4 GPa and 800 °C. By adapting a Bassett-type hydrothermal diamond anvil cell, we have developed a new method for acquiring electrical conductivity of aqueous fluids under pressure. Our preliminary results for KCl solutions using the new method are consistent with literature data acquired with the conventional method, but the new method has great potential for working in a much broader pressure range.

  14. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Y; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  15. InAsP-based quantum wells as infrared pressure gauges for use in a diamond anvil cell

    Science.gov (United States)

    Trushkin, S.; Kamińska, A.; Trzeciakowski, W.; Hopkinson, M.; Suchocki, A.

    2012-10-01

    The results of high-pressure, low-temperature luminescence measurements of three InAsP-based multiple quantum well structures are reported for application as pressure sensors for diamond anvil cells working in the near-infrared spectral range. The multiple quantum well structures exhibit a much higher pressure shift of the luminescence lines as compared with ruby, typically used as the pressure sensor for diamond anvil cell. However, the full width at half maximum of the quantum wells is much higher than that for ruby. This reduces the available sensitivity gain exhibited by the InAsP-based quantum wells, but the improvement is still 2-3 times higher than that of ruby. Three InAsP multiple quantum well samples were examined, which exhibited luminescence at various wavelengths. The wavelength shift of these samples could be calibrated using similar parameters.

  16. Dynamic Diamond Anvil Cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W J; Yoo, C; Lee, G W; Cynn, H; Lipp, M J; Visbeck, K

    2007-02-23

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500 GPa/sec ({approx}0.16 s{sup -1} for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  17. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell

    Science.gov (United States)

    Tateiwa, Naoyuki; Haga, Yoshinori

    2009-12-01

    The fourteen kinds of pressure-transmitting media were evaluated by the ruby fluorescence method at room temperature, 77 K using the diamond anvil cell (DAC) up to 10 GPa in order to find appropriate media for use in low temperature physics. The investigated media are a 1:1 mixture by volume of Fluorinert FC-70 and FC-77, Daphne 7373 and 7474, NaCl, silicon oil (polydimethylsiloxane), Vaseline, 2-propanol, glycerin, a 1:1 mixture by volume of n-pentane and isopentane, a 4:1 mixture by volume of methanol and ethanol, petroleum ether, nitrogen, argon, and helium. The nonhydrostaticity of the pressure is discussed from the viewpoint of the broadening effect of the ruby R1 fluorescence line. The R1 line basically broadens above the liquid-solid transition pressure at room temperature. However, the nonhydrostatic effects do constantly develop in all the media from the low-pressure region at low temperature. The relative strength of the nonhydrostatic effects in the media at the low temperature region is discussed. The broadening effect of the ruby R1 line in the nitrogen, argon, and helium media are significantly small at 77 K, suggesting that the media are more appropriate for cryogenic experiments under high pressure up to 10 GPa with the DAC. The availability of the three media was also confirmed at 4.2 K.

  18. Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments

    Science.gov (United States)

    Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin

    2012-02-01

    Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).

  19. Twin sample chamber for simultaneous comparative transport measurements in a diamond anvil cell

    Science.gov (United States)

    Schaeffer, Anne Marie J.; Deemyad, Shanti

    2013-09-01

    In static high pressure experiments, performed within a diamond anvil cell (DAC), several different methods of thermometry may be employed to determine the temperature of the sample. Due to different DAC designs or particular experimental designs or goals, uncertainties in the determination of the temperature of a given sample exist. To overcome the inaccuracy in comparing the temperature dependence of transport properties of different materials at high pressure, we have used a novel design of resistivity measurement in a twin sample chamber built on an insulated gasket in a DAC. In this design, the transport properties of two samples will be measured simultaneously and therefore the two samples will always be in the same relative temperatures. The uncertainties in the temperatures of the two samples will be exactly the same and therefore their relative phase diagram will be compared precisely. The pressures of the chambers can be slightly different and is easily determined by the ruby pieces placed in each chamber. To demonstrate the feasibility of this method we have compared the superconducting properties of two YBa2Cu3O7-x (0 ≤ x ≤ 0.65) samples with slightly different superconducting transition temperatures at ambient pressure as a function of pressures up to 11 GPa. The upper limit of the pressure achieved using this design would be lower than single chamber gaskets. The highest achievable pressure, as in a conventional single hole setup, depends upon the thickness of the gasket, the culet size, the size, and symmetry of the sample chamber. For the twin chamber, it also depends upon the separation of the holes from each other as well as from the edge of the culet.

  20. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    Science.gov (United States)

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  1. High-pressure FT IR measurements of crystalline methylene chloride up to 120 kbar in the diamond anvil cell

    Science.gov (United States)

    Shimizu, H.; Xu, J.; Mao, H. K.; Bell, P. M.

    1984-03-01

    The FT IR spectra of pressure-induced crystalline CH 2Cl 2 at room temperature were measured at hydrostatic pressures up to 120 kbar in the diamond anvil cell. The pressure dependences of the internal modes (ν 3, ν 9, ν 8, and ν 2) are reported and compared with the result of Raman scattering measurements. The discontinuity of the slope (dν/d P) at ≈ 45 kbar for the ν 9 antisymmetric CCl streching mode indicates the pressure-induced second-order phase transition which seems to be triggered by the interaction between the ν 9 mode and the ν 3 symmetric CCl stretching mode.

  2. Electric transport measurements on micro-structured CePt2In7 single crystals in a diamond anvil cell

    Science.gov (United States)

    Kanter, J.; Moll, P.; Ronning, F.; Bauer, E.; Tobash, P.; Thompson, J.; Batlogg, B.

    2012-02-01

    We report Shubnikov--de Haas and resistivity measurements of CePt2In7 samples under hydrostatic pressures using a diamond anvil cell. CePt2In7 belongs to the CemMnIn3m+2n heavy fermion family. Compared to the CeMIn5 members of this group, the structure of CePt2In7 has a more two dimensional character, but also exhibits an antiferromagnetically ordered and a superconducting phase. Upon increasing pressure the AFM order is suppressed with the N'eel temperature extrapolating to a quantum critical point. The fluctuations associated with the QCP are thought to stabilize the unconventional superconducting phase. To investigate the weight of the different scattering channels the anisotropy of the resistivity above the N'eel temperature was measured for various applied pressures. Shubnikov--de Haas measurements were conducted to deduce the changes in the effective electron masses in the AFM and superconducting phases under applied hydrostatic pressure. To this end we developed a method to conduct four terminal resistance measurements on micro-structured samples inside a diamond anvil cell.

  3. Effect of shear stress on the high-pressure behaviour of nitromethane: Raman spectroscopy in a shear diamond anvil cell

    Science.gov (United States)

    Hebert, Philippe; Isambert, Aude; Petitet, Jean-Pierre; Zerr, Andreas

    2009-06-01

    A detailed description of the reaction mechanisms occurring in shock-induced decomposition of condensed energetic materials is very important for a comprehensive understanding of detonation. Besides pressure and temperature effects, shear stress has also been proposed to play an important role in the initiation and decomposition mechanisms. In order to study this effect, a Shear Diamond Anvil Cell (SDAC) has been developed. It is actually a classical DAC with the upper diamond anvil rotating about the compression axis relative to the opposite anvil. In this paper, we present a Raman spectroscopy study of the effect of shear stress on the high-pressure behaviour of nitromethane. Two major effects of shear stress are observed in our experiments. The first one is a lowering of the pressures at which the different structural modifications that nitromethane undergoes are observed. The second effect is observed at 28 GPa where sudden decomposition of the sample occurs just after shear application. Observation of the sample after decomposition shows the presence of a black residue which is composed of carbon as indicated by the Raman spectrum. [1] Manaa, M. R., Fried, L. E., and Reed, E. J., Journal of Computer-Aided Materials Design, 10, pp 75-97, 2003.

  4. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    Science.gov (United States)

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  5. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    Science.gov (United States)

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  6. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    Jack Binns

    2016-05-01

    Full Text Available The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  7. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, Naoki, E-mail: naoki@sci.hiroshima-u.ac.jp; Matsumoto, Ken; Maruyama, Hiroshi [Department of Physics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 (Japan); Kawamura, Naomi; Mizumaki, Masaichiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sumiya, Hitoshi [Electronics and Materials R& D Laboratories, Sumitomo Electric Industries, 1-1-1 Koyakita, Itami, Hyogo 664-0016 (Japan); Irifune, Tetsuo [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2012-09-01

    Nano-polycrystalline diamond has been used to obtain a glitch-free X-ray absorption spectrum under high pressure. The advantage and capability of nano-polycrystalline diamond anvils is discussed by a comparison of the glitch map with that of single-crystal diamond anvils. Nano-polycrystalline diamond (NPD) [Irifune et al. (2003 ▶), Nature (London), 421, 599] has been used to obtain a glitch-free X-ray absorption spectrum under high pressure. In the case of conventional single-crystal diamond (SCD) anvils, glitches owing to Bragg diffraction from the anvils are superimposed on X-ray absorption spectra. The glitch has long been a serious problem for high-pressure research activities using X-ray spectroscopy because of the difficulties of its complete removal. It is demonstrated that NPD is one of the best candidate materials to overcome this problem. Here a glitch-free absorption spectrum using the NPD anvils over a wide energy range is shown. The advantage and capability of NPD anvils is discussed by a comparison of the glitch map with that of SCD anvils.

  8. Comparison between beryllium and diamond-backing plates in diamond-anvil cells: Application to single-crystal X-ray diffraction high-pressure data

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci;

    2011-01-01

    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  9. Thermal conductivity of ice VII using the time-domain thermo-reflectance method in the diamond anvil cell: Implications for the icy planetary bodies

    Science.gov (United States)

    Chen, B.; Cahill, D. G.; Bartov, G.; Li, J.

    2008-12-01

    As a planetary body ages, the heat trapped and generated in its interior escapes to the surface. Thermal conductivity is a fundamental parameter that governs the thermal evolution and internal dynamics of the planetary body. Due to exceedingly small sample size under high pressure, measuring the thermal conductivity of compressed solids is challenging. Here we report new experimental data on the thermal conductivity of liquid H2O and ice VII up to 11 GPa and at 300 K, using the time-domain thermo- reflectance technique (TDTR) and the diamond anvil cell. The measurements were carried out at the Material Research Laboratory, University of Illinois. We load ruby balls as the pressure marker and a mica sheet as a thermal insulating layer. A thin film of aluminum (Al) is coated on the mica sheet and served as a transducer (Antonelli et al., 2006). A short optical pump pulse with duration ~ 100 fs and energy ~ 1 nJ is focused to a ~10 micron-diameter spot on the Al film, raising its temperature by several degrees Kelvin, which in turn causes a slight change in reflectivity. Over the next few nanoseconds following the absorption of the pulse, the Al film cools via heat conduction through the film itself, across the interface, and into the sample. From time-dependent measurement of reflectivity, we can extract the value of the thermal conductivity of the sample by modeling one-dimensional heat flow. With increasing pressure, liquid H2O crystallized into multiple grains of tetragonal ice VI. Upon further compression to ~ 3.3 GPa, the grain boundaries disappeared due to the formation of the cubic ice VII. We have determined the effect of pressure on the thermal conductivity of ice VII between 3 and 11 GPa. We will discuss the implications of our data for the thermal evolution of icy planetary bodies where ice VII may be a significant component.

  10. Resistivity Measurement of Molten Olivine in a Laser-Heated Diamond Anvil Cell

    Institute of Scientific and Technical Information of China (English)

    LI Ming; GAO Chun-Xiao; MA Yan-Zhang; HE Chun-Yuan; HAO Ai-Min; ZHANG Dong-Mei; LI Yan-Chun; LIU Jing; WANG Duo-Jun

    2007-01-01

    The electrical conductivity of molten olivine is studied up to 3720 K and 13.2 GPa.The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenivs behaviour.The activation energy as well as temperature effect is much smaller than that of the solid olivine.It is expected that the high conductivity zone in the mantle is almost independent of the melting based on our experimental data.

  11. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements

    Science.gov (United States)

    Feng, Yejun; Silevitch, D. M.; Rosenbaum, T. F.

    2014-03-01

    We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field-Pressure-Temperature parameter space.

  12. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    Science.gov (United States)

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  13. High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell.

    Science.gov (United States)

    Gebhardt, R; Hanfland, M; Mezouar, M; Riekel, C

    2007-07-01

    Potato starch granules have been examined by synchrotron radiation small- and wide-angle scattering in a diamond anvil cell (DAC) up to 750 MPa. Use of a 1 microm synchrotron radiation beam allowed the mapping of individual granules at several pressure levels. The data collected at 183 MPa show an increase in the a axis and lamellar period from the edge to the center of the granule, probably due to a gradient in water content of the crystalline and amorphous lamellae. The average granules radius increases up to the onset of gelatinization at about 500 MPa, but the a axis and the lamellar periodicity remain constant or even show a decrease, suggesting an initial hydration of amorphous growth rings. The onset of gelatinization is accompanied by (i) an increase in the average a axis and lamellar periodicity, (ii) the appearance of an equatorial SAXS streak, and (iii) additional short-range order peaks.

  14. A novel diamond anvil cell for x-ray diffraction at cryogenic temperatures manufactured by 3D printing

    Science.gov (United States)

    Jin, H.; Woodall, C. H.; Wang, X.; Parsons, S.; Kamenev, K. V.

    2017-03-01

    A new miniature high-pressure diamond anvil cell was designed and constructed using 3D micro laser sintering technology. This is the first application of the use of rapid prototyping technology to construct high-pressure apparatus. The cell is specifically designed for use as an X-ray diffraction cell that can be used with commercially available diffractometers and open-flow cryogenic equipment to collect data at low temperature and high pressure. The cell is constructed from stainless steel 316L and is about 9 mm in diameter and 7 mm in height, giving it both small dimensions and low thermal mass, and it will fit into the cooling envelope of a standard CryostreamTM cooling system. The cell is clamped using a customized miniature buttress thread of diameter 7 mm and pitch of 0.5 mm enabled by 3D micro laser sintering technology; such dimensions are not attainable using conventional machining. The buttress thread was used as it has favourable uniaxial load properties allowing for higher pressure and better anvil alignment. The clamp can support the load of at least 1.5 kN according to finite element analysis (FEA) simulations. FEA simulations were also used to compare the performance of the standard thread and the buttress thread, and demonstrate that stress is distributed more uniformly in the latter. Rapid prototyping of the pressure cell by the laser sintering resulted in a substantially higher tensile yield strength of the 316L stainless steel (675 MPa compared to 220 MPa for the wrought type of the same material), which increased the upper pressure limit of the cell. The cell is capable of reaching pressures of up to 15 GPa with 600 μm diameter culets of diamond anvils. Sample temperature and pressure changes on cooling were assessed using X-ray diffraction on samples of NaCl and HMT-d12.

  15. Pressure mapping for sphere and half-sphere enhanced diamond anvil cells using synchrotron x-ray diffraction and fluorescence techniques

    Science.gov (United States)

    Liu, H.; Liu, L. L.; Cai, Z.; Shu, J.

    2015-12-01

    The measurement for equation of state (EoS) of materials under pressure conditions above 200 GPa is a long-standing challenging subject. Recently, second stage anvil, which was loaded inside the diamond anvil cell (DAC), had been reported by various groups. This method could generate pressure over 300 GPa, or above 600 GPa from the EoS measurement of Re metal between the tiny anvil or 2 half-spheres. Several alternative approaches, using ruby balls, or glassy carbon, or diamond, with single sphere, 2 half-spheres, or multi spheres geometry inside DAC, were tested. The NIST X-ray powder standard, ZnO was selected as pressure marker. Focused ion beam (FIB) was used to cut the half-sphere from diamond anvil top directly to avoid the difficulty of alignment. The synchrotron x-ray diffraction with fine beam size down to 100 nm using zone plate set-up was used to map the pressure gradient at the sphere or half-sphere zone inside DAC. The pressure could be boosted at center of sphere by up to 10 - 70 GPa at about 200 GPa conditions. From broken anvils, trace element analysis using fine focusing synchrotron x-ray fluorescence method revealed the potential anvil damage from FIB cutting the diamond anvil tip, which might decrease the strength of anvils. Fine touch from FIB cutting at final stage using low ion beam current is suggested.

  16. Appropriate pressure-transmitting media for cryogenic experiment in the diamond anvil cell up to 10 GPa

    Science.gov (United States)

    Tateiwa, Naoyuki; Haga, Yoshinori

    2010-03-01

    We evaluated the qualities of pressure-transmitting media by the ruby fluorescence method at room temperature, 77 and 4.2 K in the diamond anvil cell (DAC) up to 10 GPa in order to find appropriate media for the low temperature experiment. Investigations were done on fourteen kinds of media: a 1:1 mixture by volume of Fluorinert FC-70 and FC-77, Daphne 7373 and 7474, NaCl, silicon oil (polydimethylsiloxane), vaselin, 2-propanol, glycerin, a 1:1 mixture by volume of n-pentane and isopentane, a 4:1 mixture by volume of methanol and ethanol, petroleum ether, nitrogen, argon and helium. We discuss the non-hydrostatic effects of the pressure in the media from the broadening effect of the ruby R1 fluorescence line. At the low temperature region, the non-hydrostatic effects develop continuously with increasing pressure from the low-pressure region in the all media. We reveal the relative strengths of the non-hydrostatic effects appeared in the media at 77K.

  17. Non-hydrostatic behavior of KBr as a pressure medium in diamond anvil cells up to 5.63 GPa.

    Science.gov (United States)

    Zhao, Jing; Ross, Nancy L

    2015-05-13

    Non-hydrostatic stresses of KBr acting as a pressure-transmitting medium have been investigated by examining their effect on a single crystal of quartz in a diamond anvil cell (DAC). The lattice strains or distortions were measured by single-crystal x-ray diffraction methods, and the non-hydrostatic deviatoric stresses for KBr were determined up to 5.63(2) GPa. The experimental results show that differences between axial stress components in the direction normal to the DAC culet face and the radial stress components in directions parallel to the DAC culet face are about 0.063(24) GPa at pressures below 2.14 GPa, and the pressure-transmitting medium can therefore be considered as quasi-hydrostatic up to this pressure. However above 2.14 GPa, after the phase transition pressure of KBr during which it converts from the B1 phase to the B2 phase, the deviatoric stresses constantly increase with increasing pressure. At the maximum pressure of this study, 5.63(2) GPa, the difference between axial stress and radial stress components reaches 0.93(9) GPa. Different variations in the non-hydrostatic deviatoric stresses were observed during both compression and decompression of the DAC, and are mainly ascribed to the phase-transition-induced volume change of KBr.

  18. Electrical resistivity of a novel oxadiazole derivative as a function of pressure and temperature using a diamond anvil cell

    Institute of Scientific and Technical Information of China (English)

    Luo Ji-Feng; Han Yong-Hao; Tang Ben-Chen; Gao Chun-Xiao; Li Min; Zou Guang-Tian

    2005-01-01

    The in-situ electrical resistance measurement on the microcrystal of 1,4-bis[(4-methyloxyphenyl)-1,3,4-oxadiazolyl]-2,5-bisheptyloxyphenylene (OXD-2) has been carried out under conditions of high pressure and temperatures higher than room temperature by using the diamond anvil cell (DAC). The sample's resistivity was calculated with a finite element analysis method. The temperature and pressure dependencies of the resistivity of OXD-2 microcrystal were measured up to 150℃ and 16GPa. The resistivity of OXD-2 decreases with increasing temperature, indicating that OXD-2 exhibits organic-semiconductor conducting property in the region of experimental pressure. Between 90-100℃,the resistivity drops with the temperature, which reveals a temperature-induced phase transition. As the pressure increases, the resistivity of OXD-2 increases and reaches a maximum at about 6 GPa, and then begins to decrease at higher pressures. Combining the in-situ x-ray diffraction data with the resistivity measurement under pressure, the anomaly resistivity drop after 6 GPa is confirmed to be due to the pressure-induced amorphous phase transition of OXD-2.

  19. Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J.M.

    1997-07-01

    An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

  20. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations

    Science.gov (United States)

    Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie; Ritter, Eglof; Schade, Ulrich

    2016-09-01

    The stability of the high-pressure CaCO3 calcite (cc)-related polymorphs was studied in experiments that were performed in conventional diamond anvil cells (DAC) at room temperature as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) at pressures and temperatures up to 20 GPa and 800 K. To probe structural changes, we used Raman and FTIR spectroscopy. For the latter, we applied conventional and synchrotron mid-infrared as well as synchrotron far-infrared radiation. Within the cc-III stability field (2.2-15 GPa at room temperature, e.g., Catalli and Williams in Phys Chem Miner 32(5-6):412-417, 2005), we observed in the Raman spectra consistently three different spectral patterns: Two patterns at pressures below and above 3.3 GPa were already described in Pippinger et al. (Phys Chem Miner 42(1):29-43, 2015) and assigned to the phase transition of cc-IIIb to cc-III at 3.3 GPa. In addition, we observed a clear change between 5 and 6 GPa that is independent of the starting material and the pressure path and time path of the experiments. This apparent change in the spectral pattern is only visible in the low-frequency range of the Raman spectra—not in the infrared spectra. Complementary electronic structure calculations confirm the existence of three distinct stability regions of cc-III-type phases at pressures up to about 15 GPa. By combining experimental and simulation data, we interpret the transition at 5-6 GPa as a re-appearance of the cc-IIIb phase. In all types of experiments, we confirmed the transition from cc-IIIb to cc-VI at about 15 GPa at room temperature. We found that temperature stabilizes cc-VI to lower pressure. The reaction cc-IIIb to cc-VI has a negative slope of -7.0 × 10-3 GPa K-1. Finally, we discuss the possibility of the dense cc-VI phase being more stable than aragonite at certain pressure and temperature conditions relevant to the Earth's mantle.

  1. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: Performance and advantages for in situ analysis

    Science.gov (United States)

    Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, L.

    2008-01-01

    Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 ??m in diameter and ???50 ??m deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 ??C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 ??C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90?? angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 ??m, a pressure of 76 MPa at 500 ??C was maintained for 2 h with no change in the original fluid density. ?? 2008 American Institute of Physics.

  2. Investigation into high-pressure behavior of MnTiO3: X-ray diffraction and Raman spectroscopy with diamond anvil cells

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2011-01-01

    Full Text Available The structural stability of manganese titanate MnTiO3 at high pressure was investigated by X-ray diffraction and Raman spectroscopy with diamond anvil cells. Ilmenite-type MnTiO3 is stable at least to 26.6 GPa, and lithium niobate type MnTiO3 reversibly transforms at room temperature to perovskite at 2.0 GPa. Bulk moduli (K300 of ilmenite, lithium niobate and perovskite are 174(4 GPa, 179(8 GPa, and 208(5 GPa, respectively (at fixed first pressure derivative K′ = 4. The Grüneisen parameter γ has been estimated to be 1.28 for ilmenite and 1.75 for perovskite. In ilmenite phase, TiO6 octahedra become more regular with increasing pressure. In perovskite phase structural distortion increases with pressure increase.

  3. Electron Transport Property of CdTe under High Pressure and Moderate Temperature by In-Situ Resistivity Measurement in Diamond Anvil Cell

    Institute of Scientific and Technical Information of China (English)

    HE Chun-Yuan; GAO Chun-Xiao; LI Ming; HAO Ai-Min; HUANG Xiao-Wei; ZHANG Dong-Mei; YU Cui-Ling; WANG Yue

    2007-01-01

    In situ resistivity measurement has been performed to investigate the electron transport property of powered CdTe under high pressure and moderate temperature in a designed diamond anvil cell.Several abnormal resistivity changes can be found at room temperature when the pressure increases from ambient to 33 GPa.The abnormal resistivity changes at about 3.8 GPa and 10 GPa are caused by the structural phase transitions to the rock-salt phase and to the cmcm phase,respectively.The other abnormal resistivity changes at about 6.5 GPa,15.5 GPa,22.2 GPa and about 30 GPa never observed before are due to the electronic phase transitions of CdTe.The origin of the abnormal change occurred at about 6.5 GPa is discussed.The temperature dependence of the resistivity of CdTe shows its semiconducting behaviour at least before 11.3 GPa.

  4. Birch's law for high-pressure metals and ionic solids: Sound velocity data comparison between shock wave experiments and recent diamond anvil cell experiments

    Science.gov (United States)

    Boness, David A.; Ware, Lucas

    2017-01-01

    Sound velocity-density systematics has long been a fruitful way to take shock wave measurements on elements, alloys, oxides, rocks, and other materials, and allow reasonable extrapolation to densities found deep in the Earth. Recent detection of super-Earths has expanded interest in terrestrial planetary interiors to an even greater range of materials and pressures. Recent published diamond anvil cell (DAC) experimental measurements of sound velocities in iron and iron alloys, relevant to planetary cores, are inconsistent with each other with regard to the validity of Birch's Law, a linear relation between sound velocity and density. We examine the range of validity of Birch's Law for several shocked metallic elements, including iron, and shocked ionic solids and make comparisons to the recent DAC data.

  5. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    Science.gov (United States)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  6. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  7. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    Energy Technology Data Exchange (ETDEWEB)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-07-15

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  8. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  9. Pressure estimation using the ‘diamond Raman scale’ at low pressures in diamond anvil cell experiments using a highly confocal Raman system

    Science.gov (United States)

    Fujii, Taku; Ohfuji, Hiroaki

    2015-02-01

    Pressure estimation using the frequency shift of the diamond Raman peak from the anvil culet is readily and widely used in diamond anvil cell experiments along with the conventional ruby fluorescence method. Here, we propose a modified diamond Raman scale particularly designed for pressure measurement below ~10 GPa. A series of experiments were conducted using a highly confocal Raman system and H2O, ethanol/methanol mixture and NaCl samples loaded in a rhenium gasket which was pre-indented to 40-60 or 100-110 μm thick. The result showed that the frequency of the diamond Raman peak from the anvil culet increases linearly with pressure between 1 and 13 GPa, when using a sufficiently pre-indented (40-60 μm thick) gasket. The frequency shifts are calibrated against the pressure determined by the ruby fluorescence method, which is an alternative pressure scale. In addition, a preliminary measurement at high temperature up to 575 K suggests the potential application of this method for high temperature experiments.

  10. A diamond anvil cell for x-ray fluorescence measurements of trace elements in fluids at high pressure and high temperature.

    Science.gov (United States)

    Petitgirard, Sylvain; Daniel, Isabelle; Dabin, Yves; Cardon, Hervé; Tucoulou, Rémi; Susini, Jean

    2009-03-01

    We present a new diamond anvil cell (DAC), hereafter called the fluoX DAC, dedicated for x-ray fluorescence (XRF) analysis of trace elements in fluids under high pressure and high temperature to 10 GPa and 1273 K at least. This new setup has allowed measurement of Rb, Sr, Y, Zr, with concentrations of 50 ppm to 5.6 GPa and 1273 K. The characteristics of the fluoX DAC consist in an optimized shielding and collection geometry in order to reduce the background level in XRF spectrum. Consequently, minimum detection limits of 0.3 ppm were calculated for the abovementioned elements in this new setup. This new DAC setup coupled to the hard x-rays focusing beamline ID22 (ESRF, France) offers the possibility to analyze in situ at high pressure and high temperature, ppm level concentrations of heavy elements, rare earth elements, and first transition metals, which are of prime importance in geochemical processes. The fluoX DAC is also suitable to x-ray diffraction over the same high pressure-temperature range.

  11. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  12. Dense Molecular Cores Being Externally Heated

    CERN Document Server

    Kim, Gwanjeong; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-01-01

    We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {\\micron}) imaging observations with \\textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with \\textit{KVN} telescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $\\sim0.3-4.4$ L$_{\\odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory mot...

  13. Melting of troilite at high pressure in a diamond cell by laser heating

    Science.gov (United States)

    Bassett, William A.; Weathers, Maura S.

    1987-01-01

    A system for measuring melting temperatures at high pressures is described. The sample is heated with radiation from a YAG laser. The beam is reflected downward through a microscope objective, through the upper diamond anvil, and focused onto the sample. Hense, intense heating is produced only at the sample and not within the diamond anvils. A vidicon system is used to observe the sample during heating. Incandescent light from the heated sample passes back through the objective lens into a grating spectrometer. The spectrum of the incandescent light is received by the photodiode array and stored in the multichannel analyzer. These data can then be transferred to floppy disk for analysis. A curve fitting program is used to compare the spectra with standard blackbody curves and to determine the temperature. Pressure is measured by the ruby fluorescence method. The system was used to study the melting behavior of natural troilite (FeS).

  14. Problems with plastered external heat insulation. Probleme mit verputzter Aussenwaermedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Epple, H.; Foglia, A.; Preisig, H.; Pfefferkorn, J.

    1984-01-01

    Concerning execution, maintenance and service life, walls with plastered external heat insulation constitute an economic method. Owing to experience gained with plastered external heat insulation, it is possible today to provide reliable information on requirements made on ground material and operational execution. The author intends to contribute to a prevention of defects by giving concise examples. A survey on different types of external heat insulation is followed by a treatment of the problem areas of roof-edge connection, base end under ground, modernization of old buildings and cracks in plaster. Principal statements are made concerning steam diffusion, planning, materials and execution.

  15. P–V–T equation of state of molybdenite (MoS{sub 2}) by a diamond anvil cell and in situ synchrotron angle-dispersive X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Dawei, E-mail: fandawei@vip.gyig.ac.cn [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xu, Jingui [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Maining [University of Chinese Academy of Sciences, Beijing 100049 (China); Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xie, Hongsen [Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-10-15

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of a natural molybdenite (MoS{sub 2}) has been measured at high temperature up to 700 K and high pressures up to 18.26 GPa, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan EoS yields: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=67±2 GPa and K′{sub 0}=5.0±0.3. With K′{sub 0} fixed to 4.0, we obtained: V{sub 0}=106.7±0.1 Å{sup 3} and K{sub 0}=74.5±0.8 GPa. Fitting of our P–V–T data by means of the high-temperature third order Birch–Murnaghan equations of state, gives the thermoelastic parameters: V{sub 0}=107.0±0.1 Å{sup 3}, K{sub 0}=69±2 GPa, K′{sub 0}=4.7±0.2, (∂K/∂T){sub P}=−0.021±0.003 GPa K{sup −1}, a=(2.2±0.7)×10{sup −5} K{sup −1} and b=(2.9±0.8)×10{sup −8} K{sup −2}. The temperature derivative of the bulk modulus and thermal expansion coefficient of MoS{sub 2} are obtained for the first time. Present results are also compared with previously studies determined the elastic properties of MoS{sub 2} and WS{sub 2}.

