WorldWideScience

Sample records for external water phase

  1. Photonic water dynamically responsive to external stimuli

    Science.gov (United States)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-08-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this `photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.

  2. Ferrofluid nucleus phase transitions in an external uniform magnetic field

    Institute of Scientific and Technical Information of China (English)

    B. M. Tanygin; S. I. Shulyma; V. F. Kovalenko; M. V. Petrychuk

    2015-01-01

    The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates “field–temperature”. The provided phase coexistence curve has an opposite trend comparing to some of known theoretical results. This contradiction has been discussed. For given experimental parameters, it has been concluded that the present results describe more precisely the transition from linear chains to a dense globes phase. The theoretical concepts which provide the opposite binodal curve dependency trend match other experimental conditions:a diluted ferrofluid, a high particle coating rate, a high temperature, and/or a less particles coupling constant value.

  3. NEW SELF-MIXING MICROINTERFEROMETER BASED ON EXTERNAL PHASE MODULATION

    Institute of Scientific and Technical Information of China (English)

    GUO Dongmei; WANG Ming

    2007-01-01

    A new self-mixing micro-interferometer based on external phase modulation is presented.Self-mixing interference occurs in a laser diode (LD) by reflecting the light from a mirror-like target in front of the laser. Sinusoidal phase modulation of the beam is obtained by an electro-optic crystal (EOC) in the external cavity. The phase of the interference signal is demodulated by Fourier analysis method. The combination of the modulation and demodulation decreases the sensitivity of the instrument to fluctuations of the laser power and the noise induced by environment. Experimentally, the new micro-interferometer is applied to measure the micro-displacement of a high precision commercial PZT with an accuracy of<10 nm.

  4. Phase diagram of strong interactions in an external magnetic field

    CERN Document Server

    Mizher, Ana Julia; Chernodub, M N

    2011-01-01

    We obtain the phase diagram of strong interactions in the presence of a magnetic field within the linear sigma model coupled to quarks and to the Polyakov loop, and show that the chiral and deconfinement lines can split. We also study the behavior of the chiral condensate in this magnetic environment and find an approximately linear dependence on the external field, in accordance with lattice data.

  5. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the ...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases.......This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from...... the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...

  6. Phase separation in fluids exposed to spatially periodic external fields.

    Science.gov (United States)

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  7. Changes of Water Hydrogen Bond Network with Different Externalities

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2015-04-01

    Full Text Available It is crucial to uncover the mystery of water cluster and structural motif to have an insight into the abundant anomalies bound to water. In this context, the analysis of influence factors is an alternative way to shed light on the nature of water clusters. Water structure has been tentatively explained within different frameworks of structural models. Based on comprehensive analysis and summary of the studies on the response of water to four externalities (i.e., temperature, pressure, solutes and external fields, the changing trends of water structure and a deduced intrinsic structural motif are put forward in this work. The variations in physicochemical and biological effects of water induced by each externality are also discussed to emphasize the role of water in our daily life. On this basis, the underlying problems that need to be further studied are formulated by pointing out the limitations attached to current study techniques and to outline prominent studies that have come up recently.

  8. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    Science.gov (United States)

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  9. Nonlinear vibration of a hemispherical dome under external water pressure

    Science.gov (United States)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  10. Hydrothermal alteration of kimberlite by convective flows of external water.

    Science.gov (United States)

    Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  11. Facet Reflection Coefficient of Phase-locked Diode Laser Array in an External Cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C0). Considering the fact that|C0/S| should be larger than unity if the external cavity is effective,and|C1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.

  12. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field.

    Science.gov (United States)

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  13. Phase diagram of hot QCD in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo; Mizher, Ana Julia [Instituto de Fisica, Universidade Federal do Rio de Janeiro, CP 68528, Rio de Janeiro, 21945-970 RJ (Brazil); Chernodub, Maxim [Laboratoire de Mathematiques et Physique Theorique - LMPT, CNRS UMR 6083 Tours, Federation Denis Poisson, Faculte des Sciences et Techniques, Universite Francois Rabelais, Parc de Grandmont, 37200 Tours (France)

    2010-07-01

    The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics, and can exhibit new phases and interesting features. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature-magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the para-magnetically-induced breaking of Z(3). (authors)

  14. The external water footprint of the Netherlands: Quantification and impact assessment

    OpenAIRE

    van Oel, P.R.; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2008-01-01

    This study quantifies the external water footprint of the Netherlands by partner country and import product and assesses the impact of this footprint by contrasting the geographically explicit water footprint with water scarcity in the different parts of the world. Hotspots are identified as the places where the external water footprint of Dutch consumers is significant on the one hand and where water scarcity is serious on the other hand. The study shows that Dutch consumption implies the us...

  15. Deconfinement Phase Transition with External Magnetic Field in the Friedberg—Lee Model

    Science.gov (United States)

    Mao, Shi-Jun

    2016-11-01

    The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model. In the frame of functional renormalization group, we extend the often used potential expansion method for continuous phase transitions to the first-order phase transition in the model. By solving the flow equations we find that, the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement in hot and dense medium.

  16. Deconfinement Phase Transition with External Magnetic Field in Friedberg-Lee Model

    CERN Document Server

    Mao, Shijun

    2015-01-01

    The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model. In the frame of functional renormalization group, we extend the often used potential expansion method for continuous phase transitions to the first-order phase transition in the model. By solving the flow equations we find that, the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement in hot and dense medium.

  17. Effects of external phase on D-cycloserine loaded W/O nanocapsules prepared by the interfacial polymerization method.

    Science.gov (United States)

    Musumeci, Teresa; Ventura, Cinzia A; Carbone, Claudia; Pignatello, Rosario; Puglisi, Giovanni

    2011-07-01

    Water in oil (W/O) polybutylcyanoacrylate nanocapsules containing D-cycloserine (D-CS) for intranasal delivery were prepared by the interfacial polymerization method. Different oils, as external phase, for the preparation of the initial W/O miniemulsions were used and their effect on mean size and other physico-chemical properties were evaluated by photon correlation spectroscopy (PCS) and scanning electron microscopy (SEM) analysis. Two probes at different hydrophilicity were used to verify the internal aqueous nature of the core. Both miniemulsions and nanocapsules mean size and polydispersity index were influenced by the used external phase. Different entrapment efficiency were obtained for D-cycloserine-loaded nanocapsules correlated to the used oil [ranging from 39 to 51% encapsulation efficiency (E.E.)]. In vitro drug release showed an initial burst effect (ranging from 20 to 40%) followed by a slow release of D-CS for all preparations. This study demonstrated that many relevant physico-chemical and technological properties of polybutylcyanoacrylate nanocapsules prepared by interfacial polymerization of miniemulsions are significantly influenced by the external oil phase used.

  18. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Long; TAO Tian-Jiong; CHENG Bing; WU Bin; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2011-01-01

    @@ A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry.The setup involves alldigital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs.The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  19. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Science.gov (United States)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  20. The external water footprint of the Netherlands: geographically explicit quantification and impact assessment

    NARCIS (Netherlands)

    van Oel, P.R.; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2009-01-01

    This study quantifies the external water footprint of the Netherlands by partner country and import product and assesses the impact of this footprint by contrasting the geographically-explicit water footprint with water scarcity in the different parts of the world. The total water footprint of the

  1. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...

  2. Photostabilization of sunscreens by incorporation of tea as the external phase

    Directory of Open Access Journals (Sweden)

    Margarida Pereira

    2015-05-01

    Full Text Available The use of isolated ultraviolet (UV filters in photoprotective formulations creates products with limited protection against radiation, emphasising the need to develop formulations containing UVA and UVB filter combinations. However, most of the formulations developed to include both filters are unstable as a result of this combination, as well as by exposure to UV radiation. It is, therefore, crucial to include additives that enable photostabilization. Tea is the second most widely consumed beverage in the world and represents a good source of bioactive compounds, particularly polyphenols, which provide antioxidant activity. In the present work formulations containing green tea or black tea, as well as the sunscreens avobenzone (UVA sunscreen and octilmetoxinamato (UVB sunscreen, were developed and evaluated in order to develop new and effective photostable formulations providing broad spectrum photoprotection. These formulations have been developed with complete replacement of the external phase of the oil in water (O/W emulsion by these teas. The results showed that both teas presented photostabilizing capacity, particularly for green tea in the storage conditions at room temperature and at 5 °C, and black tea for the samples stored at 40 °C.

  3. Does external funding help adaptation? Evidence from community-based water management in the Colombian Andes.

    Science.gov (United States)

    Murtinho, Felipe; Eakin, Hallie; López-Carr, David; Hayes, Tanya M

    2013-11-01

    Despite debate regarding whether, and in what form, communities need external support for adaptation to environmental change, few studies have examined how external funding impacts adaptation decisions in rural resource-dependent communities. In this article, we use quantitative and qualitative methods to assess how different funding sources influence the initiative to adapt to water scarcity in the Colombian Andes. We compare efforts to adapt to water scarcity in 111 rural Andean communities with varied dependence on external funding for water management activities. Findings suggest that despite efforts to use their own internal resources, communities often need external support to finance adaptation strategies. However, not all external financial support positively impacts a community's abilities to adapt. Results show the importance of community-driven requests for external support. In cases where external support was unsolicited, the results show a decline, or "crowding-out," in community efforts to adapt. In contrast, in cases where communities initiated the request for external support to fund their own projects, findings show that external intervention is more likely to enhance or "crowds-in" community-driven adaptation.

  4. Geometric Phase of Polarized Hydrogenlike Atoms in an External Magnetic Field

    Science.gov (United States)

    Tang, Zhong; Finkelstein, David

    1995-04-01

    We show that the motion of polarized hydrogenlike atoms in an external magnetic field B is a cyclic evolution. The geometric phase they exhibit is dependent on both the initial state and the Hamiltonian. Properties of the geometric phase in the cases of weak (called Zeeman limit) and strong (called Paschen-Back limit) magnetic fields are presented. We point out that the results of the two limits are interpolated in the intermediate B region. Some observable effects in a specially devised interferometer are predicted.

  5. Modulated systems in external fields: Conditions for the presence of reentrant phase diagrams

    Science.gov (United States)

    Mendoza-Coto, Alejandro; Billoni, Orlando V.; Cannas, Sergio A.; Stariolo, Daniel A.

    2016-08-01

    We introduce a coarse-grained model capable of describing the phase behavior of two-dimensional ferromagnetic systems with competing exchange and dipolar interactions, as well as an external magnetic field. An improved expression for the mean-field entropic contribution allows us to compute the phase diagram in the whole temperature versus external field plane. We find that the topology of the phase diagram may be qualitatively different depending on the ratio between the strength of the competing interactions. In the regime relevant for ultrathin ferromagnetic films with perpendicular anisotropy we confirm the presence of inverse-symmetry breaking from a modulated phase to a homogeneous one as the temperature is lowered at constant magnetic field, as reported in experiments. For other values of the competing interactions we show that reentrance may be absent. Comparing thermodynamic quantities in both cases, as well as the evolution of magnetization profiles in the modulated phases, we conclude that the reentrant behavior is a consequence of the suppression of domain wall degrees of freedom at low temperatures at constant fields.

  6. Effect of external stress on phase diagrams and dielectric properties of epitaxial ferroelectric thin films grown on orthorhombic substrates

    Institute of Scientific and Technical Information of China (English)

    L(U) Ye-gang; DENG Shui-feng; GONG Lun-jun; YANG Jian-tao

    2006-01-01

    A Landau-Ginsburg-Devonshire(LD)-type thermodynamic theory was used to describe the effect of external stress on phase diagrams and dielectric properties of epitaxial ferroelectric thin films grown on orthorhombic substrates which induce nonequally biaxial misfit strains in the films plane. The "misfit strain-external stress" and "external stress-temperature" phase diagrams were constructed for single-domain BaTiO3(BT) and PbTiO3(PT) thin films. It is shown that the external stress may lead to the rotation of the spontaneous polarization and a gradual change of its magnitude, which may result in phase transition. Nonequally biaxial misfit strains dependence of the stability of polarization states may be governed by external stress. At room temperature,stress-induced ferroelectric/paraelectric phase transition which occurs in film on cubic substrate does not take place in the ferroelectric thin film grown on orthorhombic substrate. It is also shown that the nonequally misfit strains in the film plane may lead to the appearance of new phases which do not form in films grown on cubic substrates under external stress. The dependence of the dielectric response on the external stress is also studied. It is shown that the dielectric constants of single-domain PT and BT films are very sensitive to the external stress under the given anisotropic misfit strains-temperature conditions. It presents theoretical evidence that the external stress and anisotropic misfit strains can be employed for improving the thin films physical properties.

  7. Soil water content interpolation using spatio-temporal kriging with external drift

    NARCIS (Netherlands)

    Snepvangers, J.J.J.C.; Heuvelink, G.B.M.; Huisman, J.A.

    2003-01-01

    In this study, two techniques for spatio-temporal (ST) kriging of soil water content are compared. The first technique, spatio-temporal ordinary kriging, is the simplest of the two, and uses only information about soil water content. The second technique, spatio-temporal kriging with external drift,

  8. Phase diagram of the Fermi Hubbard model with spin-dependent external potentials:A DMRG study

    Institute of Scientific and Technical Information of China (English)

    魏兴波; 孟烨铭; 吴哲明; 高先龙

    2015-01-01

    We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin-dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen–Cooper–Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase.

  9. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ke; Verschuuren, Marc A. [Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Lozano, Gabriel [Center for Nanophotonics, FOM Institute AMOLF, c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Gómez Rivas, Jaime, E-mail: J.Gomez@amolf.nl [Center for Nanophotonics, FOM Institute AMOLF, c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  10. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra

    2014-03-17

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Five-Phase Modular External Rotor PM Machines with Different Rotor Poles: A Comparative Simulation Study

    Directory of Open Access Journals (Sweden)

    A. S. Abdel-Khalik

    2012-01-01

    Full Text Available The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  12. Performance evaluation of a five-phase modular external rotor PM machine with different rotor poles

    Directory of Open Access Journals (Sweden)

    A.S. Abdel-Khalik

    2012-12-01

    Full Text Available The performance of fault-tolerant modular permanent magnet (PM machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low order harmonics in the stator magneto motive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole (SPP ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional phase model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  13. Phase diagram of a two-dimensional large- Q Potts model in an external field

    Science.gov (United States)

    Tsai, Shan-Ho; Landau, D. P.

    2009-04-01

    We use a two-dimensional Wang-Landau sampling algorithm to map out the phase diagram of a Q-state Potts model with Q⩽10 in an external field H that couples to one state. Finite-size scaling analyses show that for large Q the first-order phase transition point at H=0 is in fact a triple point at which three first-order phase transition lines meet. One such line is restricted to H=0; another line has H⩽0. The third line, which starts at the H=0 triple point, ends at a critical point (T,H) which needs to be located in a two-dimensional parameter space. The critical field H(Q) is positive and decreases with decreasing Q, which is in qualitative agreement with previous predictions.

  14. Phase Synchronization as a Mechanism of Controlling Spatiotemporal Chaos via External Periodic Signal

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; HE Kai-Fen

    2004-01-01

    @@ We find that phase synchronization (PS) is a mechanism in which the spatiotemporal chaos (STC) can be suppressed to a spatially regular (SR) state by applying an external periodic signal in a one-dimensional driven drift-wave system. In the driving wave coordinate, the nonlinear system can be transformed to a set of coupled oscillators moving in a periodic potential. In this multi-dimensional system, the internal modes are slaved one by one through PS by the control signal. Two types of responses of the internal modes to the external periodic signal are observed. For some modes, the stabilization is through frequency-locking; while for the other modes,a special kind of PS without frequency-locking, namely multi-looping PS, is developed.

  15. Phase transition of nanotube-confined water driven by electric field.

    Science.gov (United States)

    Fu, Zhaoming; Luo, Yin; Ma, Jianpeng; Wei, Guanghong

    2011-04-21

    The effects of electric field on the phase behaviors of water encapsulated in a thick single-walled carbon nanotube (SWCNT) (diameter = 1.2 nm) have been studied by performing extensive molecular dynamics simulations at atmospheric pressure. We found that liquid water can freeze continuously into either pentagonal or helical solidlike ice nanotube in SWCNT, depending on the strengths of the external electric field applied along the tube axis. Remarkably, the helical one is new ice phase which was not observed previously in the same size of SWCNT in the absence of electric field. Furthermore, a discontinuous solid-solid phase transition is observed between pentagonal and helical ice nanotubes as the strengths of the external electric field changes. The mechanism of electric-field-induced phase transition is discussed. The dependence of ice structures on the chiralities of SWCNTs is also investigated. Finally, we present a phase diagram of confined water in the electric field-temperature plane.

  16. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  17. Eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Ziock, Hans-Joachim

    2008-01-01

    medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium...... and their condensation. This review presents the work conducted to understand how the eutectic phases in water-ice might have promoted RNA polymerization, thereby presumably contributing to the emergence of the ancient information and catalytic system envisioned by the RNA World hypothesis....

  18. Stationary phases for superheated water chromatography

    CERN Document Server

    Saha, S

    2002-01-01

    This project focused on the comparison of conventional liquid chromatography and superheated water chromatography. It examined the differences in efficiency and retention of a range of different stationary phases. Alkyl aryl ketones and eight aromatic compounds were separated on PBD-zirconia, Xterra RP 18, Luna C sub 1 sub 8 (2) and Oasis HLB columns using conventional LC and superheated water chromatography system. The retention indices were determined in the different eluents. On changing the organic component of the eluent from methanol to acetonitrile to superheated water considerable improvements were found in the peak shapes and column efficiencies on the PBD-zirconia and Oasis HLB columns. PS-DVB, PBD-zirconia and Xterra RP 18 columns have been used in efficiency studies. It was found that simply elevating the column temperature did not increase the efficiency of a separation in superheated water chromatography. The efficiency depended on flow rate, injection volume and also mobile phase preheating sys...