  16. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  17. TEM Pump With External Heat Source And Sink

    Science.gov (United States)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  18. 金刚石Raman光谱荧光本底及其对高压原位Raman光谱测试的影响%Fluorescence Background of Diamond Anvil and Its Effect on In-situ High Pressure Raman Spectrum

    Institute of Scientific and Technical Information of China (English)

    谭大勇; 肖万生; 张红

    2006-01-01

      金刚石对顶砧(diamond anvil cell,DAC)装置(如图1所示)是目前产生压力最高的静态高压实验装置,它以金刚石单晶作对顶砧单轴挤压样品产生高压,由于金刚石在很宽的能量范围对光子(可见光、高能X射线等)透明,在高压实验中可以通过显微镜观察样品,并可对样品进行高压原位X射线衍射和光谱(红外光谱、Raman光谱等)测试,这一特点使其在高压科学领域得到广泛的应用.在高压原位Raman光谱测试中,激发光源透过金刚石对顶砧照射到样品上产生Raman信号,样品的Raman信号穿过金刚石对顶砧经显微镜物镜收集并最终被探测器接收.与常规的Raman光谱测试相比,基于DAC装置的高压原位Raman光谱测试光路中多出了金刚石对顶砧,需要采用长焦物镜收集信号,并且随着实验压力的升高,样品的Raman信号强度降低,因此提高信噪比是获得较高质量高压原位Raman光谱的关键,而金刚石对顶砧的荧光本底是影响信噪比的关键因素.本文通过对20多颗金刚石对顶砧进行Raman光谱测试,对金刚石的Raman光谱信号(一级和二级)和非随机噪声进行了系统的评估,并结合高压原位Raman光谱测试的具体特点,探讨金刚石对顶砧荧光本底对测试结果的影响.……

  19. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  20. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  1. Evaluation of externally heated pulsed MPD thruster cathodes

    Science.gov (United States)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-01-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  2. In situ tuning hydrostatic pressure at low temp erature using electrically driven diamond anvil cell%电驱动金刚石对顶砧低温连续加压装置∗

    Institute of Scientific and Technical Information of China (English)

    丁琨; 武雪飞; 窦秀明; 孙宝权

    2016-01-01

    采用电驱动压电陶瓷取代传统机械螺丝给金刚石对顶砧施加压力,设计制备了低温下可连续增加流体静压的金刚石对顶砧压力装置,实现了低温(19±1) K连续加压达到4.41 GPa.该装置具有电驱动方便灵活、调谐精度高的低温连续加压功能.利用该装置实现了InAs单量子点发光与微腔腔模的共振耦合调谐过程.该装置将在原位压力精确调谐及测量样品信号跟踪等实验得到应用.%Traditionally, a diamond anvil cell (DAC) operated at low temperature can be pressurized by using a helium-driven piston or remote control tightening mechanism. This approach of pressurizing DAC is not convenient for operating at low temperature. Here we develop a low-temperature pressurizing technique for in situ tuning pressure in DAC at 20 K by an electrically driven method. The improved DAC pressure apparatus is composed of traditional DAC device and a piezoelectric actuator (PZT). Here the PZT used in the experiment is the PSt 150/10 × 10/40 supplied by the Piezomechanik. Both parts are assembled together in a red copper or stainless steel cylinder. The DAC part is thermally contacted with a low temperature holder for cooling the chamber of the DAC in the experiment. The wires of the PZT connect with the voltage source through the wiring terminals of the cryostat. As the DAC apparatus cools down, two electrodes of the PZT are connected together when a voltage difference between the electrodes is generated. When the temperature of the DAC chamber arrives at the presetting value, two electrodes of the PZT are connected with the voltage source for applying voltage to the PZT. In this paper, we find that the PZT stroke shows a linear increase with increasing voltage at 300 K, whereas it is approximately linear at 80 and 6 K. The maximum strokes are 40, 26 and 15 µm at 300, 80 and 6 K respectively when the applied voltage is 120 V. The experimental results show that the PZT-driven DAC

  3. Compressibility measurements of gases using externally heated pressure vessels.

    Science.gov (United States)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  4. Design and Fabrication of Externally heated Copper Bromide Laser

    Directory of Open Access Journals (Sweden)

    J.P. Dudeja

    1993-04-01

    Full Text Available An externally-heated, longitudinally-discharged, low-repetition-rate copper bromide laser, was designed and fabricated. The green-coloured wavelength at 5106 A from this laser can be used for underwater ranging and detection of submerged objects. Several new changes in the design of discharge tube, heating technique, buffer-gas-flow sub-system and electrical circuit have been conceived and incorporated advantageously in our system. Various parameters, for example, the type of buffer gas and its flow rate, mixture of gases, temperature of the discharge tube, delay between dissociation and excitation pulses, dissociation and excitation energies, and various resonator configurations are being optimised to get the maximum output power/energy from the laser system.

  5. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating.

    Science.gov (United States)

    Jiao, Anjun; Zhang, Yuwen; Ma, Hongbin; Critser, John

    2009-03-01

    Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated.

  7. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    from the rest of the energy system. This PhD study contributes to the development in energy system modelling, by including heat saving options – insulation of walls, roofs and floors, replacing of windows and installing ventilation system with heat recovery – in the Danish heat and power sector...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...... and are popular as secondary heating technologies in Denmark, can cause indoor and outdoor air pollution locally. Hence, consumers can be exposed to their own air pollution, which can cause damage to their health. Such damage costs should be internalised in consumer decision making. The PhD study demonstrates...

  8. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  9. Liquid fueled external heating system for STM4-120 Stirling engine

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.; Godett, T. M.

    1985-01-01

    The STM4-120 Stirling engine, currently under development at Stirling Thermal Motors, Inc., is a 40 kW variable stroke engine with indirect heating using a sodium heat pipe. The engine is functionally separated into an application independent Energy Conversion Unit (ECU) consisting of the Stirling cycle and drive heated by condensing sodium and the application dependent External Heating System (EHS), designed to supply the ECU with sodium vapor heated by the particular energy source, connected by tubes with mechanical couplings. This paper describes an External Heating System for the STM4-120 ECU designed for the combustion of liquid fuel, comprised of a recuperative preheater, a combustion chamber, and a heat exchanger/evaporator where heat is transferred from the flue gas to the sodium causing it to evaporate. The design concept and projected performance are described and discussed.

  10. Heat Conductivity of One-Dimensional Carbon Chain in an External Potential

    Institute of Scientific and Technical Information of China (English)

    GE Yong; DONG Jin-Ming

    2007-01-01

    The heat transport in a one-dimensional (1D) carbon nanowire (CNW) lying in an external potential with different amplitudes and periods is studied by the non-equilibrium molecular dynamics method. It is found that the thermal conductivity of CNW is always anomalous, increasing with the CNW length and obeying the power law κ~ N, in which α decreases with the increasing external potential amplitude. The thermal conductivity could be enhanced by the external potential with rather larger amplitudes, which means that an applied external potential could be an efficient tool to improve the heat conductivity of a real 1D material. In addition, the effect of different periods of the external potential is studied, finding the external potential with an incommensurate period leads to the smaller α value.

  11. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar po

  12. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  13. Navier-Stokes analysis of turbomachinery blade external heat transfer

    Science.gov (United States)

    Ameri, A. A.; Sockol, P. M.; Gorla, R. S. R.

    1992-01-01

    The two-dimensional, compressible, thin-layer Navier-Stokes and energy equations were solved numerically to obtain heat transfer rates on turbomachinery blades. The Baldwin-Lomax algebraic model and the q - omega low Reynolds number, two-equation model were used for modeling of turbulence. For the numerical solution of the governing equations a four-stage Runge-Kutta solver was employed. The turbulence model equations were solved using an implicit scheme. Numerical solutions are presented for two-dimensional flow within two vane cascades. The heat transfer results and the pressure distributions were compared with published experimental data. The agreement between the numerical calculations and the experimental values were found to be generally favorable. The position of transition from laminar to turbulent flow was also predicted accurately.

  14. Convective Heat Transfer Between the Wall Surface of a Cavity and the External Main Stream

    Science.gov (United States)

    Yoshiwara, Masahiro; Katto, Yoshiro; Yokoyama, Masanori

    An experimental study has been made under the following conditions for convective heat transfer between the wall surface of a cavity of which both width and depth are 25 mm and the external main stream; the range of Reynolds numbers is from 104 to 105, and the ratio of tripping wire diameter to cavity width is 0.08. The oncoming boundary layer to a cavity is turbulent by the tripping wire with the existing study. Convective heat transfer between a cavity wall surface and the external main stream is treated by the following two phenomena; one is the heat transfer which is related to the temperature difference between the wall surface and the fluid in the cavity, and the other the heat transfer which is related to the temperature difference between the fluid in a cavity and the external mainstream. Experimental data obtained for the foregoing conditions is almost coincide with the existing dimensionless correlations of two of the authors.

  15. External heating of electrical cables and auto-ignition investigation.

    Science.gov (United States)

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Heat conduction in a confined solid strip: response to external strain.

    Science.gov (United States)

    Chaudhuri, Debasish; Dhar, Abhishek

    2006-07-01

    We study heat conduction in a system of hard disks confined to a narrow two-dimensional channel. The system is initially in a high-density solidlike phase. We study, through nonequilibrium molecular dynamics simulations, the dependence of the heat current on an externally applied elongational strain. The strain leads to deformation and failure of the solid and we find that the changes in internal structure can lead to very sharp changes in the heat current. A simple free-volume-type calculation of the heat current in a finite hard-disk system is proposed. This reproduces some qualitative features of the current-strain graph for small strains.

  17. Directed motion generated by heat bath nonlinearly driven by external noise

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, J Ray [Department of Physics, Katwa College, Katwa, Burdwan 713 130, West Bengal (India); Barik, D [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Banik, S K [Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435 (United States)

    2007-12-07

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  18. CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings

    Directory of Open Access Journals (Sweden)

    Andrea de Lieto Vollaro

    2015-07-01

    Full Text Available Convective heat transfer coefficients for external building surfaces are essential in building energy simulation (BES to calculate convective heat gains and losses from building facades and roofs to the environment. These coefficients are complex functions of: building geometry, building surroundings, local air flow patterns and temperature differences. A microclimatic analysis in a typical urban configuration, has been carried out using Ansys Fluent Version 14.0, an urban street canyon, with a given H/W ratio, has been considered to simulate a three-dimensional flow field and to calculate the thermal fluid dynamics parameters that characterize the street canyon. In this paper, the convective heat transfer coefficient values on the windward external façade of the canyon and on the windward and leeward inner walls are analyzed and a comparison with values from experimental and numerical correlations is carried out.

  19. External Corrosion of Pipes in District Heating Systems; Utvaendig korrosion paa fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Sund, Goeran [Det Norske Veritas, Stockholm (Sweden)

    2002-07-01

    Corrosion damages of pipes in district heating systems can occur both external and internal. The aim with this work has been to clarify external corrosion damages of pipes, and try to correlate the damages to the corrosivity of different soils and waters. For the analysis the Swedish District Heating Association's district heating system statistics has been used. The district heating system statistics shows that the cost for corrosion damages is high, and pipes older than 20 years have increased risk for corrosion. The knowledge about corrosion concerning steel poles and water pipes in soils can not be applied to external corrosion of steel pipes in district heating systems. The corrosion rate of steel poles in soils is low. The corrosion of steel pipes in district heating systems can locally give high rates, up to 0,5 mm/year. The mechanism for this type of corrosion is different compared to the corrosion mechanism of poles in soils. The temperature is higher and aggressive water, with road-salt and chloride content, falls in drops on the steel pipe, and impurities evaporate on the steel surface. These factors increase the corrosion rate. If the material thickness is 5 mm, fracture can occur in the pipe within ten years. The number of copper pipe corrosion damage is limited. The most determining corrosion factors of copper pipes are pH-value and impurities as chloride and sulphate in the water. Stainless steel pipes of type 304 can not be used in soils due to the risk of local corrosion. Higher alloyed stainless steels, with molybdenum and higher chromium content should be used. It is concluded that failures can occur due to external corrosion of steel pipes. This failure is expensive and can lead to human damage. One way to eliminate failures of steel pipes is to carry out risk analysis.

  20. Divertor heat load in ASDEX Upgrade L-mode in presence of external magnetic perturbation

    Science.gov (United States)

    Faitsch, M.; Sieglin, B.; Eich, T.; Herrmann, A.; Suttrop, W.; the ASDEX Upgrade Team

    2017-09-01

    Power exhaust is one of the major challenges for a future fusion device. Applying a non-axisymmetric external magnetic perturbation is one technique that is studied in order to mitigate or suppress large edge localized modes which accompany the high confinement regime in tokamaks. The external magnetic perturbation induces breaking in the axisymmetry of a tokamak and leads to a 2D heat flux pattern on the divertor target. The 2D heat flux pattern at the outer divertor target is studied on ASDEX Upgrade in stationary L-mode discharges. The amplitude of the 2D characteristic of the heat flux depends on the alignment between the field lines at the edge and the vacuum response of the applied magnetic perturbation spectrum. The 2D characteristic reduces with increasing density. The increasing divertor broadening, S, with increasing density is proposed as the main actuator. This is supported by a generic model using field line tracing and the vacuum field approach that is in quantitative agreement with the measured heat flux. The perturbed heat flux, averaged over a full toroidal rotation of the magnetic perturbation, is identical to the non-perturbed heat flux without magnetic perturbation. The transport qualifiers, power fall-off length {λ }q and divertor broadening, S, are the same within the uncertainty compared to the unperturbed reference. No additional cross field transport is observed.

  1. To Problem Pertaining to Calculation of Resistance to Heat Transfer in Modern Structures of Building External Walls

    Directory of Open Access Journals (Sweden)

    L. V. Nesterov

    2007-01-01

    Full Text Available The paper presents a new methodology for determination of resistance to heat transfer of building external walls with the introduction of heat engineering uniformity factors obtained on the basis of calculating two- and three-dimensional temperature pattern. The methodology makes it possible to take into account influence of joints, connections with adjoining structures and jambs of external walls.

  2. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    Science.gov (United States)

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with

  3. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  4. Study of the collector/heat pipe cooled externally configured thermionic diode

    Science.gov (United States)

    1973-01-01

    A collector/heat pipe cooled, externally configured (heated) thermionic diode module was designed for use in a laboratory test to demonstrate the applicability of this concept as the fuel element/converter module of an in-core thermionic electric power source. During the course of the program, this module evolved from a simple experimental mock-up into an advanced unit which was more reactor prototypical. Detailed analysis of all diode components led to their engineering design, fabrication, and assembly, with the exception of the collector/heat pipe. While several designs of high power annular wicked heat pipes were fabricated and tested, each exhibited unexpected performance difficulties. It was concluded that the basic cause of these problems was the formation of crud which interfered with the liquid flow in the annular passage of the evaporator region.

  5. Parametric experiments and CFD analysis on condensation heat transfer performance of externally condensing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Kim, Do Yun; Shin, Chang Wook; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-11-15

    Highlights: • Geometric effects of HXs on external condensation are experimentally observed. • Lower tube angle has higher heat transfer coefficients over vertical tubes by 15–30%. • 2.68 cmD tube has higher heat transfer coefficients over 4.91 cmD tube roughly by 10–20%. • CFD approach is validated against our experiments with good accuracy (error ∼7%). - Abstract: To ensure safe operation of nuclear power plants even in the case of a prolonged station blackout, advanced reactors adopt passive systems that can operate without electricity supply. In Korea, a passive auxiliary feedwater system was successfully validated, and a passive containment cooling system (PCCS) has recently attracted attention. To investigate the thermal performance of PCCSs, we perform various experiments with external heat exchangers, which condense steam externally, for PCCSs. Through experiments, we construct a database for the lower air mass fraction and perform a parametric study on the tube inclination and diameter. The operating ranges for the experiments are 0.24–0.38 MPa (pressure), 0.06–0.4 (air mass fraction), and 0–90° (tube inclination). A lower tube inclination and smaller tube diameter are found to yield higher heat-transfer coefficients, by approximately 20%. In the prediction of condensation heat-transfer coefficients, experimental correlations and the heat–mass transfer analogy have limitations in both accuracy and applicability. A computational-fluid-dynamics approach is used with the aid of user-defined functions to calculate the heat-transfer coefficients. The resulting predictions exhibit an average error of 7% when the air mass fraction is higher than 0.2.

  6. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins

    Energy Technology Data Exchange (ETDEWEB)

    Castell, Albert; Sole, Cristian; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [Departament d' Informatica i Enginyeria Industrial, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Garcia, Daniel [Departament Projectes d' Enginyeria, Universitat Politecnica de Catalunya, Colom 11, 08222 Terrassa (Spain)

    2008-09-15

    To determine the heat transfer coefficient by natural convection for specific geometries, experimental correlations are used. No correlations were found in the literature for the geometries studied in this work. These geometries consisted of a cylindrical module of 88 mm of diameter and 315 mm height with external vertical fins of 310 mm height and 20 and 40 mm length. To determine the heat transfer coefficient by natural convection, experimental work was done. This module, containing PCM (sodium acetate trihydrate), was situated in the middle upper part of a cylindrical water tank of 440 mm of diameter and 450 mm height. The calculated heat transfer coefficient changed by using external fins, as the heat transfer surface was increased. The temperature variation of the PCM and the water are presented as a function of time, and the heat transfer coefficient for different fins is presented as a function of the temperature difference. Experimental correlations were obtained, presenting the Nusselt number as a function of different dimensionless numbers. Different correlations were analysed to find which one fit better to the experimental data. (author)

  7. Flow boiling critical heat flux enhancement by using magnetic nanofluids and external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Jeong, Y.H. [Korea Advanced Inst. of Science and Tech., Daejeon (Korea, Republic of)

    2011-07-01

    By using the nanofluid as a working fluid, we can expect the enhancement in the flow boiling critical heat flux mainly due to the deposition of nanoparticles on the heat transfer surface. In this study, we suggest the magnetic nanofluid, or magnetite-water nanofluid, as a working fluid which is regarded as a controllable nanofluid, that is, nanoparticles or magnetite nanoparticles in a nanofluid can be controlled by an external magnetic field. Therefore, we can expect the advantages of magnetic nanofluid such as, i) control of nanofluid concentration to maintain nanoparticle suspension and to localize nanofluid concentration, and ii) removal of nanoparticle from nanofluid when we want. In this study, we focused on the investigation of flow boiling critical heat flux characteristics for the magnetic nanofluid. Series of experiments were performed under the low pressure and low flow conditions, and based on the experimental results; we can conclude that the use of magnetic nanofluid improves the flow boiling critical heat flux characteristics. This is mainly due to the deposition of magnetite nanoparticles on the heat transfer surface, which results in the improvement of wettability and re-wetting characteristics of heat transfer surface. Preliminary results of the magnetic field effects on the flow boiling critical heat flux would be presented also. (author)

  8. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  9. Possible role of external radial electric field on ion heating in an FRC

    Science.gov (United States)

    Gupta, Deepak; Trask, E.; Korepanov, S.; Granstedt, E.; Osin, D.; Roche, T.; Deng, B.; Beall, M.; Zhai, K.; TAE Team

    2016-10-01

    In C-2/C-2U FRCs, a radial electric field is applied by either plasma guns or biased electrodes inside the divertors, at both ends of the machine. The electric field plays an important role in stabilizing the FRC; thus, providing a favorable target condition to a neutral beam injection. In addition, it is also observed that the application of radial electric field may lead to a heating of ions. Radial profile of impurity ion emission, azimuthal velocity and temperature are measured under different configurations. The conditions and evidences of ion heating due to the electric field biasing will be presented and discussed. Radial momentum balance equation of oxygen impurity ions is used with these measurements to estimate the radial electric field profile. Parameters affecting the ion heating due to biasing will also be discussed with some correlations. The external radial electric field is planned to be applied by biased electrodes and plasma guns in C-2W inner/outer divertors.

  10. Allothermal gasification of biomass using micron size biomass as external heat source.

    Science.gov (United States)

    Cheng, Gong; Li, Qian; Qi, Fangjie; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen

    2012-03-01

    An allothermal biomass gasification system using biomass micron fuel (BMF) as external heat source was developed. In this system, heat supplied to gasifier was generated from combustion of BMF. Biomass feedstock was gasified with steam and then tar in the produced gas was decomposed in a catalytic bed with NiO/γ-Al(2)O(3) catalyst. Finally the production gas was employed as a substitute for civil fuel gas. An overall energy analysis of the system was also investigated. The results showed that the lower heating value of the product gas reached more than 12 MJ/Nm(3). The combusted BMF accounted for 26.8% of the total energy input. Allothermal gasification based on the substituted BMF for conventional energy was an efficient and economical technology to obtain bioenergy.

  11. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  12. Mathematical model for prediction of pyrolysis and ignition of wood under external heat flux

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The pyrolysis and ignition of combustible materials is an important aspect of the processes taking place in an unwanted fire. A prediction model presented in this paper is to study pyrolysis and ignition time of wood under external heat flux. The solution of the model provides the temperature at each point of the solid and the local solid conversion. And the time to ignition of the wood is predicted with the solution of surface temperature. In general, a good agreement between experimental and theoretical results is obtained.

  13. Experimental investigation on heat transfer rate of Co–Mn ferrofluids in external magnetic field

    Directory of Open Access Journals (Sweden)

    Margabandhu M.

    2016-06-01

    Full Text Available Manganese substituted cobalt ferrite (Co1–xMnxFe2O4 with x = 0, 0.3, 0.5, 0.7 and 1 nanopowders were synthesized by chemical coprecipitation method. The synthesized magnetic nanoparticles were investigated by various characterization techniques, such as X-ray diffraction (XRD, vibrating sample magnetometry (VSM, scanning electron microscopy (SEM and thermogravimetric and differential thermal analysis (TG/DTA. The XRD results confirmed the presence of cubic spinel structure of the prepared powders and the average crystallite size of magnetic particles ranging from 23 to 45 nm. The VSM results showed that the magnetic properties varied with an increase in substituted manganese while SEM analysis showed the change in the morphology of obtained magnetic nanoparticles. The TG/DTA analysis indicated the formation of crystalline structure of the synthesized samples. The heat transfer rate was measured in specially prepared magnetic nanofluids (nanoparticles dispersed in carrier fluid transformer oil as a function of time and temperature in presence of external magnetic fields. The experimental analysis indicated enhanced heat transfer rate of the magnetic nanofluids which depended upon the strength of external magnetic field and chemical composition.

  14. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  15. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  16. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    Science.gov (United States)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  17. Numerical analysis of convective drying of a moist object with combined internal and external heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Son, Gihun [Sogang University, Seoul (Korea, Republic of); Kim, Sungil [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-02-15

    A numerical approach is developed for computing convective drying of a moist object. The conservation equations of mass, momentum, energy and moisture in the internal and external regions of an object are solved with the coupled heat and mass transfer conditions on the object surface, including the effect of evaporation. A numerical approach is applied to predict the internal and external temperature and moisture distributions during the convective drying with variations in the initial moisture content and the water activity. The numerical results show that the water activity is an important parameter for determining the drying rate pattern and the analogy between the heat and mass transfer on the object surface.

  18. Considerable different frequency dependence of dynamic tensile modulus between self-heating (Joule heat) and external heating for polymer--nickel-coated carbon fiber composites.

    Science.gov (United States)

    Zhang, Rong; Bin, Yuezhen; Dong, Enyuan; Matsuo, Masaru

    2014-06-26

    Dynamic tensile moduli of polyethylene--nickel-coated carbon fiber (NiCF) composites with 10 and 4 vol % NiCF contents under electrical field were measured by a homemade instrument in the frequency range of 100--0.01 Hz. The drastic descent of the storage modulus of the composite with 10 vol % was verified in lower frequency range with elevating surface temperature (T(s)) by self-heating (Joule heat). The composite was cut when T(s) was beyond 108 °C. On the other hand, the measurement of the composite with 4 vol % beyond 88 °C was impossible, since T(s) did not elevate because of the disruption of current networks. Incidentally, the dynamic tensile moduli by external heating could be measured up to 130 and 115 °C for 10 and 4 vol %, respectively, but the two composites could be elongated beyond the above temperatures. Such different properties were analyzed in terms of crystal dispersions, electrical treeing, and thermal fluctuation-induced tunneling effect.

  19. Experimental study of an externally finned tube with internal heat transfer enhancement for phase change thermal energy storage

    Science.gov (United States)

    Martinelli, M.; Bentivoglio, F.; Couturier, R.; Fourmigué, J.-F.; Marty, P.

    2016-09-01

    After having presented the design of a latent heat thermal energy storage system (LHTESS) for district heating, experimental results of a vertical tube-in-shell LHTESS are discussed. The tube is radially finned on its external wall to enhance the heat transfer in the phase change material. The test rig is operated with flow conditions corresponding to the proposed design. As the internal flow of heat transfer fluid (HTF) appears to be laminar and is highly influenced by buoyancy forces, which results in mixed convection regime, cross-sectional area reducers are installed inside the HTF tube in order to reduce the Rayleigh number and thus natural convection. Experimental results are presented for two finned tubes, with and without internal heat transfer enhancement respectively.

  20. Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber

    Science.gov (United States)

    Qiu, Yan; Tian, Maocheng; Guo, Zhixiong

    2013-03-01

    A three-dimensional numerical study was made to investigate effects of fin angle, fin surface emissivity, and tube wall temperature on heat transfer enhancement for a longitudinal externally-finned tube placed vertically in a small chamber. The numerical model was first validated through comparison with experimental measurements and the appropriateness of general boundary conditions was examined. The numerical results show that the mean Nusselt number increases with Rayleigh number for all the fin angles investigated. The maximum heat transfer rate per mass occurs when the fin angle is about 60° for fin surface emissivity between 0.7 and 0.8 and 55° when the surface emissivity increases to 0.9. With increasing tube wall temperature, both the natural convection and radiation heat transfer are enhanced, but the fraction of radiation heat transfer decreases in the temperature range studied. Radiation fraction increases with increasing fin surface emissivity. Both convection and radiation heat transfer modes are important.

  1. Physiological responses to incremental exercise in the heat following internal and external precooling.

    Science.gov (United States)

    James, C A; Richardson, A J; Watt, P W; Gibson, O R; Maxwell, N S

    2015-06-01

    Twelve males completed three incremental, discontinuous treadmill tests in the heat [31.9(1.0) °C, 61.9(8.9)%] to determine speed at two fixed blood lactate concentrations (2 and 3.5 mmol/L), running economy (RE), and maximum oxygen uptake ( V ˙ O 2 m a x ). Trials involved 20 min of either internal cooling (ICE, 7.5 g/kg ice slurry ingestion) or mixed-methods external cooling (EXT, cold towels, forearm immersion, ice vest, and cooling shorts), alongside no intervention (CON). Following precooling, participants ran 0.3 km/h faster at 2 mmol/L and 0.2 km/h faster at 3.5 mmol/L (P = 0.04, partial η(2)  = 0.27). Statistical differences were observed vs CON for ICE (P = 0.03, d = 0.15), but not EXT (P = 0.12, d = 0.15). There was no effect of cooling on RE (P = 0.81, partial η(2)  = 0.02), nor on V ˙ O 2 m a x (P = 0.69, partial η(2)  = 0.04). An effect for cooling on physiological strain index was observed (P < 0.01, partial η(2)  = 0.41), with differences vs CON for EXT (P = 0.02, d = 0.36), but not ICE (P = 0.06, d = 0.36). Precooling reduced thermal sensation (P < 0.01, partial η(2)  = 0.66) in both cooling groups (P < 0.01). Results indicate ICE and EXT provide similar physiological responses for exercise up to 30 min duration in the heat. Differing thermoregulatory responses are suggestive of specific event characteristics determining the choice of cooling. Precooling appears to reduce blood lactate accumulation and reduce thermoregulatory and perceptual strain during incremental exercise.

  2. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space.

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ(4) chain, at the same kinetic temperature T(0), but at different configurational temperatures--one end hotter and the other end colder than T(0). While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  3. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  4. Total heat loss coefficient of flat roof constructions with external insulation in tapered layers including the effects of thermal bridges

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    and insulation has to be fulfilled. Based on a given design of the tapered insulation the total heat loss coefficient of the roof can be calculated using formulae in EN ISO 6946 for typical segments of the tapered insulation. Performing design and calculations for large roofs with numerous different segments can...... for design of flat roofs and a pc-program that can be used for calculating the total heat loss coefficient of externally insulated roofs with insulation in tapered layers, taking into account thermal bridges in the roof construction.......In order to achieve durability of flat roofs with external insulation, it is necessary to secure proper drainage of the roof, i.e. to avoid water leaking into the insulation. The design of the tapered insulation of the roof is quite difficult as requirements with respect to both drainage...

  5. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source

    Science.gov (United States)

    Kumar, Dinesh; Singh, Surjan; Rai, K. N.

    2016-06-01

    In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.

  6. Effect of insulating layer material on RF-induced heating for external fixation system in 1.5 T MRI system.

    Science.gov (United States)

    Liu, Yan; Kainz, Wolfgang; Qian, Songsong; Wu, Wen; Chen, Ji

    2014-09-01

    The radio frequency (RF)-induced heating is a major concern when patients with medical devices are placed inside a magnetic resonance imaging (MRI) system. In this article, numerical studies are applied to investigate the potentials of using insulated materials to reduce the RF heating for external fixation devices. It is found that by changing the dielectric constant of the insulation material, the RF-induced heating at the tips of devices can be altered. This study indicates a potential technique of developing external fixation device with low MRI RF heating.

  7. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    OpenAIRE

    Nee Alexander

    2016-01-01

    Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary....

  8. Total heat loss coefficient of flat roof constructions with external insulation in tapered layers including the effects of thermal bridges

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    be quite tedious, and therefore a method to generate and optimize solutions has been developed and implemented in a program that also takes into account the effects of different types of thermal bridges, i.e. roof windows, insulation fasteners, roof/wall joints etc. This paper describes a new method...... for design of flat roofs and a pc-program that can be used for calculating the total heat loss coefficient of externally insulated roofs with insulation in tapered layers, taking into account thermal bridges in the roof construction....

  9. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  10. Specific features of heat transfer on the external surface of smoke stacks blown by wind

    Science.gov (United States)

    Maneev, A. P.; Terekhov, V. I.

    2015-03-01

    Results of a full-scale experiment on studying heat transfer on the surface of a reinforced-concrete smoke stack blown by wind at the value of Reynolds number Re = 1.05 × 107 are presented. Comparison of the experimental results with the experimental data obtained previously by other researchers under laboratory conditions at Re cylinder in a transcritical streamlining mode. The data obtained in the present study open the possibility to estimate the average values of heat transfer coefficient on the surface of smoke stacks in a flow of atmospheric air at 4 × 106 < Re < 107.

  11. Zero-field steps and coherent emission of externally heated long Josephson junctions

    Science.gov (United States)

    Grib, Alexander; Seidel, Paul; Tonouchi, Masayoshi

    2017-01-01

    IV-characteristics of stacks of two inductively interacting long Josephson junctions with the homogeneous and inhomogeneous distributions of critical currents were investigated numerically. It was assumed that the inhomogeneous linear distribution of critical currents along the junction was created by heating of one end of the stack. Even zero-field steps were found in the IV-curve of the stack with the homogeneous distribution of critical currents, whereas odd zero-field steps appeared in the IV-curve of the stack with the heated end. Due to the inductive interaction between junctions in a stack of two junctions, each of the zero-field steps splits into two steps which correspond to frequencies of collective excitations in the system. Strong coherent emission was found at the step which corresponds to the frequency of in-phase oscillations.

  12. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    Science.gov (United States)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  13. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    CERN Document Server

    Zürner, Till; Krasnov, Dmitry; Schumacher, Jörg

    2016-01-01

    The scaling theory of Grossmann and Lohse (J. Fluid Mech. 407, 27 (2000)) for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively.

  14. Propagation of combustion waves in the shell-core energetic materials with external heat losses.

    Science.gov (United States)

    Gubernov, V V; Kudryumov, V N; Kolobov, A V; Polezhaev, A A

    2017-03-01

    In this paper, the properties and stability of combustion waves propagating in the composite solid energetic material of the shell-core type are numerically investigated within the one-dimensional diffusive-thermal model with heat losses to the surroundings. The flame speed is calculated as a function of the parameters of the model. The boundaries of stability are determined in the space of parameters by solving the linear stability problem and direct integration of the governing non-stationary equations. The results are compared with the characteristics of the combustion waves in pure solid fuel. It is demonstrated that a stable travelling combustion wave solution can exist for the parameters of the model for which the flame front propagation is unstable in pure solid fuel and it can propagate several times faster even in the presence of significant heat losses.

  15. Numerical study on transient local entropy generation in pulsating turbulent flow through an externally heated pipe

    Indian Academy of Sciences (India)

    Hüseyin Yapici; Gamze Baştürk; Nesrın Kayataş; Şenay Yalçin

    2005-10-01

    This study presents an investigation of transient local entropy generation rate in pulsating turbulent flow through an externally heated pipe. The flow inlet to the pipe pulsates at a constant period and amplitude, only the velocity oscilates. rate in pulsating turbulent flow through an externally heated pipe. The flow inlet to the pipe pulsates at a constant period and amplitude, only the velocity oscilates. The simulations are extended to include different pulsating flow cases (sinusoidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent computational fluid dynamics (CFD) code, and a computer program developed by us by using the results of the calculations performed for the flow and temperature fields. In all investigated cases, the irreversibility due to the heat transfer dominates. With the increase of flow period, the highest levels of the total entropy generation rates increase logarithmically in the case of sinusoidal and saw-down flow cases whereas they are almost constant and the highest total local entropy is also generated in the step case flow. The Merit number oscillates periodically in the pulsating flow cases along the flow time. The results of this study indicate that flow pulsation has an adverse effect on the ratio of the useful energy transfer rate to the irreversibility rate.

  16. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    Science.gov (United States)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Watanabe, K.; Shishkin, A. A.; Motojima, O.

    2007-11-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, a lower density limit margin reduces the external heating power and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils.

  17. Condensation Heat-Transfer Measurements of Refrigerants on Externally Enhanced Tubes.

    Science.gov (United States)

    1987-06-01

    fins (m 2) as Coefficient used in eqn. 5.6 At Area of smooth tube (same as Ao) (m 2) cb Fraction of tube surface flooded C, Sieder -Tate-type...modified Wilson plot method was used to process all data. The Sieder -Tate-type equation (eqn. 4.6)- was used for the inside heat-transfer coefficient. A...Flux 2.535E+04 (W/m𔃼) Tube-metal thermal conduc. 385.0 (W/m.K) Sieder -Tate constant 0.0280 UNCERTAINTY ANALYSIS: VARIABLE PERCENT UNCERTAINTY Mass

  18. Chiral and Parity Symmetry Breaking for Planar Fermions: Effects of a Heat Bath and Uniform External Magnetic Field

    CERN Document Server

    Ayala, Alejandro; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion anti-fermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate ...

  19. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  20. Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer

    Science.gov (United States)

    Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.

    2013-11-01

    A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.

  1. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  2. Externally heated protostellar cores in the Ophiuchus star-forming region

    CERN Document Server

    Lindberg, Johan E; Jørgensen, Jes K; Cordiner, Martin A; Bjerkeli, Per

    2016-01-01

    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H$_2$CO and c-C$_3$H$_2$ rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H$_2$CO temperatures range between 16 K and 124 K, with the highest H$_2$CO temperatures toward the hot corino source IRAS 16293-2422 (69-124 K) and the sources in the $\\rho$ Oph A cloud (23-49 K) located close to the luminous Herbig Be star S 1, which externally irradiates the $\\rho$ Oph A cores. On the other hand, the c-C$_3$H$_2$ rotational temperature is consistently low (7-17 K) in all sources. Our results indicate that the c-C$_3$H$_2$ emission is primarily tracing more shielded parts of the envelope whereas the H$_2$CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS 16293-24...

  3. Numerical calculation of flow and heat transfer process in the new-type external combustion swirl-flowing hot stove

    Institute of Scientific and Technical Information of China (English)

    Shuchen Zhang; Hongzhi Guo; Xiangjun Liu; Zhangping Cai; Xiancheng Gao; Sidong Xu

    2003-01-01

    It is clarified that the important method to improve the blast temperature of the small and the middle blast furnaces whose production is about two-thirds of total sum of China from 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The air temperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gas if high speed burner is applied to blast furnaces and new-type external combustion swirl-flowing hot stove is used to preheat their combustion-supporting air. The computational results of the flow and heat transfer processions in the bot stove prove that the surface of the bed of the thernal storage balls there have not eccentric flow and the flow field and temperature field distribution is even. The computational results of the blast temperature distribution are similar to those determination experiment data. The numerical results also provide references for developing and designing the new-type external combustion swirl-flowing hot stoves.

  4. An Automated Laboratory Laser Heating Arrangement for Materials Synthesis at High Temperatures and High Pressures

    CERN Document Server

    Subramanian, N; Bindu, R; Kumar, N R Sanjay; Sekar, M; Shekar, N V Chandra; Sahu, P Ch

    2008-01-01

    This paper describes the automation of a laser heating arrangement for synthesizing and studying materials at high pressures (up to ~ 1 Mbar) and high temperatures (up to ~ 5000 K). In this arrangement, a diamond anvil high-pressure cell (DAC) containing a microscopic sample of typical diameter ~50-100 micrometer, is mounted on a precision X-Y nanomotor stage that forms part of an IR laser heating optical assembly. Automation of this stage has been accomplished using a LabVIEW virtual instrument program to manipulate the X and Y stages using nanopositioning systems. This has a major feature of enabling a rastered heating of the sample over a user-defined circular area, without any operator intervention in addition to a virtual joystick to position the sample with respect to the laser spot. This auto-rastering feature has the advantage of offering uniform exposure of a circular area of the sample to the incident heating laser beam apart from drastic reduction in scan time compared to a manual scan. The diamete...

  5. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S.; Bass, Jay D. [Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhu, Gaohua [Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105 (United States)

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  6. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    Science.gov (United States)

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-01

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ˜13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (˜141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).

  7. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  8. Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source

    Institute of Scientific and Technical Information of China (English)

    Stèphane Abanades; Stefania Tescari; Sylvain Rodat; Gilles Flamant

    2009-01-01

    The thermal pyrolysis of natural gas as a clean hydrogen production route is examined.The concept of a double-walled reactor tube is proposed and implemented.Preliminary experiments using an external plasma heating source are carded out to validate this concept.The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time.Simulations are performed to predict the conversion rate of CH4 at the reactor outlet,and are consistent with experimental tendencies.A solar reactor prototype featuring four independent double-walled tubes is then developed.The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy.The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window.The gas composition at the reactor outlet,the chemical conversion of CH4,and the yield to H2 are determined with respect to reaction temperature,inlet gas flow-rates,and feed gas composition.The longer the gas residence time,the higher the CH4 conversion and H2 yield,whereas the lower the amount of acetylene.A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms).A temperature increase from 1870 K to 1970 K does not improve the H2 yield.

  9. Analysis of Entropy Generation of Combined Heat and Mass Transfer in Internal and External Flows with the Assumption of Local Thermodynamic Equilibrium

    Institute of Scientific and Technical Information of China (English)

    ShouguangYao

    1994-01-01

    In this paper,the control volume method is used to establish the general expression of entropy generation due to combined convective heat and mass transfer in internal and external fluid streams.The expression accounts for irreversibilities due to the presence of heat transfer across a finite temperature difference,mass transfer across a finite difference in the chemical potential of a species,and due to flow friction.Based on the assumption of local thermodynamic equilibrium,the generalized form of the Gibbs equation is used in this analysis.The results are applied to two fundamental problems of forced convection heat and mass transfer in internal and external flows.After minimizing the entropy generation,useful conclusions are derived that are typical of the second law viewpoint for the definition of the optimum operation conditions for the specified applications.which is a valuable criterion for optimum design of heat and fluid flow devices.

  10. Numerical Study on the Flow Length in an Injection Molding Process with an External Air-Heating Step

    Directory of Open Access Journals (Sweden)

    Thanh Trung Do

    2017-04-01

    Full Text Available In this study, an external gas-assisted mold temperature control combined with water cooling was applied to achieve rapid mold-surface temperature control for observing the melt flow length in the thin-wall injection molding process. Variable part-thickness values of 0.2 mm, 0.4 mm, and 0.6 mm were used. Through a simulation and experiment, the injection molding process was achieved by using ABS and stamp insert temperatures ranging from 30 to 150 °C. In the simulation, when the stamp temperature was raised from 90 to 150 °C with part thickness of 0.2 mm, 0.4 mm, and 0.6 mm, the melt flow length increased by approximately 25.0%, 19.6%, and 12.8%, respectively. When the stamp temperature was higher than the glass-transition temperature of ABS, the improvement in the melt flow length was clearer, especially in the thinner part. In the experiment, the positive effect of stamp temperature was demonstrated; however, the improvement in the melt flow length was slightly different compared with the simulation owing to the heat transfer between the hot stamp and the environment.

  11. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  12. External Heat Flux on Manned Transport Spacecraft with Multiple Modes and Attitudes%载人运输飞船多模式和姿态的外热流

    Institute of Scientific and Technical Information of China (English)

    卢威; 黄家荣; 钟奇

    2011-01-01

    External heat flux analysis is not only the foundation of thermal control design and thermal analysis, but also the significant thermal boundary condition for ground thermal test.Based on theoretical analysis, a spacecraft external heat flux model was developed and the heat flux was calculated in different flight modes and attitudes.In addition, the heat flux characteristics was obtained in the extreme case.The results show that heat flux increases with the augmentation of percent time in sunlight when the spacecraft is in three-axis stabilized attitude, but decreases abruptly when it turns into the yaw maneuver, and then the heat flux will decrease with the augmentation of percent time in sunlight reversely.%在理论分析的基础上,建立了飞船外热流分析模型,解算出不同飞行姿态和模式下的外热流,分析得到外热流变化规律,得出极端外热流工况.分析结果表明:当姿态为三轴稳定时,外热流随受硒因子增大而增加;由三轴稳定转为偏航机动后外热流突然减小,且随受硒因子增大而减小.

  13. Human health-related externalities in energy system modelling the case of the Danish heat and power sector

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2011-01-01

    This paper discusses methodology of energy system modelling when reduction of local externalities, such as damage to the human health from energy production-related air pollution, is in focus. Ideally, the local energy externalities should be analysed by adopting the impact pathway approach...... of ExternE study, and following the pollutants from their release to the personal uptake and resulting health effects. This would require inclusion of air pollution modelling and monetary valuation of the impacts into an energy system optimisation process. However, this approach involves a complex study...... and power sector verifies that it is cheaper for the society to include externalities in the planning of an energy system than to pay for the resulting damages later. Total health costs decrease by around 18% and total system costs decrease by nearly 4% when health externalities are included...

  14. Development of heat transfer coefficient model for external heated rotary kiln with low filling large particles%大颗粒低填充率外热式回转窑传热系数模型的构建

    Institute of Scientific and Technical Information of China (English)

    吴静; 李选友; 陈宝明; 高玲; 王瑞雪; 赵改菊; 王成运

    2014-01-01

    Heat transfer coefficient is one of the most crucial parameters in thermal calculation and design for an externally heated rotary kiln. Suitably designed kiln dimensions, structure and operating parameters rely on the accuracy of the employed heat transfer coefficient. For an externally heated kiln, heat transfers from an outside source to inside particles through a wall. Generally, the filling ratio in an externally heated rotary kiln is low. So, the heat transfer mechanism for large particles with a low filling ratio in an externally heated rotary kiln is quite different from that in an internally heated rotary kiln, whose filling ratio is usually more than 15 percent. Despite the existence of some achievements in particles motion behavior and heat transfer mechanisms in an internally heated rotary kiln, so far, there is no reliable heat transfer model to describe the heat transfer process between the kiln’s surface and particles in an externally heated rotary kiln with low filling large particles. As a result, the main approach of heat transfer coefficient determination is still an experimental test. On the basis of heat transfer mechanism analysis, this paper regards the heat transfer process between the kiln’s surface and large particles as consisting of heat conduction between the kiln’s surface and gas film, heat convection between the gas film and particles, and heat radiation between the kiln’s surface and particles. Finally, a mathematical model is created for the prediction of the heat transfer coefficient between the kiln’s surface and large particles. To validate the developed model, a series of experimental tests are performed. Alumina spherical grains with a diameter of 6 mm are used as testing particles. When the filling ratio is 5 percent, the heat transfer coefficients are measured in the range of 220℃-420℃ at 20℃ surface temperature intervals, corresponding to the rotary speeds of 1r/min, 2r/min, and 3r/min, respectively. The

  15. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    Energy Technology Data Exchange (ETDEWEB)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at {approx}13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Moessbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  16. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    Energy Technology Data Exchange (ETDEWEB)

    Halevy, Itzhak, E-mail: halevyi@caltech.edu [Nuclear Research Center-Negev (Israel); Haroush, Shlomo [Soreq NRC, NRC Negev (Israel); Eisen, Yosef; Silberman, Ido; Moreno, Dany [Soreq NRC (Israel); Hen, Amir [Ben Gurion Univ., Department of Nuclear Engineering (Israel); Winterrose, Mike L. [Department of Materials Science California Institute of Technology (United States); Ghose, Sanjit; Chen Zhiqiang [Brookhaven National Laboratory, NSLS (United States)

    2010-04-15

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at {approx}13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Moessbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  17. Ruby pressure scale in a low-temperature diamond anvil cell

    Science.gov (United States)

    Yamaoka, Hitoshi; Zekko, Yumiko; Jarrige, Ignace; Lin, Jung-Fu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Mizuki, Jun'ichiro

    2012-12-01

    Laser-excited N and R fluorescence lines of heavily doped ruby have been studied up to 26 GPa at low temperatures. While the intensity of the R lines at ambient pressure significantly decreases with decreasing temperature, the intensity of N lines originating from exchange-coupled Cr ion pairs is enhanced at low temperatures. The pressure induced wavelength shift of the N lines at 19 K is well fitted with an empirical formula similar to the equation for the R1 line, showing that the intense N line could be used as an alternative pressure scale at low temperatures. We also observe continuous increase in non-hydrostaticity with increasing pressure at low temperatures when silicone oil and 4:1 mixture of methanol and ethanol are used as pressure media.

  18. 谈寒冷地区外墙保温施工要点%On external wall heat insulation construction points in cold areas

    Institute of Scientific and Technical Information of China (English)

    张跃华

    2014-01-01

    In order to accelerate the circular economy and realize the social and economic sustainable development, the paper explores the exter-nal wall heat insulation construction technique in cold areas, analyzes the technical requirements for the external wall and heat insulation, illus-trates the selection principle for the external wall and exterior heat insulation materials, and points out the materials can meet the demands for the safe long-term stability and energy-saving long-term stability.%为加快发展循环经济,实现经济社会的可持续发展,对寒冷地区外墙保温施工技术进行了探讨,分析了外墙外保温的技术要求,阐述了外墙外保温材料的选择原则、方法,指出外墙保温材料应满足安全长期稳定、节能效果长期稳定等要求。

  19. Thin film flow and heat transfer over an unsteady stretching sheet with thermal radiation, internal heating in presence of external magnetic field

    CERN Document Server

    Metri, Prashant G; Abel, M Subhash

    2016-01-01

    In this paper we present a mathematical analysis of thin film flow and heat transfer to a laminar liquid film from a horizontal stretching sheet. The flow of thin liquid film and subsequent heat transfer from the stretching surface is investigated with the aid of similarity transformations. Similarity transformations are used to convert unsteady boundary layer equations to a system of non-linear ordinary differential equations. The resulting non-linear differential equations are solved numerically using Runge-kutta-Fehlberg and Newton-Raphson schemes. A relationship between film thickness $\\beta$ and the unsteadiness parameter $S$ is found, the effect of unsteadiness parameter $S$, and the Prandtl number $Pr$, Magnetic field parameter $Mn$, Radiation parameter $Nr$ and viscous dissipation parameter $Ec$ and heat source parameter $\\gamma$ on the temperature distributions are presented and discussed in detail. Present analysis shows that the combined effect of magnetic field, thermal radiation, heat source and ...

  20. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers...... and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy....... Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved....

  1. Study of the effect of external heating and internal temperature build-up during polymerization on the morphology of porous polymethacrylate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com [Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylate monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.

  2. Effect of External Forced Flow and Boiling Film on Heat Transfer of AISI 4140 Steel Horizontal Rod During Direct Quenching%Effect of External Forced Flow and Boiling Film on Heat Transfer of AISI 4140 Steel Horizontal Rod During Direct Quenching

    Institute of Scientific and Technical Information of China (English)

    A H Meysami; R Ghasemzadeh; S H Seyedein; M R Aboutalebi

    2011-01-01

    The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process.

  3. Study of Heat Transfer in a Kapok Material from the Convective Heat Transfer Coefficient and the Excitation Pulse of Solicitations External Climatic

    Directory of Open Access Journals (Sweden)

    M. Dieng

    2013-02-01

    Full Text Available The aim of this study is to characterize thermal insulating local material, kapok, from a study in 3 dimensions in Cartesian coordinate and in dynamic frequency regime. From a study a 3 dimensional the heat transfer through a material made of wool kapok (thermal conductivity: &lambda = 0,035 W/m/K; density: &rho = 12, 35 kg/m3; thermal diffusivity: &alpha = 17, 1.10-7 m2 /s is presented. The evolution curves of temperature versus convective heat transfer coefficient have helped highlight the importance of pulse excitation and the depth in the material. The thermal impedance is studied from representations of Nyquist and Bode diagrams allowing characterizing the thermal behavior from thermistors. The evolution of the thermal impedance with the thermal capacity of the material is presented.

  4. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)

    2016-06-15

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  5. A novel 1D/2D model for simulating conjugate heat transfer applied to flow boiling in tubes with external fins

    Science.gov (United States)

    Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena

    2015-04-01

    This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.

  6. Identification of the heat transfer coefficient over the external area of a finned tubes heat exchanger with respect to the moisture content of the air without condensation; Identification du coefficient de transfert thermique sur la surface externe d`un echangeur de chaleur a tubes et ailettes planes en fonction de l`humidite de l`air, en l`absence de condensation

    Energy Technology Data Exchange (ETDEWEB)

    Benelmir, R.; Khalfi, M.; Feidt, M. [Nancy-1 Univ. Henri-Poincare, 54 - Vandoeuvre-les-Nancy (France). Lab. d`energetique et de mecanique theorique et appliquee

    1997-04-01

    The following, which is rather oriented towards experimentation, shows the influence of the humidity content of air on heat transfer. This first article concerns heat transfer between, the external fluid (moist air) and the internal fluid (water containing glycol, whose thermal behavior inside circular tubes is well-known) in a heat exchanger of the same type as those used in automotive air conditioning (horizontal copper tubes and plane aluminium fins), in the absence of condensation. The most difficult part of this experimental work is the measurement and control of the air humidity, since one has to make sure that the measurement in certainties are not significant compared to the precision of the calculation of the heat transfer coefficient. The conclusion is that, for this type of exchanger, the heat transfer coefficient decreases with air humidity in the absence of condensation (dry wall). Some correlations have been developed with respect to the relative air humidity. An analog experimental investigation, but this time carried out in the presence of condensation (partially or completely wetted wall), is about to be completed; the obtained results will be communicated later on. (authors) 15 refs.

  7. Recent Developments in High-Pressure Research at GSECARS (Invited)

    Science.gov (United States)

    Rivers, M. L.; Prakapenka, V.; Wang, Y.; Dera, P. K.; Eng, P.; Newville, M.; Sutton, S. R.

    2009-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for geoscience research at sector 13 of the Advanced Photon Source, Argonne National Laboratory. GSECARS provides the scientific community with access to high-brightness x-rays and supports a wide range of experimental techniques. Approximately 50% of the research conducted at GSECARS involves high-pressure, both in the diamond anvil cell, and in 250-ton and 1000-ton multi-anvil presses. The other 50% of the research includes x-ray microprobe, microtomography, surface scattering and spectroscopy. The high-pressure experimental techniques provided at the facility include: - Diamond Anvil Cell: Monochromatic diffraction and spectroscopy. Online laser heating is available on the undulator beamline, and external heating is available on the bending magnet beamline. The online laser heating includes two 100W 1060nm fiber lasers and a 200W CO2 laser. - Multi-anvil Press: energy-dispersive and monochromatic diffraction and imaging. There is a 250 ton press on the bending magnet beamline, and a 1000 ton press on the undulator beamline; deformation experiments, acoustic velocity measurements, and computed tomography can all be performed in the press. An addition coming soon is the D-DIA30 module, which is a large multi-stage module for deformation experiments in the 1000-ton press. This device should also permit multi-anvil experiments to approach the megabar pressure range. - Inelastic scattering (X-ray Raman) in the diamond anvil cell. This is performed on a large 6-circle diffractometer in the 13-ID-C station. It is used to determine the electronic structure of low-Z elements, such as B, C, N, and O at high pressure. - Brillouin spectroscopy in the diamond anvil cell. This facility is located on the bending magnet beamline, and allows simultaneous measurement of density (by x-ray diffraction of the sample), pressure (by x-ray diffraction of standard materials), and sound speeds (by Brillouin spectroscopy). Offline

  8. Heat flow in anharmonic crystals with internal and external stochastic baths: a convergent polymer expansion for a model with discrete time and long range interparticle interaction

    Science.gov (United States)

    Pereira, Emmanuel; Mendonça, Mateus S.; Lemos, Humberto C. F.

    2015-09-01

    We investigate a chain of oscillators with anharmonic on-site potentials, with long range interparticle interactions, and coupled both to external and internal stochastic thermal reservoirs of Ornstein-Uhlenbeck type. We develop an integral representation, a` la Feynman-Kac, for the correlations and the heat current. We assume the approximation of discrete times in the integral formalism (together with a simplification in a subdominant part of the harmonic interaction) and develop a suitable polymer expansion for the model. In the regime of strong anharmonicity, strong harmonic pinning, and for the interparticle interaction with integrable polynomial decay, we prove the convergence of the polymer expansion uniformly in volume (number of sites and time). We also show that the two-point correlation decays in space such as the interparticle interaction. The existence of a convergent polymer expansion is of practical interest: it establishes a rigorous support for a perturbative analysis of the heat flow problem and for the computation of the thermal conductivity in related anharmonic crystals, including those with inhomogeneous potentials and long range interparticle interactions. To show the usefulness and trustworthiness of our approach, we compute the thermal conductivity of a specific anharmonic chain, and make a comparison with related numerical results presented in the literature.

  9. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  10. Abstract: Magnetic solitons' contribution to the specific heat of (CH3)4NMnCl3 in an external magnetic field

    Science.gov (United States)

    Borsa, F.

    1982-03-01

    It has been shown theoretically that linear magnetic systems with planar anisotropy should display nonlinear excitations, i.e., sine-Gordon solitons upon application of a magnetic field perpendicular to the chain axis. Experimental evidence for ID magnetic solitons has been presented for TMMC from neutron scattering and NMR measurements.1 The classical statistical mechanics of this system predict a soliton contribution to the free energy and thus to the specific heat.2 In order to test experimentally the thermodynamic relevance of magnetic solitons, I performed measurements of specific heat in single crystal TMMC in an external magnetic field up to 10 Tesla, applied both perpendicular and parallel to the chain. The measurements were performed with an adiabatic calorimeter in the temperature range 1.5-15 °K. The results show an extra contribution for H⊥c not present for H∥c. This contribution displays a broad maximum which scales approximately as H/T in agreement with the theory. The maximum occurs just above the peak in the specific heat which is observed in correspondence to the three-dimensional transition temperature, and it can be clearly resolved only for H⩾5.0 T. The soliton energy obtained by fitting the experiments to the classical theory is Es = 2.0 H for H = 5.39 T and Es = 1.8 H for H = 10 T to be compared with the theoretical value of Es = gμBHS = 3.35 H and with the value obtained by neutron scattering at H = 3.2 T, i.e., Es = 2.6 H. The discrepancy between theory and experiment is discussed in terms of renormalization corrections and of a possible soliton instability occurring for fields between 3 and 5 T. a)Permanent address: Institut di Fisica, Universita di Pavia, 27100 Pavia, Italy. 1J. P. Boucher, L. P. Regnault, J. Rossad Miguod, J. P. Renard, J. Bouillot, and W. G. Stirling, J. Appl. Phys. 52, 1956 (1981). 2K. M. Leung, D. Hone, D. L. Mills, P. S. Riseborough, and S. E. Trullinger, Phys. Rev. B 21, 4017 (1980).

  11. Numerical Research of External Heat Transfer for Heavy Gas Turbine Blade%重型燃机透平叶片外壁面换热的数值研究

    Institute of Scientific and Technical Information of China (English)

    慕粉娟; 王思远

    2015-01-01

    开发了重型燃机叶片的外换热及气膜修正程序,对某重型燃机的透平第一级静叶片进行了外换热计算,并针对有气膜冷却的叶片对外换热系数进行了修正,分析了不同截面叶型的换热系数分布和湍流度对换热的影响,同时对比了气膜修正前后的换热系数,得到了叶片外部换热特点。%This article developed the external heat transfer program for heavy gas turbine blade ,and calculated the EHTC (external heat transfer coefficients) of some heavy gas turbine first stage stator blade ,corrected the EHTC with the air-film correction program. The distribution of the HTC along the blade profile on different sections was analyzed. The effect of the turbulence intensity on the heat transfer was also discussed. The HTC before and after air-film corrected was compared. Thus, we got the external heat transfer characteristics of blade.

  12. Magnetic properties of hexagonal closed-packed iron deduced from direct observations in a diamond anvil cell

    Science.gov (United States)

    Gilder; Glen

    1998-01-02

    The attraction of hexagonal closed packed (hcp) iron to a magnet at 16.9 gigapascals and 261 degrees centigrade suggests that hcp iron is either paramagnetic or ferromagnetic with susceptibilities from 0. 15 to 0.001 and magnetizations from 1800 to 15 amperes per meter. If dominant in Earth's inner core, paramagnetic hcp iron could stabilize the geodynamo.

  13. Pressure determination in Hydrothermal Diamond Anvil Cell via laser interferometry: Investigation of hydrothermal melting of haplogranitic glass

    Science.gov (United States)

    Solferino, G.; Anderson, A. J.

    2012-12-01

    Pressure determination in HDAC experiments of hydrothermal melting of a haplogranitic glass at 130-830 MPa and 600-800 °C were performed employing in-situ visualization of alpha to beta quartz via laser interferometry. Hitherto, Raman spectroscopy of ruby, quartz, 13C and zircon has been used for the same purpose, with a best resolution of 40-50 MPa. Our method average uncertainty is just 3.4 MPa. This augmented precision is critical in estimate of the emplacement depth of mid to upper crustal magmatic bodies, e.g., intermediate-felsic intrusions, or definition of formation conditions of magmatic ores, like rare metal pegmatites. Moreover, thanks to this improved resolution on pressure measurements, we observed that actual run pressure, named Pα/β, is smaller than pressure computed using the equation of state (EOS) of pure water, here labeled PH2O for an ample range of pressures, up to 400 MPa. The absolute value of ΔP = Pα/β- PH2O decrease at higher pressure, and switches from negative to positive at P > 800 MPa. Since dissolution of the glass/melt into the pressure medium (water) leads to increment of the medium compressibility (density), then the medium should be able to impose a larger pressure than pure water for every observed temperature of alpha to beta transition (i.e., steeper isochor). A possible explanation of this discrepancy is found in the differential density between the pressure medium and the melt, and in the change of the volume occupied by the fluid for increasing temperature, as it emerges from a simplified model of dissolution of albite feldspar / albite melt in water, prepared for this study on the base of solubility data available in literature.

  14. A miniature X-ray emission spectrometer (miniXES) for high-pressure studies in a diamond anvil cell.

    Science.gov (United States)

    Pacold, J I; Bradley, J A; Mattern, B A; Lipp, M J; Seidler, G T; Chow, P; Xiao, Y; Rod, Eric; Rusthoven, B; Quintana, J

    2012-03-01

    Core-shell X-ray emission spectroscopy (XES) is a valuable complement to X-ray absorption spectroscopy (XAS) techniques. However, XES in the hard X-ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core-hole lifetimes. To address this, a family of inexpensive and easily operated short-working-distance X-ray emission spectrometers has been developed. The use of computer-aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from ∼3 keV to ∼10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr Lα emission spectrum. The collection solid angle is ∼50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X-ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high-resolution XES capabilities at hard X-ray synchrotron facilities.

  15. Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa

    Science.gov (United States)

    Zhang, Li; Meng, Yue; Mao, Ho-kwang

    2016-12-01

    Multigrain X-ray diffraction (XRD) can be used to accurately calculate the unit cell parameters of individual mineral phases in a mineral assemblage contained in a diamond anvil cell (DAC). Coexisting post-perovskite (ppv) and H-phase were synthesized at 119 GPa and 2500 K from (Mg0.85Fe0.15)SiO3 in a laser-heated DAC. The unit cell parameters of the ppv and coexisting H-phase were determined using multigrain XRD with a 5 μm spatial resolution, close to the size of the X-ray beam, to understand compositional variations across the center area (20-30 μm) in a laser-heated sample. The ppv phase was Fe-depleted and the unit cell volume of ppv decreased by only 0.16 % (corresponding to ~3 % variation of FeSiO3) from the heating center to 10 μm off the center, while the sample pressure remained at 119 GPa in a Ne quasi-hydrostatic environment. The unit cell volume of the H-phase decreased by 0.54 % (~10 % variation of FeSiO3 content) over the same 10 μm distance. Both phases were more Fe-enriched in the slightly hotter center. This observation suggests that thermal diffusion may not be the major driver for the compositional variations of ppv and H-phase in the center portion of a laser-heated sample. Instead, these variations could be caused by a temperature effect on the partitioning between the ppv and H-phase over the small gradient.