  19. Feasibility of a self-nulling beam combiner using no external phase inverter

    Science.gov (United States)

    Bloemhof, E. E.

    2005-08-01

    Space-based nulling interferometers will play a major role in the search for exoplanets, as both NASA and ESA plan missions for the near future. Current architectures produce the requisite broadband π phase shift in one arm of each nulling telescope pair by means of a system of "field flip" optics that may involve one of a number of sophisticated technologies (periscope, phase plates, through-focus, or other). The two beams, of equal intensity but conjugate phase, are then combined, perhaps in a modified Mach-Zehnder (MMZ) or similar beam combiner of high configurational symmetry. A novel approach has recently been proposed, however, in which the achromatic π phase shift is supplied by two applications of the innate π/2 phase shift between transmitted and reflected beams in a beam splitter. This simply requires using the traditionally bright output port of the MMZ as a nulled port; adaptive nulling can be used to ease the tolerances on matching the moduli of reflection and transmission coefficients. The rather substantial systems benefit that accrues is that the external phase shifting ("field flipping") optics may be entirely eliminated. Here, I discuss the feasibility of this "self-nulling" beam combiner scheme.

  20. Phase transitions of two-dimensional dipolar fluids in external fields.

    Science.gov (United States)

    Schmidle, Heiko; Klapp, Sabine H L

    2011-03-21

    In this work, we study condensation phase transitions of two-dimensional Stockmayer fluids under additional external fields using Monte-Carlo (MC) simulations in the grand-canonical ensemble. We employ two recently developed methods to determine phase transitions in fluids, namely Wang-Landau (WL) MC simulations and successive-umbrella (SU) sampling. Considering first systems in zero field (and dipolar coupling strengths μ(2)∕εσ(3) ≤ 6), we demonstrate that the two techniques yield essentially consistent results but display pronounced differences in terms of efficiency. Indeed, comparing the computation times for these systems on a qualitative level, the SU sampling turns out to be significantly faster. In the presence of homogeneous external fields, however, the SU method becomes plagued by pronounced sampling difficulties, yielding the calculation of coexistence lines essentially impossible. Employing the WL scheme, on the other hand, we find phase coexistence even for strongly field-aligned systems. The corresponding critical temperatures are significantly shifted relative to the zero-field case.

  1. Phase transitions of two-dimensional dipolar fluids in external fields

    Science.gov (United States)

    Schmidle, Heiko; Klapp, Sabine H. L.

    2011-03-01

    In this work, we study condensation phase transitions of two-dimensional Stockmayer fluids under additional external fields using Monte-Carlo (MC) simulations in the grand-canonical ensemble. We employ two recently developed methods to determine phase transitions in fluids, namely Wang-Landau (WL) MC simulations and successive-umbrella (SU) sampling. Considering first systems in zero field (and dipolar coupling strengths μ2/ɛσ3 ⩽ 6), we demonstrate that the two techniques yield essentially consistent results but display pronounced differences in terms of efficiency. Indeed, comparing the computation times for these systems on a qualitative level, the SU sampling turns out to be significantly faster. In the presence of homogeneous external fields, however, the SU method becomes plagued by pronounced sampling difficulties, yielding the calculation of coexistence lines essentially impossible. Employing the WL scheme, on the other hand, we find phase coexistence even for strongly field-aligned systems. The corresponding critical temperatures are significantly shifted relative to the zero-field case.

  2. Bonding in the Superionic Phase of Water

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Fried, L E; Kuo, I W; Mundy, C J

    2005-02-07

    The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, they find a solid superionic phase characterization by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. In addition, they describe a new metastable superionic phase with quenched O disorder.

  3. External suction versus water seal after selective pulmonary resection for lung neoplasm: a systematic review.

    Science.gov (United States)

    Qiu, Tong; Shen, Yi; Wang, Ming-zhao; Wang, Yao-peng; Wang, Dong; Wang, Zi-zong; Jin, Xiang-feng; Wei, Yu-cheng

    2013-01-01

    To evaluate whether external suction is more advantageous than water seal in patients undergoing selective pulmonary resection (SPR) for lung neoplasm. Whether external suction should be routinely applied in postoperative chest drainage is still unclear, particularly for lung neoplasm patients. To most surgeons, the decision is based on their clinical experience. Randomized control trials were selected. The participants were patients undergoing SPR with lung neoplasm. Lung volume reduction surgery and pneumothorax were excluded. Suction versus non-suction for the intervention. The primary outcome was the incidence of persistent air leak (PAL). The definition of PAL was air leak for more than 3-7 days. The secondary outcomes included air leak duration, time of drainage, postoperative hospital stay and the incidence of postoperative pneumothorax. Studies were identified from literature collections through screening. Bias was analyzed and meta-analysis was used. From the 1824 potentially relevant trials, 6 randomized control trials involving 676 patients were included. There was no difference between external suction and water seal in decreasing the incidence of PAL [95% confidence interval (CI) 0.81-2.16; z = 1.10; P = 0.27]. Regarding secondary outcomes, there were no differences in time of drainage (95% CI-0.36-1.56, P = 0.22), postoperative hospital stay (95% CI -.31-.54, P = 0.87) or incidence of postoperative pneumothorax (95% CI 0.18-.02, P = 0.05) between external suction and water seal. For participants, no differences are identified in terms of PAL incidence, drainage time, length of postoperative hospital stay or incidence of postoperative pneumothorax between external suction and water seal. The bias analysis should be emphasized. To the limitations of the bias and methodological differences among the included studies, we have no recommendation on whether external suction should be routinely applied after lung neoplasm SPR. More high

  4. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins

    Energy Technology Data Exchange (ETDEWEB)

    Castell, Albert; Sole, Cristian; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [Departament d' Informatica i Enginyeria Industrial, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Garcia, Daniel [Departament Projectes d' Enginyeria, Universitat Politecnica de Catalunya, Colom 11, 08222 Terrassa (Spain)

    2008-09-15

    To determine the heat transfer coefficient by natural convection for specific geometries, experimental correlations are used. No correlations were found in the literature for the geometries studied in this work. These geometries consisted of a cylindrical module of 88 mm of diameter and 315 mm height with external vertical fins of 310 mm height and 20 and 40 mm length. To determine the heat transfer coefficient by natural convection, experimental work was done. This module, containing PCM (sodium acetate trihydrate), was situated in the middle upper part of a cylindrical water tank of 440 mm of diameter and 450 mm height. The calculated heat transfer coefficient changed by using external fins, as the heat transfer surface was increased. The temperature variation of the PCM and the water are presented as a function of time, and the heat transfer coefficient for different fins is presented as a function of the temperature difference. Experimental correlations were obtained, presenting the Nusselt number as a function of different dimensionless numbers. Different correlations were analysed to find which one fit better to the experimental data. (author)

  5. Water used to visualize and remove hidden foreign bodies from the external ear canal.

    Science.gov (United States)

    Peltola, T J; Saarento, R

    1992-02-01

    Small foreign bodies lodged anteriorly in the tympanic sulcus are usually not visible, due to the curve of the external ear canal. Such objects can be seen with the aid of an otomicroscope and micromirror or with an endoscope, and removed by irrigation. If irrigation fails, epithelial migration on the tympanic membrane may remove lodged foreign bodies, although this may take months. Our new method, which uses water to locate small objects lodged in the tympanic sulcus, includes irrigation of the ear, adjustment of the water level to the middle curve of the external ear canal, and use of the water surface as a concave lens, making the tympanic sulcus visible. With otomicroscopy a curved ear probe can then be used to remove lodged foreign bodies from behind the curve.

  6. Two-dimensional model colloids and nano wires: phase transitions, effects of external potentials and quantum effects

    Science.gov (United States)

    Franzrahe, K.; Henseler, P.; Ricci, A.; Strepp, W.; Sengupta, S.; Dreher, M.; Kircher, Chr.; Lohrer, M.; Quester, W.; Binder, K.; Nielaba, P.

    2005-07-01

    Quantum effects, structures and phase transitions in Nano-systems have been analyzed. An overview is given on the results of our computations on structural and elastic properties of model colloids, on phase transitions of model colloids in external fields, and on structural and electronic properties of stretched atomic wires.

  7. Phase lagging model of brain response to external stimuli - modeling of single action potential

    CERN Document Server

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  8. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography.

    Science.gov (United States)

    Turko, Nir A; Shaked, Natan T

    2017-01-01

    We present a dual-wavelength external holographic microscopy module for quantitative phase imaging of 3D structures with extended thickness range. This is done by simultaneous acquisition of two off-axis interferograms, each at a different wavelength, and generation of a synthetic wavelength, which is larger than the sample optical thickness, allowing two-wavelength unwrapping. The simultaneous acquisition is carried out by using optical multiplexing of the two interferograms onto the camera, where each of them has orthogonal off-axis interference fringe direction in relation to the other one. We used the system to quantitatively image a 7.96 μm step target and 30.5 μm circular copper pillars.

  9. Shallow Decay Phase of the Early X-Ray Afterglow from External Shock in a Wind Environment

    Institute of Scientific and Technical Information of China (English)

    雷海东; 汪九洲; 吕静; 邹远川

    2011-01-01

    We investigate the shallow decay phase of an early x-ray afterglow in gamma-ray bursts discovered by Swift, and suggest that both the shallow decay phase and the normal phase are from external shock in a wind environment, while the transferring time is the deceleration time. We apply this model to GRBs 050319 and 081008, and find that they can be explained by choosing a proper set of parameters.%We investigate the shallow decay phase of an early x-ray afterglow in gamma-ray bursts discovered by Swift,and suggest that both the shallow decay phase and the normal phase are from external shock in a wind environment,while the transferring time is the deceleration time.We apply this model to GRBs 050319 and 081008,and find that they can be explained by choosing a proper set of parameters.

  10. A criterion for timescale decomposition of external inputs for generalized phase reduction of limit-cycle oscillators

    CERN Document Server

    Kurebayashi, Wataru; Nakao, Hiroya

    2015-01-01

    The phase reduction method is a dimension reduction method for weakly driven limit-cycle oscillators, which has played an important role in the theoretical analysis of synchro- nization phenomena. Recently, we proposed a generalization of the phase reduction method [W. Kurebayashi et al., Phys. Rev. Lett. 111, 2013]. This generalized phase reduction method can robustly predict the dynamics of strongly driven oscillators, for which the conventional phase reduction method fails. In this generalized method, the external input to the oscillator should be properly decomposed into a slowly varying component and remaining weak fluctua- tions. In this paper, we propose a simple criterion for timescale decomposition of the external input, which gives accurate prediction of the phase dynamics and enables us to systematically apply the generalized phase reduction method to a general class of limit-cycle oscillators. The validity of the criterion is confirmed by numerical simulations.

  11. Accelerated partial breast irradiation with external beam radiotherapy. First results of the German phase 2 trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J.; Strnad, Vratislav; Stillkrieg, Wilhelm; Fietkau, Rainer [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Uter, Wolfgang [University Erlangen-Nuremberg, Dept. of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Beckmann, Matthias W. [University Hospital Erlangen, Dept. of Gynecology, Erlangen (Germany)

    2017-01-15

    To evaluate the feasibility and efficacy of external beam three-dimensional (3D) conformal accelerated partial breast irradiation (APBI) for selected patients with early breast cancer. Between 2011 and 2016, 72 patients were recruited for this prospective phase 2 trial. Patients were eligible for APBI if they had histologically confirmed breast cancer or pure ductal carcinoma in situ (DCIS), a tumor diameter ≤3 cm, clear resection margins ≥2 mm, no axillary lymph node involvement, no distant metastases, tumor bed clips, and were aged ≥50 years. Patients were excluded if mammography showed a multicentric invasive growth pattern, or if they had residual diffuse microcalcifications postoperatively, an extensive intraductal component, or vessel invasion. Patients received 3D conformal external beam APBI with a total dose of 38 Gy in 10 fractions in 1-2 weeks. The trial had been registered at the German Clinical Trials Register, DRKS-ID: DRKS00004417. Median follow-up was 25.5 months (range 1-61 months). Local control was maintained in 71 of 72 patients. The 3-year local recurrence rate was 2.1% (95% confidence interval, CI: 0-6.1%). Early toxicity (grade 1 radiodermatitis) was seen in 34.7% (25/72). Late side effects ≥ grade 3 did not occur. Cosmetic results were rated as excellent/good in 96.7% (59/61). APBI with external beam radiotherapy techniques is feasible with low toxicity and, according to the results of the present and other studies, on the way to becoming a standard treatment option for a selected subgroup of patients. (orig.) [German] Untersuchung der Vertraeglichkeit und Sicherheit der externen, 3-D-konformalen akzelerierten Teilbrustbestrahlung (APBI) fuer ausgewaehlte Patientinnen mit einem fruehen Mammakarzinom. Von 2011 bis 2016 wurden 72 Patientinnen in diese prospektive Phase-2-Studie eingebracht. Einschlusskriterien waren ein histologisch gesichertes Mammakarzinom oder DCIS, ein Tumordurchmesser ≤ 3 cm, tumorfreie Resektionsraender ≥ 2

  12. External suction versus water seal after selective pulmonary resection for lung neoplasm: a systematic review.

    Directory of Open Access Journals (Sweden)

    Tong Qiu

    Full Text Available OBJECTIVE: To evaluate whether external suction is more advantageous than water seal in patients undergoing selective pulmonary resection (SPR for lung neoplasm. SUMMARY OF BACKGROUND DATA: Whether external suction should be routinely applied in postoperative chest drainage is still unclear, particularly for lung neoplasm patients. To most surgeons, the decision is based on their clinical experience. METHODS: Randomized control trials were selected. The participants were patients undergoing SPR with lung neoplasm. Lung volume reduction surgery and pneumothorax were excluded. Suction versus non-suction for the intervention. The primary outcome was the incidence of persistent air leak (PAL. The definition of PAL was air leak for more than 3-7 days. The secondary outcomes included air leak duration, time of drainage, postoperative hospital stay and the incidence of postoperative pneumothorax. Studies were identified from literature collections through screening. Bias was analyzed and meta-analysis was used. RESULTS: From the 1824 potentially relevant trials, 6 randomized control trials involving 676 patients were included. There was no difference between external suction and water seal in decreasing the incidence of PAL [95% confidence interval (CI 0.81-2.16; z = 1.10; P = 0.27]. Regarding secondary outcomes, there were no differences in time of drainage (95% CI-0.36-1.56, P = 0.22, postoperative hospital stay (95% CI -.31-.54, P = 0.87 or incidence of postoperative pneumothorax (95% CI 0.18-.02, P = 0.05 between external suction and water seal. CONCLUSIONS: For participants, no differences are identified in terms of PAL incidence, drainage time, length of postoperative hospital stay or incidence of postoperative pneumothorax between external suction and water seal. The bias analysis should be emphasized. To the limitations of the bias and methodological differences among the included studies, we have no recommendation on

  13. The QCD phase diagram in the presence of an external magnetic field: the role of the inverse magnetic catalysis

    CERN Document Server

    Ferreira, Márcio; Providência, Constança

    2015-01-01

    The effect of an external magnetic field in QCD phase diagram, namely, in the the location of the critical end point (CEP) is investigated. Using the 2+1 flavor Nambu--Jona-Lasinio model with Polyakov loop, it is shown that when an external magnetic field is applied its effect on the CEP depends on the strength of the coupling. If the coupling depends on the magnetic field, allowing for inverse magnetic catalysis, the CEP moves to lower chemical potentials eventually disappearing, and the chiral restoration phase transition is always of first order.

  14. Interactions on external MOF surfaces: desorption of water and ethanol from CuBDC nanosheets.

    Science.gov (United States)

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-09-06

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach and the surface interactions of water and ethanol were investigated by temperature programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the kinetic desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. Water desorbs from CuBDC nanosheets with activation energies of 44±2 kJ/mol at edge sites and 58 ± 1 kJ/mol at internal and surface sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water that results in a water desorption process with an activation energy of 68 ± 0.7.

  15. Simulation of external contamination into water distribution systems through defects in pipes

    Science.gov (United States)

    López, P. A.; Mora, J. J.; García, F. J.; López, G.

    2009-04-01

    Water quality can be defined as a set of properties (physical, biological and chemical) that determine its suitability for human use or for its role in the biosphere. In this contribution we focus on the possible impact on water distribution systems quality of external contaminant fluids entering through defects in pipes. The physical integrity of the distribution system is a primary barrier against the entry of external contaminants and the loss in quality of the treated drinking water, but this integrity can be broken. Deficiencies in physical and hydraulic integrity can lead into water losses, but also into the influx of contaminants through pipes walls, either through breaks coming from external subsoil waters, or via cross connections coming from sewerage or other facilities. These external contamination events (the so called pathogen intrusion phenomenon) can act as a source of income by introducing nutrients and sediments as well as decreasing disinfectant concentrations within the distribution system, thus resulting in a degradation of the distribution water quality. The objective of this contribution is to represent this pathogen intrusion phenomenon. The combination of presence of defects in the infrastructures (equipment failure), suppression and back-siphonage and lack of disinfection is the cause of propagation of contamination in the clean current of water. Intrusion of pathogenic microorganisms has been studied and registered even in well maintained services. Therefore, this situation can happen when negative pressure conditions are achieved in the systems combined with the presence of defects in pipes nearby the suppression. A simulation of the process by which the external fluids can come inside pipes across their defects in a steady-state situation will be considered, by using different techniques to get such a successful modeling, combining numerical and experimental simulations. The proposed modeling process is based on experimental and

  16. Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization

    Science.gov (United States)

    Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)

    2001-01-01

    We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters

  17. Priming Silicic Giant Magma Bodies: Finding Evidence for Internal Forcing Versus External Triggering of Supereruptions by Phase Equilibria Modeling.