  16. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  17. External Heat Transfer in Moist Air and Superheated Steam for Softwood Drying%软木干燥中湿空气和过热蒸汽的外部传热

    Institute of Scientific and Technical Information of China (English)

    PANG Shusheng

    2004-01-01

    In kiln drying of softwood timber, external heat and moisture mass transfer coefficients are important in defining boundary temperature and moisture content at the wood surface. In addition, superheated steam drying of wood is a promising technology but this has not been widely accepted commercially, partially due to the lack of understanding of the drying phenomena occurred during drying. In this work, experimental investigation was performed to quantify the heat transfer between wood surface and surrounding moist air or superheated steam. In the experiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperatures of 60℃/50℃,90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The last two schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. The circulation velocity over the board surface was controlled at 4.2 m·s-1. Two additional runs (90℃/60℃) using air velocities of 2.4 m·s-1 and 4.8 m·s-1were performed to check the effect of the circulation velocity. During drying, sample weight and temperatures at wood surface and different depths were continuously measured. From these measurements, changes in wood temperature and moisture content were calculated and external heat-transfer coefficient was determined for both the moist air and the superheated steam drying.

  18. 内外取热器影响装置长周期运行的因素及对策%Effects of Internal and External Heat Exchanger Device for Long Period Operation Factors and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    艾克利; 张玉宝; 康钰海; 李宏; 郭保宏; 安德会

    2012-01-01

    External heat exchanger main failure form of tube bundle leakage and finned tube distortion,the main reason is the erosion wear,corrosion,welding defects and their structure is not reasonable.The paper on the 60 Mt / a device of heavy oil catalytic cracking heat exchanger in the production of the problems in the running process,influence factors,management and technical defects of the effects obtained after analysis,in order to prolong the using life of external heat exchanger,energy saving,promoting device for diesel and jet operation purpose.%内外取热器失效的主要表现形式为管束泄漏和翅片管变形,其主要原因是冲蚀磨损、腐蚀穿孔、焊接缺陷以及结构不合理等。文章就60 Mt/a重油催化裂化装置取热器在生产运行过程中出现的问题、影响因素、管理缺陷以及技改后所取得的成效加以分析,以期延长外取热器使用寿命,节能降耗,促进装置安稳长满优运行的目的。

  19. Heat transfer through a well insulated external wooden frame wall. An investigation of the effects of normal defects in the insulation resulting from incident wind and air flow through the wall

    Energy Technology Data Exchange (ETDEWEB)

    Roots, P.

    1997-05-01

    The heat requirement of a building can turn out to be greater than was calculated at the design stage. The reason for this may be that heat transport through the building envelope is greater than expected. This in turn can be due to the structure not fulfilling the design requirements in respect to windtightness and airtightness. In addition, there may be defects in the quality of the workmanship of the insulation that significantly reduce the thermal resistance of the external wall. The objective of this investigation has been to ascertain how normal variations in the insulation can affect heat transport through a well-insulated wooden frame external wall under the influences of incident wind or wind flow through the wall. These `normal variations` have been taken to be the presence of electrical conduits, breaks in the insulation, airgaps and nogging pieces, either singly or in combination. For incident wind, measurements in a hotbox and theoretical simulations have shown that the presence of electrical conduits, breaks in the insulation, airgaps or nogging pieces in a well-insulated wooden frame external wall, whether singly or in combination, have negligible effect on thermal transport when subjected to incidnet wind. Heat transport is affected, however, by the presence of a break in the insulation: the combination of electrical conduits, airgaps, a nogging piece and a 16 mm gap in the insulation increased the U-value of the wall by 0.028 W/(m{sup 2.}K) at the most. Measuring the effects of a flow of air through the insulation involved simulating a break in the air seal. A pressure difference of between 10 Pa and 20 Pa was established, causing air to flow from the cold side to the warm side. Measurements and calculations have shown that normal variations in the insulation have a negligible effect on the transmission losses on the cold side, due to the heat exchange effect of the insulation, which raises the temperature of the air flowing through it. This has

  20. Argon Partitioning Between Metal and Silicate Liquids in the Laser-Heated DAC to 25 GPa

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, A. P.

    2003-12-01

    The accretion of the Earth from primordial material and its subsequent segregation into core and mantle are fundamental problems in terrestrial and solar system science. Many of the questions about the process, although well developed as model scenarios over the last few decades, are still open and much debated, and include, for example, whether the core is, or was, a reservoir for the noble (rare) gases. In the present study we use for the first time the laser-heated diamond-anvil cell (LHDAC) to study the Ar partitioning at high-pressure and temperature between metal and silicate liquids. Little work has been reported on noble gas partitioning at pressure since a single multi-anvil experiment to 10 GPa (Matsuda et al., 1993). We used either compacted glass powders simulating that of a model C1 chondrite and iron metal, or pure metal alloys (pure Fe, FeNiCo alloy, FeSi). Thermal insulation from the diamonds was achieved with solid argon as pressure medium. The samples were heated by a multimode YAG laser for an average of 15 minutes and temperatures were determined spectro-radiometrically with a fit to a grey-body Planck function. Samples recovered after the runs were analysed by electron microprobe with spatial resolution near 1 μ m. The argon melts by conductive heating from the molten sample dissolving into the metal/silicate melt. Preliminary results on Ar solubility at lower pressures show good agreement with data reported by White et al. (1986) for Ar solubility in sanidine (KAlSi3O8). With sanidine melt, Ar solubility increases up to around 5-6 GPa where it reaches about 2.5 wt%, and remains roughly constant to higher pressures, suggesting that a threshold concentration is reached. Similar behavior is observed for a mix of C1-chondrite composition and iron and the results imply that the solubility of Ar is intimately related to liquid structure at high pressure. We also present results on Ar solubility into pure silicate liquids of varying composition in

  1. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  2. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  3. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  4. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley

    Science.gov (United States)

    Chen, Xiaolong; Zhou, Tianjun

    2017-08-01

    The Yangtze River valley (YRV), located in central-eastern China, has witnessed increased numbers of heat waves in the summer since 1951. Knowing what factors control and affect the interannual variability of heat waves, especially distinguishing the contributions of anomalous sea surface temperature (SST) forcings and those of internal modes of variability, is important to improving heat wave prediction. After evaluating 70 members of the atmospheric model intercomparison project (AMIP) experiments from the 25 models that participated in the coupled model intercomparison project phase 5 (CMIP5), 13 high-skill members (HSMs) are selected to estimate the SST-forced variability. The results show that approximately 2/3 of the total variability of the July-August heat waves in the YRV during 1979-2008 can be attributed to anomalous SST forcings, whereas the other 1/3 are due to internal variability. Within the SST-forced component, one-half of the influence is from the impact of the El Niño-Southern Oscillation (ENSO) and the other half is from non-ENSO related SST forcings, specifically, the SST anomalies in the North Pacific and the North Atlantic. Both the decaying El Niño and developing La Niña accompanied by a warm Indian Ocean and cold central Pacific, respectively, are favorable to hotter summers in the YRV because these patterns strengthen and extend the western North Pacific Subtropical High (WNPSH) westwards, for which the decaying ENSO plays a dominant role. The internal variability shows a circumglobal teleconnection in which Rossby waves propagate southeastwards over the Eurasian Continent and strengthen the WNPSH. Atmospheric model sensitivity experiments confirm that non-ENSO SST forcings can modulate the WNPSH and heat wave variability by projecting their influences onto the internal mode.

  5. Experimental Study on the Impact of External Geometrical Shape on Free and Forced Convection Time Dependent Average Heat Transfer Coefficient during Cooling Process

    Directory of Open Access Journals (Sweden)

    Sundus Hussein Abd

    2012-01-01

    Full Text Available In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then calculated for forced convection for several Reynolds number (4555-18222.The study covered free convection impact for values of Rayleigh number ranging between (1069-3321. Imperical relationships were obtained for all cases of forced and free convection and compared with equations of circular cylindrical shapes found in literature. These imperical equations were found to be in good comparison with that of other sources.

  6. LHDAC setup for high temperature and high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nishant N., E-mail: nnpatel@barc.gov.in; Meenakshi, S., E-mail: nnpatel@barc.gov.in; Sharma, Surinder M., E-mail: nnpatel@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  7. Modeling and Measurements of Heat Transfer Phenomena in Two-Phase PbSn Alloy Solidification in an External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    P.A.Nikrityuk; K.Eckert; R.Grundmann; B.Willers; S.Eckert

    2003-01-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass,momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  8. Modeling and measurements of heat transfer phenomena in two-phase PbSn alloy solidification in an external magnetic field

    Science.gov (United States)

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R.; Willers, B.; Eckert, S.

    2003-11-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass, momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  9. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  10. Methods for the evaluation of thermal insulation systems and heat bridges of multi-leaf external walls and measures for the reduction of transmission heat losses of facades. Verfahren zur Beurteilung des Waermeschutzes und der Waermebruecken von mehrschaligen Aussenwaenden und Massnahmen zur Verminderung der Transmissionswaermeverluste von Fassaden

    Energy Technology Data Exchange (ETDEWEB)

    Achtziger, J.

    1989-08-01

    When calculating the heat transition coefficient of multi-leaf external walls it shows that particular in case of lightweight metal facades and external walls with coverings the simplified method leads to a too favourable assessment of the building unit and that improvements of the thermal insulation do not have the effect desired. On the basis of exact experimental and arithmetical investigation methods the order of magnitude of the differences from thermal insulation have been found out and also to what extent these can be neglected or have correspondingly to be taken into account. Starting from these results functional influences have been deduced for the different wall constructions. Among the external wall systems investigated were metal constructions and windows, profiled sheet walls and multi-leaf walls of brickwork and of concrete shell as well as wood skeleton and wood panel constructions. The results of these are presented, comparisons are drawn, factors are named which influence the heat transition, the thermal insulation is judged and constructive suggestions for improvements are made. (HWJ).

  11. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  12. Ruby fluorescence lifetime measurements for temperature determinations at high (p, T)

    Science.gov (United States)

    Bauer, Johannes D.; Bayarjargal, Lkhamsuren; Winkler, Björn

    2012-06-01

    The lifetime of the ruby R1 fluorescence line was measured as a function of pressure (up to about 20 GPa) and temperature (550 K) in an externally heated diamond anvil cell (DAC). At constant temperatures, the lifetime is increasing linearly with increasing pressure. The slope of the pressure dependence is constant up to a temperature of 450 K and it is decreasing at higher temperatures. At constant pressure, the lifetime is exponentially decreasing with increasing temperature. The (p, T)-dependence can be parametrized by the combination of a linear and an exponential function. This allows an accurate p, T-determination by the combination of fluorescence spectroscopy using Sm2+-doped strontium tetraborate and lifetime measurements of ruby, as the energy of the Sm2+ fluorescence is nearly temperature-independent.

  13. Melting and High P-T Transitions of Hydrogen up to 300 GPa.

    Science.gov (United States)

    Zha, Chang-Sheng; Liu, Hanyu; Tse, John S; Hemley, Russell J

    2017-08-18

    High P-T Raman spectra of hydrogen in the vibron and lattice mode regions were measured up to 300 GPa and 900 K using externally heated diamond anvil cell techniques. A new melting line determined from the disappearance of lattice mode excitations was measured directly for the first time above 140 GPa. The results differ from theoretical predictions and extrapolations from lower pressure melting relations. In addition, discontinuities in Raman frequencies are observed as a function of pressure and temperature indicative of phase transition at these conditions. The appearance of a new Raman feature near 2700  cm^{-1} at ∼300  GPa and 370 K indicates the transformation to a new crystalline phase. Theoretical calculations of the spectrum suggest the new phase is the proposed Cmca-4 metallic phase. The transition pressure is close to that of a recently reported transition observed on dynamic compression.

  14. 水蒸气在竖直微细管外凝结传热特性研究%Research of Condensation Heat Transfer of Wall of Vertical Micro Water Vapor on External Tube

    Institute of Scientific and Technical Information of China (English)

    黄荣海; 陈西平; 严俊杰; 王进仕

    2011-01-01

    This article experimental studied effect of vapor pressure and vapor velocity on the condensation heat transfer characteristics of Saturated vapor on external wall of vertical micro tube(inner and outer diameter were 0.571/0.793 mm) were investigated, and analyzed the effect of vapor pressure and velocity on condensation heat transfer. The experimental result indicated that the condensation heat transfer coefficients increased with increasing vapor velocity, and the heat transfer coefficients increased significantly when the high vapor pressure was high. The result was greater than Nusselt theoretical analysis solution. Condensation heat transfer coefficient almost constant with increasing vapor pressure at the vapor velocity of 2 m.s^-1. However, the condensation heat transfer coefficients increased obviously with increasing vapor pressure when the vapor velocity were 4 m.s^-1 and 6 m.s^-1.%针对不同压力和不同流速下的饱和水蒸气在竖直微细圆管(内外径分别为0.571mm和0.793mm)外的凝结传热特性分别进行了实验研究,分析了蒸气压力和蒸气流速对凝结传热特性的影响。实验结果表明,凝结传热表面传热系数随着蒸气流速的增加而增加,在较高的蒸气压力下增加的更明显,且大于相同实验条件下的Nusselt理论分析解。在蒸气流速为2m·s^-1时,凝结传热系数随压力的变化不大;在4m·s^-1和6m·s^-1时,随着蒸气压力的升高,凝结表面传热系数明显增大。

  15. 无人水下航行器外热源热机用无气体产生燃料%No-gas Generation Fuel Used in External Heat Source Engine of Unmanned Underwear Vehicle(UUV)

    Institute of Scientific and Technical Information of China (English)

    陆宏; 赵熙; 倪亚菲; 邵明臣; 李大鹏

    2015-01-01

    无人水下航行器(UUV)在军事领域正得到愈发广泛的应用,动力装置是其技术难点之一.无人水下航行器采用外热源热机,在续航力和航速上,都优于其他类型动力装置,且使用无气体产生燃料,可从根本上解决水下气体排放问题,提高航行隐蔽性,具有良好的军事应用前景.本文根据无人水下航行器的使用条件和技术要求,对适用于无人水下航行器外热源热机的无气体产生燃料进行了广泛考察,给出了可用于无人水下航行器外热源热机的无气体产生燃料和氧化剂的组合.%Unmanned underwater vehicle(UUV) is applied to the military field more and more widely, of which power plant is one of its technical difficulties. External heat source engine is better than the other types of UUV's power plants by the characters of continuous navigation capacity and navigation velocity. Employment of no-gas generation fuel for the UUV can resolve the problem of gas exhaust underwater and improve navigation stealth. According to technical requirements and working conditions of the UUV, no-gas generation fuels that can be used in the external heat source engine of the UUV are investigated, and used no-gas generation fuels and theirs oxidizers are given in this thesis.

  16. Coupled calculation of external heat transfer and material temperatures of convection-cooled turbine blades. Final report; Gekoppelte Berechnung des aeusseren Waermeuebergangs und der Materialtemperaturen konvektionsgekuehlter Turbinenschaufeln. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heselhaus, A.

    1997-05-01

    In this work a hybrid program system consisting of a 3D finite-volume Navier-Stokes flow solver and a 3D finite-element heat conduction solver has been developed. It enables the coupled calculation of structure temperatures in diabatic solid/fluid configurations. The grids of both the finite element and the finite volume computational domain may be completely independent. The coupled program fully resolves the thermal interaction between heat transfer and the resulting material temperatures. The developed coupling algorithm is numerically stable, conservative and works without the need to define ambient temperatures in the flowfield. This allows for the simulation of any solid/fluid configuration. When simulating combined blade/endwall cooling or filmcooling, only a coupled procedure is capable to completely account for the interaction between all relevant thermal parameters. It is found that the coupled calculation of convective cooling in a realistic guide vane leads locally to 45 K higher and 107 K lower blade temperatures than the uncoupled calculation. This shows that accounting for the thermal interaction between the flow and the structure offers both potential to save cooling air and a lower margin of safety when designing cooling systems close to the thermal limits of the blade material. (orig.) [Deutsch] Im Rahmen der vorliegenden Arbeit wurde ein Verfahren zur Berechnung der Temperaturverteilung in diabat umstroemten Koerpern entwickelt, bei dem ein 3D-Finite Volumen Navier-Stokes Stroemungsloeser und ein 3D-Finite Elemente Waermeleitungsloeser zu einem hybriden Programmsystem gekoppelt werden. Dabei besteht die Moeglichkeit, voellig unabhaengige Rechennetze fuer Stroemung und Struktur zu verwenden. Mit dem gekoppelten Verfahren kann die Wechselwirkung zwischen resultierenden Materialtemperaturen und dem davon rueck-beeinflussten Waermeuebergang beruecksichtigt werden. Weiterhin ist der hier entwickelte, stabile und konservative Kopplungsalgorithmus nicht

  17. Effects of high free-flow turbulence, intensive cooling, and wake on the external heat transfer of a gas turbine blade with external heat transfer. Zum Einfluss hoher Freistromturbulenz, intensiver Kuehlung und einer Nachlaufstroemung auf den aeusseren Waermeuebergang einer konvektiv gekuehlten Gasturbinenschaufel

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, A.V.

    1986-04-18

    The effects of free flow turbulence on the heat transfer characteristics of a gas turbine blade with convective cooling are investigated in hot-gas conditions, making a rigid distribution between isotropic turbulence and the free laminar turbulence of a wake flow. The influence of different Reynolds numbers of the grid flow and of different degrees of surface cooling is determined by means of heat transfer experiments with isotropic turbulence generated by quadratic grids. Experimental heat transfer data are compared with the results of a difference boundary layer calculation. The free flow turbulence is determined by laser doppler anemometry while the temperature field is calculated by a finite element method with experimentally determined boundary conditions. Another factor investigated was the effect of a wake on the heat transfer along the blade surface. A turbulent wake was simulated and discussed. (HAG).

  18. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... to Pneumococcal Vaccine Additional Content Medical News External Otitis (Swimmer's Ear) By Bradley W. Kesser, MD, Associate ... the Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis External otitis ...

  19. 基于反向蒙特卡罗法的飞行器在轨外热流计算%On-Orbit External Heat Flux Calculation of Spacecraft Based on Reverse Monte Carlo Method

    Institute of Scientific and Technical Information of China (English)

    潘晴; 王平阳; 包轶颖; 李鹏

    2012-01-01

    为了计算考虑不同纬度和季节下地球反射率和发射率时的在轨外热流,建立了适用于任意地球轨道和飞行姿态条件下的反向蒙特卡罗(RMC)法计算模型.该模型考虑了卫星表面遮挡与多次反射效应,通过连续坐标变换法确定飞行器在给定轨道参数下任意时刻的姿态,并将假设地球辐射特性为常数时的结果与商业软件的计算结果进行比较,以验证模型和计算程序的正确性.在此基础上,考察了地球辐射特性随纬度变化时,飞行器在轨外热流的变化情况.结果表明,所建立的RMC法模型在飞行器姿态控制以及代码计算中具有一定的可靠性;地球反射率和发射率随纬度的变化对地球红外辐射和地球反射辐射的影响均较大,在所选取的轨道参数和抽查时刻,与反射率和发射率不变的结果的最大相对误差分别为一21.31%和80.05%,且均出现于星下点南纬57°;卫星表面遮挡和多次反射效应明显,天线导致其所在平面的地球反射辐射热流密度从19.2W/m^2变化到39.5W/m^2.%In order to calculate the orbit external heat flux in consideration of seasonal and latitudinal variations in earth albedo and emission, the reverse Monte Carlo method model was established which can be used in any kind of earth orbit and aircraft attitude. The model also can take surface covering and multiple reflection into account conveniently. The aircraft attitude was determined in term of the given orbit param eters at any time by continuous coordinate transformation method. The results gained on the constant earth radiation characteristics condition were compared with the results gained by commercial software to verify the accuracy of the model. Then, the orbit external heat flux was computed on varying earth radiation characteristics condition. The results display that the model is reliable to aircraft attitude control and

  20. 竖直微细管外酒精-水蒸气Marangoni凝结传热特性研究%Research on NIarangoni Condensation Heat Transfer of Ethanol-Water Vapor on External Wall of Micro-Vertical Tube

    Institute of Scientific and Technical Information of China (English)

    陈西平; 黄荣海; 严俊杰; 王进仕

    2012-01-01

    In this article the effects of vapor the condensation heat transfer characteristics concentration, vapor pressure and vapor velocity on of ethanol-water mixture vapor on external wall of vertical micro tube(inner and outer diameter were 0.727/1.032 ram) were investigated experimentally. Visual results showed that condensation modes changed with the vapor-to-surface temperature difference. When the vapor-to-surface temperature difference was larger, the condensation modes were typical dropwise condensation. The condensation modes changed to filmwise with decreasing the vapor-to-surface temperature difference. The experimental results indicated that the condensation heat transfer coefficients revealed nonlinear characteristics. The condensation heat transfer coefficient of the ethanol-water mixture was found to have a maximum value of 45 kW·m^-2·K^-1. The heat transfer coefficients increased significantly when the vapor mixture concentrations were lower, and the heat transfer coefficients increased slowly when the vapor mixture concentrations was higher. The condensation heat transfer coefficient increased with the increase of vapor pressure and vapor velocity.%本文搭建了竖直微细管外凝结传热实验台,以酒精水混合蒸气为工质,对不同酒精浓度、不同蒸气流速以及不同蒸气压力下的竖直微细管外(内外径为0.727/1.032mm)Marangoni凝结传热特性进行了研究。可视化结果表明,凝结形态随过冷度的变化有显著变化。在大过冷度时,凝结形态为典型的珠状,随着过冷度逐渐减小,凝结形态由珠状凝结逐渐过渡到膜状凝结。实验结果显示,凝结传热曲线呈现为有峰值的非线性曲线。凝结传热系数最大值为45kW·每m^-2·K^-1,约为纯水3~4倍。凝结传热系数随着过冷度的增加在蒸气浓度低时增加较快,在高浓度时,增加速率较慢。凝结传热系数随蒸气压力或蒸气流速的增加而增加。

  1. External Measures of Cognition

    Directory of Open Access Journals (Sweden)

    Osvaldo eCairo

    2011-10-01

    Full Text Available The human brain is undoubtedly the most impressive, complex and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind.

  2. Magnetar heating

    CERN Document Server

    Beloborodov, Andrei M

    2016-01-01

    We examine four candidate mechanisms that could explain the high surface temperatures of magnetars. (1) Heat flux from the liquid core heated by ambipolar diffusion. It could sustain the observed surface luminosity $L_s\\approx 10^{35}$ erg s$^{-1}$ if core heating offsets neutrino cooling at a temperature $T_{\\rm core}>6\\times 10^8$ K. This scenario is viable if the core magnetic field exceeds $10^{16}$ G, the magnetar has mass $M10^{16}$ G varying on a 100 meter scale could provide $L_s\\approx 10^{35}$ erg s$^{-1}$. (4) Bombardment of the stellar surface by particles accelerated in the magnetosphere. This mechanism produces hot spots on magnetars. Observations of transient magnetars show evidence for external heating.

  3. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research in GeoScience

    Science.gov (United States)

    Rivers, M. L.; Sutton, S. R.; Prakapenka, V.; Wang, Y.; Newville, M.; Eng, P.; Dera, P. K.

    2009-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for geoscience research at Sector 13 of the Advanced Photon Source, Argonne National Laboratory. GSECARS provides the scientific community with access to high-brightness x-rays and supports a wide range of experimental techniques. The operation of the facility is funded by the NSF Earth Sciences Facilities and Instrumentation Program, and by the Department of Energy Geosciences Program. GSECARS is managed by the Consortium for Advanced Radiation Sources (CARS) at the University of Chicago, and provides access to resources for earth science research which no single university or other institution could provide. By operating beamlines that are specialized for earth science research, we are able to provide staff who understand and participate in the research being conducted, which is critical for productivity. GSECARS began operations in 1996, and currently operates 4 experimental stations, two on the bending magnet beamline and two on the undulator beamline. The two bending magnet stations operate independently and simultaneously, while the two undulator stations currently share the beam time. (An upgrade proposal has recently been funded by NSF, DOE and NASA to allow the undulator stations to also operate independently and simultaneously). The experimental techniques provided at the facility include: - Diamond Anvil Cell: Monochromatic diffraction and spectroscopy. Online laser heating is available on the undulator beamline, and external heating is available on the bending magnet beamline. - Multi-anvil Press: energy-dispersive and monochromatic diffraction and imaging. There is a 250 ton press on the bending magnet beamline, and a 1000 ton press on the undulator beamline; deformation experiments, acoustic velocity measurements, and computed tomography can all be performed in the press. - Microprobe: micro-XRF, micro-XAFS, fluorescence microCMT, micro-XRD - Microtomography: absorption and differential

  4. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    applications also in the materials science as it can provide useful information about the properties and performance of new materials. Over the past decades, the research in this field has been strongly developed due to the advances in computer capabilities and to the technological improvements of X...... are important components of the Earth’s lower crust and upper mantle. In the last part of the thesis, the berthierite sulfosalt (FeSb2S4) was measured under pressure in order to test the data accuracy on a slightly more complicated structure...

  5. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  6. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  7. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  8. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  9. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  10. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  11. Study on the effect of external application of Chinese medicine in the treatment of patients with damp heat immersed type of hand eczema%中药外敷在湿热浸淫型手部湿疹中的应用及疗效研究

    Institute of Scientific and Technical Information of China (English)

    沈安强

    2016-01-01

    目的:评价中药外敷在湿热浸淫型手部湿疹中应用的疗效。方法:收治湿热浸淫型手部湿疹的患者82例,随机分为两组,治疗组进行中药外敷治疗,对照组仅用糠酸莫米松乳膏。观察手部湿疹评分(JHS)、瘙痒程度评分(VAS)和生活质量量表评分(DLQI)情况。结果:治疗组总有效率85.37%,高于对照组的43.90%(P<0.05)。结论:中药外敷治疗湿热浸淫型手部湿疹疗效显著,可全面改善生活质量。%Objective:To investigate the effect of external application of Chinese medicine in the treatment of patients with damp heat immersed type of hand eczema.Methods:82 patients with damp heat immersed type of hand eczema were selected.They were randomly divided into the two groups.The treatment group was treated with external application of Chinese medicine,and the control group only treated with mometasone furoate cream.The Jena hand eczema score(JHS),visual analogue scale(VAS)and dermatology life quality index(DLQI)were observed.Results:The total effective rate of the treatment group was 85.37%,which was higher than that in the control group of 43.90%(P<0.05).Conclusion:The effect of external application of Chinese medicine in the treatment of patients with damp heat immersed type of hand eczema is significant,which can improve the quality of life.

  12. Clinical observation on the treatment of external humeral epicondylitis in 50 patients with heated Chinese medicine permeating combined with triamcinolone acetonide%中药加温透入结合曲安奈德痛点注射治疗肱骨外上髁炎50例

    Institute of Scientific and Technical Information of China (English)

    时少冰; 王斐然; 吴丽平

    2013-01-01

    Objective To observe the clinical curative effects of heated Chinese medicine permeating with Intermediate Frequency Electric Current combined with triamcinolone acetonide in the treatment of external humeral epicondylitis. Methods 100 cases with external humeral epicondylitis were divided into the experimental group (50 cases) and the control group (50 cases) randomly. The patients in the experimental group were treated with heated Chinese medicine permeating with Intermediate Frequency Electric Current combined with triamcinolone acetonide, and the controls were treated with triamcinolone acetonide only. Results The experimental group had a better improvement in elbow pain and gripping indices than the controls, and the difference was signiifcant. The difference in the excellent rate and the relapse rate between the two groups was signiifcant (P<0.05). Conclusion Heated Chinese medicine permeating with Intermediate Frequency Electric Current combined with triamcinolone acetonide has good efifciency in treating external humeral epicondylitis.%目的探讨中频电加温中药透入结合曲安奈德治疗肱骨外上髁炎的临床疗效。方法将100例肱骨外上髁炎患者随机分为两组,每组50例,治疗组采用中频电加温中药透入结合曲安奈德治疗,对照组仅给予曲安奈德治疗。结果治疗组对肘部疼痛、握力指数的改善均优于对照组(P<0.05);两组优良率和复发率比较差异均有统计学意义(P<0.05)。结论中频电加温中药透入结合曲安奈德治疗肱骨外上髁炎疗效确切。

  13. Clinial study on external electric heat theropy with shortwave plus the theropy of enema with Chinese herbs on chronic pelvic inflammation%体外短波电场热疗配合中药灌肠治疗慢性盆腔炎的临床研究

    Institute of Scientific and Technical Information of China (English)

    潘小清; 何燕芳; 王坚; 周大庆; 李文刚

    2011-01-01

    Objective To discuss clinical effects of external electric heat theropy with shortwave plus the theropy of enema with Chinese herbs on patients with chronic pelvic inflammation. Methods Ninety cases with chronic pelvic inflammation were divided into 3 groups : control group 1 with Chinese herbs , control group 2 treated by external electric heat treatment with shortwave and treatment group by external electric heat theropy with shortwave plus the theropy of enema with Chinese herbs (30 cases in each). The clinical effects in each g roup were evaluated by clinical examination and results of B ultrasound. Results The effective rate in treatment group was higher than that in control group 1 and group 2, the extinctive rate of pelvic inflammatory mass in treatment group was significantly higher than that in control groups (P< 0.05). There was no obvious toxic and side effects. Conclusions Effects of external electric heat theropy with shortwave plus the theropy of enema with Chinese herbs on chronic pelvic inflammation is significant and this theropy is worthy of doing futher reseaches.%目的:探讨体外短波电场热疗配合中药灌肠治疗慢性盆腔炎的临床疗效.方法:观察慢性盆腔炎的患者90例,随机分为3组,每组30例,即中药组,短波热疗组,体外电场热疗配合中药灌肠治疗组(中药组+短波热疗组).给予体外短波电场热疗、中药灌肠治疗,采用临床查体及B超检查评定临床疗效.结果:中药组+短波热疗组总有效率显著高于中药组、短波热疗组,盆腔炎性肿块消退率显著高于对照组(P<0.05);各组均无明显的毒副作用.结论:采用体外短波电场热疗配合中药灌肠治疗慢性盆腔炎,临床疗效显著,值得进一步研究探讨.