    Science.gov (United States)

    Tramontano, S.; Gualda, G. A. R.; Ghiorso, M. S.; Kennedy, B.

    2015-12-01

    It is important to understand what triggers silicic eruptions because of the implications for modern-day systems. The goal of this project is to use phase equilibria modeling (i.e. rhyolite-MELTS) to determine to what extent magmas within the crust are induced to erupt due to external triggers (e.g. earthquakes; new magma injection; neighboring eruptions) and to what extent they naturally evolve to a point where eruption is inevitable (e.g. by fluid exsolution and decrease in magma strength and density). Whole-rock compositions from four rhyolite tuffs across the globe associated with large or supereruptions (Mamaku Tuff, New Zealand; Peach Spring Tuff, SW USA; early and late-erupted Bishop Tuff, California; and Toba Tuff, Indonesia) are studied using rhyolite-MELTS modeling. Key physical properties of magma are strongly affected by the initial volatile content due to fluid exsolution. By running simulations with varying water contents, we can track the evolution of fluid exsolution during crystallization. Isobaric (constrained temperature change at constant pressure) and isochoric (constrained temperature change at constant volume) models were run for the four compositions. In constrained-pressure scenarios, fluid is free to exsolve as crystallization proceeds, and the total system volume can increase or decrease accordingly; this would require deformation of the surrounding crust to accommodate the magma volume change. In constrained-volume scenarios, bubble exsolution is limited to the volume change due to crystallization; in this case, pressure can decrease or increase (if bubbles are absent or present). For fixed-pressure scenarios, fluid exsolution is more extensive and leads to internal triggering, at least for fluid-saturated conditions; external triggering is more likely in fluid-undersaturated conditions. For fixed-volume scenarios, none of the systems cross a fragmentation threshold for the crystal contents typically observed in natural pumice. If

  18. Theoretical study on coupling effects of modulation depth between two photorefractive phase gratings with an external applied field

    Institute of Scientific and Technical Information of China (English)

    YUAN Baohong; ZHOU Zhongxiang; HOU Chunfeng; SUN Xiudong

    2001-01-01

    We used the perturbation expanding method to the hopping model and studied coupling effects of the modulation depth between two photorefractive phase gratings stored in one point with an external applied DC electric field . It has been found that the modulation depth of one of the two gratings seriously affects the spatial-charge field of the other grating.

  19. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC)inclusions),and tihe single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics we computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.

  20. Stochastic resonance and nonequilibrium dynamic phase transition of Ising spin system driven by a joint external field

    Institute of Scientific and Technical Information of China (English)

    Shao Yuan-Zhi; Zhong Wei-Rong; Lin Guang-Ming; Li Jian-Can

    2005-01-01

    The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-noise are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of h0-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.

  1. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  2. A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da

    2006-01-01

    Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.

  3. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Science.gov (United States)

    Klimachkov, D. A.; Petrosyan, A. S.

    2017-01-01

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  4. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Science.gov (United States)

    Hönnicke, M. G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L. A.; Rosado-Neto, G. H.

    2010-08-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures ( Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  5. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G., E-mail: mhonnicke@bnl.go [NSLS II, Brookhaven National Laboratory, Upton, NY (United States); Cusatis, C. [LORXI, Departamento de Fisica-UFPR, Curitiba (Brazil); Rigon, L. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Menk, R.-H. [Sincrotrone Trieste SCPa, Basovizza, Trieste (Italy); Arfelli, F. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Dipartamento di Fisica-Universita di Trieste, Trieste (Italy); Foerster, L.A.; Rosado-Neto, G.H. [Departamento de Zoologia-UFPR, Curitiba (Brazil)

    2010-08-21

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  6. Subdivision of phase space for anisotropically interacting water molecules

    Science.gov (United States)

    Epifanov, S. Yu.; Vigasin, A. A.

    An efficient numerical algorithm is employed which enables one to perform multidimensional integrations of complicated integrands. Temperature dependence of the second virial coefficient for water is reproduced using the Matsuoka Clementi Yoshimine intermolecular water water potential. Metastable states are shown to occupy significant domain in the water dimer phase space.

  7. FLOW BEHAVIOR AND MASS TRANSFER IN THREE-PHASE EXTERNAL-LOOP AIRLIFT REACTORS WITH LARGE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Malin; Liu; Tongwang; Zhang; Tiefeng; Wang; Jinfu; Wang; Yong; Jin

    2006-01-01

    The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient. The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.

  8. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burns, Douglas Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expected to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.

  9. Speciation and phase separation of water in quartz (A review ...

    African Journals Online (AJOL)

    Speciation and phase separation of water in quartz (A review) ... of quartz at temperatures in excess of 500 °C. leading to decomposition of the ... The nucleation is a first order phase transition of creating liquid nucleus within the vapour phase, ...

  10. Coherent cancellation of geometric phase for the OH molecule in external fields

    CERN Document Server

    Marin, M Bhattacharya S

    2014-01-01

    The OH molecule in its ground state presents a versatile platform for precision measurement and quantum information processing. These applications depend vitally on the accurate measurement of transition energies between the OH levels. Significant sources of systematic errors in these measurements are shifts based on the geometric phase arising from the magnetic and electric fields used for manipulating OH. In this article, we present these geometric phases for fields that vary harmonically in time, as in the Ramsey technique. Our calculation of the phases is exact within the description provided by our recent analytic solution of an effective Stark-Zeeman Hamiltonian for the OH ground state. This Hamiltonian has earlier been shown to model experimental data accurately. We find that the OH geometric phases exhibit rich structure as a function of the field rotation rate. Remarkably, we find rotation rates where the geometric phase accumulated by a specific state is zero, or where the relative geometric phase b...

  11. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.

    2003-01-01

    to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...

  12. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    Science.gov (United States)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties

  13. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  14. Competing coexisting phases in 2D water

    Science.gov (United States)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  15. Phase Equilibria of Water/CO2 and Water/n-Alkane Mixtures from Polarizable Models.

    Science.gov (United States)

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-02-16

    Phase equilibria of water/CO2 and water/n-alkane mixtures over a range of temperatures and pressures were obtained from Monte Carlo simulations in the Gibbs ensemble. Three sets of Drude-type polarizable models for water, namely the BK3, GCP, and HBP models, were combined with a polarizable Gaussian charge CO2 (PGC) model to represent the water/CO2 mixture. The HBP water model describes hydrogen bonds between water and CO2 explicitly. All models underestimate CO2 solubility in water if standard combining rules are used for the dispersion interactions between water and CO2. With the dispersion parameters optimized to phase compositions, the BK3 and GCP models were able to represent the CO2 solubility in water, however, the water composition in CO2-rich phase is systematically underestimated. Accurate representation of compositions for both water- and CO2-rich phases cannot be achieved even after optimizing the cross interaction parameters. By contrast, accurate compositions for both water- and CO2-rich phases were obtained with hydrogen bonding parameters determined from the second virial coefficient for water/CO2. Phase equilibria of water/n-alkane mixtures were also studied using the HBP water and an exponenial-6 united-atom n-alkanes model. The dispersion interactions between water and n-alkanes were optimized to Henry's constants of methane and ethane in water. The HBP water and united-atom n-alkane models underestimate water content in the n-alkane-rich phase; this underestimation is likely due to the neglect of electrostatic and induction energies in the united-atom model.

  16. Phase transitions in the coal-water-methane system

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, A.D.; Ulyanova, E.V.; Kalugina, N.A.; Degtyar, S.E. [Institute of Physical & Mining Processes, Donetsk (Ukraine)

    2006-07-01

    Low temperature phase transitions in water and methane occurring in fossil coals were studied experimentally using Nuclear Magnetic Resonance (NMR) techniques. Contributions of constituent fluids into narrow line of {sup 1}H NMR wide line spectrum were analyzed.

  17. Antibacterial activity of water-phase extracts from bamboo shavings ...

    African Journals Online (AJOL)

    Antibacterial activity of water-phase extracts from bamboo shavings against food spoilage microorganisms. ... African Journal of Biotechnology ... was evaluated for its antimicrobial action against the range of food borne and food spoilage ...

  18. Prevalence of external injuries in small cetaceans in Aruban waters, southern Caribbean.

    Science.gov (United States)

    Luksenburg, Jolanda A

    2014-01-01

    Aruba, located close to the coasts of Colombia and Venezuela, is one of the most densely populated islands in the Caribbean and supports a wide range of marine-related socio-economic activities. However, little is known about the impacts of human activities on the marine environment. Injuries in marine mammals can be used to examine interactions with human activities and identify potential threats to the survival of populations. The prevalence of external injuries and tooth rake marks were examined in Atlantic spotted dolphin (Stenella frontalis) (n = 179), bottlenose dolphin (Tursiops truncatus) (n = 76) and false killer whale (Pseudorca crassidens) (n = 71) in Aruban waters using photo identification techniques. Eleven injury categories were defined and linked to either human-related activities or natural causes. All injury categories were observed. In total, 18.7% of all individuals had at least one injury. Almost half (41.7%) of the injuries could be attributed to human interactions, of which fishing gear was the most common cause (53.3%) followed by propeller hits (13.3%). Major disfigurements were observed in all three species and could be attributed to interactions with fishing gear. The results of this study indicate that fishing gear and propeller hits may pose threats to small and medium-sized cetaceans in Aruban waters. Thus, long-term monitoring of population trends is warranted. Shark-inflicted bite wounds were observed in Atlantic spotted dolphin and bottlenose dolphin. Bite wounds of cookie cutter sharks (Isistius sp.) were recorded in all three species, and include the first documented record of a cookie cutter shark bite in Atlantic spotted dolphin. This is one of the few studies which investigates the prevalence of injuries in cetaceans in the Caribbean. Further study is necessary to determine to which extent the injuries observed in Aruba affect the health and survival of local populations.

  19. Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation

    Science.gov (United States)

    Boscolo, S.; Mouradian, L. Kh; Finot, C.

    2016-10-01

    We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.

  20. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.;

    2003-01-01

    to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...... have been performed using an integrated SIS harmonic mixer. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field has been studied in order to further optimize the FFO design....... A new approach with a self-shielded FFO has been developed and experimentally tested....

  1. Effect of water-ice phase change on thermal performance of building materials

    Science.gov (United States)

    Kočí, Václav; Černý, Robert

    2016-07-01

    The effect of water ice-phase change on thermal performance of integrated building material is investigated in this paper. As a characteristic construction, simple external wall made of aerated autoclaved concrete was assumed which was exposed to dynamic climatic condition of Šerák, Czech Republic. The computational modelling of hygrothermal performance was carried out using computer codes HEMOT and SIFEL that work on the basis of finite element method. The effect of phase change was taken into account by fixed-domain method, when experimentally determined effective specific heat capacity was used as a material parameter. It comprises also the effect of heat consumption and heat release that accompany the water-ice phase change. Comparing to the results with specific heat capacity, the effect of phase change on thermal performance could be quantified. The results showed that temperature fields can differ more than 6 °C. Additionally, the amount energy transported through the wall may be higher up to 4 %. This confirmed, that the effect water-ice phase change should be included in all the relevant energy calculations.

  2. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  3. Effect of External Electric Field on Phase Selection and Stability of Amorphous( Nd0.1Fe0.9 )3 B Alloy

    Institute of Scientific and Technical Information of China (English)

    李山东; 唐建成; 袁钻如; 顾本喜; 都有为

    2004-01-01

    The effect of an external electric field on the crystallization behavior of amorphous(Nd0.1Fe0.9)3B alloy was investigated. The crystallization product of Nd2Fe23B3 phase was obtained for this amorphous alloy annealed at 923 K for 300 s in the presence of an external electric field of 300 kV·m-1(50 Hz); while the crystallization products are Nd1.1Fe4B4, α-Fe, and Fe3B phases under the same annealing condition except for free-electric field. On the other hand, the samples were annealed at 1023 K, which is higher than the decomposition temperature of metastable Nd2Fe23B3 phase, for 600 s. In the case of the presence of an external electric field, the metastable Nd2Fe23B3 phase, as a main phase, is still stayed in the sample. This fact suggests that the external electric field enhances the stabilization of the metastable Nd2Fe23B3 phase. The effect of the external electric field on the phase selection and stabilization was explained in terms of the specific conductance difference between the crystallization products.

  4. Continuous melting through a hexatic phase in confined bilayer water

    Science.gov (United States)

    Zubeltzu, Jon; Corsetti, Fabiano; Fernández-Serra, M. V.; Artacho, Emilio

    2016-06-01

    Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems.

  5. Light Water Reactor Sustainability Program Industry Application External Hazard Analyses Problem Statement

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Annie Kammerer Consulting, Rye, NH (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States)

    2015-07-01

    Risk-Informed Margin Management Industry Application on External Events. More specifically, combined events, seismically induced external flooding analyses for a generic nuclear power plant with a generic site soil, and generic power plant system and structure. The focus of this report is to define the problem above, set up the analysis, describe the methods to be used, tools to be applied to each problem, and data analysis and validation associated with the above.

  6. TWRS privatization phase I - raw and potable water service

    Energy Technology Data Exchange (ETDEWEB)

    Shord, A.L.

    1996-09-27

    The U.S. Department of Energy has chosen to accomplish the Tank Waste Remediation System disposal mission via privatization. The disposal mission has been divided into two phases. Phase 1, a `proof of concept` phase, will establish and demonstrate the technical, commercial, and procurement capabilities necessary for privatization to proceed. Once established on this relatively small scale, privatization will be expanded, through a second competition, in the form of a second phase (Phase II) to dispose of the remainder of the tank waste. The Phase I privatization site will be located in the former Grout Disposal Site area. To prepare the site for use for the private contractors, utilities must be extended from the 200 East Area infrastructure. This study evaluates and recommends the systems to supply raw, fire suppression, and sanitary (potable) water services to the boundary of the area to be assigned to each private contractor.

  7. Experimental study of an externally finned tube with internal heat transfer enhancement for phase change thermal energy storage

    Science.gov (United States)

    Martinelli, M.; Bentivoglio, F.; Couturier, R.; Fourmigué, J.-F.; Marty, P.

    2016-09-01

    After having presented the design of a latent heat thermal energy storage system (LHTESS) for district heating, experimental results of a vertical tube-in-shell LHTESS are discussed. The tube is radially finned on its external wall to enhance the heat transfer in the phase change material. The test rig is operated with flow conditions corresponding to the proposed design. As the internal flow of heat transfer fluid (HTF) appears to be laminar and is highly influenced by buoyancy forces, which results in mixed convection regime, cross-sectional area reducers are installed inside the HTF tube in order to reduce the Rayleigh number and thus natural convection. Experimental results are presented for two finned tubes, with and without internal heat transfer enhancement respectively.

  8. Phase transition in Caenorhabditis elegans: A classical oil-water phase separation?

    Science.gov (United States)

    Weber, Christoph; Tony Hyman Collaboration; Andrés Delgadillo Collaboration; Frank Jülicher Team

    2014-03-01

    In Caenorhabditis elegans droplets form before the cell divides. These droplets, also referred to as P-granules, consist of a variety of unstructured proteins and mRNA. Brangwynne et al. [Science, 2009] showed that the P-granules exhibit fluid-like behavior and that the phase separation is controlled spatially by a gradient of a component called Mex-5. It is believed that this system exhibits the same characteristics as a classical oil-water phase separation. Here we report the recent experimental investigations on the phase separation in Caenorhabditis elegans and compare our findings with a classical oil-water phase separation. Specifically, we consider the underlying coarsening mechanisms as well as the impact of temperature and species composition. Finally, we present a preliminary model incorporating the characteristics of the phase separation kinetics for Caenorhabditis elegans.

  9. Phase equilibrium in a water + n-hexane system with a high water content

    Science.gov (United States)

    Rasulov, S. M.; Orakova, S. M.; Isaev, Z. A.

    2017-02-01

    The P, ρ, and T-properties of a water + n-hexane system immiscible under normal conditions are measured piezometrically in the water mole fraction range of 0.918-0.977 at 309-685 K and pressures of up to 66 MPa. Two phase transitions are observed on each isochore corresponding to phase transitions of hydrocarbon liquid into gas or the dissolution of n-hexane in water and the transition of aqueous liquid into gas. The boundaries of phase transitions and their critical parameters are determined.

  10. Intensive educational efforts combined with external quality assessment improve the preanalytical phase in general practitioner offices and nursing homes.

    Science.gov (United States)

    Sølvik, Una Ørvim; Bjelkarøy, Wenche Iren; Berg, Kari van den; Saga, Anne Lise; Hager, Helle Borgstrøm; Sandberg, Sverre

    2017-05-05

    Errors in the preanalytical phase in clinical laboratories affect patient safety. The aim of this study was to evaluate the effect of intensive educational efforts together with external quality assessment (EQA) of the preanalytical phase from 2013 to 2015 to improve patient identification in primary health care in Norway. In addition, routines for venous and capillary blood sampling were investigated. A preanalytical EQA was circulated in 2013 by the Norwegian Quality Improvement of Laboratory Examinations (Noklus) to general practitioner offices and nursing homes (n=2000) to obtain information about important issues to focus on before launching an intensive educational program with courses, posters and visits in 2013-2015. Preanalytical EQA surveys were further circulated in 2014 and 2015. The response rate varied between 42% and 55%. The percentages of participants asking for the patients' name and the Norwegian identification number increased from about 8% in 2013 to about 35% in 2015. The increase was similar for those participating in only one EQA survey and for those who participated in EQA surveys both in 2013 and 2015. Guidelines for venous and capillary blood sampling were not always followed. Educational efforts more than the preanalytical EQA influenced the actions and resulted in an increase in the percentages of participants that followed the guidelines for patient identification. Some aspects of blood sampling routines need improvement.

  11. Effects of External Chemical Regulation on Bt Transgenic Cotton Plants under Combined Stress of High Temperature and Water Deficit

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gui-sheng; ZHANG Wang-ding; TONG Chen; LIN Yan; AN Lin-lin; LIU Gui-juan

    2011-01-01

    [Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.

  12. Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems.

    Science.gov (United States)

    Angelico, Ruggero; Ceglie, Andrea; Colafemmina, Giuseppe; Delfine, Fabio; Olsson, Ulf; Palazzo, Gerardo

    2004-02-03

    The isothermal pseudo-ternary-phase diagram was determined at 25 degrees C for systems composed oflecithin, water, and, as oil, either isooctane or decane. This was accomplished by a combination of polarizing microscopy, small-angle X-ray scattering, and NMR techniques. The lecithin-rich region of the phase diagram is dominated by a lamellar liquid-crystalline phase (Lalpha). For lecithin contents less than 60% and low hydration (mole ratio water/lecithin = W0 isooctane (for lecithin 25%). These two-phase regions are very thin with respect to water dilution. For 8 isooctane and Lalpha, (ii) equilibrium between reverse micelles and spherulites, and, finally, (iii) disconnected reverse micelles that fail to solubilize water for W0 > 54. This results in a Winsor II phase equilibrium at low lecithin content, while for lecithin > 20% the neat water is in equilibrium with a reverse hexagonal phase and an isotropic liquid-crystalline phase. The use of the decane as oil does not change the main features of the phase behavior.

  13. Risk Analysis and Its Role in Securing Waters from the EU External Border

    Directory of Open Access Journals (Sweden)

    Tache BOCĂNIALĂ

    2015-08-01

    Full Text Available In this paper we propose to emphasize the importance of risk analysis to prevent and combat transnational crime, especially trafficking in human beings, illegal migration and smuggling, in all its forms, especially the external maritime borders and inland EU .No least, this tool may have an important role in preventing tragedies in the reduction of casualties.

  14. Microfluidic generation of uniform water droplets using gas as the continuous phase.

    Science.gov (United States)

    Jiang, Kunqiang; Lu, Annie Xi; Dimitrakopoulos, Panagiotis; DeVoe, Don L; Raghavan, Srinivasa R

    2015-06-15

    Microfluidic schemes for forming uniform aqueous microdroplets usually rely on contacting the aqueous liquid (dispersed phase) with an immiscible oil (continuous phase). Here, we demonstrate that the oil can be substituted with gas (nitrogen or air) while still retaining the ability to generate discrete and uniform aqueous droplets. Our device is a capillary co-flow system, with the inner flow of water getting periodically dispersed into droplets by the external flow of gas. The droplet size and different formation modes can be tuned by varying the liquid and gas flow rates. Importantly, we identify the range of conditions that correspond to the "dripping mode", i.e., where discrete droplets are consistently generated with no satellites. We believe this is a significant development that will be beneficial for chemical and biological applications requiring clean and contaminant-free droplets, including DNA amplification, drug encapsulation, and microfluidic cell culture.

  15. Direct Phase Equilibrium Simulations of NIPAM Oligomers in Water.

    Science.gov (United States)

    Boţan, Vitalie; Ustach, Vincent; Faller, Roland; Leonhard, Kai

    2016-04-07

    NIPAM (N-isopropylacrylamide)-based polymers in water show many interesting properties in experiments, including a lower critical solution temperature (LCST) at 305 K and a conformational transition of single chains at the same temperature. The results of many simulation studies suggest that standard force fields are able to describe the conformational transition and the phase equilibrium well. We show by performing long molecular dynamics simulations of the direct liquid-liquid phase equilibrium of NIPAM trimers in water that there is no LCST in the expected temperature range for any of the force fields under study. The results show further that the relaxation times of single-chain simulations are considerably longer than anticipated. Conformational transitions of single polymers can therefore not necessarily be used as surrogates for a real phase transition.

  16. External and Internal Guest Binding of a Highly Charged Supramolecular Host in Water: Deconvoluting the Very Different Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sgarlata, Carmelo; Mugridge, Jeffrey; Pluth, Michael; Tiedemann,, Bryan; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N.

    2009-07-22

    NMR, UV-vis and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga{sub 4}L{sub 6}]{sup 12-} supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.

  17. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  18. Water Phase Change Heat Exchanger System Level Analysis for Low Lunar Orbit

    Science.gov (United States)

    Navarro, Moses; Ungar, Eugene; Sheth, Rubik; Hansen, Scott

    2016-01-01

    In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and as warm as room temperature near the subsolar point. Phase change material heat exchangers (PCHXs) are the best option for long term missions in these environments. The Orion spacecraft will use a n-pentadecane wax PCHX for its envisioned mission to LLO. Using water as a PCM material is attractive because its higher heat of fusion and greater density result in a lighter, more compact PCHX. To assess the use of a water PCHX for a human spacecraft in a circular LLO, a system level analysis was performed for the Orion spacecraft. Three cases were evaluated: 1) A one-to-one replacement of the wax PCHX on the internal thermal control loop with a water PCHX (including the appropriate control modifications), 2) reducing the radiator return setpoint temperature below Orion's value to enhance PCHX freezing, and 3) placing the water PCM on the external loop. The model showed that the water PCHX could not be used as a drop-in replacement for the wax PCHX. It did not freeze fully during the eclipse owing to its low freezing point. To obtain equivalent performance, 40% more radiator area than the Orion baseline was required. The study shows that, although water PCHXs are attractive at a component level, system level effects mean that they are not the best choice for LLO.

  19. Bulk water phase and biofilm growth in drinking water at low nutrient conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 131C, for at least 385 days to allow......In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used...... the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day1. The bulk water phase bacteria exhibited a higher activity than the biofilmbacteria in terms of culturability, cell-specific ATP content...

  20. Deriving binary phase diagrams for chromonic materials in water mixtures via fluorescence spectroscopy: cromolyn and water.

    Science.gov (United States)

    Van Hecke, Gerald R; Karukstis, Kerry K; Rayermann, Scott

    2015-01-14

    We report here the first example of a new and novel method of determining the binary temperature-composition phase diagram of a chromonic material in water using its intrinsic fluorescence. Disodium cromoglycate, or cromolyn, is an anti-allergy medicine representative of a class of compounds known as the chromonics. We have discovered that cromolyn's fluorescence is very sensitive to the polarity, hence structure, of the phase it exhibits. The fluorescence signal shifts its wavelength maximum and its shape depending on whether the cromolyn is a single phase or in coexisting phases. Since the signal due to individual phases can be identified, the fluorescence signal can reveal the temperature-induced transitions between single phase and phase coexistence regions. By studying such fluorescence data for different compositions, an isobaric temperature-composition phase diagram may be constructed. We present here a phase diagram derived from fluorescence studies that is in agreement with previous determinations using other techniques. Our results suggest that the binary phase diagrams of other intrinsically fluorescent chromonic materials, such as perylene monoimide and bisimide derivatives used in organic optoelectronic devices, solar cells, and light-emitting diodes, can be studied in water using an analogous fluorescence approach.

  1. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  2. Analysis of phase noise and cnr degradation of externally generated lo signal in lnb for ku-band dvb-s systems by heterodyning two lasers

    NARCIS (Netherlands)

    Khan, M.R.H.; Burla, M.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Etten, van W.

    2009-01-01

    We investigate the externally generation of an LO signal by optical heterodyning, which is then distributed to each of the mixers at every antenna element of a phased array antenna used for standard DVB-S (digital Video Broadcasting-Satellite) reception system. The system1 is presented in Figure 1.

  3. Estimation of Phase Delay due to Precipitable Water for Dinsarbased Land Deformation Monitoring

    Science.gov (United States)

    Susaki, J.; Maeda, N.; Akatsuka, S.

    2017-09-01

    In this paper, we present a method for using the estimated precipitable water (PW) to mitigate atmospheric phase delay in order to improve the accuracy of land-deformation assessment with differential interferometric synthetic aperture radar (DInSAR). The phase difference obtained from multi-temporal synthetic aperture radar images contains errors of several types, and the atmospheric phase delay can be an obstacle to estimating surface subsidence. In this study, we calculate PW from external meteorological data. Firstly, we interpolate the data with regard to their spatial and temporal resolutions. Then, assuming a range direction between a target pixel and the sensor, we derive the cumulative amount of differential PW at the height of the slant range vector at pixels along that direction. The atmospheric phase delay of each interferogram is acquired by taking a residual after a preliminary determination of the linear deformation velocity and digital elevation model (DEM) error, and by applying high-pass temporal and low-pass spatial filters. Next, we estimate a regression model that connects the cumulative amount of PW and the atmospheric phase delay. Finally, we subtract the contribution of the atmospheric phase delay from the phase difference of the interferogram, and determine the linear deformation velocity and DEM error. The experimental results show a consistent relationship between the cumulative amount of differential PW and the atmospheric phase delay. An improvement in land-deformation accuracy is observed at a point at which the deformation is relatively large. Although further investigation is necessary, we conclude at this stage that the proposed approach has the potential to improve the accuracy of the DInSAR technique.

  4. ESTIMATION OF PHASE DELAY DUE TO PRECIPITABLE WATER FOR DINSARBASED LAND DEFORMATION MONITORING

    Directory of Open Access Journals (Sweden)

    J. Susaki

    2017-09-01

    Full Text Available In this paper, we present a method for using the estimated precipitable water (PW to mitigate atmospheric phase delay in order to improve the accuracy of land-deformation assessment with differential interferometric synthetic aperture radar (DInSAR. The phase difference obtained from multi-temporal synthetic aperture radar images contains errors of several types, and the atmospheric phase delay can be an obstacle to estimating surface subsidence. In this study, we calculate PW from external meteorological data. Firstly, we interpolate the data with regard to their spatial and temporal resolutions. Then, assuming a range direction between a target pixel and the sensor, we derive the cumulative amount of differential PW at the height of the slant range vector at pixels along that direction. The atmospheric phase delay of each interferogram is acquired by taking a residual after a preliminary determination of the linear deformation velocity and digital elevation model (DEM error, and by applying high-pass temporal and low-pass spatial filters. Next, we estimate a regression model that connects the cumulative amount of PW and the atmospheric phase delay. Finally, we subtract the contribution of the atmospheric phase delay from the phase difference of the interferogram, and determine the linear deformation velocity and DEM error. The experimental results show a consistent relationship between the cumulative amount of differential PW and the atmospheric phase delay. An improvement in land-deformation accuracy is observed at a point at which the deformation is relatively large. Although further investigation is necessary, we conclude at this stage that the proposed approach has the potential to improve the accuracy of the DInSAR technique.

  5. Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges

    Science.gov (United States)

    Kitabatake, Yoshifusa

    1990-04-01

    With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.

  6. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  7. Produced water radionuclide hazard/risk assessment, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ``produced water.`` Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  8. Phase space generation for proton and carbon ion beams for external users’ applications at the Heidelberg Ion Therapy Center

    Directory of Open Access Journals (Sweden)

    Thomas eTessonnier

    2016-01-01

    Full Text Available In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT, the beamline has been already modeled in the FLUKA Monte Carlo code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS files for proton and carbon ion beams, for all energies and foci available at HIT. PS are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the Monte-Carlo code FLUKA. The generated PS were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles, with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for

  9. Evaporation of water droplets on Pt-surface in presence of external electric field--A molecular dynamics study.

    Science.gov (United States)

    Hens, Abhiram; Biswas, Gautam; De, Sudipta

    2015-09-01

    Evaporation of a sessile droplet on a hot solid substrate is an important problem in fluid mechanics. It is relevant to theoretical issues in heat transfer as well as several practical applications. This study investigates the spreading and evaporation of a nanoscale water droplet on a solid platinum surface. The major objective was to analyze the effect of an external electric field on these phenomena. Varying the intensity and direction of the external electric field, a series of molecular dynamics simulations were carried out to understand these phenomena at a molecular level. The results reveal that a horizontal electric field assists in droplet spreading, whereas a vertical electric field enhances the rate of evaporation for a certain range of field intensities. It also shows that the substrate temperature plays an important role in such processes. It is seen that the effect of an external electric field on droplet evaporation becomes significant at an intermediate range of surface temperatures and this effect is not clearly visible for either very high or very low range of surface temperatures.

  10. [Ten years of external control over water fluoridation in Chapecó, Santa Catarina State, Brazil].

    Science.gov (United States)

    Panizzi, Mirvaine; Peres, Marco Aurélio

    2008-09-01

    This study aimed to analyze fluoride concentration in the public water supply in Chapecó, Santa Catarina State, Brazil, from 1995 to 2005 and to assess the effectiveness of a fluoridation quality intervention in 2003. A total of 989 water samples were analyzed. Fluoride concentrations were classified according to three different criteria used in Brazil. The city conducted a political and legal intervention in 2003. The Prais-Winsten procedure was used to evaluate the fluoride concentrations over time. In the ten years, the water fluoridation system showed 46%, 32%, and 43% of adequate samples, depending on the criterion. Prior to the municipal intervention, the proportion of adequate samples was 40%, 26%, and 36%, increasing to 63%, 49%, and 61% after the intervention, according to the three criteria. Fluoride concentration improved after the municipal intervention. On-going surveillance is recommended, including water fluoridation, dental caries, and dental fluorosis.

  11. The Economics of Mitigation of Water Pollution Externalities from Biomass Production for Energy

    Directory of Open Access Journals (Sweden)

    Naveen Adusumilli

    2014-12-01

    Full Text Available To fulfill the national bioenergy goals of the United States, conversion of marginal lands to intensive biomass crop production and/or application of greater amounts of nutrients to existing cropland could be expected. Such change in agricultural practices could produce unintended environmental consequences such as water quality degradation. Select Best Management Practices (BMPs are evaluated for water quality mitigation effectiveness as well as for their relative cost-effectiveness, issues that are often ignored in evaluation of biofuels as a sustainable solution for energy demand. The water quality impacts of converting pastureland to intensive biomass production for biofuel, evaluated using the Soil Water Assessment Tool (SWAT, indicate significant increases in erosion and nutrient loadings to water bodies. Hydrologic and economic evaluation of the BMPs indicate their implementation produced effective water pollution mitigation but at substantial costs, accentuating the sustainability issue related to the economics of renewable fuels. U.S. national energy policy designed around achieving energy independence should also consider environmental and economic trade-offs for biofuels to be an economically and environmentally sustainable alternative to fossil fuels.

  12. External control of fluoridation of public water supplies of the city of Jaguaribara, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Fernandes Peixoto

    2012-09-01

    Full Text Available Objective: To monitor the levels of fluoride (F in public water supplies in the city of Jaguaribara, Ceará, Brazil. Methods: Water samples were collected from the urban area, at three different points. Samples were collected twice a month, from August 2010 to July 2011. The samples were analyzed in triplicate, using the combined electrode connected to a meter, previously calibrated with standards containing 0.2 to 6.4 ppm F, with Tisab II. Data was analyzed by three criteria: I (Brazil, 1975, II (Ramires et al., 2006 and III (Technical Consensus, 2011. results: Among a total of 72 water samples, we observed an average of 0.55 (± 0.19 ppm F, median of 0.61. According to Criterion I, acceptable levels of fluoride were found in 47.2% of samples, while 44,4% were underfluoridated ( 0.84 ppm F. Based on criterion III, 25% of samples showed negligible risk and benefits concerning dental fluorosis and prevention of dental caries, while 11.1% of the samples presented low risk and benefit and 63.9% pointed to low risk and maximum benefit. Conclusions: Altered levels of fluoride were observed in public water supplies in the studied period. It is suggested the need to improve operational control and also the external control of water fluoridation in Jaguaribara, Ceará, Brazil.

  13. External control of the public water supply in 29 Brazilian cities

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba Moimaz

    2012-02-01

    Full Text Available The fluoridation of public water supplies is considered the most efficient public health measure for dental caries prevention. However, fluoride levels in the public water supply must be kept constant and adequate for the population to gain preventive benefit. The aim of this study was to analyze fluoride levels in the public water supply of 29 Brazilian municipalities during a 48-month period from November 2004 to October 2008. Three collection sites were defined for each source of municipal public water supply. Water samples were collected monthly and analyzed at the Research Laboratory of the Nucleus for Public Health (NEPESCO, Public Health Postgraduate Program, Araçatuba Dental School (UNESP. Of the 6862 samples analyzed, the fluoride levels of 53.5% (n = 3671 were within the recommended parameters, those of 30.4% (n = 2084 were below these parameters, and those of 16.1% (n = 1107 were above recommended values. Samples from the same collection site showed temporal variability in fluoride levels. Variation was also observed among samples from collection sites with different sources within the same municipality. Although 53.5% of the samples contained the recommended fluoride levels, these findings reinforce the importance of monitoring to minimize the risk of dental fluorosis and to achieve the maximum benefit in the prevention of dental caries.

  14. Effect of external phosphate addition on solid-phase iron distribution and iron accumulation in Mangrove Kandelia obovata (S. L.).

    Science.gov (United States)

    Du, Jingna; Liu, Jingchun; Lu, Haoliang; Hansell, Dennis; Zhang, Qiong; Wang, Wenyun; Yan, Chongling

    2015-09-01

    In this study, a pot experiment was conducted to evaluate the effect of phosphate (PO4 (3-)) addition on iron (Fe) cycling in mangrove ecosystem. Kandelia obovata (S. L.), one of the dominant mangrove species in the southeast of China, was cultivated in rhizoboxes under three different levels of P concentrations. Results showed the solid-phase Fe distribution and Fe(II)/Fe(III) values in both the root zone (rhizosphere) and bulk soil (non-rhizosphere) were comparable among all P levels (p > 0.05); P addition significantly decreased the pore water Fe content both in the rhizosphere and non-rhizosphere zone (p iron plaque formation and iron accumulation in K. obovata (S. L.) tissues (p iron, higher abundance of root Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and together with higher amount of K. obovata (S. L.) root organic acids exudation result in a rapid Fe cycling in rhizosphere, which contribute to comparable solid-phase iron distribution among different P levels.