  14. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  15. Economic analysis of a variety of external wall heat preservation practices of a project%某项目外墙保温做法多种方案经济分析

    Institute of Scientific and Technical Information of China (English)

    王亚杰; 李会芳

    2015-01-01

    Combined with the specific projects,Ciric phase change thermal insulation mortar,plastic extruded board,polystyrene board three in-sulation material combinations of a variety of external wall insulation system economic cost analysis,find the optimal economic external wall insu-lation scheme,which has saved engineering cost.%结合具体项目,对克瑞克相变保温砂浆、挤塑板、聚苯板三种保温材料组合出的外墙保温系统方案进行了经济成本分析,找出了经济最优的外墙保温方案,为工程节约了成本。

  16. Tubing for augmented heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  17. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  18. 现代建筑外墙保温节能技术的应用分析%The Application Analysis on the Modern Building External Wall’s Heat Preservation and Insulation Technology

    Institute of Scientific and Technical Information of China (English)

    梁杨飞

    2014-01-01

    The traditional way of heat preservation of wal ’s energy-saving is using single material to increase wal ’s thickness, then achieving heat preservation and heat insulation. But it can’t meet the requirement of the development of energy saving and environmental protection, so the energy-saving wal is more and more becoming the mainstream. This paper offers the application analysis of modern building exterior wal ’s heat preservation and insulation technology, for col eague to refer.%墙体节能的传统保温做法即用单一材料增加墙体厚度的方式来实现保温节能,已经不能满足节能和环保的时代发展要求,所以节能墙体越来越成为墙体的主流。本文就现代建筑外墙保温节能技术的应用分析,以供同行交流。

  19. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  20. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  1. MALIGNANT EXTERNAL OTITIS

    OpenAIRE

    Massoud Moghaddam

    1993-01-01

    Two case reports of malignant external otitis in the elderly diabetics and their complications and management with regard to our experience at Amir Alam Hospital, Department of ENT will be discussed here.

  2. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke;

    2014-01-01

    RATIONALE, AIMS AND OBJECTIVES: The quality of the current literature on external validity varies considerably. An improved checklist with validated items on external validity would aid decision-makers in judging similarities among circumstances when transferring evidence from a study setting...... to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...

  3. Migration with fiscal externalities.

    Science.gov (United States)

    Hercowitz, Z; Pines, D

    1991-11-01

    "This paper analyses the distribution of a country's population among regions when migration involves fiscal externalities. The main question addressed is whether a decentralized decision making [by] regional governments can produce an optimal population distribution...or a centralized intervention is indispensable, as argued before in the literature.... It turns out that, while with costless mobility the fiscal externality is fully internalized by voluntary interregional transfers, with costly mobility, centrally coordinated transfers still remain indispensable for achieving the socially optimal allocation."

  4. Sen cycles and externalities

    OpenAIRE

    Piggins, Ashley; Salerno, Gillian

    2016-01-01

    It has long been understood that externalities of some kind are responsible for Sen’s (1970) theorem on the impossibility of a Paretian liberal. However, Saari and Petron (2006) show that for any social preference cycle generated by combining the weak Pareto principle and individual decisiveness, every decisive individual must suffer at least one strong negative externality. We show that this fundamental result only holds when individual preferences are strict. Building on their contribution,...

  5. Melting of Xenon to 80 GPa, p-d hybridization, and an ISRO liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Boehler, R; Soderlind, P

    2005-07-26

    Measurements made in a laser heated diamond-anvil cell are reported that extend the melting curve of Xe to 80 GPa and 3350 K. The steep lowering of the melting slope (dT/dP) that occurs near 17 GPa and 2750 K results from the hybridization of the p-like valence and d-like conduction states with the formation of clusters in the liquid having Icosahedral Short-Range Order (ISRO).

  6. Probing of Fast Chemical Dynamics at High Pressures and Temperatures using Pulsed Laser Techniques

    Science.gov (United States)

    2014-12-17

    Goncharov. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures, Journal of Applied Physics, (08 2013): 73505...V. Struzhkin, Innokenty Kantor, Mark L. Rivers , D. Allen Dalton. X-ray diffraction in the pulsed laser heated diamond anvil cell, Review of...few-layered two-dimensional MoS2 in collaboration with Avinash Nayak and Professor Jung-Fu Lin at the University of Texas at Austin

  7. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  8. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...... technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared...

  9. Externality or sustainability economics?

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, Jeroen C.J.M. van den [ICREA, Barcelona (Spain); Department of Economics and Economic History and Institute for Environmental Science and Technology, Universitat Autonoma de Barcelona (Spain)

    2010-09-15

    In an effort to develop 'sustainability economics' Baumgaertner and Quaas (2010) neglect the central concept of environmental economics-'environmental externality'. This note proposes a possible connection between the concepts of environmental externality and sustainability. In addition, attention is asked for other aspects of 'sustainability economics', namely the distinction weak/strong sustainability, spatial sustainability and sustainable trade, distinctive sustainability policy, and the ideas of early 'sustainability economists'. I argue that both sustainability and externalities reflect a systems perspective and propose that effective sustainability solutions require that more attention is given to system feedbacks, notably other-regarding preferences and social interactions, and energy and environmental rebound. The case of climate change and policy is used to illustrate particular statements. As a conclusion, a list of 20 insights and suggestions for research is offered. (author)

  10. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  11. Clinical Study of a Combination of Chinese Medicine External Application of Heat Tong and Bamboo Cupping Therapy Treaing Cervical spondylosis%中药外敷热熥结合竹罐疗法治疗颈椎病的临床研究

    Institute of Scientific and Technical Information of China (English)

    李晓娟; 李殿忠

    2011-01-01

    目的:探讨中药外敷热熥结合竹罐疗法治疗颈椎病疗效.方法:全部病例随机分为治疗组和对照组,治疗组66例,对照组65例.治疗组采用中药外敷热熥结合竹罐疗法;对照组采用常规针刺疗法,观察2组患者临床症状、体征.结果:治疗组总有效率83.33%,疗程平均为(8.15±2.32)天;对照组总有效率58.46%,疗程平均(13.25±4.62)天.结论:运用中药外敷热熥毫法并结合竹罐疗法治疗颈椎病有缩短病程,提高疗效的效果.%Objective: To explore the effects of a combination of Chinese Medicine external application of Heat Tong and Bamboo Cupping therapy treaing cervical spondylosis. Methods: All patients were randomly divided into treatment group (66 cases)and control group (65 cases). Treatment group used Chinese herbal medicine external application of Heat Tong treatment combined with bamboo cupping; the control group used conventional acupuncture therapy. Clinieal symptoms and signs were observed. Results: Treatment group total effective rate was 83.33%, with a course average of (8.15 ±2.32)days; the control group total effective rate of 58.46 %, with a course average of (13.25 ±4.62) days.Conclusion: The use of external application of heat Tong, a method of Chinese medicine combined with bamboo cupping therapy on cervical spondylosis had a shorter course of disease, improved the therapeutic effect.

  12. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  13. Molecular heat pump.

    Science.gov (United States)

    Segal, Dvira; Nitzan, Abraham

    2006-02-01

    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  14. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  15. Productivity Change and Externalities

    DEFF Research Database (Denmark)

    Kravtsova, Victoria

    2014-01-01

    firms and the economy as a whole. The approach used in the current research accounts for different internal as well as external factors that individual firms face and evaluates the effect on changes in productivity, technology as well as the efficiency of domestic firms. The empirical analysis focuses...... change in different types of firms and sectors of the economy...

  16. Multiple external root resorption.

    Science.gov (United States)

    Yusof, W Z; Ghazali, M N

    1989-04-01

    Presented is an unusual case of multiple external root resorption. Although the cause of this resorption was not determined, several possibilities are presented. Trauma from occlusion, periodontal and pulpal inflammation, and resorption of idiopathic origin are all discussed as possible causes.

  17. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summaris...

  18. The External Mind

    DEFF Research Database (Denmark)

    The External Mind: an Introduction by Riccardo Fusaroli, Claudio Paolucci pp. 3-31 The sign of the Hand: Symbolic Practices and the Extended Mind by Massimiliano Cappuccio, Michael Wheeler pp. 33-55 The Overextended Mind by Shaun Gallagher pp. 57-68 The "External Mind": Semiotics, Pragmatism......, Extended Mind and Distributed Cognition by Claudio Paolucci pp. 69-96 The Social Horizon of Embodied Language and Material Symbols by Riccardo Fusaroli pp. 97-123 Semiotics and Theories of Situated/Distributed Action and Cognition: a Dialogue and Many Intersections by Tommaso Granelli pp. 125-167 Building...... Action in Public Environments with Diverse Semiotic Resources by Charles Goodwin pp. 169-182 How Marking in Dance Constitutes Thinking with the Body by David Kirsh pp. 183-214 Ambiguous Coordination: Collaboration in Informal Science Education Research by Ivan Rosero, Robert Lecusay, Michael Cole pp. 215-240...

  19. External-Memory Multimaps

    CERN Document Server

    Angelino, Elaine; Mitzenmacher, Michael; Thaler, Justin

    2011-01-01

    Many data structures support dictionaries, also known as maps or associative arrays, which store and manage a set of key-value pairs. A \\emph{multimap} is generalization that allows multiple values to be associated with the same key. For example, the inverted file data structure that is used prevalently in the infrastructure supporting search engines is a type of multimap, where words are used as keys and document pointers are used as values. We study the multimap abstract data type and how it can be implemented efficiently online in external memory frameworks, with constant expected I/O performance. The key technique used to achieve our results is a combination of cuckoo hashing using buckets that hold multiple items with a multiqueue implementation to cope with varying numbers of values per key. Our external-memory results are for the standard two-level memory model.

  20. External Cooling Coupled to Reduced Extremity Pressure Device

    Science.gov (United States)

    Kuznetz, Lawrence H.

    2011-01-01

    Although suited astronauts are currently cooled with a Liquid Cooled Ventilation Garment (LCVG), which can remove up to 85 percent of body heat, their effectiveness is limited because cooling must penetrate layers of skin, muscle, fat, bone, and tissue to reach the bloodstream, where its effect is prominent. Vasoconstriction further reduces the effectiveness by limiting arterial flow when exposed to cold (the frostbite response), resulting in a time constant on the order of 20 minutes from application to maximum effect. This delay can be crucial in severe exposure to hypo- or hyper-thermic conditions, compromising homeostasis. The purpose of this innovation is to provide a lightweight, effective means of delivering heat or cold from an external source directly to the bloodstream. The effectiveness of this ECCREP (External Cooling Coupled to Reduced Extremity Pressure) device is based on not having to penetrate layers of skin, muscle, fat, and tissue, thereby avoiding the thermal lag associated with their mass and heat capacity. This is accomplished by means of an outer boot operating at a slightly reduced pressure than the rest of the body, combined with an inner boot cooled or heated by an external source via water or chemicals. Heat transfer from the external source to the foot takes place by means of circulating water or flexible heat pipes.

  1. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  2. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  3. Sound velocity of liquid Fe-Ni-S at high pressure

    Science.gov (United States)

    Kawaguchi, Saori I.; Nakajima, Yoichi; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Kuwayama, Yasuhiro; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-05-01

    The sound velocity of liquid Fe47Ni28S25 and Fe63Ni12S25 was measured up to 52 GPa/2480 K in externally resistance-heated and laser-heated diamond-anvil cells using high-resolution inelastic X-ray scattering. From these experimental data, we obtained the elastic parameters of liquid Fe47Ni28S25, KS0 = 96.1 ± 2.7 GPa and KS0' = 4.00 ± 0.13, where KS0 and KS0' are the adiabatic bulk modulus and its pressure derivative at 1 bar, when the density is fixed at ρ0 = 5.62 ± 0.09 g/cm3 for 1 bar and 2000 K. With these parameters, the sound velocity and density of liquid Fe47Ni28S25 were calculated to be 8.41 ± 0.17 km/s and 8.93 ± 0.19 to 9.10 ± 0.18 g/cm3, respectively, at the core mantle boundary conditions of 135 GPa and 3600-4300 K. These values are 9.4% higher and 17-18% lower than those of pure Fe, respectively. Extrapolation of measurements and comparison with seismological models suggest the presence of 5.8-7.5 wt % sulfur in the Earth's outer core if it is the only light element.

  4. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  5. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, Taha Jibril

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  6. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  7. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  8. Regularization by External Variables

    DEFF Research Database (Denmark)

    Bossolini, Elena; Edwards, R.; Glendinning, P. A.

    2016-01-01

    Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula...... of regularization, by external variables that shadow either the state or the switch of the original system. The shadow systems are derived from and inspired by various applications in electronic control, predator-prey preference, time delay, and genetic regulation....

  9. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  10. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  11. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  12. District heating by radiant heat recovery from cement kilns

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Salini, Paolo [University of L' Aquila, Monteluco (Italy). Dept. of Mechanical, Energy and Management Engineering]. E-mail: caputo@ing.univaq.it; palumbo@ing.univaq.it; pelmar@ing.univaq.it; salini@ing.univaq.it

    2008-07-01

    Heat loss from rotary kilns may represent a significant percentage of the total energy input especially in high energy-intensive industrial sectors such as cement production. In this paper the technical and economic feasibility of recovering radiant heat lost through the kiln surface, by means of a secondary external shell acting as a heat exchanger for a transfer fluid, is evaluated for district heating purposes. At first the system architecture is outlined and a technical and economical model addressing both the performances and cost estimation for the heat exchanger and the district heating network is developed. Subsequently, a parametric profitability analysis is carried out with reference to some relevant parameters characterizing the available recoverable waste heat and the size of the heat distribution network, namely the distance between kiln and user area and extension of the district heating network. This is made to obtain a mapping of the conditions were the proposed heat recovery system is economically feasible. In the paper it is demonstrated that the relevant heat consumption of cement production may make the district heating option for heat recovery a viable one even in case of low density of inhabitants in the surroundings of the plant. Furthermore significant fuel savings and emission reductions are achieved respect the adoption of traditional residential boilers. author)

  13. 湿热消腰部外敷热导入疗法治疗慢性非细菌性前列腺炎的临床研究%Clinical Observation on Treatment of Chronic Non-Bacterial Prostatitis with Shirexiao Applied Externally for Lumbar Region and Conductive Heat Therapy

    Institute of Scientific and Technical Information of China (English)

    荀建宁; 朱闽; 覃兆伟; 周凯; 梁永协; 胡恩宜; 徐楠

    2012-01-01

    Objective: To observe the therapeutic effect of Shirexiao applied externally for lumbar region and conductive heat therapy in patients with chronic non-bacterial prostatitis( CPN). Methods: 160 cases of chronic non-bacterial prostatitis were randomized into treatment group and control group,which were respectively treated with Shirexiao applied externally for lumbar region and conductive heat therapy combined with Qianlie Anshuan and Qianlie Anshuan only. The efficacy was evaluated by traditional Chinese Medicion( TCM )symptom score, the national instistutes of health chronic prostatitis symptom index ( NIH - CPSI ) , the white cell count of prostatic seclletion, and the pH value of prostitic seclletion after 30 days follow-up. Results: After 30 days of treatment, the total effective rate of treatment group ( 84. 21 % ) was obviously better than that of control group ( 68. 92% ) ( P < 0. 05 ). NIH - CPSI,TCM symptom score,the white cell count of proslatic seclletion, the pH value of prostitic secllelion between treatment group and control group showed significant differences( P < 0. 01 ). Conclusion: The therapeutic effect of Shirexiao applied externally for lumbar region and conductive heat therapy on chronic non-bacterial prostatitis was satisfactory.%目的:观察湿热消腰部外敷热导入疗法对慢性非细菌性前列腺炎的临床疗效.方法:将160例慢性非细菌性前列腺炎患者随机分为治疗组和对照组,分别给予湿热消腰部外敷热导入加前列安栓、前列安栓,均以30天为1个疗程.观察治疗前后各组患者的NIH-CPSI评分、中医证候学评分、前列腺液白细胞计数及前列腺炎pH值,判断临床疗效.结果:治疗后,两组总有效率分别为84.21%和68.92%,治疗组优于对照组(P<0.05).在NIH-CPSI评分、中医证候学评分、前列腺液白细胞计数及前列腺炎pH值方面,差异均有统计学意义(P<0.01).结论:湿热消腰部外敷热导入疗法对慢性非细菌性前列腺炎有较好的疗效.

  14. External combustion wankel engine for solar applications

    Energy Technology Data Exchange (ETDEWEB)

    Kovarsky, N.; Kaftori, D.; Gamzon, E.; Dgani, E. [Silver Arrow (Israel)

    1999-03-01

    An External Combustion Wankel Engine (ECWE), intended for use in a dish-engine solar power plant is discussed. The engine operates in a Brayton cycle using a gaseous working fluid, which is heated outside of the engine by concentrated solar radiation or fossil fuel. A computer simulation code that models the ECWE's operation and performance has been developed The program takes into account all of the engine's characteristics, subsystems and operating conditions. In the present work, the advantages and features of ECWE are considered in detail, together with simulation results of its performance. (authors)

  15. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  16. Heating automation

    OpenAIRE

    Tomažič, Tomaž

    2013-01-01

    This degree paper presents usage and operation of peripheral devices with microcontroller for heating automation. The main goal is to make a quality system control for heating three house floors and with that, increase efficiency of heating devices and lower heating expenses. Heat pump, furnace, boiler pump, two floor-heating pumps and two radiator pumps need to be controlled by this system. For work, we have chosen a development kit stm32f4 - discovery with five temperature sensors, LCD disp...

  17. Simultaneous high-P, high-T X ray diffraction study of beta-(Mg,Fe)2SiO4 to 26 GPa and 900 K

    Science.gov (United States)

    Fei, Yingwei; Mao, Ho-Kwang; Shu, Jinfu; Parthasarathy, G.; Bassett, W. A.; Ko, Jaidong

    1992-01-01

    Attention is given to the lattice parameters of beta phase (Mg(0.84)Fe(0.16))2SiO4 determined by X-ray diffraction using synchrotron radiation under simultaneous high-pressure and high-temperature conditions. The experiments were conducted up to a pressure of 26 GPa and a temperature of 900 K. High pressures were generated in a Mao-Bell type diamond anvil cell using neon gas as a pressure medium. The sample was heated with an external Ni80Cr20 wire heater. Gold was used as an internal high-pressure calibrant at high temperature. The experimental data indicated the anisotropic behavior of the beta phase at high pressure and temperature, i.e., the c axis is about 35-percent more expansible and about 25-percent more compressible than the a and b axes. A value of 5.1 +/-0.8 was found for the Anderson-Grueneisen parameter. The derived thermodynamic parameters for the beta phase are summarized.

  18. Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20 GPa

    Science.gov (United States)

    Fei, Yingwei; Mao, Ho-Kwang; Hemley, Russell J.

    1993-01-01

    Equation of state properties of ice VII and fluid H2O at high pressures and temperatures have been studied experimentally from 6 to 20 GPa and 300-700 K. The techniques involve direct measurements of the unit-cell volume of the solid using synchrotron X-ray diffraction with an externally heated diamond-anvil cell. The pressure dependencies of the volume and bulk modulus of ice VII at room temperature are in good agreement with previous synchrotron X-ray studies. The thermal expansivity was determined as a function of pressure and the results fit to a newly proposed phenomenological relation and to a Mie-Gruneisen equation of state formalism. The onset of melting of ice VII was determined directly by X-ray diffraction at a series of pressures and found to be in accord with previous volumetric determinations. Thermodynamic calculations based on the new data are performed to evaluate the range of validity of previously proposed equations of state for fluid water derived from static and shock-wave compression experiments and from simulations.

  19. Assessment of environmental external effects in power generation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H.; Morthorst, P.E.; Schleisner, L. [Risoe National Lab. (Denmark); Meyer, N.I.; Nielsen, P.S.; Nielsen, V. [The Technical Univ. of Denmark (Denmark)

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs.

  20. Low input voltage converter/regulator minimizes external disturbances

    Science.gov (United States)

    1966-01-01

    Low-input voltage converter/regulator constructed in a coaxial configuration minimizes external magnetic field disturbance, suppresses radio noise interference, and provides excellent heat transfer from power transistors. It converts the output of fuel and solar cells, thermionic diodes, thermoelectric generators, and electrochemical batteries to a 28 V dc output.

  1. External fixators in haemophilia.

    Science.gov (United States)

    Lee, V; Srivastava, A; PalaniKumar, C; Daniel, A J; Mathews, V; Babu, N; Chandy, M; Sundararaj, G D

    2004-01-01

    External fixators (EF) are not commonly used for patients with haemophilia. We describe the use of EF (Ilizarov, AO- uni- and bi-planar fixators and Charnley clamp) in nine patients (mean age: 19.2 years; range: 9-37) with haemophilia for the following indications - arthrodesis of infected joints, treatment of open fractures and osteoclasis. EF required an average of nine skin punctures [range: 4-17 were maintained for a period of 15 weeks (range: 8-29.5), without regular factor replacement, till bone healing was adequate and were removed with a single dose of factor infusion]. The mean preoperative factor level achieved was 85% (range: 64-102%). Much lower levels were subsequently maintained till wound healing. The average total factor consumption was 430 IU kg(-1) (range: 240-870), administered over a period of 17 days (range: 9-44). There were no major complications related to EF except in a patient who developed inhibitors. In conclusion, EF can be used safely in haemophilic patients who do not have inhibitors and does not require prolonged factor replacement.

  2. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  3. Mechanical autonomous stochastic heat engines

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team

    Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.

  4. Skepticism, contextualism, externalism and modality

    National Research Council Canada - National Science Library

    Ron Wilburn

    2006-01-01

    .... However, because efforts to contextualize externalism via subjunctive conditional analysis court circularity, it is only on an internalistic interpretation that contextualist strategies can even be motivated...

  5. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  6. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  7. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summaris...... how the methodology has been applied so far in a previous Danish study. Finally, results of a case study are reported. Exposure factors have been calculated for various urban categories in the Greater Copenhagen Area...

  8. ExternE transport methodology for external cost evaluation of air pollution (DK)

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.; Berkowicz, R.; Brandt, J. [National Environmental Research Inst., Dept. of Atmospheric Environment (Denmark); Willumsen, E.; Kristensen, N.B. [COWI (Denmark)

    2004-07-01

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AiGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Inititally, a brief description of the ExternE Transport methodology is given and it is summarised how the methodology has been applied so far in a previous Danish study. Finally, results of a case study are reported. Exposure factors have been calculated for various urban categories in the Greater Copenhagen Area. (au)

  9. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  10. Retrofitting Systems for External Walls

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report, 9 different external and internal retrofitting systems are analyzed using numerical calculations. The analysis focuses on the thermal bridge effects in the different systems, and on this basis it is discussed whether internal or external retrofitting has the most advantages...

  11. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...... towards the conditions for the use of the external benchmarks we provide more insights to some of the issues and challenges that are related to using this mechanism for performance management and advance competitiveness in organizations....

  12. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  13. 清开灵注射液联合小儿清肺化痰颗粒治疗小儿上呼吸道感染风热证100例%The clinical effect and segurity of Qingkailing injection in combination with Qingfeihuatan particles in treatment of pediatrics upper respiratory tract infection External wind-heat syndrome

    Institute of Scientific and Technical Information of China (English)

    潘鸿

    2015-01-01

    目的:观察和评价清开灵注射液联合小儿清肺化痰颗粒治疗小儿上呼吸道感染风热证的临床疗效及安全性.方法:采用随机对照试验设计,将200例患儿随机分为治疗组和对照组各100例.对照组给予利巴韦林注射液静脉滴注,治疗组给予清开灵注射液滴注联合口服小儿清肺化痰颗粒治疗,两组患儿疗程为5~7天.评定治疗后两组总有效率,观察药物退热起效时间、体温恢复正常时间及安全性.结果:治疗结束时,治疗组总有效率为95.00%,对照组总有效率为78.00%,差异有统计学意义(P0.05).结论:清开灵注射液联合小儿清肺化痰颗粒治疗小儿上呼吸道感染风热证安全性好,可显著缩短退热起效时间及体温恢复正常时间,且疗效优于利巴韦林注射液.%Objective:To abserve and evaluate the clinical effect and segurity of Qingkailing injection in combination with Qingfeihuatan particles in treatment of pediatrics upper respiratory tract infection External wind-heat syndrome. Methods: With randomized controlled trial design, 200 cases were randomly divided into a treatment group(100cases) and a controlled group(100cases).The controlled group was treated with ribavirin injection ,the treatment group was treated with Qingkailing injection in combination with Qingfeihuatan particles. The treatment course for 5 to 7 days.Evaluate total effective rate of two groups after treatment.To observe the onset time of the drug, the time of body temperature returned to normal and the safety. Results: At the end of the treatment, the total effective rate of treatment group was 95.00%, controlled group was 78.00%, the difference was statistically significant (P0.05). Conclusion: Qingkailing injection in combination with Qingfeihuatan particles in treatment of pediatris upper respiratory tract infection External wind-heat syndrome can significantly shorten the onset time and the time of body temperature returned to normal, and

  14. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  15. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs.

  16. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  17. Combination of external loads

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Tarp Johansen, N.J.; Joergensen, H. [Forskningscenter Risoe, Roskilde (Denmark); Gravesen, H.; Soerensen, S.L. [Carl Bro, Glostrup (Denmark); Pedersen, J. [Elsam Engineering, Fredericia (Denmark); Zorn, R.; Hvidberg Knudsen, M. [DHI Water and Environment, Hoersholm (Denmark); Voelund, P. [Energi E2, Koebenhavn (Denmark)

    2003-09-01

    The project onbectives have been: To improve and consequently opimise the basis for design of offshore wind turbines. This is done through 1) mapping the wind, wave ice and current as well as correlations of these, and 2) by clarifyring how these external conditions transform into loads. A comprehensive effort has been made to get a thorough understanding of the uncertainties that govern the reliability of wind turbines with respect to wind and wave loading. One of the conclusions is that the reliability of wind turbines is generally lower, than the average reliability of building structures that are subject not only to environmental loads, which are very uncertain, but also imposed loads and self weight, which are less uncertain than the environmental loads. The implication is that, at the moment lower load partial safety factors for onshore wind turbines cannot be recommended. For the combination of wind and wave design loads the problem is twofold: 1). A very conservative design will be generated by simply adding the individual wind and wave design loads disregarding the independence of the short-term fluctuations of wind and wave loads. 2). Characteristic values and partial safety factors for wind and wave loads are not defined similarly. This implies that the reliability levels of turbine support structures subject to purely aerodynamic loads and subject to purely hydrodynamic loads are not identical. For the problem of combining aerodynamic design loads and hydrodynamic design loads two results have been obtained in the project: 1). By simple means a site specific wave load safety factor rendering the same safety level for hydrodynamic loads as for aerodynamic loads is derived, and next, by direct square summation of extreme fluctuations, the wind and wave load safety factors are weighted. 2). Under the assumptions that a deep water site is considered and that the wave loading is a fifty-fifty mix of drag and inertia the same wind and wave load safety factor

  18. HEAT RECUPERATION

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2011-01-01

    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. new constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  19. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L.; Sieverts Nielsen, P. [eds.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs.

  20. Externality and burnout among dentists.

    Science.gov (United States)

    St-Yves, A; Freeston, M H; Godbout, F; Poulin, L; St-Amand, C; Verret, M

    1989-12-01

    This study investigates the relationship between burnout as measured by the Maslach Burnout Inventory and locus of control as measured by the Adult Nowicki-Strickland Internal-External Locus of Control (ANS-IE) for 82 dentists. Significant Pearson correlations between two Maslach subscales and locus of control show Personal Accomplishment to be negatively associated -.31 and Emotional Exhaustion to be positively correlated .21 to externality.

  1. Relatie interne en externe audit

    OpenAIRE

    Ghys, Emelie

    2011-01-01

    In het eerste hoofdstuk wordt de probleemstelling van deze eindverhandeling besproken. Interne en externe audit worden de laatste jaren internationaal en nationaal meer en meer erkend in het bedrijfsleven. Aanleiding voor de toenemende belangstelling van de interne en externe auditfunctie zijn de verschillende boekhoudschandalen rond corporate governance of deugdelijk bestuur. Deze financiële mislukkingen leidden wereldwijd tot diverse wetten, nieuwe regels en verbeterde standaarden om zo een...

  2. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... towards the conditions for the use of the external benchmarks we provide more insights to some of the issues and challenges that are related to using this mechanism for performance management and advance competitiveness in organizations....

  3. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  4. Experimental investigations on an axial grooved cryogenic heat pipe

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Muniappan

    2012-01-01

    Full Text Available This paper deals with development and studies of a trapezoidal axial grooved nitrogen heat pipe. A special liquid nitrogen cryostat has been designed and developed for evaluating the performance of heat pipe where the condenser portion is connected to the cold sink externally. Experiments have been performed on the heat pipe as well as on an equivalent diameter copper rod at different heat loads. The steady state performance of the heat pipe is compared with that of copper rod.

  5. The Importance of Engine External's Health

    Science.gov (United States)

    Stoner, Barry L.

    2006-01-01

    Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.

  6. External Costs Related to Power Production Technologies

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1997-01-01

    The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  7. External Costs Related to Power Production Technologies

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1997-01-01

    The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective of...

  8. The Effects of Internal and External Irreversibility of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Wang, Fu-Jen; Chiou, Jeng-Shing

    The concept of finite-time thermodynamics is employed to investigate the optimal refrigeration rate for an irreversible refrigeration cycle. The heat transfer between the system (internal) fluid and cooling (external) fluid takes place at the actual heat exchanger, which has the finite-size heat transfer area and the realistic heat transfer effectiveness. The internal irreversibility results from the compression process and the expansion process are also considered. The optimal refrigeration rate is calculated and expressed in terms of the irreversibility parameter (Ir), coefficient of performance (COP), the time ratio(γ) of heat transfer processes and the effectiveness of heat exchanger. The derived COP which consider both the external and internal irreversibility can thus be considered as the benchmark value for a practical refrigeration cycle, and the parametric study can provide the basis for both determination of optimal operating conditions and design of a practical refrigeration cycle.

  9. Investigation of Multiscale Non-equilibrium Flow Dynamics Under External Force Field

    CERN Document Server

    Xiao, Tianbai

    2016-01-01

    The multiple scale non-equilibrium gaseous flow behavior under external force field is investigated. Both theoretical analysis based on the kinetic model equation and numerical study are presented to demonstrate the dynamic effect of external force on the flow evolution, especially on the non-equilibrium heat flux. The current numerical experiment is based on the well-balanced unified gas-kinetic scheme (UGKS), which presents accurate solutions in the whole flow regime from the continuum Navier-Stokes solution to the transition and free molecular ones. The heat conduction in the non-equilibrium regime due to the external forcing term is quantitatively investigated. In the lid-driven cavity flow study, due to the external force field the density distribution inside cavity gets stratified and a multiscale non-equilibrium flow transport appears in a single gas dynamic system. With the increment of external forcing term, the flow topological structure changes dramatically, and the temperature gradient, shearing s...