  15. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A. Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  16. Sensitivity of emergent sociohydrologic dynamics to internal system properties and external sociopolitical factors: Implications for water management

    Science.gov (United States)

    Elshafei, Y.; Tonts, M.; Sivapalan, M.; Hipsey, M. R.

    2016-06-01

    It is increasingly acknowledged that effective management of water resources requires a holistic understanding of the coevolving dynamics inherent in the coupled human-hydrology system. One of the fundamental information gaps concerns the sensitivity of coupled system feedbacks to various endogenous system properties and exogenous societal contexts. This paper takes a previously calibrated sociohydrology model and applies an idealized implementation, in order to: (i) explore the sensitivity of emergent dynamics resulting from bidirectional feedbacks to assumptions regarding (a) internal system properties that control the internal dynamics of the coupled system and (b) the external sociopolitical context; and (ii) interpret the results within the context of water resource management decision making. The analysis investigates feedback behavior in three ways, (a) via a global sensitivity analysis on key parameters and assessment of relevant model outputs, (b) through a comparative analysis based on hypothetical placement of the catchment along various points on the international sociopolitical gradient, and (c) by assessing the effects of various direct management intervention scenarios. Results indicate the presence of optimum windows that might offer the greatest positive impact per unit of management effort. Results further advocate management tools that encourage an adaptive learning, community-based approach with respect to water management, which are found to enhance centralized policy measures. This paper demonstrates that it is possible to use a place-based sociohydrology model to make abstractions as to the dynamics of bidirectional feedback behavior, and provide insights as to the efficacy of water management tools under different circumstances.

  17. Fine water spray for fire extinguishing. Phase 2: Turbine hood

    Science.gov (United States)

    Aune, P.; Wighus, R.; Drangsholt, G.; Stensaas, J. P.

    1994-12-01

    SINTEF has carried out tests of a Fine Water Spray fire suppression system intended to be used as a replacement for Halon systems in turbine hoods on offshore platforms operated by British Petroleum Norway. The tests were carried out in a 70 cu m full scale model representing a turbine hood of the Ula platform in the North Sea. A mock-up of a gas turbine was installed in the model. The scope of work in Phase 2 was to verify the efficiency of fire suppression in realistic fire scenarios using a Fine Water Spray system, and to find an optimum procedure for water application in a fire situation. Two reports have been made from the experiments in Phase 2, one Main Report, STF25 A94036, and the present Technical Report, STF25 A94037. The discussion and conclusions are given in the Main Report while this Technical Report gives a more thorough presentation of the experimental setup and methods used for calibration and calculation of measured values. In addition, a complete set of curves for each experiment is included.

  18. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    Science.gov (United States)

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  19. Solid phase extraction and determination of carbamate pesticides in water samples by reverse-phase HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Tovar, J.; Santos-Delgado, M.J. [Departamento de Quimica Analitica, Facultad de ciencias Quimicas, Universidad Complutense de Madrid (Spain)

    1995-12-31

    Solid phase extraction. SPE. using C{sub 1}8 bonded silica cartridges for trace amounts determination of carbaryl, propoxur, thiram, propham and methiocarb in water samples was studied and the breakthrough volume of the cartridges was established. The high enrichment factor and large injection volume admissible in the isocratic reverse-phase HPLC system allows pesticides determination with UV detection at 22o nm even at a concentration lower than 0.05 mug/L. Purified tap natural and underground water samples were spiked with carbamate pesticides in the concentration range 0.16-16.0 mug/L. Large volumes of samples (up to 2L) were passed through available C{sub 1}8, cartridges and eluted with acetonitrile. The preconcentrated samples were analyzed by HPLC using a Spherisorb ODS column with a 42.58 acetonitrile-water mobile phase. From replicate samples, recovery for the pesticides ranged from 79.0 to 103.7% except for thiran which is not retained. Tehe relative standard deviation (n=4 at 0.16 to 1.61 mug/L concetration level) range from 1.1 to 6.8%. (Author) 14 refs.

  20. The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters.

    Science.gov (United States)

    Zerulla, Karolin; Ludt, Katharina; Soppa, Jörg

    2016-05-01

    Synechocystis sp. PCC 6803 is a cyanobacterial model strain widely used to study many biological processes and is also applied for the production of biopolymers. Recently, it was reported that two of its substrains are highly polyploid. To test whether this can be generalized to the whole strain, six substrains were selected and their ploidy levels quantified. The ploidy levels of all substrains were highly growth phase regulated and the copy number was on average about 20 at an OD750 of 0.1 and about 4 at an OD750 of 2.5. In addition to growth phase, external conditions were found to influence the ploidy level, i.e. the copy number was elevated at lower light intensity and at higher phosphate concentrations (53 and 35 copies, respectively). In the absence of external phosphate, considerable growth was observed, although growth rate and growth yield were much lower than in the presence of either orthophosphate or genomic DNA as external source of phosphate. A rapid reduction in genome copy number was observed during growth in the absence of phosphate, indicating that replication ceased and genomes were distributed to the daughter cells. During prolonged incubation of stationary-phase cultures in the absence of phosphate, the cells eventually became monoploid. Taking the data together, the ploidy level of Synechocystis sp. PCC 6803 is extremely variable and is influenced by both growth phase and physical and chemical environmental parameters.

  1. Capture of water-borne colloids in granular beds using external electric fields: improving removal of Cryptosporidium parvum.

    Science.gov (United States)

    Kulkarni, Pramod; Dutari, Gabriel; Weingeist, David; Adin, Avner; Haught, Roy; Biswas, Pratim

    2005-03-01

    Suboptimal coagulation in water treatment plants often results in reduced removal efficiency of Cryptosporidium parvum oocysts by several orders of magnitude (J. AWWA 94(6) (2002) 97, J. AWWA 93(12) (2001) 64). The effect of external electric field on removal of C. parvum oocysts in packed granular beds was studied experimentally. A cylindrical configuration of electrodes, with granular media in the annular space was used. A negative DC potential was applied to the central electrode. No coagulants or flocculants were used and filtration was performed with and without application of an electric field to obtain improvement in removal efficiency. Results indicate that removal of C. parvum increased from 10% to 70% due to application of field in fine sand media and from 30% to 96% in MAGCHEM media. All other test particles (Kaolin and polystyrene latex microspheres) used in the study also exhibited increased removal in the presence of an electric field. Single collector efficiencies were also computed using approximate trajectory analysis, modified to account for the applied external electric field. The results of these calculations were used to qualitatively explain the trends in the experimental observations.

  2. Microporous silica gels from alkylsilicate-water two phase hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program

    1994-12-31

    Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.

  3. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  4. Sensitivity of oxygen dynamics in the water column of the Baltic Sea to external forcing

    Directory of Open Access Journals (Sweden)

    S. Miladinova

    2010-04-01

    Full Text Available A 1-D biogeochemical/physical model of marine systems has been applied to study the oxygen cycle in four stations of different sub-basins of the Baltic Sea, namely, in the Gotland Deep, Bornholm, Arkona and Fladen. The model consists of the biogeochemical model of Neumann et al. (2002 coupled with the 1-D General Ocean Turbulence Model (GOTM. The model has been forced with meteorological data from the ECMWF reanalysis project for the period 1998–2003, producing a six year hindcast which is validated with datasets from the Baltic Environmental Database (BED for the same period. The vertical profiles of temperature and salinity are relaxed towards both profiles provided by 3-D simulations of General Estuarine Transport Model (GETM and observed profiles from BED. Modifications in the parameterisation of the air-sea oxygen fluxes have led to a significant improvement of the model results in the surface and intermediate water layers. The largest mismatch with observations is found in simulating the oxygen dynamics in the Baltic Sea bottom waters. The model results demonstrate the good capability of the model to predict the time-evolution of the physical and biogeochemical variables at all different stations. Comparative analysis of the modelled oxygen concentrations with respect to observation data is performed to distinguish the relative importance of several factors on the seasonal, interannual and long-term variations of oxygen. It is found that natural physical factors, like the magnitude of the vertical turbulent mixing, wind speed and the variation of temperature and salinity fields are the major factors controlling the oxygen dynamics in the Baltic Sea. The influence of limiting nutrients is less pronounced, at least under the nutrient flux parameterisation assumed in the model.

  5. Modeling and Measurements of Heat Transfer Phenomena in Two-Phase PbSn Alloy Solidification in an External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    P.A.Nikrityuk; K.Eckert; R.Grundmann; B.Willers; S.Eckert

    2003-01-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass,momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  6. Modeling and measurements of heat transfer phenomena in two-phase PbSn alloy solidification in an external magnetic field

    Science.gov (United States)

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R.; Willers, B.; Eckert, S.

    2003-11-01

    The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass, momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.

  7. Influence of water concentrations on the phase transformation of a model surfactant/co-surfactant/water system

    Science.gov (United States)

    Lunkad, Raju; Srivastava, Arpita; Debnath, Ananya

    2017-02-01

    The influence of water concentrations on phase transformations of a surfactant/co-surfactant/water system is investigated by using all atom molecular dynamics simulations. At higher water concentrations, where surfactant (behenyl trimethyl ammonium chloride, BTMAC) to co-surfactant (stearyl alcohol, SA) ratio is fixed, BTMAC and SA self-assemble into spherical micelles, which transform into strongly interdigitated one dimensional rippled lamellar phases upon decreasing water concentrations. Fragmentation or fusions of spherical micelles of different sizes are evident from the radial distribution functions at different temperatures. However, at lower water concentrations rippled lamellar phase transforms into an LβI phase upon heating. Our simulations reveal that the concentrations of water can influence available space around the head groups which couple with critical thickness to accommodate the packing fraction required for respective phases. This directs towards obtaining a controlling factor to design desired phases important for industrial and medical applications in the future.

  8. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Thomas [Desert Research Institute; Minor, Timothy [Desert Research Institute; Pohll, Gregory [Desert Research Institute

    2013-07-22

    Phase I, in which the hydrologic framework was investigated and the development initiated. Phase II concentrates on practical implementation of the earlier work but emphasizes applications to the hydrology of the Lake Tahoe basin. Phase 1 efforts have been refined and extended by creating a toolset for geographic information systems (GIS) that is usable for disparate types of geospatial and geo-referenced data. The toolset is intended to serve multiple users for a variety of applications. The web portal for internet access to hydrologic and remotely sensed product data, prototyped in Phase I, has been significantly enhanced. The portal provides high performance access to LANDSAT-derived data using techniques developed during the course of the project. The portal is interactive, and supports the geo-referenced display of hydrologic information derived from remotely sensed data, such as various vegetative indices used to calculate water consumption. The platform can serve both internal and external constituencies using inter-operating infrastructure that spans both sides of the DRI firewall. The platform is intended grow its supported data assets and to serve as a template for replication to other geographic areas. An unanticipated development during the project was the use of ArcGIS software on a new computer system, called the IBM PureSytems, and the parallel use of the systems for faster, more efficient image processing. Additional data, independent of the portal, was collected within the Sagehen basin and provides detailed information regarding the processes that control hydrologic responses within mountain watersheds. The newly collected data include elevation, evapotranspiration, energy balance and remotely sensed snow-pack data. A Lake Tahoe basin hydrologic model has been developed, in part to help predict the hydrologic impacts of climate change. The model couples both the surface and subsurface hydrology, with the two components having been independently

  9. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.

    Science.gov (United States)

    Ravber, Matej; Knez, Željko; Škerget, Mojca

    2015-01-01

    In this study, the subcritical water extraction is proposed as an alternative and greener processing method for simultaneous removal of oil- and water-soluble phase from sunflower seeds. Extraction kinetics were studied at different temperatures and material/solvent ratios in a batch extractor. Degree of hydrothermal degradation of oils was observed by analysing amount of formed free fatty acids and their antioxidant capacities. Results were compared to oils obtained by conventional methods. Water soluble extracts were analysed for total proteins, carbohydrates and phenolics and some single products of hydrothermal degradation. Highest amount of oil was obtained at 130 °C at a material/solvent ratio of 1/20 g/mL after 30 min of extraction. For all obtained oils minimal degree of hydrothermal degradation could be identified. High antioxidant capacities of oil samples could be observed. Water soluble extracts were degraded at temperatures ≥100 °C, producing various products of hydrothermal degradation.

  10. Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil–water two-phase flow

    Science.gov (United States)

    Su, Qian; Tan, Chao; Dong, Feng

    2017-03-01

    When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.

  11. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  12. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  13. Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions

    Science.gov (United States)

    Mazur, O. Yu.; Stefanovich, L. I.; Yurchenko, V. M.

    2016-08-01

    The kinetics of the formation and growth of 180° domains in a weak quasi-stationary external electric field has been considered in the framework of the phenomenological Ginzburg-Landau model using the example of sodium nitrite (NaNO2) crystals that undergo a first-order ferroelectric phase transition of the order-disorder type. The influence of the rate and temperature of quenching, as well as the strength of an external electric field, on the subsequent evolution of the system toward the thermodynamic equilibrium state has been analyzed. It has been shown that, by varying a weak external electric field applied to the ferroelectric crystal after quenching, it is possible to obtain both single-domain and multi-domain ordered structures. It has been established that the formation of nonequilibrium ("virtual") multi-domain structures of the asymmetric type is possible for particular strengths of the electric field applied to the ferroelectric after quenching. A similar effect can be achieved by varying the depth of quenching of the sample. It has been found that, if the size of the order parameter inhomogeneities formed at the stage of quenching does not exceed a critical value, they can be reoriented partially or completely into domains of opposite sign. For this purpose, the relaxation after quenching should be performed in an external electric field of the appropriate sign.

  14. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  15. Initial experience of use of an articulated external fixator in treating Legg-Calvé-Perthes disease by means of arthrodiastasis during the active phase of the disease

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Malheiros Luzo

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVE: To present the preliminary results from treating patients with Legg-Calvé-Perthes Disease (LCPD by means of hip arthrodiastasis using a monolateral external fixator applied to the hip and to succinctly describe the surgical technique used, in a prospective study. METHODS: Prospective study on 18 patients with LCPD who underwent surgical treatment by means of the hip arthrodiastasis technique using a monolateral external fixator. There were 13 male and five female patients of mean age 8.5 years, ranging from five to 13 years. All the patients presented unilateral hip impairment: nine on the right side and nine on the left. The results were evaluated at maturity using clinical and radiological criteria. RESULTS: All the patients evolved with improvement of joint mobility, and pain relief was achieved in 88.9% of them. Reossification of the femoral epiphysis occurred within the first three months of the treatment. The hips operated at the necrosis stage of the disease did not passed through the fragmentation stage, thus shortening the evolution of the disease. The results were 77.8% satisfactory and 22.2% unsatisfactory. CONCLUSION: Hip arthrodiastasis with a monolateral external fixator during the active phase of LCPD improved the degree of joint mobility. Use of the arthrodiastasis technique at the necrosis stage or at the fragmentation stage (active phase of the disease presented satisfactory results from treatment of LCPD.

  16. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  17. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  18. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space.

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ(4) chain, at the same kinetic temperature T(0), but at different configurational temperatures--one end hotter and the other end colder than T(0). While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  19. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  20. IONS FROM AQUEOUS PHASE BY WATER HYACINTH (Eichhornia ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Water hyacinth, Biosorption, Kinetics, Water treatment, Pb(II) removal ... waters. Conventional technologies used to remove heavy metals from ... time as it is inefficient when dealing with large volume of industrial waste water.

  1. Pressurized-water reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  2. Effect of an external field on the structure and the phase transitions of a confined mixture of neutral and dipolar hard spheres

    Science.gov (United States)

    Chung, S.; Malherbe, J. G.; Amokrane, S.

    2015-11-01

    We study by Monte Carlo simulation the model of a binary mixture of neutral and dipolar hard spheres confined between two widely separated planar walls and subjected to a uniform external field. The goal is to investigate the structural response and the phase transitions of a fluid of hard-sphere-like colloids dispersed in a low-permittivity solvent under the combined effect of geometrical confinement and applied field. In a wide slab, the direction of the field, either normal or perpendicular to the walls, remains one of the most important factors that govern the response of the mixture: in normal field, a wide variety of structural effects are evidenced, including partial wetting or drying of the wall; in parallel field, phase separation is favoured with a specific population of the region close to the wall and a clear separation of the two species. These results suggest possible means to modulate the response of the confined fluid for specific needs.

  3. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Thomas [Desert Research Institute; Minor, Timothy [Desert Research Institute; Pohll, Gregory [Desert Research Institute

    2013-07-22

    Phase I, in which the hydrologic framework was investigated and the development initiated. Phase II concentrates on practical implementation of the earlier work but emphasizes applications to the hydrology of the Lake Tahoe basin. Phase 1 efforts have been refined and extended by creating a toolset for geographic information systems (GIS) that is usable for disparate types of geospatial and geo-referenced data. The toolset is intended to serve multiple users for a variety of applications. The web portal for internet access to hydrologic and remotely sensed product data, prototyped in Phase I, has been significantly enhanced. The portal provides high performance access to LANDSAT-derived data using techniques developed during the course of the project. The portal is interactive, and supports the geo-referenced display of hydrologic information derived from remotely sensed data, such as various vegetative indices used to calculate water consumption. The platform can serve both internal and external constituencies using inter-operating infrastructure that spans both sides of the DRI firewall. The platform is intended grow its supported data assets and to serve as a template for replication to other geographic areas. An unanticipated development during the project was the use of ArcGIS software on a new computer system, called the IBM PureSytems, and the parallel use of the systems for faster, more efficient image processing. Additional data, independent of the portal, was collected within the Sagehen basin and provides detailed information regarding the processes that control hydrologic responses within mountain watersheds. The newly collected data include elevation, evapotranspiration, energy balance and remotely sensed snow-pack data. A Lake Tahoe basin hydrologic model has been developed, in part to help predict the hydrologic impacts of climate change. The model couples both the surface and subsurface hydrology, with the two components having been independently

  4. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  5. Phase II study of concurrent capecitabine and external beam radiotherapy for pain control of bone metastases of breast cancer origin.

    Directory of Open Access Journals (Sweden)

    Yulia Kundel

    Full Text Available Pain from bone metastases of breast cancer origin is treated with localized radiation. Modulating doses and schedules has shown little efficacy in improving results. Given the synergistic therapeutic effect reported for combined systemic chemotherapy with local radiation in anal, rectal, and head and neck malignancies, we sought to evaluate the tolerability and efficacy of combined capecitabine and radiation for palliation of pain due to bone metastases from breast cancer.Twenty-nine women with painful bone metastases from breast cancer were treated with external beam radiation in 10 fractions of 3 Gy, 5 fractions a week for 2 consecutive weeks. Oral capecitabine 700 mg/m(2 twice daily was administered throughout radiation therapy. Rates of complete response, defined as a score of 0 on a 10-point pain scale and no increase in analgesic consumption, were 14% at 1 week, 38% at 2 weeks, 52% at 4 weeks, 52% at 8 weeks, and 48% at 12 weeks. Corresponding rates of partial response, defined as a reduction of at least 2 points in pain score without an increase in analgesics consumption, were 31%, 38%, 28%, 34% and 38%. The overall response rate (complete and partial at 12 weeks was 86%. Side effects were of mild intensity (grade I or II and included nausea (38% of patients, weakness (24%, diarrhea (24%, mucositis (10%, and hand and foot syndrome (7%.External beam radiation with concurrent capecitabine is safe and tolerable for the treatment of pain from bone metastases of breast cancer origin. The overall and complete response rates in our study are unusually high compared to those reported for radiation alone. Further evaluation of this approach, in a randomized study, is warranted.ClinicalTrials.gov NCT01784393NCT01784393.

  6. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    Science.gov (United States)

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.

  7. Phase II Audit Report - Energy & Water Audits of LLNL Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Horst, B I; Jacobs, P C; Pierce, S M

    2005-08-03

    This report describes Phase II of a project conducted for the Mechanical Utilities Division (UTel), Energy Management Program at Lawrence Livermore National Laboratory (LLNL) by Architectural Energy Corporation (AEC). The overall project covers energy efficiency and water conservation auditing services for 215 modular and prefabricated buildings at LLNL. The primary goal of this project is to demonstrate compliance with DOE Order 430.2A, Contractor Requirements Document section 2.d (2) Document, to demonstrate annual progress of at least 10 percent toward completing energy and water audits of all facilities. Although this project covers numerous buildings, they are all similar in design and use. The approach employed for completing audits for these facilities involves a ''model-similar building'' approach. In the model-similar building approach, similarities between groups of buildings are established and quantified. A model (or test case) building is selected and analyzed for each model-similar group using a detailed DOE-2 simulation. The results are extended to the group of similar buildings based on careful application of quantified similarities, or ''extension measures''. This approach leverages the relatively minor effort required to evaluate one building in some detail to a much larger population of similar buildings. The facility wide energy savings potential was calculated for a select set of measures that have reasonable payback based on the detailed building analysis and are otherwise desirable to the LLNL facilities staff. The selected measures are: (1) HVAC Tune-up. This is considered to be a ''core measure'', based on the energy savings opportunity and the impact on thermal comfort. All HVAC units in the study are assumed to be tuned up under this measure. See the Appendix for a detailed calculation by building and HVAC unit. (2) HVAC system scheduling. This is also considered to be a &apos

  8. Berry's Phases for Arbitrary Spins Non-Linearly Coupled to External Fields. Application to the Entanglement of N > 2 Non-Correlated One-Half Spins

    CERN Document Server

    Bouchiat, Marie-Anne

    2010-01-01

    We derive the general formula giving the Berry phase for an arbitrary spin, having both magnetic-dipole and electric-quadrupole couplings with external time-dependent fields. We assume that the effective E and B fields remain orthogonal during the quantum cycles. This mild restriction has many advantages. It provides simple symmetries leading to selection rules and the Hamiltonian-parameter and density-matrix spaces coincide for S=1. This implies the identity of the Berry and Aharonov-Anandan phases, which is lost for S>1. We have found that new features of Berry phases emerge for integer spins>2. We provide explicit numerical results of Berry phases for S=2,3,4. We give a precise analysis of the non-adiabatic corrections. The accuracy for satisfying adiabaticity is greatly improved if one chooses for the time derivatives of the parameters a time-dependence having a Blackman pulse shape. This has the effect of taming the non-adiabatic oscillation corrections which could be generated by a linear ramping. For r...

  9. Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions

    CERN Document Server

    Mizher, A J; Fraga, E S

    2010-01-01

    The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature--magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the paramagnetically-induced breaking of global $\\mathbb{Z}_3$ symmetry, and possible splitting of deconfinement and chiral transitions in a strong magnetic field.

  10. EXTERNAL ACTION EFFECT ON THE STRUCTURE OF THE LIQUID PHASE, THE CRYSTALLIZATION PROCESS, STRUCTURE FORMATION OF COPPER

    Directory of Open Access Journals (Sweden)

    Mr. Eduard A. Dmitriev

    2016-09-01

    Full Text Available The paper presents the research results of a fluid phase overheating and alloying effect on cuprum mechanical characteristics. Careful analysis of poly-thermal cross-sections of electro-resistance proved that in order to obtain the maximum values of cuprum mechanical properties, it should be overheated 30 °С above the temperature threshold of abnormal electro-resistance change of a fluid phase (1320 °С. The paper presents the research results of the influence of thermal and thermo-high-speed treatment of cuprum melting on its structure, crystallization and structure formation processes. Regularities of structure change, crystallization parameters and structure formation depending on overheating and cooling rate of the melt are stated.

  11. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  12. Influence of fat crystals in the oil phase on stability of oil-in-water emulsions

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1980-01-01

    Coalescence at rest and during flow was studied in emulsions of paraffin oil in water with several surfactants and with crystals of solid paraffin or tristearate in the oil phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. Without crystals, oil-in-water emulsions

  13. Phase behavior, self-assembly, and emulsification of Tween 80/water mixtures with limonene and perfluoromethyldecalin.

    Science.gov (United States)

    Sharma, Suraj Chandra; Warr, Gregory G

    2012-08-14

    The phase behavior, microstructure, and emulsification of polyoxyethylene (20) sorbitan monooleate (Tween 80), water, and d-limonene (LM) or perfluoromethyldecalin (PFMD) has been studied by small-angle X-ray scattering and polarizing optical microscopy. In the Tween 80/water binary system, a micellar solution (L(1)), a hexagonal (H(1)) phase, and a water-swellable isotropic surfactant liquid (L(2)) phase are successively formed at 25 °C. LM can be solubilized into all of the phases formed by Tween 80/water mixtures, whereas no solubilization of PFMD occurs. The L(2) phase was found by small-angle neutron scattering to be bicontinuous with low interfacial curvature. Added water swells and amplifies the pre-existing amphiphilic structure. The stability of oil-in-H(1) complex emulsions is found to be sensitive to changes in structure that accompany solubilization.

  14. [The external application of "Plastunskaya" fluoride-containing mineral water in the course of the combined spa and health resort-based treatment of deforming osteoarthrosis].

    Science.gov (United States)

    Mel'Nichuk, L P; Khodasevich, L S

    2015-01-01

    Mineral waters containing fluorine (fluorinated waters) at a concentration in excess of 1 mg per liter are extensively used in the newly developing spa and health resort areas of the Russian Federation. They have been found in Siberia, Trans-Baikal regions, and the Krasnodar Territory (together with the Greater Sochi). These waters are mainly used for drinking as a component of the balneo- therapeutic treatment. In this context, the study of the therapeutic effects of low-mineralized hydrocarbonate-sodium waters containing fluorine in high concentrations is of paramount importance for the substantiation and facilitation of their external application in the framework of the programs of combined spa and health resort-based treatment of various diseases. We have investigated the possibility of the external application of "Plastunskaya" mineral water characterized above all by the high content of fluorine for the external treatment of osteoarthritis in 187 patients at the age varying from 37 to 63 years in the combination with the sparing regimen of physical activity, therapeutic physical exercises, klimatotherapy of moderate intensity, and a balanced diet. The patients were prescribed to take general "Plastunskaya" mineral water baths with the fluoride concentration of 7.4 mg/l at a temperature of 36 C from 7 to 15 minutes in duration for 2 consecutive days with a break on every third day (the total course consisted of 14-16 baths). It was shown that the combined treatment with the use of fluorine-containing mineral water resulted in the significant improvement of the clinical and biochemical parameters characterizing the health status of the patients suffering from deforming osteoarthrosis.

  15. Cluster Monte Carlo and numerical mean field analysis for the water liquid-liquid phase transition

    Science.gov (United States)

    Mazza, Marco G.; Stokely, Kevin; Strekalova, Elena G.; Stanley, H. Eugene; Franzese, Giancarlo

    2009-04-01

    Using Wolff's cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allow us to study the thermodynamic behavior of water at temperatures, where other numerical approaches - both Monte Carlo and molecular dynamics - are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid-liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.

  16. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    Science.gov (United States)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  17. Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli

    Science.gov (United States)

    Fujisawa, Kaori; Yamada, Shigeyuki; Yanagi, Yukihiro; Yoshioka, Yasunori; Kiyohara, Ayumi; Tsutsumi, Osamu

    2015-01-01

    A series of new cyclic trinuclear Au(I) complexes with alkoxy side chains of various lengths were synthesized as photoluminescence materials. None of the complexes emitted luminescence in solution; however, some showed photoluminescence in the crystalline phase. Single crystal X-ray structural analyses revealed that an intermolecular interaction between two Au atoms (aurophilic interaction) existed only in the emissive complexes, which formed molecular aggregates in the crystal. Because isolated molecules show no luminescence in the present system, we conclude that only molecules aggregated via aurophilic interactions can luminesce. We demonstrated that luminescence properties, such as colour and intensity, were very sensitive to the aggregated structure of the molecules. We also found that such luminescence properties can be controlled by a change in the aggregated structure induced by external stimuli, such as heat, solvent, and mechanical stress. PMID:25879782

  18. Tuning the photoluminescence of condensed-phase cyclic trinuclear Au(I) complexes through control of their aggregated structures by external stimuli

    Science.gov (United States)

    Fujisawa, Kaori; Yamada, Shigeyuki; Yanagi, Yukihiro; Yoshioka, Yasunori; Kiyohara, Ayumi; Tsutsumi, Osamu

    2015-03-01

    A series of new cyclic trinuclear Au(I) complexes with alkoxy side chains of various lengths were synthesized as photoluminescence materials. None of the complexes emitted luminescence in solution; however, some showed photoluminescence in the crystalline phase. Single crystal X-ray structural analyses revealed that an intermolecular interaction between two Au atoms (aurophilic interaction) existed only in the emissive complexes, which formed molecular aggregates in the crystal. Because isolated molecules show no luminescence in the present system, we conclude that only molecules aggregated via aurophilic interactions can luminesce. We demonstrated that luminescence properties, such as colour and intensity, were very sensitive to the aggregated structure of the molecules. We also found that such luminescence properties can be controlled by a change in the aggregated structure induced by external stimuli, such as heat, solvent, and mechanical stress.

  19. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  20. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2008-09-01

    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  1. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  2. Phase transitions and dynamics of bulk and interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  3. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  4. Ten years of external control of the fluoride level in public drinking water provided by Brazilian cities, Brazil, 1996-2006

    Directory of Open Access Journals (Sweden)

    Jaime Aparecido Cury

    2008-01-01

    Full Text Available Objective: To evaluate the program of external control of water fluoridation performed in the periods between 1996 and 2006 by ten cities: eight in the State of São Paulo, one in Minas Gerais and another in the State of Ceará. Methods: The water samples were collected by the interested parties and sent to the Oral Biochemistry Laboratory of the Piracicaba School of Dentistry of the State University of Campinas, where they were analyzed with a fluoride ion-specific electrode. Results: Of the 3845 samples analyzed, 63.8% were in accordance with the values considered optimal (0.6 to 0.8 ppm F, with 19.7% of them presenting values below the minimum and 16.5%, above the maximum defined by Brazilian Standards. Furthermore, the majority of cities did not regularly maintain the program of external control of water fluoridation. Conclusion: Considering that approximately 40% of the water samples presented a fluoride ion concentration that did not comply with the Brazilian legislation, this study emphasizes the need for a regular program of sanitary vigilance of public water supply fluoridation.

  5. Phase-uncertainty quality map for two-point Dixon fat-water separation

    Science.gov (United States)

    Schmidt, Maria A.

    2011-09-01

    This work investigates and compares two different phase-correction algorithms for Dixon fat-water separation and two different quality maps (QM) for region-growing: the original QM, based on phase gradients, and a QM based on phase uncertainty, proposed in this article. A spoiled dual-gradient-echo sequence was employed at 1.5 T to acquire in-phase and out-of-phase images of joints, parotid glands, abdomen and test objects. All 97 datasets were processed eight times each: with two different phase correction algorithms (original and hierarchical phase correction), with two different QM, and with/without removing linear component of the phase drifts associated with dual-echo acquisitions and bipolar readout gradient waveforms. The linear component of the phase drift along the readout direction was found to reach 4.1° pixel-1, depending on the geometric parameters. Pre-processing to remove linear phase shifts has little impact on outcome. The hierarchic phase-correction algorithm outperformed the original phase-correction algorithm in all applications. The proposed phase-uncertainty QM provides a small performance improvement in clinical images, but can be vulnerable to flow-related phase shifts in bright vessels. Overall the most successful phase-correction technique employed phase-uncertainty QMs and hierarchic algorithms, with pre-processing to correct the linear phase drift associated with dual-echo acquisitions and bipolar readout gradient waveform.

  6. Comparison of Y-jet and OIL effervescent atomizers based on internal and external two-phase flow characteristics

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2016-01-01

    Full Text Available Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, “outside in liquid” (OIL, configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%. The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR, internal flow regimes, Weber numbers of a liquid breakup (We and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.

  7. Numerical analysis of a three-phase system with a fluctuating water table

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Lenhard, R.J.

    1993-03-01

    Numerical simulations are presented of a one-dimensional, multiphase flow system that involves the redistribution of aqueous-phase liquids and nonaqueous-phase liquids (NAPLs) by a fluctuating water table. The numerical analyses were completed using an integrated-volume, finite-difference-based solution scheme of the governing multiphase conservation equations and constitutive theory. Conservation equations were solved for two components water and oil, with the assumption of a passive gas-phase. Nonlinearities introduced into the governing conservation equations through the constitutive theory were handled with a multivariable Newton-Raphson iterative scheme. The functional relationships between the phase relative permeability, the phase saturation, and phase pressures in porous media were described with a general theoretical model that includes the effects of air and oil occlusion during imbibition. Parameters required for the theoretical model were defined for two-phase systems (e.g., air- water, air-oil, and oil-water). The theoretical model assumes that wettability decreases in the following order: water, oil, air. Results from the numerical simulations are compared against measurements taken from a previous multiphase flow experiment. The experiment involved subjecting an initially water-drained, three-phase system (i.e., air-oil-water), to a fluctuating water table. The experimental objective was to quantify the entrapment of air and NAPL by phases of greater wettability under dynamic conditions. Comparison of numerical and experimental results were made for two ratios of imbibition to drainage characteristic, curve-shape parameters and two models for relative permeability in two-phase systems. A description of the numerical methods used to solve the governing conservation and constitutive equations for multiphase hysteretic conditions is given.

  8. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    Science.gov (United States)

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-01

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively.

  9. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  10. Salvage brachytherapy in combination with interstitial hyperthermia for locally recurrent prostate carcinoma following external beam radiation therapy: a prospective phase II study.

    Science.gov (United States)

    Kukiełka, Andrzej M; Strnad, Vratislav; Stauffer, Paul; Dąbrowski, Tomasz; Hetnał, Marcin; Nahajowski, Damian; Walasek, Tomasz; Brandys, Piotr; Matys, Robert

    2015-06-01

    Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients.

  11. Intensity- and phase-noise correlations in a dual-frequency vertical-external-cavity surface-emitting laser operating at telecom wavelength

    Science.gov (United States)

    De, Syamsundar; Baili, Ghaya; Bouchoule, Sophie; Alouini, Mehdi; Bretenaker, Fabien

    2015-05-01

    The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency beat note generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multimode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.

  12. The roles of magmatic and external water in the March 8 tephra eruption at Mount St. Helens as assessed by a 1-D steady plume-height model

    Science.gov (United States)

    Mastin, L. G.; Sherrod, D. R.; Vallance, J. W.; Thornber, C. T.; Ewert, J. W.