  10. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  11. Thermodynamic cost of external control

    Science.gov (United States)

    Barato, Andre C.; Seifert, Udo

    2017-07-01

    Artificial molecular machines are often driven by the periodic variation of an external parameter. This external control exerts work on the system of which a part can be extracted as output if the system runs against an applied load. Usually, the thermodynamic cost of the process that generates the external control is ignored. Here, we derive a refined second law for such small machines that include this cost, which is, for example, generated by free energy consumption of a chemical reaction that modifies the energy landscape for such a machine. In the limit of irreversible control, this refined second law becomes the standard one. Beyond this ideal limiting case, our analysis shows that due to a new entropic term unexpected regimes can occur: the control work can be smaller than the extracted work and the work required to generate the control can be smaller than this control work. Our general inequalities are illustrated by a paradigmatic three-state system.

  12. Leveraging External Sources of Innovation

    DEFF Research Database (Denmark)

    West, Joel; Bogers, Marcel

    2014-01-01

    This paper reviews research on open innovation that considers how and why firms commercialize external sources of innovations. It examines both the “outside-in” and “coupled” modes of open innovation. From an analysis of prior research on how firms leverage external sources of innovation...... cited work beyond those journals. A review of 291 open innovation-related publications from these sources shows that the majority of these articles indeed address elements of this inbound open innovation process model. Specifically, it finds that researchers have front-loaded their examination...... external innovations create value rather than how firms capture value from those innovations. Finally, the interaction phase considers both feedback for the linear process and reciprocal innovation processes such as cocreation, network collaboration, and community innovation. This review and synthesis...

  13. Magnetically driven quantum heat engine

    Science.gov (United States)

    Muñoz, Enrique; Peña, Francisco J.

    2014-05-01

    We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.

  14. Optimal Auctions with Financial Externalities

    NARCIS (Netherlands)

    Maasland, E.; Onderstal, A.M.

    2002-01-01

    We construct optimal auctions when bidders face financial externalities.In a Coasean World, in which the seller cannot prevent a perfect resale market, nor withhold the object, the lowest-price all-pay auction is optimal.In a Myersonean World, in which the seller can both prevent resale after the au

  15. Organizing for External Knowledge Sourcing

    DEFF Research Database (Denmark)

    Rabbiosi, Larissa; Reichstein, Toke

    2011-01-01

    The aim of this article is to provide an introduction to the special issue. We briefly consider the external knowledge sourcing and organizing for innovation literatures, which offer a background for the special issue, and we highlight their mutual dialogue. We then illustrate the main findings...

  16. Measuring Externalities in Program Evaluation

    NARCIS (Netherlands)

    Janssens, Wendy

    2005-01-01

    Impact evaluations of development programmes usually focus on a comparison of participants with a control group. However, if the programme generates externalities for non-participants such an approach will capture only part of the programme's impact. Based on a unique large-scale quantitative survey

  17. Lupus vulgaris of external nose.

    Science.gov (United States)

    Bhandary, Satheesh Kumar; Ranganna, B Usha

    2008-12-01

    Lupus vulgaris is the commonest form of cutaneous tuberculosis which commonly involve trunk and buttocks. Lupus vulgaris affecting nose and face, are rarely reported in India. This study reports an unusual case of lupus vulgaris involving the external nose that showed dramatic outcome after six months of anti- tubercular treatment.

  18. [Treatment by external insulin pump].

    Science.gov (United States)

    Clavel, Sylvaine

    2010-12-01

    Since the recent recommendations by the French speaking association for research on diabetes and metabolic illnesses (Alfediam), treatment by insulin pump has found itself in competition with basal-bolus, a procedure using similar injections of insulin which has become a benchmark treatment. The latest Alfediam guidelines focus on defining ways of treating diabetics with an external insulin pump.

  19. Matchings with Externalities and Attitudes

    DEFF Research Database (Denmark)

    Branzei, Simina; Michalak, Tomasz; Rahwan, Talal;

    2013-01-01

    Two-sided matchings are an important theoretical tool used to model markets and social interactions. In many real-life problems the utility of an agent is influenced not only by their own choices, but also by the choices that other agents make. Such an influence is called an externality. Whereas ...

  20. Post-external dacryocystorhinostomy lagophthalmos.

    Science.gov (United States)

    Odat, Thabit A; Odat, Haitham A; Khraisat, Heba; Odat, Mohannad A; Alzoubi, Firas Q

    2015-06-01

    To describe lagophthalmos and eyelid closure abnormality after external dacryocystorhinostomy (DCR). A retrospective review of medical records and postoperative photographs of 79 patients who underwent external DCR for nasolacrimal duct obstruction and developed eyelid closure abnormality and lagophthalmos with or without exposure keratopathy was conducted. Collected data included age, sex, indication for surgery, laterality, length and type of incision, length of follow-up duration, presence of punctate epithelial keratopathy, and time for resolution of eyelid closure abnormalities. Twenty-seven patients with 28 external dacryocystorhinostomy had postoperative eyelid closure abnormalities. Male to female ratio was 1:6. The mean age was 40.1 years (range 9-80 years). All surgeries were performed through diagonal skin incision. Lagophthalmos involving the medial third of the palpebral fissure was noticed in 28.6 % of cases. All patients had hypometric blink mainly of the upper eyelid. One patient had punctate epithelial keratopathy. Resolution of lagophthalmos was noticed over a period of 1-5 weeks with an average of 3 weeks. None of the patients continued to have residual hypometric blink or punctate keratopathy at the last follow-up time. The mean follow-up period was 4.2 months (range 3-6 months). Eyelid closure abnormality and lagophthalmos after external DCR are underestimated problems. Spontaneous resolution is seen in all cases weeks to months after surgery.

  1. Femoral Reconstruction Using External Fixation

    Directory of Open Access Journals (Sweden)

    Yevgeniy Palatnik

    2011-01-01

    Full Text Available Background. The use of an external fixator for the purpose of distraction osteogenesis has been applied to a wide range of orthopedic problems caused by such diverse etiologies as congenital disease, metabolic conditions, infections, traumatic injuries, and congenital short stature. The purpose of this study was to analyze our experience of utilizing this method in patients undergoing a variety of orthopedic procedures of the femur. Methods. We retrospectively reviewed our experience of using external fixation for femoral reconstruction. Three subgroups were defined based on the primary reconstruction goal lengthening, deformity correction, and repair of nonunion/bone defect. Factors such as leg length discrepancy (LLD, limb alignment, and external fixation time and complications were evaluated for the entire group and the 3 subgroups. Results. There was substantial improvement in the overall LLD, femoral length discrepancy, and limb alignment as measured by mechanical axis deviation (MAD and lateral distal femoral angle (LDFA for the entire group as well as the subgroups. Conclusions. The Ilizarov external fixator allows for decreased surgical exposure and preservation of blood supply to bone, avoidance of bone grafting and internal fixation, and simultaneous lengthening and deformity correction, making it a very useful technique for femoral reconstruction.

  2. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  3. Plasma heating by electric field compression.

    Science.gov (United States)

    Avinash, K; Kaw, P K

    2014-05-09

    Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.

  4. Defensive externality and blame projection following failure.

    Science.gov (United States)

    Hochreich, D J

    1975-09-01

    This study focuses upon the relationship between internal-external control and defensive blame projection. Trust was used as a moderator variable for making differential predictions concerning the behavior of two subgroups of externals: defensive externals, whose externality is presumed to reflect primarily a verbal technique of defense, and congruent externals, whose externality reflects a more genuine belief that most outcomes are determined by forces beyond their personal control. As predicted, defensive externals showed a stronger tendency than did congruent externals and internals to resort to blame projection following failure at an achievement task. There were no group differences in attribution following task success. Defensive externals were found to be more responsive to negative feedback than were congruent externals.

  5. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  6. Fundamental optimal relation of a generalized irreversible Carnot heat pump with complex heat transfer law

    Indian Academy of Sciences (India)

    Jun Li; Lingen Chen; Fengrui Sun

    2010-02-01

    The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.

  7. Variable velocity in solar external receivers

    Science.gov (United States)

    Rodríguez-Sánchez, M. R.; Sánchez-González, A.; Acosta-Iborra, A.; Santana, D.

    2017-06-01

    One of the major problems in solar external receivers is tube overheating, which accelerates the risk of receiver failure. It can be solved implementing receivers with high number of panels. However, it exponentially increases the pressure drop in the receiver and the parasitic power consumption of the Solar Power Tower (SPT), reducing the global efficiency of the SPT. A new concept of solar external receiver, named variable velocity receiver, is able to adapt their configuration to the different flux density distributions. A set of valves allows splitting in several independent panels those panels in which the wall temperature is over the limit. It increases the velocity of the heat transfer fluid (HTF) and its cooling capacity. This receiver does not only reduce the wall temperature of the tubes, but also simplifies the control of the heliostat field and allows to employ more efficient aiming strategies. In this study, it has been shown that variable velocity receiver presents high advantages with respect to traditional receiver. Nevertheless, more than two divisions per panels are not recommendable, due to the increment of the pressure drop over 70 bars. In the design point (12 h of the Spring Equinox), the use of a variable number of panels between 18 and 36 (two divisions per panel), in a SPT similar to Gemasolar, improves the power capacity of the SPT in 5.7%, with a pressure drop increment of 10 bars. Off-design, when the flux distribution is high and not symmetric (e.g. 10-11 h), the power generated by the variable velocity receiver is 18% higher than the generated by the traditional receiver, at these hours the pressure drop increases almost 20 bars.

  8. Dipolar fluids under external perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Sabine H L [Stranski-Laboratorium fuer Physikalische und Theoretische Chemie Sekretariat TC7, Technische Universitaet Berlin, Strasse des 17. Juni 124, D-10623 Berlin (Germany)

    2005-04-20

    We discuss recent developments and present new findings on the structural and phase properties of dipolar model fluids influenced by various external perturbations. We concentrate on systems of spherical particles with permanent (point) dipole moments. Starting from what is known about the three-dimensional systems, particular emphasis is given to dipolar fluids in different confining situations involving both simple and complex (disordered) pore geometries. Further topics concern the effect of quenched positional disorder, the influence of external (electric or magnetic) fields, and the fluid-fluid phase behaviour of various dipolar mixtures. It is demonstrated that due to the translational-orientational coupling and due to the long range of dipolar interactions even simple perturbations such as hard walls can have a profound impact on the systems. (topical review)

  9. External observer reflections on QBism

    CERN Document Server

    Khrennikov, Andrei

    2015-01-01

    In this short review I present my personal reflections on QBism. I have no intrinsic sympathy neither to QBism nor to subjective interpretation of probability in general. However, I have been following development of QBism from its very beginning, observing its evolution and success, sometimes with big surprise. Therefore my reflections on QBism can be treated as "external observer" reflections. I hope that my representation of this interpretation of quantum mechanics (QM) has some degree of objectivity. It may be useful for researchers who are interested in quantum foundations, but do not belong to the QBism-community, because I tried to analyze essentials of QBism critically (i.e., not just emphasizing its advantages, as in a typical publication of QBists). QBists may be interested as well - in comments of an external observer who monitored development of this approach to QM during last 16 years. The second part of the paper is devoted to interpretations of probability, objective versus subjective, and view...

  10. Firm Search for External Knowledge

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Grimpe, Christoph

    2012-01-01

    The innovation performance of modern firms is increasingly determined by their ability to search and absorb external knowledge. However, after a certain threshold firms "oversearch" their environment and innovation performance declines. In this paper, we argue that prior literature has largely...... ignored the institutional context that provides or denies access to external knowledge at the country level. Combining institutional and knowledge search theory, we suggest that the market orientation of the institutional environment and the magnitude of institutional change influence when firms begin...... to experience the negative performance effects of oversearch. Based on a comprehensive sample of almost 8,000 firms from ten European countries, we find that institutions matter considerably for firms' search activity. Higher market orientation of institutions increases the effectiveness of firms' search...

  11. MGR External Events Hazards Analysis

    Energy Technology Data Exchange (ETDEWEB)

    L. Booth

    1999-11-06

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses.

  12. Heat emergencies

    Science.gov (United States)

    ... death. The early symptoms of heat cramps include: Muscle cramps and pains that most often occur in the ... do if salt beverages are not available. For muscle cramps , give beverages as noted above and massage affected ...

  13. Network externalities across financial institutions

    OpenAIRE

    Castro Iragorri, Carlos Alberto; Preciado Pua, Sergio Andrés; Ordóñez Herrera, Juan Sebastián

    2016-01-01

    We propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The re...

  14. Externe Kosten in der Energiewirtschaft

    OpenAIRE

    Voß, Alfred; Friedrich, Rainer

    1994-01-01

    Als externe Effekte werden unbeteiligte Dritte betreffende Zusatzkosten oder Zusatznutzen verstanden, die sich in den jeweiligen Güterpreisen nicht wiederfinden und denen die Betroffenen nicht indifferent gegenüberstehen. Die gegenwärtige Energiebereitstellung und -nutzung ist in vielen Bereichen eine wesentliche Quelle der Belastung von Umwelt und Natur. Begriffe und Schlagworte wie Waldsterben, Tankerunglücke, Tschernobyl und Treibhauseffekt seien in diesem Zusammenhang erwähnt.

  15. Matching Games with Additive Externalities

    DEFF Research Database (Denmark)

    Branzei, Simina; Michalak, Tomasz; Rahwan, Talal

    2012-01-01

    Two-sided matchings are an important theoretical tool used to model markets and social interactions. In many real life problems the utility of an agent is influenced not only by their own choices, but also by the choices that other agents make. Such an influence is called an externality. Whereas......, optimistic, and pessimistic behaviour, and provide both computational hardness results and polynomial-time algorithms for computing stable outcomes....

  16. ENDOSCOPIC DCR VERSUS EXTERNAL DCR

    Directory of Open Access Journals (Sweden)

    Rukma

    2015-04-01

    Full Text Available PURPOSE: To compare success rates of endoscopic dacryocystorhinostomy (DCR and external DCR for acquired nasolacrimal duct obstruction (NLDO. MATERIALS AND METHODS: A prospective comparative non randomized study of 64 patients who presented with acquired NLD obstruction to a tertiary hospital. They were fully evaluated to ascertain the site of obstruction and patients with distal obstruction were included in the study. 34 patients underwent endoscopic DCR and 30 patients underwent external DCR RESULTS: 64 patients were included in the study and 72 procedures carried out. Success was achieved in 65 cases and failure in 7. Of the 7 failed cases, anatomical obstruction at the fistula site was found in 3, whereas functional failure was found in 4. In our patients, endoscopic DCR had a significantly higher success rate than external DCR, 95.23% versus 83.33% (P = 0.03. CONCLUSIONS: The success rate of Endoscopic DCR for acquired NLDO in our group of patients was 95.23%, with endoscopic surgery showing better results.

  17. Conceptual challenges for internalising externalities

    DEFF Research Database (Denmark)

    Miguel, Brandão; Weidema, Bo Pedersen

    2013-01-01

    We analyse a number of different externalities to identify conceptual challenges for the practical implementation of their internalisation. Three issues were identified: i) The balance between compensation and technology change and the respective effects on the nominal and real GDP; ii) The relev......We analyse a number of different externalities to identify conceptual challenges for the practical implementation of their internalisation. Three issues were identified: i) The balance between compensation and technology change and the respective effects on the nominal and real GDP; ii......) The relevance and efficiency of different instruments for internalisation and compensation; and iii) Implementing internalisation over large geographical and temporal distances. We find taxation to be a more relevant and efficient tool for internalisation than insurance and litigation. With increasing...... geographical and especially temporal distance between the benefitting actor and the victim of the external cost, the involvement of a non-governmental intermediate actor becomes increasingly necessary to provide the short-term capital required to ensure a successful implementation....

  18. Individuals' insight into intrapersonal externalities

    Directory of Open Access Journals (Sweden)

    David J. Stillwell

    2012-07-01

    Full Text Available An intrapersonal externality exists when an individual's decisions affect the outcomes of her future decisions. It can result in decreasing or increasing average returns to the rate of consumption, as occurs in addiction or exercise. Experimentation using the Harvard Game, which models intrapersonal externalities, has found differences in decision making between drug users and control subjects, leading to the argument that these externalities influence the course of illicit drug use. Nevertheless, it is unclear how participants who behave optimally conceptualise the problem. We report two experiments using a simplified Harvard Game, which tested the differences in contingency knowledge between participants who chose optimally and participants who did not. Those who demonstrated optimal performance exhibited both a pattern of correct responses and systematic errors to questions about the payoff schedules. The pattern suggested that they learned explicit knowledge of the change in reinforcement on a trail-by-trial basis. They did not have, or need, a full knowledge of the historical interaction leading to each payoff. We also found no evidence of choice differences between participants who were given a guaranteed payment and participants who were paid contingent on their performance, but those given a guaranteed payment were able to report more contingency knowledge as the experiment progressed, suggesting that they explored more rather than settling into a routine. Experiment 2 showed that using a fixed inter-trial interval did not change the results.

  19. High pressure synthesis of marcasite-type rhodium pernitride.

    Science.gov (United States)

    Niwa, Ken; Dzivenko, Dmytro; Suzuki, Kentaro; Riedel, Ralf; Troyan, Ivan; Eremets, Mikhail; Hasegawa, Masashi

    2014-01-21

    Marcasite-type rhodium nitride was successfully synthesized in a direct chemical reaction between a rhodium metal and molecular nitrogen at 43.2 GPa using a laser-heated diamond-anvil cell. This material shows a low zero-pressure bulk modulus of K0 = 235(13) GPa, which is much lower than those of other platinum group nitrides. This finding is due to the weaker bonding interaction between metal atoms and quasi-molecular dinitrogen units in the marcasite-type structure, as proposed by theoretical studies.

  20. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ming, L. C. [University of Hawaii; Zinin, P. V. [University of Hawaii; Sharma, S. K. [University of Hawaii

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  1. Time-resolved X-ray diffraction of Ti in dynamic-DAC

    Science.gov (United States)

    Tomasino, Dane; Yoo, Choong-Shik

    2017-01-01

    Understanding the dynamic response of solids under extreme conditions of pressure, temperature and strain rate is a fundamental scientific quest and a basic research need in materials science. Specifically, obtaining an atomistic description of structural and chemical changes of solids under rapid heating and/or compression over a large temporal, spatial and energy range is challenging but critical to understanding material stability or metastable structure, chemical mechanism, transition dynamic, and mechanical deformation. In this paper, we present time-resolved synchrotron x-ray diffraction probing the structural evolution of Ti across the α-ω phase transition in dynamic-diamond anvil cell.

  2. Experimental study of lower mantle materials by high pressure in situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Takehiko [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1999-10-01

    A new experimental system was constructed to make high pressure and temperature in situ X-ray diffraction study under lower mantle conditions. Behavior of silicates and oxides were studied using the new system, which consists of laser-heated diamond anvil cell combined with synchrotron radiation. It became clear that the behavior of garnet is very complicated and the high pressure phase(s) varices depending on the pressure, temperature, and compositions. Several new unquenchable high pressure phases were found through the present study. (author)

  3. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  4. Passive heating of the ground surface

    Directory of Open Access Journals (Sweden)

    Tyburczyk Anna

    2016-01-01

    Full Text Available The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  5. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties...

  6. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  7. Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Huai-En; Chen, Mei-Shiue; Chen, Jyun-Wei; Lin, Wei-Keng; Pei, Bau-Shei [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.

  8. Skepticism, Contextualism, Externalism and Modality

    Directory of Open Access Journals (Sweden)

    Ron Wilburn

    2006-12-01

    Full Text Available In this paper, I argue for the following claims. Contextualist strategies to tame or localize epistemic skepticism are hopeless if contextualist factors are construed internalistically. However, because efforts to contextualize externalism via subjunctive conditional analysis court circularity, it is only on an internalistic interpretation that contextualist strategies can even be motivated. While these claims do not give us an argument for skepticism, they do give us an argument that contextualism, as such, is not likely to provide us with an argument against skepticism.

  9. Leveraging External Sources of Innovation

    DEFF Research Database (Denmark)

    West, Joel; Bogers, Marcel

    2014-01-01

    own specific set of mechanisms and conditions. Integrating innovations has been mostly studied from an absorptive capacity perspective, with less attention given to the impact of competencies and culture (including “not invented here”). Commercializing innovations puts the most emphasis on how......” in a way inconsistent with earlier definitions in innovation management. The paper concludes with recommendations for future research that include examining the end-to-end innovation commercialization process, and studying the moderators and limits of leveraging external sources of innovation....

  10. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  11. Inductive heating of conductive nanoparticles

    CERN Document Server

    Nordebo, Sven

    2016-01-01

    We consider the heating of biological tissue by injecting gold nanoparticles and subjecting the system to an electromagnetic field in the radio frequency spectrum. There are results that indicate that small conducting particles can substantially increase the heating locally and thus provide a method to treat cancer. However, recently there are also other publications that question whether metal nanoparticles can be heated in radiofrequency at all. This paper presents a simplified analysis and some interesting observations regarding the classical electromagnetic background to this effect. Here, it is assumed that the related dipole effects are based solely on conducting nanospheres that are embedded in a surrounding medium. From this point of view it is concluded that the effect of using a capactive coupling i.e., a strong electric field to induce electric dipoles can be disregarded unless the volume fraction of the gold nanoparticles is unrealistically high or if there are some other external electric dipole ...

  12. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  13. Heat transfer

    CERN Document Server

    Holman, J P

    2010-01-01

    As one of the most popular heat transfer texts, Jack Holman's "Heat Transfer" is noted for its clarity, accessible approach, and inclusion of many examples and problem sets. The new tenth edition retains the straight-forward, to-the-point writing style while covering both analytical and empirical approaches to the subject. Throughout the book, emphasis is placed on physical understanding while, at the same time, relying on meaningful experimental data in those situations that do not permit a simple analytical solution. New examples and templates provide students with updated resources for computer-numerical solutions.

  14. Empirical Evaluation On External Debt Of Malaysia

    OpenAIRE

    Nor’Aznin Abu Bakar; Sallahuddin Hassan

    2011-01-01

    This study analyzes the effects of external debts on economic growth in Malaysia. The analysis is conducted both at aggregate and disaggregate levels. The empirical results are based on VAR estimates using GDP, external debts, capital accumulation, labor force and human capital. Estimation results at the aggregate level indicate that total external debts affect economic growth positively. In particular, one percentage point increase in total external debts generates 1.29 percentage point of e...

  15. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  16. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  17. Thermal design of the Space Shuttle External Tank

    Science.gov (United States)

    Warmbrod, J. D.; Vaniman, J. L.; Elam, B. F.

    1981-01-01

    The history of the engineering and manufacturing requirements leading to the final Thermal Protection System (TPS) for the External Tank (ET) is presented. The thermal design for the ET must be optimized, based on considerations of cost, weight, and application of the TPS. The significant thermal requirements include the structural and component temperature limits, the propellant quality, the minimization of ice and frost, no air liquefaction, and no film boiling. The TPS materials selected to meet the requirements are a low density closed cell foam (CPR-488) and two light-weight ablators (SLA-56 and MA-25s). The first four flights of the Space Shuttle (1981) will measure and evaluate external environmental, structural, propulsion, electrical, and engine performance data. The ET will be instrumented to measure acoustics, pressures, heat transfer, vibration, temperatures, and structural strains. TPS weight reductions are planned for future ETs through the use of a comprehensive thermal instrumentation system.

  18. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    Science.gov (United States)

    Katunská, Jana; Bullová, Iveta; Špaková, Miroslava

    2016-12-01

    The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now), by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  19. P-V-T equations of state of lower mantle minerals: Constraints on mantle composition models

    Science.gov (United States)

    Fei, Y.; Zhang, L.; Frank, M.; Corgne, A.; Wheeler, K.; Meng, Y.

    2004-12-01

    Ferropericlase (Mg,Fe)O is likely a stable phase coexisting with silicate perovskite in the Earth's lower mantle. Determination of a reliable P-V-T equation-of-state of this phase is therefore crucial for developing compositional and mineralogical models of the Earth's interior. In this study, we report new compression data on ferropericlase up to 136 GPa, covering the entire pressure range of the lower mantle. The experiments were performed at the HPCAT 16-ID-B beamline (Advanced Photon Source), using monochromatic X-radiation and a CCD area detector. We used (Mg0.6Fe0.4)O as the starting material. The powdered sample was sandwiched between NaCl and a mixture of NaCl-Au in an externally heated high-temperature diamond anvil cell. The sample was annealed at each pressure increment by laser heating. High-quality diffraction data were collected up to 136 GPa. The same starting material was also studied up to 27 GPa and 2173 K in a multi-anvil apparatus by X-ray diffraction. A reliable P-V-T equation of state for (Mg0.6Fe0.4)O was developed by combining the two data sets. The new results, together with our recent P-V-T data for Al-bearing perovskite up to 105 GPa and 1000 K, provide solid density measurements for the two most important lower mantle minerals under simultaneous high pressure and temperature conditions. The new data are used to model the density profile of the lower mantle and provide tight constraints on its chemical composition.

  20. High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state

    Science.gov (United States)

    Noguchi, Masanao; Komabayashi, Tetsuya; Hirose, Kei; Ohishi, Yasuo

    2013-01-01

    In order to examine pressure-volume-temperature ( P- V- T) relations for CaSiO3 perovskite (Ca-perovskite), high-temperature compression experiments with in situ X-ray diffraction were performed in a laser-heated diamond anvil cell (DAC) to 127 GPa and 2,300 K. We also employed an external heating system in the DAC in order to obtain P- V data at a moderate temperature of 700 K up to 113 GPa, which is the reference temperature for constructing an equation of state. The P- V data at 700 K were fitted to the second-order Birch-Murnaghan equation of state, yielding K 700,1bar = 207 ± 4 GPa and V 700,1bar = 46.5 ± 0.1 Å3. Thermal pressure terms were evaluated in the framework of the Mie-Grüneisen-Debye model, yielding γ 700,1bar = 2.7 ± 0.3, q 700,1bar = 1.2 ± 0.8, and θ 700,1bar = 1,300 ± 500 K. A thermodynamic thermal pressure model was also employed, yielding α700,1bar = 5.7 ± 0.5 × 10-5/K and (∂ K/∂ T) V = -0.010 ± 0.004 GPa/K. Computed densities along a lower mantle geotherm demonstrate that Ca-perovskite is denser than the surrounding lower mantle, suggesting that Ca-perovskite-rich rocks do not rise up through the lower mantle. One of such rocks might be a residue of partial melting of subducted mid-oceanic ridge basalt (MORB) at the base of the mantle. Since the partial melt is FeO-rich and therefore denser than the mantle, all the components of subducted MORB may not return to shallow levels.

  1. Quantum Electrodynamics on background external fields

    CERN Document Server

    Marecki, P

    2003-01-01

    The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.

  2. 46 CFR 154.452 - External pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false External pressure. 154.452 Section 154.452 Shipping... Independent Tank Type C and Process Pressure Vessels § 154.452 External pressure. The design external pressure...) for tanks without a vacuum relief valve. P2=0, or the pressure relief valve setting for an enclosed...

  3. 46 CFR 64.19 - External pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false External pressure. 64.19 Section 64.19 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.19 External pressure. (a) A tank without a vacuum breaker must be designed to withstand an external pressure of 71/2 psig or more. (b) A tank with a vacuum breaker...

  4. 49 CFR 195.108 - External pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External pressure. 195.108 Section 195.108 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.108 External pressure. Any external pressure that will be exerted on the...

  5. Quantum electrodynamics on background external fields

    OpenAIRE

    2003-01-01

    The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.

  6. Infrared heating

    Science.gov (United States)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  7. Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing

    Institute of Scientific and Technical Information of China (English)

    FUZun-Tao; LIUShi-Da; LIUShi-Kuo

    2004-01-01

    The cubic nonlinear Schroedinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial cnvelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.

  8. Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2004-01-01

    The cubic nonlinear Schrodinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.

  9. Electromagnetic enhancement of turbulent heat transfer

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    We performed large eddy simulations (LES) of the turbulent natural convection of an electrically conductive fluid (water with 7% Na2SO4 electrolyte solution) in a moderate (4:4:1) aspect ratio enclosure heated from below and cooled from above and subjected to external nonuniformly distributed electr

  10. Externally Wetted Ionic Liquid Thruster

    Science.gov (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  11. External symmetry in general relativity

    CERN Document Server

    Cotaescu, I I

    2000-01-01

    We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

  12. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube

    Science.gov (United States)

    Hatami, N.; Kazemnejad Banari, A.; Malekzadeh, A.; Pouranfard, A. R.

    2017-02-01

    In this study, the effects of magnetic field on forced convection heat transfer of Fe3O4-water nanofluid with laminar flow regime in a horizontal pipe under constant heat flux conditions were studied, experimentally. The convective heat transfer of magnetic fluid flow inside the heated pipe with uniform magnetic field was measured. Fe3O4 nanoparticles with diameters less than 100 nm dispersed in water with various volume concentrations are used as the test fluid. The effect of the external magnetic field (Ha = 33.4 ×10-4 to 136.6 ×10-4) and nanoparticle concentrations (φ = 0, 0.1, 0.5, 1%) on heat transfer characteristics were investigated. Results showed that by the presence of a magnetic field, increase in nanoparticle concentration caused reduction of convection heat transfer coefficient. In this condition, heat transfer decreased up to 25%. Where, in the absence of an external magnetic field, adding magnetic nanoparticles increased convection heat transfer more than 60%. It was observed that the Nusselt number decreased by increasing the Hartmann number at a specified concentration of magnetic nanofluids, that reduction about 25% in heat transfer rate could be found.

  13. Convective heat transfer measurement involving flow past stationary circular disks

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L. (Oakland Univ., Rochester, MI (United States))

    1989-11-01

    Considerable empirical data exist in the literature for forced convection heat transfer involving external flow over a variety of geometries, and for various ranges of Reynolds number. This author is not aware of any published empirical data for forced convection heat transfer involving flow past a simple stationary circular disk, whose axis is perpendicular to the flow. Such is the purpose of this paper.

  14. Heat Related Illnesses

    Institute of Scientific and Technical Information of China (English)

    Robert Carter III; Samuel N. Cheuvront; Michael N. Sawka

    2007-01-01

    @@ KEY POINTS · Heat illnesses range in severity from mild (heat rash, heat syncope, cramps) to serious (heat exhaustion, heat injury, heat stroke). · Although heat illness can occur in anyone, an increased risk is associated with a variety of environmental factors, personal characteristics,health conditions, and medications.