    2005-12-01

    The dome-building eruption at Mount St. Helens has occurred through glacial ice and snow that would be expected to substantially affect the character of the eruption. Nevertheless, the role of water in the eruption to date has not always been clear. For example, on March 8, 2005, a half-hour-long tephra blast sent a plume to a maximum of ~9 km above the vent (based on pilot reports); seismicity and plume heights were greatest during the first ~10 minutes, then persisted for another ~15 minutes at a lower level before the eruption stopped. Tephra volume within 5 km2 downwind of the vent was ~5x104 m3 DRE, but trace amounts were reported at least to Ellensburg, WA (150 km NE), suggesting a total areal coverage >5,000 km2 and total volume >1x105 m3. Assuming that most of this material was expelled in the first ten minutes and had a density of 2500 kg/m3, the mass flow rate (M) during the vigorous phase was >~4x105 kg/s. The tephra, composed primarily of non-pumiceous broken and decrepitated dome rock, could have been expelled either by groundwater and steam at relatively modest (boiling-point) temperatures, or by magmatic gas at much higher temperatures. The high plume, however, suggested significant buoyancy, perhaps driven by temperatures closer to magmatic. To assess the effect of magmatic heat on plume height, we employ a 1-D steady volcanic plume model that uses specified vent diameter, exit velocity, eruption temperature, mass fractions of gas and added external water, and profiles of atmospheric temperature and humidity, to calculate plume height and plume properties as a function of elevation. The model considers the enthalpy of equilibrium water condensation and of ice formation. Model results show that, under atmospheric temperature and humidity profiles measured near Mount St. Helens on the afternoon of March 8, 2005, a plume height (h) of 7-9 km could have developed with eruption temperatures (T) as low as 100° C, provided the mass fraction of water vapor

  13. Understanding the contribution of phytoplankton phase functions to uncertainties in the water colour signal.

    Science.gov (United States)

    Lain, Lisl Robertson; Bernard, Stewart; Matthews, Mark W

    2017-02-20

    The accurate description of a water body's volume scattering function (VSF), and hence its phase functions, is critical to the determination of the constituent inherent optical properties (IOPs), the associated spectral water-leaving reflectance, and consequently the retrieval of phytoplankton functional type (PFT) information. The equivalent algal populations (EAP) model has previously been evaluated for phytoplankton-dominated waters, and offers the ability to provide phytoplankton population-specific phase functions, unveiling a new opportunity to further understanding of the causality of the PFT signal. This study presents and evaluates the wavelength dependent, spectrally variable EAP particle phase functions and the subsequent effects on water-leaving reflectance. Comparisons are made with frequently used phase function approximations e.g. the Fournier Forand formulation, as well as with phase functions inferred from measured VSFs in coastal waters. Relative differences in shape and magnitude are quantified. Reflectance modelled with the EAP phase functions is then compared against measured reflectance data from phytoplankton-dominated waters. Further examples of modelled phytoplankton-dominated waters are discussed with reference to choice of phase function for two PFTs (eukaryote and prokaryote) across a range of biomass. Finally a demonstration of the sensitivity of reflectance due to the choice of phase function is presented. The EAP model phase functions account for both spectral and angular variability in phytoplankton backscattering i.e. they display variability which is both spectral and shape-related. It is concluded that phase functions modelled in this way are necessary for investigating the effects of assemblage variability on the ocean colour signal, and should be considered for model closure even in relatively low scattering conditions where phytoplankton dominate the IOPs.

  14. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    Science.gov (United States)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  15. Interest groups, the Lesotho Highlands Water Project Phase 1 and ...

    African Journals Online (AJOL)

    attempts to influence public policy and their representation ... concept 'interest group', while in the third I investigate inter- ... groups will play certain roles within this arena and articulate ... Formally organised; have other social functions; part of a governmental ..... social problems that are likely to occur during Phase 1B and.

  16. Density, Viscosity and Water Phase Stability of 1-Butanol-Gasoline Blends

    Directory of Open Access Journals (Sweden)

    Zlata Mužíková

    2014-01-01

    Full Text Available The aim of this work was to describe the density and viscosity and water tolerance of 1-butanol-gasoline blends. Density and viscosity of 1-butanol are higher than that for gasoline and they can affect these parameters in the final gasoline blend. Density increases linearly and viscosity exponentially with the content of 1-butanol. Water solubility in 1-butanol-gasoline blend was determined as the temperature of a phase separation. The water was separated in the solid form at negative temperature and the phase separation point was determined as the temperature of crystallization. Influence of ethanol and ethers used for gasoline blending on water phase stability of 1-butanol-gasoline blend was studied. Ethers are slightly miscible with water and they improve the phase stability. While ethanol is completely miscible water and increases the water solubility in the blends. Finally, water extractions of both alcohols from gasoline were done. In contrast to the ethanol-gasoline blends, 1-butanol remained in the hydrocarbon phase.

  17. Modeling and Analysis of Magnetic Nanoparticles Injection in Water-Oil Two-Phase Flow in Porous Media under Magnetic Field Effect

    KAUST Repository

    El-Amin, Mohamed

    2017-08-28

    In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including waternanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.

  18. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  19. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    Science.gov (United States)

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems.

  20. Phase Transition Dynamics of Three Types of Water within Poly(N,N-dimethylacrylamide) Hydrogels

    Science.gov (United States)

    Takeuchi, Yuki; Ikeda-Fukazawa, Tomoko

    2016-11-01

    Water in hydrogels has been classified into three types: bound, intermediate, and free water. To investigate the individual phase transition dynamics for each type of water, differential scanning calorimetic (DSC) curves and Raman spectra of poly(N,N-dimethylacrylamide) hydrogels were measured with heating from 130 to 310 K. Bound and intermediate water showed glassy initial states at 130 K, whereas free water became hexagonal ice (Ih) structure. Intermediate water in glassy state undergoes four phase transition steps: glass-to-liquid transition (at 160-190 K), crystallization from liquid state to cubic ice (Ic) (at 200-230 K), Ic-Ih transition (at 240-250 K), and melting (at 250-273 K). It is concluded that pre-melting of ice, which has been observed in various polymer hydrogels, results from the exothermic Ic-Ih transition of intermediate water.

  1. A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 李东永

    2002-01-01

    This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.

  2. Effects of water phase concentration on the emulsion polymerization of polyaniline

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The emulsion polymerization of aniline in three-phase system of xylene-functionalized protonic acid-water was carried out using (NH4)2S2O4 as oxidant. The influences of water phase concentration on the viscosity, conductivity, transmittance of polyaniline(PAN) latex and its powders were studied. The results show that the properties of PAN prepared through the emulsion polymerization are influenced by the amount of water used in the polymerization. The morphology of PAN varies with the water phase concentration used in the polymerization, which may result in the change of properties of PAN latex and its powders. When the volume fraction of water (φ) is about 20%-30%, the prepared PAN powder has higher conductivity, and the PAN latex has appropriate viscosity and particle size. The consumption of xylene was reduced at high φ value.

  3. DSC study of phase transitions of cephalin pseudo-binary systems in excess water

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1999-01-01

    The gel-liquid crystal phase transitions of the pseudo-binary systems of cephalins DMPE and DHPE in excess water were studied by differential scanning calorimetry. The phase diagram of the pseudo-binary systems has been given. The experiments showed that the partial phase separation in gel phase might occur at least at the mole fractions of DHPE below 0.1. The analysis by the model of ideal solution showed that both the cephalins were non-ideally miscible both in the gel phases and in the liquid crystal phases. The analysis by the model of regular solution showed that all the non-ideality parameters in the gel phases were larger than those in the liquid crystal phases at the same temperature. All the non-ideality parameters were not constant, but rather dependent on temperature.

  4. Phases and structures of sunset yellow and disodium cromoglycate mixtures in water

    Science.gov (United States)

    Yamaguchi, Akihiro; Smith, Gregory P.; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Zhu, Chenhui; Clark, Noel A.

    2016-01-01

    We study phases and structures of mixtures of two representative chromonic liquid crystal materials, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG), in water. A variety of combinations of isotropic, nematic (N ), and columnar (also called M ) phases are observed depending on their concentrations, and a phase diagram is made. We find a tendency for DSCG-rich regions to show higher-order phases while SSY-rich regions show lower-order ones. We observe uniform mesophases only when one of the materials is sparse in the N phases. Their miscibility in M phases is so low that essentially complete phase separation occurs. X-ray scattering and spectroscopy studies confirm that SSY and DSCG molecules do not mix when they form chromonic aggregates and neither do their aggregates when they form M phases.

  5. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  6. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow

    Science.gov (United States)

    Zhao, An; Han, Yun-Feng; Ren, Ying-Yu; Zhai, Lu-Sheng; in, Ning-De

    2016-03-01

    Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.

  7. On the revealing of nonequilibrium phase transitions in water

    Science.gov (United States)

    Pershin, S. M.; Krutyansky, L. M.; Luk'yanchenko, V. A.

    2011-09-01

    It has been found that the jump and stabilization of the temperature observed in [L.N. Baturov et al., JETP Lett. 93, 91 (2011)] upon the heating/cooling of water near 4°C at a rate of ˜10-3 K/s are observed in water of any purification degree. However, we have not found the process of the formation/melting of supermolecular structures assumed by Baturov et al., which is sought in the shift of the center of the OH band of Raman scattering, e.g., at ˜150 cm-1, as at the melting of hexagonal 1h ice [S.M. Pershin and A.F. Bunkin, Opt. Spectrosc. 85, 190 (1998); Patent RF No. 98, 103249 (1998)]. It has been shown that the revealed temperature features are absent in the presence of the mixing of water and artificial limitation of convection, as well as in a thin layer; this indicates that the regularity of the phenomenon is doubtful and that convection plays an important role. The visualization of convection flows by potassium permanganate made it possible to detect the reversion of their circulation over the trajectory of surface-wall-bottom-volume symmetry axis at the transition through a point of 4°C. The observed features have been interpreted as a manifestation of Archimedes' principle.

  8. Boiling-Water Reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  9. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  10. Do zooplankton contribute to an ultraviolet clear-water phase in lakes?

    NARCIS (Netherlands)

    Williamson, C.E.; Lange, de H.J.; Leech, D.M.

    2007-01-01

    Seasonal increases in the ultraviolet (UV) transparency of the surface waters of an oligotrophic lake in Pennsylvania suggest that clear-water phase (CWP) events similar to those previously observed for visible light also exist for the potentially damaging UV wavelengths. Seasonal increases in

  11. Do zooplankton contribute to an ultraviolet clear-water phase in lakes?

    NARCIS (Netherlands)

    Williamson, C.E.; Lange, de H.J.; Leech, D.M.

    2007-01-01

    Seasonal increases in the ultraviolet (UV) transparency of the surface waters of an oligotrophic lake in Pennsylvania suggest that clear-water phase (CWP) events similar to those previously observed for visible light also exist for the potentially damaging UV wavelengths. Seasonal increases in zoopl

  12. Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water

    Science.gov (United States)

    Dreyer, Wolfgang; Duderstadt, Frank; Hantke, Maren; Warnecke, Gerald

    2012-11-01

    In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

  13. Handing over the sunset. External factors influencing the establishment of water user associations in Uzbekistan: Evidence from Khorezm Province

    NARCIS (Netherlands)

    Wegerich, K.

    2010-01-01

    Recently, large-scale surface-water or canal irrigation systems have been termed ‘a sunset industry’ (Rijsberman 2003). Handing over this sunset industry by means of irrigation management transfer (IMT) policies and the creation of water user associations (WUAs) has three main objectives: to increas

  14. Handing over the sunset. External factors influencing the establishment of water user associations in Uzbekistan: Evidence from Khorezm Province

    NARCIS (Netherlands)

    Wegerich, K.

    2010-01-01

    Recently, large-scale surface-water or canal irrigation systems have been termed ‘a sunset industry’ (Rijsberman 2003). Handing over this sunset industry by means of irrigation management transfer (IMT) policies and the creation of water user associations (WUAs) has three main objectives: to

  15. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  16. Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration

    Science.gov (United States)

    Imhoff, Paul T.; Jaffé, Peter R.

    1994-09-01

    Gas-water phase mass transfer was examined in a homogeneous sand with both the gas and water phase mobile: water was infiltrated from the top of the sand column while benzene-laden air flowed upward from the bottom. Mass-transfer limitations for this situation may be important for applications of bioventing, where water and nutrients are added at the ground surface simultaneously with induced air movement to carry oxygen and volatile organics to microbial populations. Gas- and water-phase samples indicate that gas-water phase mass transfer was sufficiently fast that equilibrium between gas and water phases was achieved at all sampling locations within the porous medium. Lower-bound estimates for the gas-water mass-transfer rate coefficient show that mass transfer was at least 10-40 times larger than predictions made from an empirical model developed for gas-water phase mass transfer in an identical porous medium. A water-phase tracer test demonstrates that water flow was much more uniform in this study than in those earlier experiments, which is a likely explanation for the differing rates of gas-water phase mass transfer. It is hypothesized that the liquid distribution in previous laboratory experiments was less uniform because of preferential flow paths due to wetting front instabilities. Gas-water phase mass-transfer rate coefficients reported in this investigation are for an ideal situation of uniform water infiltration: mass-transfer rates in field soils are expected to be significantly smaller.

  17. Quasi-two-layer finite-volume scheme for modeling shallow water flows with the presence of external forces

    CERN Document Server

    Karelsky, K V; Slavin, A G

    2011-01-01

    The numerical method for study of hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. This method takes into account the external force effect, it uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with consideration of features of the flow near the step. A distinctive feature of the proposed method is the consideration of the properties of the process of the waterfall, namely the fluid flow on the step in which the fluid does not wet part of the vertical wall of the step. The presence of dry zones in the vertical part of the step indicates violation of the conditions of hydrostatic flow. The quasi-two-layer approach allows to determine the size of the dry zone of the vertical component of the step. Consequently it gives an opportunity to figure out the amount of kinetic energy dissipation. There are performed the numerical simulations based on the proposed algorithm of various physical phenomena, such as a breakdown of the r...

  18. Measurement of air-refractive-index fluctuation from frequency change using a phase modulation homodyne interferometer and an external cavity laser diode

    Science.gov (United States)

    Ishige, Masashi; Aketagawa, Masato; Banh Quoc, Tuan; Hoshino, Yuta

    2009-08-01

    We present a method for air-refractive-index (nair) fluctuation measurement using a laser interferometer. The method is based on a combination of a phase modulation homodyne interferometer (PMHI), an external cavity laser diode (ECLD) and an ultralow thermal expansion material (ULTEM). The PMHI utilizes a Michelson interferometer which is constructed on the ULTEM plate under the condition of an air temperature fluctuation of less than 10 mK, so that the optical path change or the air-refractive-index fluctuation (Δnair) caused by the thermal disturbance can be neglected. Meanwhile, the ECLD is controlled by adjusting its frequency to track some of the dark fringes of the interferometer, so that Δnair can be derived from the ECLD frequency change. The uncertainty of the Δnair measurement in the experiment is of 10-8 order. However, it will be possible to decrease the uncertainty to 10-9 or less if the signal-to-noise ratio (SNR) of the control system is improved.

  19. MesoDyn Simulation Study on Phase Diagram of Aerosol OT/isooctane/water System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A simple model, i.e. sodium di(2-ethylhexyl) sulfosuccinate (AOT) represented by one-head and two-tail beads tied together by a harmonic spring and water or isooctane by one bead, was put forward via Dissipative Particles Dynamics (DPD) simulation method. Using the changes of interfacial tension between water and oil phase, a ternary phase diagram of AOT/water/isooctane system was drawn. From the simulation, one conclusion is shown that DPD simulation can be considered as an adjunct to experiments.

  20. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled...... using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...... potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated...

  1. Non-spherical micelles in an oil-in-water cubic phase

    DEFF Research Database (Denmark)

    Leaver, M.; Rajagopalan, V.; Ulf, O.

    2000-01-01

    The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...... phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... scattering experiments indicate that the lattice parameter for the cubic phase is inconsistent with a simple packing of micelles. Whilst insufficient reflections were observed to establish the space group of the cubic phase uniquely, those that were are consistent with two commonly observed space groups...

  2. [Phase equilibria in water-defatted milk proteins-carboxymethylcellulose sodium salt systems].

    Science.gov (United States)

    Glotova, Iu K; Pavlovskaia, G E; Lashko, N P; Antonov, Iu A; Tolstoguzov, V B

    1993-01-01

    Phase equilibria in water mixtures of skimmed milk with sodium salt of carboxymethylcellulose (CMC) was studied using two degrees of CMC polymerization (500 and 200) and substitution (0.8 and 0.5). The increase of the polymerization degree from 200 to 500 resulted in a higher protein yield in the protein phase, while the decrease of the substitution degree from 0.8 to 0.5 caused a noticeable decrease of asymmetry of phase diagrams. The phase separation was accompanied by ion exchange: potassium and calcium ions were mainly found in the protein phase. The highest yield of milk protein into the protein phase was 85% at a CMC concentration of 0.7%. The main protein component of the polysaccharide phase was alpha-lactalbumin.

  3. Equilibres de phases dans les systèmes fluides petroliers-eau Phase Equilibria in Oil-Water Systems

    Directory of Open Access Journals (Sweden)

    Peneloux A.