  15. Geothermal district heating systems

    Science.gov (United States)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  16. Innovative heating of large-size automotive Li-ion cells

    Science.gov (United States)

    Yang, Xiao-Guang; Liu, Teng; Wang, Chao-Yang

    2017-02-01

    Automotive Li-ion cells are becoming much larger and thicker in order to reduce the cell count and increase battery reliability, posing a new challenge to battery heating from the cold ambient due to poor through-plane heat transfer across a cell's multiple layers of electrodes and separators. In this work, widely used heating methods, including internal heating using the cell's resistance and external heating by resistive heaters, are compared with the recently developed self-heating Li-ion battery (SHLB) with special attention to the heating speed and maximum local temperature critical to battery safety. Both conventional methods are found to be slow due to low heating power required to maintain battery safety. The heating power in the external heating method is limited by the risk of local over-heating, in particular for thick cells. As a result, the external heating method is restricted to ∼20 min slow heating for a 30 °C temperature rise. In contrast, the SHLB is demonstrated to reach a heating speed of 1-2 °C/sec, ∼40 times faster for large-size thick cells, with nearly 100% heating efficiency and spatially uniform heating free from safety concerns.

  17. Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.C.; Kumar, S. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    2000-10-01

    This communication presents an investigation of a finite time thermodynamic analysis of an endoreversible Stirling heat engine. Finite time thermodynamics has been applied to maximise the power output and the corresponding thermal efficiency of an endoreversible Stirling heat engine with internal heat loss in the regenerator and for the finite heat capacity of the external reservoirs. The effect of the effectiveness of the various heat exchangers, the inlet temperatures of external heat reservoirs on the power output and the corresponding thermal efficiency have been studied. It is seen that an endoreversible Stirling heat engine with an ideal regenerator ({epsilon}{sub R}=1.00) is as efficient as an endoreversible Carnot heat engine. It is also found that the maximum power output increases with the heat capacitance rates and effectiveness of the source/sink side heat exchangers while thermal efficiency increases with the effectiveness of the regenerator. (Author)

  18. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  19. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  20. Mechanical Autonomous Stochastic Heat Engine

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  1. Finned tubes for heat exchangers: Characterization and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Armand, J.-L.; Molle, N. (Centre Tecnique des Industries Aerauliques et Thermiques (CETIAT), 75 Paris (France))

    1992-06-01

    Relevant to air conditioning applications, the state-of-the-art of finned tube heat exchanger design is reviewed. The review covers the key design, performance and operation characteristics, as well as, principal heat transfer correlations for exchangers adopting 'dry' (without condensation) and 'wet' operation. External side heat transfer and pressure drop calculation methods are established for the characterization of external surfaces. For internal surfaces, correlations are given for two-phase flow and pressure drop. Reference is made to the NTU and CANUT simulation codes for the determination of optimum finned tube geometries for standard and particular operating conditions.

  2. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  3. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  4. An advanced thin foil sensor concept for heat flux and heat transfer measurements in fully turbulent flows

    Science.gov (United States)

    Mocikat, H.; Herwig, H.

    2007-02-01

    A double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil is used as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. Together with the wall and free stream temperature this measured heat flux will provide the local heat transfer coefficient h = dot{q}w/left(Tw - T_{infty}right). In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. The overall concept behind this mode of measurement is based on the local character of heat transfer in fully turbulent flows which turns out to be almost independent of the upstream thermal events.

  5. Bench heating for potplant cultivation: analysis of effects of root- and airtemperature on growth, development and production.

    NARCIS (Netherlands)

    Vogelezang, J.V.M.

    1993-01-01

    This thesis deals with the application of bench heating systems for potplant cultivation, which were developed for application of low temperature heating water from flue gas condensers and external waste heat sources. Compared to the traditional way of heating, a 'reversed' temperature gradient is c

  6. Single-Crystal Elasticity of MgO at High Pressure and Temperature

    Science.gov (United States)

    Fan, D.; Mao, Z.; Lin, J. F.; Yang, J.; Prakapenka, V.

    2014-12-01

    Periclase (MgO) is a material of key importance to Earth sciences: it is one of the most abundant minerals in Earth's lower mantle. It has the simple NaCl structure with no phase transition at least up to 200 GPa and also has very high melting temperatures above 3000 K. These wide stability ranges of MgO cover high-pressure and high-temperature conditions corresponding to the Earth's lower mantle. Therefore, precise knowledge of the thermal elastic properties of MgO, major end-members of constituent mineral phases of the lower mantle, under high pressure and high temperature condition is crucial for constructing the accurate mineralogical model of the Earth's lower mantle. Here we have measured the single-crystal elasticity of MgO using in situ Brillouin spectroscopy and X-ray diffraction at simultaneous high pressure-temperature conditions up to 33 GPa and 900 K in an externally-heated diamond anvil cell. Using the third-order Eulerian finite-strain equations to model the elasticity data, we have derived the aggregate adiabatic bulk, KS0, and shear moduli, G0, at ambient conditions: KS0=162.9 (6) GPa (the value in parentheses represents propagated uncertainties) and G0=130.7 (8) GPa, respectively, consistent with literature results. The pressure derivatives of the bulk and shear moduli at 300K are (∂KS/∂P)T=4.06 (22) and (∂G/∂P)T=2.75(±0.18), respectively, which are also consistent with previous literature results. We also derived the temperature derivatives of these moduli at constant pressure. Our results here provide accurate insights into seismic profiles and mineralogical models of the lower mantle region.

  7. Elasticity of Pyrope at High Pressures and Temperatures by Brillouin Scattering and X-ray Diffraction

    Science.gov (United States)

    Lu, C.; Mao, Z.; Lin, J.; Prakapenka, V.

    2011-12-01

    Iron-containing pyrope ((Fe,Mg)3Al2Si3O12)) is believed to be an abundant rock-forming mineral in the Earth's interior, ranging from the crust to the top of the lower mantle. Based on the pyrolite mineralogical model, pyrope accounts for 13% by volume in the upper mantle and 10% in the transition zone. Therefore, laboratory measurements on the elasticity of pyrope at relevant pressure and temperature conditions are critical in understanding the seismic images and in constraining the chemistry and mineralogy of the region. The elasticity of single-crystal pyrope has been studied up to 20 GPa at 300 K and up to 1100 K at 1 bar, yet it has never been investigated at simultaneous high pressure-temperature conditions. Thus, much of our knowledge of the upper mantle and transition zone seismic profiles largely relies on extrapolated experimental results or theoretical calculations. Here we have measured the single-crystal elasticity of garnet, ((Mg2.04Ca0.16Fe0.74)Al2.02(SiO4)3) up to 20 GPa and 750 K using combined Brillouin scattering and synchrontron X-ray diffraction in an externally-heated diamond anvil cell at GSECARS of the Advanced Photon Source, Argonne National Laboratory. We have derived full elastic constants (Cij) of the sample as a function of pressure and temperature at relevant conditions of the deep mantle. The temperature derivatives of the Cijs are similar to that at ambient pressure, indicating a minimal pressure effect. Together with the elasticity of other major mantle minerals, we have used a thermoelastic model to reconstruct the seismic velocity profile of the upper mantle and the transition zone and to reference the mineralogy of the regions.

  8. Heat transfer

    CERN Document Server

    Jorge, Kubie; Thomas, Grassie

    2012-01-01

    A core task of engineers is to analyse energy related problems. The analytical treatment is usually based on principles of thermodynamics, fluid mechanics and heat transfer, but is increasingly being handled computationally.This unique resource presents a practical textbook, written for both undergraduates and professionals, with a series of over 60 computer workbooks on an accompanying CD.The book emphasizes how complex problems can be deconstructed into a series of simple steps. All thermophysical property computations are illustrated using diagrams within text and on the compani

  9. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  10. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  11. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  12. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Emergencies A-Z Share this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  13. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  14. Quest for absolute zero in the presence of external noise.

    Science.gov (United States)

    Torrontegui, E; Kosloff, R

    2013-09-01

    A reciprocating quantum refrigerator is analyzed with the intention to study the limitations imposed by external noise. In particular we focus on the behavior of the refrigerator when it approaches the absolute zero. The cooling cycle is based on the Otto cycle with a working medium constituted by an ensemble of noninteracting harmonic oscillators. The compression and expansion segments are generated by changing an external parameter in the Hamiltonian. In this case the force constant of the harmonic oscillators mω^{2} is modified from an initial to a final value. As a result, the kinetic and potential energy of the system do not commute causing frictional losses. By proper choice of scheduling function ω(t) frictionless solutions can be obtained in the noiseless case. We examine the performance of a refrigerator subject to noise. By expanding from the adiabatic limit we find that the external noise, Gaussian phase, and amplitude noises reduce the amount of heat that can be extracted but nevertheless the zero temperature can be approached.

  15. Externally Fired micro-Gas Turbine: Modelling and experimental performance

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, Alberto; Massardo, Aristide F. [Thermochemical Power Group, Dipartimento di Macchine, Sistemi Energetici e Trasporti, Universita di Genova, Genova (Italy); Scarpellini, Riccardo [Ansaldo Ricerche s.r.l., Genova (Italy)

    2006-11-15

    This work presents the steady-state and transient performance obtained by an Externally Fired micro-Gas Turbine (EFmGT) demonstration plant. The plant was designed by Ansaldo Ricerche (ARI) s.r.l. and the Thermochemical Power Group (TPG) of the Universita di Genova, using the in-house TPG codes TEMP (Thermoeconomic Modular Program) and TRANSEO. The plant was based on a recuperated 80kW micro-gas turbine (Elliott TA-80R), which was integrated with the externally fired cycle at the ARI laboratory. The first goal of the plant construction was the demonstration of the EFmGT control system. The performance obtained in the field can be improved in the near future using high-temperature heat exchangers and apt external combustors, which should allow the system to operate at the actual micro-gas turbine inlet temperature (900-950{sup o}C). This paper presents the plant layout and the control system employed for regulating the microturbine power and rotational speed. The experimental results obtained by the pilot plant in early 2004 are shown: the feasibility of such a plant configuration has been demonstrated, and the control system has successfully regulated the shaft speed in all the tests performed. Finally, the plant model in TRANSEO, which was formerly used to design the control system, is shown to accurately simulate the plant behaviour both at steady-state and transient conditions. (author)

  16. CFD Analysis of a Hybrid Heat Pipe for In-Core Passive Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Yeong Shin; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Station blackout (SBO) accident is the event that all AC power is totally lost from the failure of offsite and onsite power sources. Although electricity was provided from installed batteries for active system after shutdown, they were failed due to flooding after tsunami. The vulnerability of the current operating power plant's cooling ability during extended station blackout events is demonstrated and the importance of passive system becomes emphasized. Numerous researches about passive system have been studied for proper cooling residual heat after Fukushima nuclear power plant accident. Heat pipe is the effective passive heat transfer device that latent heat of vaporization is used to transport heat over long distance with even small temperature difference. Since liquid flows due to capillary force from wick structure and steam flows up due to buoyancy force, power is not necessary. Heat pipe is widely used in removal of local hot spot heat fluxes in CPU and thermal management in space crafts and satellites. Hybrid control rod, which consists of heat pipe with B{sub 4}C for wick structure material can be used for removing residual heat after. It can be applied to both for shutdown and cooling of decay heat in reactor. This concept is independent of external reactor situation like operator's mistake or malfunction of active cooling system. Heat pipe cooling system can be applied to Emergency Core Cooling System, In-Vessel Retention, containment and spent fuel cooling, contributing to decrease Core Damage Frequency.

  17. ANALYSIS OF EXTERNAL FACTORS AFFECTING THE PRICING

    Directory of Open Access Journals (Sweden)

    Irina A. Kiseleva

    2013-01-01

    Full Text Available The external factors influencing the process of formation of tariffs of commercial services are considered in the article. External environment is known to be very diverse and changeable. Currently, pricing has become one of the key processes of strategic development of a company. Pricing in the service sector, in turn, is highly susceptible to changes in the external environment. Its components directly or indirectly affect the market of services, changing it adopted economic processes. As a rule, firms providing services can’t influence the changes in external factors. However, the service market is very flexible, which enables businesses to reshape pricing strategy, to adapt it to the new environment.

  18. Optimum size of nanorods for heating application

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, G., E-mail: seshg@stanford.edu; Thaokar, Rochish; Mehra, Anurag

    2014-08-01

    Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions. - Highlights: • Theoretically estimated loss power of magnetic nanorods. • Compared the heat generation by nanorods and nano-spheres. • Incorporated size distribution of particles into calculations. • Nanorods are more efficient than nano-spheres for heating. • 2D heat maps for optimizing size of nanorods for heating.

  19. Control of External Kink Instability

    Science.gov (United States)

    Navratil, Gerald

    2004-11-01

    A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.

  20. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    Science.gov (United States)

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (Tesla.

  1. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  2. 日光温室外保温系统设计及其对温室进光量的影响%Design of Heat Preservation System of External Surface and its Impaction on the Amount of Incident Light of Greenhouses

    Institute of Scientific and Technical Information of China (English)

    张亚平; 李韵文

    2011-01-01

    In order to improve the performance of greenhouse, the location of heat protection blanket was changed. We mainly weld a storage rack in the back slope of the greenhouse, which was used to store heat. Storage at 16.7° was to facilitate the decentralization of heat protection quilt. In so doing, improved the high of heat protection quilt at 40 cm by rolling up a high degree, may also enhance the light intensity in greenhouse in winter. On the other hand improved roof vent about 20 cm height may increasing the greenhouse ventilation capacity. At the same time, heat could be stored in the storage without taking off the shelves in the summer. This saved manpower, storage space, reduced wear and tear of heat protection quilt and improved the number of years heat protection quilt used to be, so the greenhouse could save about 18000 yuan in its life time. But there were also disadvantages of the design, stored on the ceiling may increased the ridge of high of greenhouse, which could increased the shadow length about 89 cm back of greenhoused in winter. In this study, we determined the light through the greenhouse, ventilation capacity, financial and material resources to save, to examine the feasibility's short comings and propose improved solutions.%为改进日光温室的性能,对日光温室保温被的存放方式进行改装.日光温室保温被的改装主要在后坡焊接存放架,用来存放保温被,存放架具的角度为16.7°,便于保温被的下放.这样做一方面提高了白天保温被的卷起高度约40 cm,也有可能增强冬季温室中的光照强度;另一方面提高了棚项的通风口高度约20 cm,有可能增强温室中的通风能力.同时,在夏季可以把保温被存放在存放架上,这样可以节省人力,也减少保温被的磨损,延长了保温被的使用年限,在实验所用日光温室的使用年限内可以节省18000元左右,并且节省存放保温被的空间.但是该设计也存在不足,即保温被存

  3. Heat pipe thermosyphon heat performance calculation

    Science.gov (United States)

    Novomestský, Marcel; Kapjor, Andrej; Papučík, Štefan; Siažik, Ján

    2016-06-01

    In this article the heat performance of the heat pipe thermosiphon is achieved through numerical model. The heat performance is calculated from few simplified equations which depends on the working fluid and geometry. Also the thermal conductivity is good to mentioning, because is really interesting how big differences are between heat pipes and full solid surfaces.

  4. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  5. Cost minimization of generation, storage, and new loads, comparing costs with and without externalities

    DEFF Research Database (Denmark)

    Noel, Lance Douglas; Brodie, Joseph; Kempton, Willett

    2017-01-01

    G) technology, and building heat) are modeled within the PJM Interconnection. The corresponding electric systems are then operated and constrained to meet the load every hour over four years. The total cost of each energy system is calculated, both with and without externalities, to find the least...... cost energy systems. Using today’s costs of conventional and renewable electricity and without adding any externalities, the cost-minimum system includes no renewable generation, but does include EVs. When externalities are included, however, the most cost-effective to system covers 50% of the electric...... load with renewable energy and runs reliably without need for either new conventional generation or purpose-built storage. The three novel energy policy implications of this research are: (1) using today’s cost of renewable electricity and estimates of externalities, it is cost effective to implement...

  6. Prototype testing of heat pipes for spacecraft heat control systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, L.L.; Gil, V.V.; Zharikov, N.A.; Zelenin, V.E.; Syvorotka, O.M.; Uvarov, E.I.

    1980-05-01

    Prototype testing of heat pipes for spacecraft heat control was done on board the Interkosmos-15 satellite launched on 19 June 1976. The purpose was to gather data for optimizing the design, namely the capillary structure and the selection of heat transfer agent, as well as to verify the soundness of manufacturing technologies and test procedures. Three heat pipes were tested, each 412 mm long with a 14 mm outside diameter. All had been made of an aluminum alloy. In two pipes the capillary structure consisted of 0.6 x 0.5 mm/sup 2/ rectangular channels running axially along the inside wall, in the third pipe a 1 mm thick tubular mesh of Kh18N10T steel wire running coaxially inside served as the capillary structure. The heat transfer agent was Freon-11 in one of the first two pipes and synthetic liquid ammonia in the other two pipes. The three pipes were mounted radially around a radiator as the hub, with the test conditions controllable by means of an electric heater coil along the evaporation zone of each pipe, resistance thermometers for the evaporation zone and for the condensation zone of each, and also an external cooling fan. The radial distribution of temperature drops along the pipes was measured and the thermal fluxes were calculated, these data being indicative of the performance under conditions of weightlessness over the 0 to 70/sup 0/C temperature range. The somewhat worse performance of the heat pipe with a tubular capillary mesh inside is attributable to formation of vapor bubbles which impede the mass transfer along such an artery.

  7. Externalities and Compensation : Primeval Games and Solutions

    NARCIS (Netherlands)

    Ju, Y.; Borm, P.E.M.

    2005-01-01

    The classical literature (Pigou (1920), Coase (1960), Arrow (1970)) and the relatively recent studies (cf.Varian (1994)) associate the externality problem with efficiency.This paper focuses explicitly on the compensation problem in the context of externalities.To capture the features of inter-indivi

  8. Concurrent sourcing and external supplier opportunism

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    When a firm simultaneously makes and buys the same components then the firm uses concurrent sourcing. This paper presents an agency model for explaining how and when concurrent sourcing reduces the likelihood of external supplier opportunism. In the proposed model, the external supplier’s expected...

  9. Crossing boundaries : Involving external parties in innovation

    NARCIS (Netherlands)

    Slot, J.H.

    2013-01-01

    To improve the return on investments in innovation, firms increasingly open up their new product development (NPD) processes by inviting external parties to participate. This dissertation focuses on the involvement of three different types of external parties in the NPD process: suppliers, customers

  10. Computing betweenness centrality in external memory

    DEFF Research Database (Denmark)

    Arge, Lars; Goodrich, Michael T.; Walderveen, Freek van

    2013-01-01

    Betweenness centrality is one of the most well-known measures of the importance of nodes in a social-network graph. In this paper we describe the first known external-memory and cache-oblivious algorithms for computing betweenness centrality. We present four different external-memory algorithms...

  11. Lattice Planar QED in external magnetic field

    CERN Document Server

    Cea, Paolo; Giudice, Pietro; Papa, Alessandro

    2011-01-01

    We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

  12. Internal and External Forces in Language Change.

    Science.gov (United States)

    Yang, Charles D.

    2000-01-01

    Develops a model of language change characterizing the dynamic interaction between internal universal grammar and external linguistic evidence, as mediated by language acquisition. Borrows insights from the study of biological evolution, where internal and external forces interact in similar fashion. Applies the model to explore the loss of the…

  13. Forms of Spanking and Children's Externalizing Behaviors

    Science.gov (United States)

    Lansford, Jennifer E.; Wager, Laura B.; Bates, John E.; Pettit, Gregory S.; Dodge, Kenneth A.

    2012-01-01

    Research suggests that corporal punishment is related to higher levels of child externalizing behavior, but there has been controversy regarding whether infrequent, mild spanking predicts child externalizing or whether more severe and frequent forms of corporal punishment account for the link. Mothers rated the frequency with which they spanked…

  14. Decomposition of W(CO)[subscript 6] at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Nadine; Bayarjargal, Lkhamsuren; Friedrich, Alexandra; Morgenroth, Wolfgang; Avalos-Borja, Miguel; Vogel, Sven C.; Proffen, Thomas; Winkler, Bjorn (Goethe); (U. NAM); (LANL)

    2011-09-06

    The decomposition of hexacarbonyltungsten, W(CO){sub 6}, has been studied. The decomposition was induced by heating W(CO){sub 6} in an autoclave at 523 K and pressures up to 1.8 MPa, and by laser heating in a diamond anvil cell at pressures between 5 and 18 GPa. The products have been characterized using synchrotron X-ray diffraction, pair distribution function analysis, Raman spectroscopy and scanning electron microscopy. Decomposition in the autoclave at the lower pressures resulted in the formation of a metastable tungsten carbide, W{sub 2}C, with an average particle size of 1-2 nm, and an unidentified nanocrystalline tungsten oxide and nanocrystalline graphite with average particle sizes of 1-2 and 11 nm, respectively. The existence of nanocrystalline graphite was deduced from micro-Raman spectra and the graphite particle size was extracted from the intensities of the Raman modes. The high-pressure decomposition products obtained in the diamond anvil cell are the monoclinic tungsten oxide phase WO{sub 2} and the high-pressure phase W{sub 3}O{sub 8}(I). The approximate average size of the graphite particles formed here was 6-8 nm. The bulk modulus of W(CO){sub 6} is B{sub 0} {approx_equal} 13 GPa.

  15. Twin chamber sample assembly in DAC and HPHT studies on GaN nano-particles

    Science.gov (United States)

    Shukla, Balmukund; Shekar, N. V. Chandra; Kumar, N. R. Sanjay; Ravindran, T. R.; Sahoo, P.; Dhara, S.; Sahu, P. Ch

    2012-07-01

    In this paper, we have suggested a novel idea of twin chamber sample assembly for separating ruby from the sample to overcome certain problems during high pressure-high temperature experiments using diamond anvil cell. Two holes of diameter 70μm were drilled symmetrically about the centre of the preindented area (500 μm diameter) in a stainless steel gasket using EDM. Using ruby pressure calibration, good pressure correlation between these two holes was established up to about 15GPa. Also, high pressure - high temperature (HPHT) experiments on the III-V compound semiconductor GaN were performed up to ~ 3GPa and 2000K using the two chamber sample assembly and a laser heated diamond anvil cell facility. NaCl, both hydrous and anhydrous, were used as the pressure transmitting media in two separate experiments. Micro-Raman spectroscopy was used to characterise the HPHT treated samples. While GaN remained stable in its wurtzite phase when heated in anhydrous NaCl medium, it transformed to Ga2O3 with rocksalt structure in the hydrous NaCl medium.

  16. A combination of a stationary fluidised bed with an externally fired {mu}-(gas) turbine; Kombination einer stationaeren Wirbelschichtfeuerung mit einer extern gefeuerten {mu}-(Gas) Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrecht, D.; Vincent, T. [Rostock Univ. (Germany); Dielmann, K.; Betsch, M. [FH Aachen (Germany)

    2009-07-01

    In this paper description a decentralized energy system with a small energy performance is presented. The energy system consists of a {mu}-gasturbine, which is modified to an externally fired machine and is connected to a stationary fluidised bed combustion system by a high temperature heat exchanger. By the connection of the two systems the application spectrum of useable fuels for the {mu}-gasturbine is significantly increased. Not only natural gas or diesel-oil can be burned but also low caloric gas with a methane concentration down to 15 Vol.% or biological fuels can be used for chp applications (heat /power). (orig.)

  17. 外循环式DSF综合传热系数的影响因素研究(I)——夏热冬冷地区夏季工况%INFLUENCE FACTORS RESEARCH ON COMPREHENSIVE COEFFICIENT OF HEAT TRANSFER OF EXTERNAL RESPIRATION DOUBLE-SKIN FACADE(I)-SUMMER WORKING CONDITION IN SUMMER HOT AND WINTER COLD AREAS

    Institute of Scientific and Technical Information of China (English)

    刘猛; 龙惟定

    2011-01-01

    针对夏热冬冷地区常用的外循环式双层皮玻璃幕墙(DSF),建立了箱体式"呼吸"单元物理模型,给出夏季工况综合传热系数的计算方法.在此基础上研究了夏季工况不同太阳辐射强度、通风腔宽度、通风腔高度以及遮阳装置在不同位置时的综合传热系数,分析了各因素变化时对综合传热系数造成影响的原因并给出了最佳值,为今后DSF的研究和优化设计提供参考和依据.%Models a trunk respiration DSF unit is applicable to be used in summer hot and winter cold areas. The mechanism of heat transfer and presents calculation method of comprehensive heat transfer was analyzed in summer condition.Sequentially, various comprehensive coefficient K of heat transfer under different solar radiant intensity, ventilation cavity width and height, location of sun-shading device conditions were obtained. Then an analysis about how these factors influence the K value and puts forward an optimal value for each influence factor was made. The paper will provide reference basis for further research and optimal design of DSF buildings.

  18. Environmental externalities related to power production on biogas and natural gas based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Ibsen, Liselotte Schleisner

    1998-01-01

    This paper assesses the environmental impacts and external costs from selected electricity generation systems in Denmark. The assessment is carried out as part of the ExternE National Implementation, which is the second phase of the ExternE project and involves case studies from all Western Europ...... show that estimated damages due to the greenhouse effect are predominant, however, the uncertainty is high. The predominant damage at the local and regional level is related to emission of NOx, which results in effects on public health....... European countries. The project use a “bottom-up” methodology to evaluate the external costs associated with a wide range of different fuel cycles. The project has identified priority impacts, where most are impacts from air emissions. Externalities due to atmospheric emissions are calculated through...... the use of a software package, EcoSence, having an environmental database at both a local and regional level including population, crops, building materials and forest. The system also incorporates two air transport models, allowing local and regional scale modelling. The results of the Danish case study...

  19. Handbook on heat exchangers

    Science.gov (United States)

    Bazhan, Pavel I.; Kanevets, Georgii E.; Seliverstov, Vladimir M.

    Essential data on heat exchange equipment used in ship, locomotive, automotive, and aircraft powerplants are presented in a systematic manner. The data cover the principal types and technical and performance characteristics of heat exchangers, fundamentals of the theory of heat exchange, calculation of heat transfer coefficients for different types of heat exchange apparatus, optimization of heat exchangers, computer-aided design of heat exchange equipment, testing techniques, and test result processing.

  20. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  1. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  2. Use of Automated External Defibrillators

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K Christensen

    2009-02-01

    In an effort to improve survival from cardiac arrest, the American Heart Association (AHA) has promoted the Chain of Survival concept, describing a sequence of prehospital steps that result in improved survival after sudden cardiac arrest. These interventions include immediate deployment of emergency medical services, prompt cardiopulmonary resuscitation, early defibrillation when indicated, and early initiation of advanced medical care. Early defibrillation has emerged as the most important intervention with survival decreasing by 10% with each minute of delay in defibrillation. Ventricular Fibrillation (VF) is a condition in which there is uncoordinated contraction of the heart cardiac muscle of the ventricles in the heart, making them tremble rather than contract properly. VF is a medical emergency and if the arrhythmia continues for more than a few seconds, blood circulation will cease, and death can occur in a matter of minutes. During VF, contractions of the heart are not synchronized, blood flow ceases, organs begin to fail from oxygen deprivation and within 10 minutes, death will occur. When VF occurs, the victim must be defibrillated in order to establish the heart’s normal rhythm. On average, the wait for an ambulance in populated areas of the United States is about 11 minutes. In view of these facts, the EFCOG Electrical Safety Task Group initiated this review to evaluate the potential value of deployment and use of automated external defibrillators (AEDs) for treatment of SCA victims. This evaluation indicates the long term survival benefit to victims of SCA is high if treated with CPR plus defibrillation within the first 3-5 minutes after collapse. According to the American Heart Association (AHA), survival rates as high as 74% are possible if treatment and defibrillation is performed in the first 3 minutes. In contrast survival rates are only 5% where no AED programs have been established to provide prompt CPR and defibrillation. ["CPR statistics

  3. Heat Calculation of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    S. Filatov

    2013-01-01

    Full Text Available The paper considers a heat calculation method of borehole heat exchangers (BHE which can be used for designing and optimization of their design values and included in a comprehensive mathematical model of heat supply system with a heat pump based on utilization of low-grade heat from the ground.The developed method of calculation is based on the reduction of the problem general solution pertaining to heat transfer in BHE with due account of heat transfer between top-down and bottom-up flows of heat carrier to the solution for a boundary condition of one kind on the borehole wall. Used the a method of electrothermal analogy has been used for a calculation of the thermal resistance and  the required shape factors for calculation of  a borehole filler thermal resistance have been obtained numerically. The paper presents results of heat calculation of various BHE designs in accordance with the proposed method.

  4. Radiatively heated high voltage pyroelectric crystal pulser

    Energy Technology Data Exchange (ETDEWEB)

    Antolak, A.J., E-mail: antolak@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States); Chen, A.X. [Sandia National Laboratories, Livermore, CA 94550 (United States); Leung, K.-N. [Sandia National Laboratories, Livermore, CA 94550 (United States); Nuclear Engineering Department, University of California, Berkeley (United States); Morse, D.H.; Raber, T.N. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2014-01-21

    Thin lithium tantalate pyroelectric crystals in a multi-stage pulser were heated by quartz lamps during their charging phase to generate high voltage pulses. The charging voltage was determined empirically based on the measured breakdown voltage in air and verified by the induced breakdown voltage of an external high voltage power supply. A four-stage pyroelectric crystal device generated pulse discharges of up to 86 kV using both quartz lamps (radiative) and thermoelectric (conductive) heating. Approximately 50 mJ of electrical energy was harvested from the crystals when radiatively heated in air, and up to 720 mJ was produced when the crystals were submerged in a dielectric fluid. It is anticipated that joule-level pulse discharges could be obtained by employing additional stages and optimizing the heating configuration.

  5. Modelling Heat Exchangers for Domestic Boilers

    Directory of Open Access Journals (Sweden)

    S. F. C. F. Teixeira

    2000-01-01

    Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.

  6. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  7. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  8. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  9. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  10. Concurrent sourcing and external supplier opportunism

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    When a firm simultaneously makes and buys the same components then the firm uses concurrent sourcing. This paper presents an agency model for explaining how and when concurrent sourcing reduces the likelihood of external supplier opportunism. In the proposed model, the external supplier’s expected...... costs of opportunism are determined as a product of four factors. The four factors are: likelihood of discovering supplier opportunism, buyer’s internalized quantity as reaction to supplier opportunism, asset specificity of external supplier’s investments, and multiplicator effects. Each...

  11. Environment and externalization; Environnement et externalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kremlis, G.; Renaud, R. [Association francaise des ingenieurs et techniciens de l' environnement, AFITE, 75 - Paris (France); Touron, M. [Veritas, 75 - Paris (France)] [and others

    2001-07-01

    This document presents the discussions of the 16 may 2000, concerning the externalization and the environment and proposes to answer the following questions: is the externalization a new strategy to better perceive, hopeful engineering department, the technological risks problems, the environment or the land pollution? Does the externalization allow a better organization of the enterprise? To analyse the situation, the document presents the white book of the environmental liability, the administration point of view, some enterprises examples and the importance of the environmental management. (A.L.B.)

  12. Leiomyosarcoma of the external iliac vein.

    Science.gov (United States)

    Fukuda, Wakako; Taniguchi, Satoshi; Fukuda, Ikuo

    2012-06-01

    Leiomyosarcoma of the iliac vein is an uncommon tumor. We report a case of a 63-year-old Japanese woman with leiomyosarcoma of the right external iliac vein. The patient complained of right inguinal pain and swelling. Computed tomography demonstrated a mass surrounding the right external iliac artery and vein. Metastases in the lungs and liver were found. Complete resection of the tumor along with the involved vessels was performed. Polytetrafluoroethylene grafts were used to reconstruct the vessels. Pathological examination revealed leiomyosarcoma of the external iliac vein. Although the prognosis of leiomyosarcoma is poor, en bloc tumor resection is the treatment of choice.

  13. The sustainability of Serbia's external position: The impact of fiscal adjustment and external shocks

    Directory of Open Access Journals (Sweden)

    Zildžović Emir

    2015-01-01

    Full Text Available This paper studies the impact of fiscal policy and external shocks on the sustainability of Serbia’s external position. The key determinants of Serbia's current account balance are identified using model averaging techniques and are compared with estimates obtained for other small open economies (Poland, Georgia, Morocco, Ukraine, and Estonia. The paper uses estimated influences of macrovariables on the current account balance to generate a rich set of possible outcomes for the external position of the country. The results suggest the importance of fiscal policy for the reduction of external imbalances in all countries in our sample. In particular, credible and sustained fiscal adjustment can reduce current account deficit and stabilize Serbia’s external position close to its current level over the medium term. The analysis also warns that lack of success in fiscal consolidation coupled with external shocks may easily push the external position onto an unsustainable path.

  14. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  15. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K.; Gustavsson, L. [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  16. Heat Pumps in Subarctic Areas: Current Status and Benefits of Use in Iceland

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  17. Critical heat flux around strongly heated nanoparticles.

    Science.gov (United States)

    Merabia, Samy; Keblinski, Pawel; Joly, Laurent; Lewis, Laurent J; Barrat, Jean-Louis

    2009-02-01

    We study heat transfer from a heated nanoparticle into surrounding fluid using molecular dynamics simulations. We show that the fluid next to the nanoparticle can be heated well above its boiling point without a phase change. Under increasing nanoparticle temperature, the heat flux saturates, which is in sharp contrast with the case of flat interfaces, where a critical heat flux is observed followed by development of a vapor layer and heat flux drop. These differences in heat transfer are explained by the curvature-induced pressure close to the nanoparticle, which inhibits boiling. When the nanoparticle temperature is much larger than the critical fluid temperature, a very large temperature gradient develops, resulting in close to ambient temperature just a radius away from the particle surface. The behavior reported allows us to interpret recent experiments where nanoparticles can be heated up to the melting point, without observing boiling of the surrounding liquid.

  18. Increases in external cause mortality due to high and low temperatures: evidence from northeastern Europe

    Science.gov (United States)

    Orru, Hans; Åström, Daniel Oudin

    2016-11-01

    The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00-Y99) and maximum temperatures over the period 1997-2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1-3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14-1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03-1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.

  19. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  20. Externality, environment, and obesity in children.

    Science.gov (United States)

    Stager, S F

    1981-07-01

    On the assumption that external responsiveness and environmental characteristics jointly determine whether a child will achieve an excessive weight gain, perpetuating and maintaining obesity, probability hierarchy was hypothesized and tested. Ss of the study were 24 obese and 24 average-weight, white boys, mean age 9 years, 5 months. An auditory distraction task and Kagan's Matching Familiar Figures Test were used to measure auditory and visual responsivity to external cues, respectively. Socioeconomic status was used as an indicator of the childhood environment. As predicted, the greatest percentages of obese children were observed in the lower-socioeconomic, external group, followed by the lower-socioeconomic, internal group and middle-socioeconomic, external group. The smallest percentage of obese children was observed in the middle-socioeconomic, internal group.

  1. Sleep disturbances in chronic progressive external ophthalmoplegia.

    NARCIS (Netherlands)

    Smits, B.W.; Westeneng, H.J.; Hal, M.A. van; Engelen, B.G.M. van; Overeem, S.

    2012-01-01

    BACKGROUND: Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. In addition to extraocular muscle weakness, various other organs can typically be affected, including laryngeal and limb muscles, cerebrum, cerebellum, and peripheral nerves. Given this mul

  2. Proceedings: National conference on environmental externalities

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the proceedings of the National Conference on Environmental Externalities. A environmental externality is the environmental impact of a process or a plant that society must endure. It is a social cost and is paid, but not by the company who produced it or the company`s customers who endure it. The main purpose of this report is to gather the many designs and ideas of how and why to internalize the externalities into the pricing systems of the public utility commissions, especially that of the electric utilities. Economic and sociological aspects of the internalization of these externalities are given in these proceedings. Individual papers are processed separately for databases. (MB)

  3. Owl Mountain Partnership : An external assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — External review of the Owl Mountain Partnership (OMP) to identify benefits and successes associatedwith collaborative work through the perceptions of participating...

  4. Infrared limit in external field scattering

    CERN Document Server

    Herdegen, Andrzej

    2012-01-01

    Scattering of electrons/positrons by external classical electromagnetic wave packet is considered in infrared limit. In this limit the scattering operator exists and produces physical effects, although the scattering cross-section is trivial.

  5. reoperation rates following intramedullary nailing versus external ...

    African Journals Online (AJOL)

    Reasons for reoperation among EF patients were infection. (2 patients) ... fixation. Keywords: Orthopaedic surgery, Tanzania, Intramedullary nail, External fixation, Open tibia fracture. INTRODUCTION ..... of surgical site infection. Infect Control ...

  6. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties......Lately there has been quite a large focus on retrofitting of the Danish buildings. The retrofitting of the building is done in order to solve one or more of the following problems: bad indoor climate, large use of energy for heating, insufficient durability or architectural unsatisfactory.In order...

  7. Heat exchangers for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Akyurt, M.; Najjar, Y.S.H.; Alp, T. (King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering)

    1993-01-01

    A survey is made of the equipment used for heat recovery and utilization. Types and merits of commonly employed heat exchangers are presented, and criteria for selecting heat exchangers are summarized. Applications for waste heat recovery are emphasized. It is concluded that careful selection and operation of such equipment would be expected to result in energy savings as well as problem-free operation. (author)

  8. Characterization of a mini-channel heat exchanger for a heat pump system

    Science.gov (United States)

    Arteconi, A.; Giuliani, G.; Tartuferi, M.; Polonara, F.

    2014-04-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  9. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    Science.gov (United States)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  10. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  11. Synthesis and microdiffraction at extreme pressures and temperatures.

    Science.gov (United States)

    Lavina, Barbara; Dera, Przemyslaw; Meng, Yue

    2013-10-07

    High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 (1) will be shown.

  12. Thallium under extreme compression

    CERN Document Server

    Cazorla, C; Errandonea, D; Munro, K A; McMahon, M I; Popescu, C

    2016-01-01

    We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature up to 125 GPa using diamond-anvil cells, nearly doubling the pressure range of previous experiments. We have confirmed the hcp-fcc transition at 3.5 GPa and determined that the fcc structure remains stable up to the highest pressure attained in the experiments. In addition, HP-HT experiments have been performed up to 8 GPa and 700 K by using a combination of x-ray diffraction and a resistively heated diamond-anvil cell. Information on the phase boundaries is obtained, as well as crystallographic information on the HT bcc phase. The equation of state for different phases is reported. Ab initio calculations have also been carried out considering several potential high-pressure structures. They are consistent with the experimental results and predict that, among the structures considered in the calculations, the fcc structure of thallium is st...

  13. Consumption Externalities, Rental Markets and Purchase Clubs.

    OpenAIRE

    Suzanne Scotchmer

    2002-01-01

    A premise of general equilibrium theory is that private goods are rival. Nevertheless, many private goods are shared, e.g., through barter, through co-ownership, or simply because one person’s consumption affects another person’s wellbeing. We analyze consumption externalities from the perspective of club theory, and argue that, provided consumption externalities are limited in scope, they can be internalized through membership fees to groups. Our main applications are to rental markets and “...

  14. Operating protocols of external root cervical resorption

    OpenAIRE

    Luca Venuti

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  15. Inferential knowledge, externalism and self-knowledge.

    OpenAIRE

    R G Ford

    2004-01-01

    Privileged self-knowledge says, roughly, that we have non-empirical knowledge of our own thoughts. Externalism about mental content says, roughly, that our mental states are determined at least in part by our environment. It has been alleged that jointly assuming externalism about mental content and privileged self-knowledge are true has the consequence that any subject can have non-empirical knowledge of her own environment and this is intuitively absurd. The thesis investigates in various w...

  16. Operating protocols of external root cervical resorption

    OpenAIRE

    Venuti, Luca

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  17. Integrating Building Functions into Massive External Walls

    Directory of Open Access Journals (Sweden)

    Ahmed Hisham Hafez

    2016-05-01

    Full Text Available Well into the twentieth century, brick and stone were the materials used. Bricklaying and stonemasonry were the construction technologies employed for the exterior walls of virtually all major structures. However, with the rise in quality of life, the massive walls alone became incapable of fulfilling all the developed needs. Adjacent systems and layers had then to be attached to the massive layer. Nowadays, the external wall is usually composed of a layered construction. Each external wall function is usually represented by a separate layer or system. The massive layer of the wall is usually responsible for the load-bearing function.Traditional massive external walls vary in terms of their external appearance, their composition and attached layers. However, their design and construction process is usually a repeated process. It is a linear process where each discipline is concerned with a separate layer or system. These disciplines usually take their tasks away and bring them back to be re-integrated in a layered manner. New massive technologies with additional function have recently become available.Such technologies can provide the external wall with other functions in addition to its load-bearing function. The purpose of this research is to map the changes required to the traditional design and construction process when massive technologies with additional function are applied in external walls. Moreover, the research aims at assessing the performance of massive solutions with additional function when compared to traditional solutions in two different contexts, the Netherlands and Egypt.Through the analysis of different additional function technologies in external walls, a guidance scheme for different stakeholders is generated. It shows the expected process changes as related to the product level and customization level. Moreover, the research concludes that the performance of additional insulating technologies, and specifically Autoclaved

  18. External Prestressing Bridge Reinforcement Technology Review

    Directory of Open Access Journals (Sweden)

    Zhu Hanbing

    2015-01-01

    Full Text Available Externally prestressed bridge can not only limit and reduce the cracks and deformation of the structure, improve the rigidity and bearing capacity of structure, improve the stress state of structure, but also have less interference for bridge operation when it is operating and have the good economic efficiency. This paper introduces the advantages and disadvantages of external prestressed strengthening technique, its calculation theory and construction technology described in detail, and finally the paper discusses the deficiency of existing research.

  19. Nuclear waste storage and environmental intergenerational externalities

    OpenAIRE

    Fodha, Mouez

    2015-01-01

    International audience; This article analyzes the long-term consequences of nuclear waste storage within a general equilibrium framework. The objective is to determine the conditions for which the storage of waste, and thus the transfer of externalities towards the future, can be optimal. These conditions could explain the implementation of intergenerational externalities, justifying an intertemporal Not In My Back Yard behaviour. We first show that the choice of the policy instruments determ...

  20. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  1. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  3. External cost assessment for nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.

  4. The ventilatory effect of external oscillation.

    Science.gov (United States)

    Isabey, D; Piquet, J

    1989-01-01

    High frequency ventilation (HFV) may be achieved by external oscillation (external HFV) applied around the chest wall (HFCWO) in large animals and humans, or over the entire body (HFBSO) in small animals, instead of being applied via the trachea (internal HFV). We present a synthesis of the results obtained with external HFV in both normal and bronchoconstricted subjects. Whereas external and internal HFV were found to be equivalent in terms of gas exchange in normal rats, external HFV was found to have a beneficial effect in bronchoconstricted rabbits, but internal HFV did not. From the frequency-oscillatory tidal volume relationship determined in normocapnic rabbits, HFBSO at 5 Hz was found to be the optimal frequency at which to ventilate with tidal volumes close to the dead space volume, and which was also shown to be the optimal volume to obtain normocapnia. Moreover, 5 Hz oscillations (HFCWO) at 20 ml and 40 ml superimposed on tidal breathing accelerated nitrogen washout, i.e., gas exchange in normal humans. Unfortunately, only oscillations with much smaller volumes (5-10 ml) were obtainable in COPD patients. Nevertheless, they produced a clear change in breathing pattern associated with a slight improvement in gas exchange and a potentially positive effect on inspiratory muscle fatigue. These results support the concept that non-invasive external HFV technique may be of use in assisting ventilation in bronchoconstricted subjects and may possibly replace conventional controlled ventilation, at least in subjects with high lung compliance, such as babies, neonates and normal adults.

  5. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  6. Phonon Cooling by an Optomechanical Heat Pump.

    Science.gov (United States)

    Dong, Ying; Bariani, F; Meystre, P

    2015-11-27

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  7. METHOD FOR DECREASE OF STANDARD HEAT LOSSES IN RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2017-01-01

    Full Text Available A simplified method for calculation of standard coefficient for heat transfer in a residential building has been developed in the paper. Investigations have been carried out with the purpose to determine influence of building size, level of thermal insulation in external enclosures and share of heat regeneration in ventilation system on total heat losses. The paper considers buildings of a simple geometrical form (“matchbox” with number of floors 1, 2, 4, 8, 16 and living area from 100 up to 25600 m2 at the level of thermal resistance of walls 1; 3 and 5 m2 ⋅°C/W and share of heat regeneration in ventilation air stream of 0; 0.5 and 0.66. The investigation results have shown that while increasing building size then there is a sudden transformation of dimensions and structure in external enclosures: share of overlapping area is reduced by 3-fold and share of wall area is increased by 2-fold. Surface area of building external envelope is reduced by 6-fold in comparison with its heated area. An average coefficient of building heat transfer assigned to heated area is decreased by 3-fold. It has been shown that the most efficient methods for further decrease of standard heat losses for residential buildings are the following: heat recovery in the ventilation system: it is deeper if heat protection rate is higher and climate of a building construction zone is colder; enlargement of building size through decrease of their number; limit-exceeding increase in heat protection of small apartment buildings and cottages; cubic form of 2–3-floor buildings for Far North.

  8. Molecular dynamics on nonequilibrium motion of a colloidal particle driven by an external torque

    Science.gov (United States)

    Yoo, Donghwan; Jung, Youngkyun; Kwon, Chulan

    2017-03-01

    We investigate the motion of a colloidal particle driven out of equilibrium by an external torque. We use molecular dynamics simulation as an alternative to the Langevin dynamics. We prepare a heat bath composed of thousands of particles interacting with each other through the Lennard–Jones potential and impose the Langevin thermostat to maintain the heat bath in equilibrium. We consider a single colloidal particle interacting with with the particles of the heat bath also by the Lennard–Jones potential, without applying any types of dissipative or fluctuating forces used in Langevin dynamics. We set up simulation protocol fit for the overdamped limit as in real experiments, by increasing the size and mass of the colloidal particle. We study nonequilibrium fluctuations for work and heat produced incessantly in time and compare the results with those obtained from the previous studies via the overdamped Langevin dynamics. We confirm the Gallavotti–Cohen symmetry and the fluctuation theorem.

  9. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Calculation of building heating demand in EPIQR

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Aggerholm, S. [Danish Building Research Institute, Hoersholm (Denmark)

    2000-07-01

    Calculations of energy requirements for space heating in EPIQR are based on an existing computer programme, made according to the European standard EN 832:1998. The programme was originally a stand-alone programme with its own user interface. This has been stripped of and the source code re-compiled into a dynamic link library (DLL) controlled by EPIQR. The method is based on a monthly calculation of heat losses and usable heat gains for the building. For the calculation, the monthly mean values of the external temperature and solar radiation are applied, and the heat gain from lighting and appliances, as well as the heat-accumulating capacity of the building, are taken into consideration. In EPIQR, some input parameters have been fixed to ensure that the user only has to supply simple input data to carry out a heating requirement calculation. This paper describes the applied calculation technique and the assumptions made in EPIQR to carry out heating requirement calculations and how energy-saving retrofit is evaluated using the software. (author)

  11. Data of high performance precast external walls for warm climate.

    Science.gov (United States)

    Baglivo, Cristina; Maria Congedo, Paolo

    2015-09-01

    The data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [2-4]. The results show that it is possible to achieve high performance precast walls also with light and ultra-thin solutions. A multi-criteria optimization has been performed in terms of steady and dynamic thermal behavior, eco sustainability score and costs. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. A large set of the best configurations of precast external walls for warm climate with their physical and thermal properties have been reported in the data article.

  12. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  13. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... are calculated using an energy system model which includes power plants, heat pumps and district heating consumption profiles. The model is developed with focus on accurate representation of the performance of the units in different locations and operating modes. The model can assist in investment decisions...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  14. Performance characteristics of low-dissipative generalized Carnot cycles with external leakage losses

    Institute of Scientific and Technical Information of China (English)

    黄传昆; 郭君诚; 陈金灿

    2015-01-01

    Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines, etc.

  15. Electron beam guiding by external magnetic fields in imploded fuel plasma

    Science.gov (United States)

    Johzaki, T.; Sentoku, Y.; Nagatomo, H.; Sunahara, A.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Endo, T.; FIREX project Group

    2016-05-01

    For enhancing the core heating efficiency in fast ignition laser fusion, we proposed the fast electron beam by externally-applied the kilo-tesla (kT) class longitudinal magnetic field. We evaluated the imploded core and the magnetic field profiles formed through the implosion dynamics by resistive MHD radiation hydro code. Using those profiles, the guiding effect was evaluated by fast electron transport simulations, which shows that in addition to the feasible field configuration (moderate mirror ratio), the kT-class magnetic field is required at the fast electron generation point. In this case, the significant enhancement in heating efficiency is expected.

  16. Externalities - an analysis using the EU ExternE-results; Externaliteter - en analys utifraan EU:s ExternE-resultat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case.

  17. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  18. Internalizing Externalities through Payments for Environmental Services

    Directory of Open Access Journals (Sweden)

    Sudarsono Soedomo

    2012-08-01

    Full Text Available Forest ecosystems, including plantation forests, provide goods and services that are marketable and non-marketable. Positive externalities produced by forest ecosystems are rarely considered in pricing of marketable products that result in economic inefficiencies. Internalizing externalities is required to improve the economic efficiency. The traditional way to internalize an externality is by providing subsidies or imposing taxes. Recently, payments for environmental services  are receiving more attention as an instrument for internalizing externalities provided by forest ecosystems. This promising alternative to improve our environment needs to be studied more extensively. In this paper, it can be indicated theoretically that the Pigovian tax, as a traditional way of addressing environmental problems, is able to mimic the result derived from the employment of environmental services payment. The difference is that environmental services payment improves the welfare of environmental service producers, whereas the Pigovian tax reduces it. A positive Pigovian tax increases the optimal rotation, which is positively associated with environmental improvement, but certainly reduces forest owner's welfare. This difference should be taken into account in the public policymaking so that perverse incentive may be avoided. Payment for environmental services  as an additional income to forest growers, not as alternative source of income, is a potential tool to address simultaneously issues of environment and poverty that are frequently contested.Keywords: externalities, payments for environmental services, tax, perverse incentive, social welfare

  19. External-field-free magnetic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  20. External GSM phone calls now made simpler

    CERN Multimedia

    2007-01-01

    On 2 July, the IT/CS Telecom Service introduced a new service making external calls from CERN GSM phones easier. A specific prefix is no longer needed for calls outside CERN. External calls from CERN GSM phones are to be simplified. It is no longer necessary to use a special prefix to call an external number from the CERN GSM network.The Telecom Section of the IT/CS Group is introducing a new system that will make life easier for GSM users. It is no longer necessary to use a special prefix (333) to call an external number from the CERN GSM network. Simply dial the number directly like any other Swiss GSM customer. CERN currently has its own private GSM network with the Swiss mobile operator, Sunrise, covering the whole of Switzerland. This network was initially intended exclusively for calls between CERN numbers (replacing the old beeper system). A special system was later introduced for external calls, allowing them to pass thr...

  1. Pattern transformations in periodic cellular solids under external stimuli

    Science.gov (United States)

    Zhang, K.; Zhao, X. W.; Duan, H. L.; Karihaloo, B. L.; Wang, J.

    2011-04-01

    The structural patterns of periodic cellular materials play an important role in their properties. Here, we investigate how these patterns transform dramatically under external stimuli in simple periodic cellular structures that include a nanotube bundle and a millimeter-size plastic straw bundle. Under gradual hydrostatic straining up to 20%, the cross-section of the single walled carbon nanotube bundle undergoes several pattern transformations, while an amazing new hexagram pattern is triggered from the circular shape when the strain of 20% is applied suddenly in one step. Similar to the nanotube bundle, the circular plastic straw bundle is transformed into a hexagonal pattern on heating by conduction through a baseplate but into a hexagram pattern when heated by convection. Besides the well-known elastic buckling, we find other mechanisms of pattern transformation at different scales; these include the minimization of the surface energy at the macroscale or of the van der Waals energy at the nanoscale and the competition between the elastic energy of deformation and either the surface energy at the macroscale or the van der Waals energy at the nanoscale. The studies of the pattern transformations of periodic porous materials offer new insights into the fabrication of novel materials and devices with tailored properties.

  2. Numerical simulation of a backward-facing step flow in a microchannel with external electric field

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2015-03-01

    Full Text Available A backward-facing step flow in the microchannel with external electric field was investigated numerically by a high-order accuracy upwind compact difference scheme in this work. The Poisson–Boltzmann and Navier–Stokes equations were computed by the high-order scheme, and the results confirmed the ability of the new solver in simulation of micro-scale electric double layer effects. The flow fields were displayed for different Reynolds numbers; the positions of the vortex saddle point of model with external electric field and model without external electric field were compared. The average velocity increases linearly with the electric field intensity; however, the Joule heating effects cannot be neglected when the electric field intensity increases to a certain level.

  3. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... sun or any situation that involves extreme heat. Young children and the elderly are most at risk, but anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the legs and stomach area. ...

  5. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  6. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  7. Conduction heat transfer in a cylindrical dielectric barrier discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, H. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)], E-mail: hamou.sadat@univ-poitiers.fr; Dubus, N. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France); Pinard, L.; Tatibouet, J.M.; Barrault, J. [Laboratoire en catalyse et chimie organique, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)

    2009-04-15

    The thermal behaviour of a dielectric barrier discharge reactor is studied. The experimental tests are performed on a laboratory reactor with two working fluids: helium and air. A simple heat conduction model for calculating the heat loss is developed. By using temperature measurements in the internal and external electrodes, a thermal resistance of the reactor is defined. Finally, the percentage of the input power that is dissipated to the environment is given.

  8. Heat Pipe Planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  9. Retrofits for improved heat rate and availability: Low-level heat recovery economizer retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Rubow, L.N.; Borden, M.; Boulay, R.B.; Buchanan, T.L.; Granger, J.F.; Horazak, D.A.; Phillips, N.A. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-06-01

    The subject of this report, involves the recovery of heat from the flue gas to preheat combustion air and protect the air heater. Flue gas is a large potential source of heat, but this mode of heat recovery has seen limited application due to the corrosive environment created in plant tail-end systems by condensation in sulfur-laden flue gases. Several installations of low-level economizers'' (LLEs) have experienced varied degrees of success using cast iron-type heat exchangers. Alternate materials that may be suitable for this application were investigated in this project. The cost of various types of installations with regard to equipment arrangement, remaining plant life, plant capacity factor, plant operating modes, ambient temperature characteristics, fuel costs, utility cost evaluation methods, and external economic factors were investigated.

  10. Heat Treating Apparatus

    Science.gov (United States)

    De Saro, Robert; Bateman, Willis

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  11. Atomic excitation and recombination in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination.

  12. External Tonehole Interactions in Woodwind Instruments

    CERN Document Server

    Lefebvre, Antoine; Kergomard, Jean

    2012-01-01

    The transfer matrix method is often used to calculate the input impedance of woodwind instruments but it ignores the possible influence of the radiated sound from toneholes on other open holes. In this paper, a method is proposed to account for external tonehole interactions. It is found that the external tonehole interactions increase the amount of radiated energy, reduce slightly the lower resonance frequencies, and modify significantly the response near and above the tonehole lattice cutoff frequency. The results of simulations with the Finite Element Method, as well as experimental measurements, are presented and compared to the calculation with the method presented in this paper, confirming that the external tonehole interactions play a significant role in woodwind instrument.

  13. External-Memory Algorithms and Data Structures

    DEFF Research Database (Denmark)

    Arge, Lars; Zeh, Norbert

    2010-01-01

    . This is due to the huge difference in access time of fast internal memory and slower external memory such as disks. The goal of theoretical work in the area of external memory algorithms (also called I/O algorithms or out-of-core algorithms) has been to develop algorithms that minimize the Input......The data sets involved in many modern applications are often too massive to fit in main memory of even the most powerful computers and must therefore reside on disk. Thus communication between internal and external memory, and not actual computation time, becomes the bottleneck in the computation....../Output communication (or just I/O) performed when solving a given problem. The area was effectively started in the late eighties by Aggarwal and Vitter and subsequently I/O algorithms have been developed for several problem domain. Also I/O performance can often be improved if many disks can efficiently be used...

  14. DFB laser with attached external intensity modulator

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, D. (AT and T Bell Labs. Holmdel, NJ (US))

    1990-02-01

    This paper presents a theoretical study of the frequency pulling effect exerted on a DFB laser by an external amplitude modulator that is directly attached to it. The modulator consists of a piece of waveguide whose loss is modulated by means of an externally applied voltage. The modulator affects the laser due to residual reflections from its far end which appear as a variable effective reflectivity to the output end of the DFB laser. Modulation affects the magnitude as well as the phase of the effective reflection coefficient presented to the laser due to the coupling of the real and imaginary parts of the effective refractive index of the modulator waveguide. The tuning problem is formulated as an eigenvalue equation for the DFB laser in the presence of an externally attached lossy cavity.

  15. Performance Targets and External Market Prices

    DEFF Research Database (Denmark)

    Hansen, Allan; Friis, Ivar; Vámosi, Tamás S.

    In this paper we explore the processes of ‘bringing the market inside the firm’ to set performance targets and benchmark production workers productivity. We analyze attempts to use external suppliers’ bids in target setting in a Danish manufacturing company. The case study illustrates how...... the implementation of external market information in target setting – well known in transfer pricing, relative performance evaluation, beyond budgeting, target costing, piece rates systems and value based management – relate to challenging motivation and information problem. The analysis and discussion of those...... problems, in particular those related to accounting for the internal performance (that are going to be compared with the external target), calculating the ‘inside’ costs and defining controllability, contributes to the management accounting as well as the piece-rate literature....

  16. Human Sound Externalization in Reverberant Environments

    DEFF Research Database (Denmark)

    Catic, Jasmina

    occur. In this thesis, the spatial cues that arise from a combined effect of filtering due to the head, torso, and pinna and the acoustic environment were analysed and the impact of such cues for the perception of externalization in different frequency regions was investigated. Distant sound sources...... level differences (ILDs) that occurs in reverberant environments was altered via modifications of the signal envelope in the left and right ear. It was found that the dynamic ILDs had an effect on externalization for broadband and highpass filtered speech, while no effect was found for lowpass filtered......, this work contributes to the understanding of the auditory processing of spatial cues that are important for externalization in reverberant environments and may have implications for hearing instrument signal processing....

  17. Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses

    NARCIS (Netherlands)

    Fink, Jiří; Hurink, Johann L.

    2015-01-01

    This paper studies planning problems for a group of heating systems which supply the hot water demand for domestic use in houses. These systems (e.g. gas or electric boilers, heat pumps or microCHPs) use an external energy source to heat up water and store this hot water for supplying the domestic d

  18. Control of Thermal Conductance of Peltier Device Using Heat Disturbance Observer

    Science.gov (United States)

    Morimitsu, Hidetaka; Katsura, Seiichiro

    Presently in the industry, temperature control and heat flow control are conducted for many thermal devices, including the Peltier device, which facilitates heat transfer on the basis of the Peltier effect. Generally, temperature control compensates for the heat flowing from the external environment, while the heat actively flows into the system during heat flow control. Thus, temperature control and heat flow control differ from each other. However, there have been no detailed discussions on a thermal control process in which the thermal conductance of control ranges between 0 and ∞. This paper focuses on the thermal conductance of control and the construction of a thermal conductance control system for a Peltier device using a heat disturbance observer. When using the thermal conductance controller, the thermal conductance of control is altered, and the system becomes thermally compliant with the external environment. This paper also shows the experimental results that confirm the validity of the proposed control system.

  19. Heat Stroke: A Medical Emergency Appearing in New Regions

    Directory of Open Access Journals (Sweden)

    Sofie Søndergaard Mørch

    2017-01-01

    Full Text Available Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat waves will occur in previously cooler regions. Therefore it is important to raise awareness of heat stroke since outcome depends on early recognition and rapid cooling.

  20. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    Messina and H Löwen Mode expansion for the density profiles of crystal-fluid interfaces: hard spheres as a test caseM Oettel Scaling of layer spacing of charged particles under slit-pore confinement: an effect of concentration or of effective particle diameter?Yan Zeng and Regine von Klitzing Hydrodynamic interactions between colloidal particles in a planar poreB Bonilla-Capilla, A Ramírez-Saito, M A Ojeda-López and J L Arauz-Lara Ageing in a system of polydisperse goethite boardlike particles showing rich phase behaviourA B G M Leferink op Reinink, E van den Pol, D V Byelov, A V Petukhov and G J Vroege Temperature as an external field for colloid-polymer mixtures: 'quenching' by heating and 'melting' by coolingShelley L Taylor, Robert Evans and C Patrick Royall Spinning motion of a deformable self-propelled particle in two dimensionsMitsusuke Tarama and Takao Ohta Emergent states in dense systems of active rods: from swarming to turbulenceH H Wensink and H Löwen