    2006-11-01

    Full Text Available Nous présentons quelques résultats obtenus à partir du logiciel FHYD qui permet le traitement des mélanges eau-fluides pétroliers, avec la détermination de la nature des phases (huile-gaz-eau-hydrate thermodynamiquement stables dans des conditions données de température et de pression, ainsi que de la quantité, de la composition de ces différentes phases et de leurs propriétés. Ce logiciel permet le tracé automatique des diagrammes de phases et nous présentons des exemples, depuis les systèmes binaires (eau-éthane, ternaires (eau-méthane-propane jusqu'aux fluides les plus complexes. La présence de sels (chlorure de sodium dissous est envisagée, ainsi que le calcul des conditions de dépôt du sel solide. Des exemples de problèmes pétroliers sont cités (gaz de séparateur saturé en eau, huile saturée en eau dans les conditions de gisement, huile en présence d'eau salée. Les estimations sur les quantités d'hydrate formées et leurs compositions sont comparées à des données expérimentales et aux résultats obtenus par d'autres logiciels. Le programme FHYD pourrait permettre une représentation plus réaliste de l'évolution des fluides pétroliers et des propriétés de transport de leurs différentes phases dans les modèles de simulation des conduites polyphasiques. This article presents a selection of results obtained with the FHYD program. This software allows simulation of mixtures composed of petroleum fluids and water, with determination of the nature of thermodynamically stable phases (oil-gas-water-hydrate under given conditions of temperature and pressure, along with the quantity, composition and properties of these different phases. Additionally, the program can automatically produce phase diagrams. Several examples of these have been included here, ranging from binary systems (water-ethane and ternary systems (water-methane-propane to the most complex petroleum fluids. The presence of dissolved salts

  4. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  5. Remote monitoring technical review for light water reactors (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Yoon, Wan Ki; Na, Won Woo; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The IAEA has been conducting a field trial of a Remote Monitoring System (RMS) at the spent fuel storage, Younggwang 3 nuclear power plant. The system installation plan was initiated after the agreement in the 7th ROK-IAEA safeguards Implementation Review Meeting that was held in Soul, 1998. It describes that IAEA and Korea proceed RM tasks Implementation of RMS at LWRs in the ROK for field trials. The project of RMS is conducting through 3 stages with timing. RMS has been installed for the Phase I of field trial, one of two stages at Younggwang Unit 3 in October 1998. The RMS consists of video systems and a seal at the spent fuel pond area. This report provides a description of the monitoring system and its functions focusing on several technical points of the installation and its 6 month operation at Younggwang Unit 3. Subjects are selected and analyzed in the three chapters, IAEA safeguards policy on Remote Monitoring, the technology, and field test experiences. 8 refs., 12 figs., 12 tabs. (Author)

  6. The role of specific interaction in phase behavior of polyelectrolyte-surfactant-water mixtures.

    Science.gov (United States)

    Sitar, Simona; Goderis, Bart; Hansson, Per; Kogej, Ksenija

    2012-09-01

    Aqueous phase behavior and structures of phases were studied in systems containing sodium poly(styrenesulfonate), NaPSS, and complex salt CTAPSS, formed between cetyltrimethylammonium cations, CTA+, and PSS- anions. It was shown that hydrophobic interaction of the polyion styrene groups with surfactant aggregates, which supports the strong electrostatic attraction between CTA+ and PSS-, has a significant effect on phase behavior and structures. Only the disordered micellar (L1) and the ordered hexagonal (H1) phase were found that are connected over a broad two-phase region of L1-H1 coexistence. At water contents above 60 wt%, CTAPSS is easily dissolved in proportion to the amount of added NaPSS, whereas at lower water contents a large excess of NaPSS is needed to dissolve CTAPSS. Phase separation in the two-phase region is controlled by two tendencies: (i) to maximize the contact between the hydrophobic groups and micelles (assisted by hydrophobic interaction) and (ii) to form as dense phase as possible (assisted by both, electrostatic and hydrophobic interactions). Structural characteristics of soluble non-stoichiometric complexes from the L1 phase show that hydrophobic interaction contributes also to a relatively small size of PSS-induced micelles and leads to a network-like association between PSS chains in which micelles serve as cross-links.

  7. Study on oil-water two-phase flow in horizontal pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao-Xuan [Division of Oilfield Surface Engineering, Petroleum Exploration and Production Research Institute, SINOPEC, 31, Xue yuan Road, Haidian District, Beijing, 100083 (China)

    2007-10-15

    The simultaneous flow of oil and water in pipelines is a common occurrence in the petroleum industry. Water fractions in the output stream increase materially during the producing life of a well and many wells exist from which economic production can still persist with water volume fractions in the liquid phase in excess of 90%. The presence of water must be properly accounted for when designing and predicting the flow behavior in both wells and pipelines. This paper is aimed at giving a brief review on the research of oil-water pipe flows in the past decade. The contents are divided into three sections: (1) flow pattern identification and its transition; (2) phase inversion modeling; (3) pressure drop prediction. It is obvious that oil-water flow patterns, phase inversion prediction and pressure drop have played a great role in the design and running of oil-water flow systems. This paper critically reviews research achievement and presents the current trend in order to offer a guide in future research of the oil-water pipe flows. (author)

  8. DSC study of phase transition of anhydrous phospholipid DHPC and influence of water content

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1997-01-01

    The phase transition behavior of 1,2-di-n-heptadecanoyl phosphatidylcholme (DHPC)with and without water has been studied by use of differential scanning calorimetry It was found by experiment that the glass transition occurred at first during the first heating of a sample of DHPC without water and then the sample underwent melting as an ordinary crystal.Therefore the sample of DHPC without water was a glassy crystal However,the DHPC sample crystallizing from melt was an ordinary crystal From the relationship between the total melting enthalpy Qf of freezable water and the water content h,it was concluded that the water contained in the DHPC samples might exist in three states recognizable thermodynamically.The water in the first state was an unfreezable water It was the water bound directly with the head groups of the phospholipid,i.e.the primary hydration water Every head group might bind seven such molecules of water.The water in the second state was the secondary hydration water,us melt ing point was

  9. Phase E in a water-saturated peridotite system at 9.3 GPa

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Leinenweber, Kurt; Hervig, Richard L.

    1994-01-01

    The stability of hydrous phases in a natural upper mantle system has been investigated at 9.3 GPa using a gel of KLB-1 peridotite composition with brucite which contains 14 wt. percent (30 atom. percent) water. No hydrous mineral was found at 950 (+150 -50) degree C. At 800 degree C, an assemblage of phase A, phase E, enstatite, clinohumite, and garnet is obtained. Although there is a significant thermal gradient over the sample, phase E is found to be surrounded by phase A in the lower temperature part. Electron probe analyses show that phase E has 35.5 SiO2, 4.4 Al2O3, 41.1 MgO and 8.5 wt. percent FeO* (Mg value is 90) with an oxide sum of 89.7 wt. percent, and possesses a stoichiometry similar to that proposed by Kanzaki. CaO and TiO2 are both less than 0.1 wt. percent. Coexisting phase A has 0.5 wt. percent CaO but only 0.4 wt. percent Al2O3 concentration. Phase A coexists with only enstatite in the water-saturated MgO-FeO-SiO2 system at 800 degree C and 9.3 GPa as well as the results in the water-saturated MgO-SiO2 system. Therefore it is suggested that the addition of Al2O3 expands the stability field of phase E to lower than 13 - 17 GPa in the water-saturated MgO-SiO2 system.

  10. The influence of the choice of the oceanic phase function on imaging under water

    Science.gov (United States)

    Braesicke, K.; Repasi, E.

    2015-05-01

    There is a large diversity of phase functions for the computer simulation of light under water. Some papers look at the influence of these phase functions on the results of computer simulations of the remote sensing reflectance. We study the influence of these phase functions on the computer simulation of the resulting image of a target illuminated by a laser. For these simulations we are only interested in those parts of the light that reach the camera position. Therefor we investigate the influence of the phase function on the image. We use a Monte Carlo Simulator with several Fournier-Forand, Henyey-Greenstein phase functions. The resulting signals at the receiver of these simulations are compared to a simulation with a Petzold function that is based on measurements of the phase function.

  11. Retention behavior of phenols, anilines, and alkylbenzenes in liquid chromatographic separations using subcritical water as the mobile phase.

    Science.gov (United States)

    Yang, Y; Jones, A D; Eaton, C D

    1999-09-01

    The unique characteristic of subcritical water is its widely tunable physical properties. For example, the polarity (measured by dielectric constant) of water is significantly decreased by raising water temperature. At temperatures of 200-250 °C (under moderate pressure to keep water in the liquid state), the polarity of pure water is similar to that of pure methanol or acetonitrile at ambient conditions. Therefore, pure subcritical water may be able to serve as the mobile phase for reversed-phase separations. To investigate the retention behavior in subcritical water separation, the retention factors of BTEX (benzene, toluene, ethylbenzene, and m-xylene), phenol, aniline, and their derivatives have been determined using subcritical water, methanol/water, and acetonitrile/water systems. Subcritical water separations were also performed using alumina, silica-bonded C18, and poly(styrene-divinylbenzene) columns to study the influence of the stationary phase on analyte retention under subcritical water conditions.

  12. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    Science.gov (United States)

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  13. Phase I/II trial of external irradiation plus medium-dose brachytherapy given concurrently to liposomal doxorubicin and cisplatin for advanced uterine cervix carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Varveris, H.; Kachris, S.; Lyraraki, E.; Petineli, E.; Varveris, A.; Fasoulaki, A. [Dept. of Radiotherapy and Oncology, Medical School of Crete Univ., Iraclion Univ. Hospital (Greece); Mazonakis, M.; Tzedakis, A. [Dept. of Medical Physics, Medical School of Crete Univ., Iraclion Univ. Hospital (Greece); Kouloulias, V. [Dept. of Radiotherapy and Oncology, Medical School of Athens Univ. (Greece); Zolindaki, A. [Dept. of Obstetrics and Gynecology, Medical School of Crete Univ., Iraclion Univ. Hospital (Greece); Vlachaki, M. [New York Univ. Medical Center, NY (United States)

    2006-03-15

    Background and Purpose: although the standard of care for patients with locally advanced uterine cervix carcinoma is cisplatin-(CDDP-)based chemotherapy and irradiation (RT), the optimal regimen remains to be elucidated. A phase I/II study was conducted to evaluate the dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) of liposomal doxorubicin (Caelyx) combined with CDDP and RT for cervical cancer. Patients and Methods: 24 patients with stage IIB-IVA were enrolled (Table 1). They all received external RT (up to 50.4 Gy) and two medium-dose rate (MDR) brachytherapy implants (20 Gy each at point A). The Caelyx starting dose of 7 mg/m{sup 2}/week was increased in 5-mg/m{sup 2} increments to two levels. The standard dose of CDDP was 20-25 mg/m{sup 2}/week. Results: concurrent chemoradiation (CCRT) sequelae and the DLTs (grade 3 myelotoxicity and grade 3 proctitis in five patients treated at the 17 mg/m{sup 2}/week Caelyx dose level) are shown in Tables 2, 3, 4, and 5. After a median follow-up time of 17.2 months (range 4-36 months), four patients had died, 15 showed no evidence of progressive disease, and five (20.8%, 95% confidence interval [CI]: 12.5-29.1%) were alive with relapse (Figure 1). There were seven complete (29.1%, 95% CI: 19.8-38.4%) and 17 partial clinical responses (95% CI: 61.1-80.1%). The median progression-free survival was 10.4 months. Causes of death were local regional failure with or without paraaortic node relapse combined with distant metastases (Table 6). Conclusion: The MTD of Caelyx given concurrently with CDDP and RT was determined at the 12 mg/m{sup 2}/week dose level. The above CCRT schema is a well-tolerated regimen, easy to administer in ambulatory patients, and results appear promising. (orig.)

  14. Prognostic score for second-line chemotherapy of advanced non-small-cell lung cancer: external validation in a phase III trial comparing vinflunine with docetaxel.

    Science.gov (United States)

    Di Maio, Massimo; Krzakowski, Maciej; Fougeray, Ronan; Kowalski, Dariusz M; Gridelli, Cesare

    2012-07-01

    A prognostic index for second-line chemotherapy of NSCLC was previously developed, based on individual patient data (IPD) of nine randomized trials. In order to validate the prognostic score in an external dataset, we analysed IPD of a non-inferiority phase III trial comparing vinflunine vs. docetaxel in second-line treatment of advanced NSCLC. Primary endpoint of this analysis was overall survival (OS). The following variables were considered for survival analysis and score calculation: gender, performance status, stage of disease, tumour histology, type of first-line treatment, response to first-line treatment. Cox model, stratified by treatment arm, was used for multivariate analysis. Individual prognostic scores were derived, and patients were divided into 3 categories: 9 (worst). All 551 patients enrolled in the trial had complete information for the calculation of prognostic score. Median OS in the whole group was 6.9 months, with similar efficacy in the two treatment arms. Median OS was 12.9, 6.9 and 3.8 months in the best, intermediate and worst category, respectively. Cox model showed a significant effect comparing intermediate vs. best category (Hazard Ratio 1.79, 95%CI 1.31-2.47, p=0.0003) and comparing worst vs. best category (Hazard Ratio 3.25, 95%CI 2.18-4.83, pmodel was high (0.926), indicating a good discrimination according to the proposed three risk categories. Prognostic ability of our score for candidates to second-line treatment in advanced NSCLC was successfully validated, allowing the identification of subgroups of patients with more vs. less favourable outcome. Prognostic score could be useful in daily decision-making in clinical practise, because a better understanding of factors conditioning life expectancy of patients could greatly help a careful evaluation of risks and benefits associated with therapeutic decisions.

  15. Continuous 7-Days-A-Week External Beam Irradiation in Locally Advanced Cervical Cancer: Final Results of the Phase I/II Study

    Energy Technology Data Exchange (ETDEWEB)

    Serkies, Krystyna, E-mail: kserkies@wp.pl [Department of Oncology and Radiotherapy, Medical University of Gdansk (Poland); Dziadziuszko, Rafal; Jassem, Jacek [Department of Oncology and Radiotherapy, Medical University of Gdansk (Poland)

    2012-03-01

    Purpose: To evaluate the feasibility and efficacy of definitive continuous 7-days-a-week pelvic irradiation without breaks between external beam radiotherapy and brachytherapy in locally advanced cervical cancer. Methods and Materials: Between November 1998 and December 1999, 30 patients with International Federation of Obstetrics and Gynecology Stage IIB or IIIB cervical cancer were included in a prospective Phase I/II study of continuous 7-days-a-week pelvic irradiation, to the total Manchester point B dose of 40.0-57.6 Gy. The first 13 patients (Group A) were given a daily tumor dose of 1.6 Gy, and the remaining 17 patients (Group B) were given 1.8 Gy. One or two immediate brachytherapy applications (point A dose 10-20 Gy, each) were performed in 28 cases. Results: Two patients did not complete the irradiation because of apparent early progression of disease during the irradiation. Eleven of the 28 evaluable patients (39%; 45% and 35% in Groups A and B, respectively) completed their treatment within the prescribed overall treatment time. Acute toxicity (including severe European Organisation for Research and Treatment of Cancer/Radiation Therapy Oncology Group Grade 3 and 4 effects in 40%) was experienced by 83% of patients and resulted in unplanned treatment interruptions in 40% of all patients (31% and 47% of patients in Groups A and B, respectively). Severe intestinal side effects occurred in 31% and 41% of Patients in Groups A and B, respectively (p = 0.71). The 5-year overall survival probability was 33%. Cancer recurrence occurred in 63% of patients: 20% inside and 57% outside the pelvis. Cumulative incidence of late severe bowel and urinary bladder toxicity at 24 months was 15%. Conclusion: Continuous irradiation in locally advanced cervical cancer is associated with a high incidence of severe acute toxicity, resulting in unplanned treatment interruptions. Late severe effects and survival after continuous radiotherapy do not substantially differ from

  16. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Kooi, H.J. van der; Swaan Arons, J. de [Physical Chemistry and Molecular Thermodynamics, Delft University of Technology, Delft (Netherlands)

    2004-07-01

    Two biomass conversion processes have been studied: hydrothermal upgrading (HTU) under subcritical water conditions; supercritical water gasification (SCWG) in supercritical water. For the design of the two biomass conversion processes, the following contributions of thermodynamics have been presented: phase behaviour and phase equilibria in the reactor and separators; indication of the favourable operation conditions and the trends in product distribution for the conversion reactions; construction of heat exchange network and exergy analysis. A wide variety of fluids have been dealt with, from small molecules to large molecules, including non-polar and polar substances. The statistical association fluids theory (SAFT) equation of state has been applied to calculate the mass distribution in different phases and to estimate the entropy and enthalpy values for different mass streams. (author)

  17. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas H.; Grigoras, Ionela F.; Hoffmann, Julia

    2016-01-01

    heating value of 34.3 MJ/kg. The volatile fraction of the biocrude consisted mostly of compounds having number of carbon atoms in the C6–C12 range similar to gasoline. In terms of process feasibility, it was revealed that total organic carbon (TOC) and ash significantly accumulated in the water phase when...... such is recirculated for the proceeding batch. After four batches the TOC and the ash mass fraction of the water phase were 136.2 [g/L] and 12.6 [%], respectively. Water phase recirculation showed a slight increase in the biocrude quality in terms on an effective hydrogen-to-carbon ratio, but it showed no effects...

  18. Structure and phase equilibria of the soybean lecithin/PEG 40 monostearate/water system.

    Science.gov (United States)

    Montalvo, G; Pons, R; Zhang, G; Díaz, M; Valiente, M

    2013-11-26

    PEG stearates are extensively used as emulsifiers in many lipid-based formulations. However, the scheme of the principles of the lipid-surfactant polymer interactions are still poorly understood and need more studies. A new phase diagram of a lecithin/PEG 40 monostearate/water system at 30 °C is reported. First, we have characterized the binary PEG 40 monostearate/water system by the determination of the critical micelle concentration value and the viscous properties. Then, the ternary phase behavior and the influence of phase structure on their macroscopic properties are studied by a combination of different techniques, namely, optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology. The phase behavior is complex, and some samples evolve even at long times. The single monophasic regions correspond to micellar, swollen lamellar, and lamellar gel phases. The existence of extended areas of phase coexistence (hexagonal, cubic, and lamellar liquid crystalline phases) may be a consequence of the low miscibility of S40P in the lecithin bilayer as well as of the segregation of the phospholipid polydisperse hydrophobic chains. The presence of the PEG 40 monostearate has less effect in the transformation to the cubic phase for lecithin than that found in other systems with simple glycerol-based lipids.

  19. Three-phase interactions and interfacial transport phenomena in coacervate/oil/water systems.

    Science.gov (United States)

    Dardelle, Gregory; Erni, Philipp

    2014-04-01

    Complex coacervation is an associative liquid/liquid phase separation resulting in the formation of two liquid phases: a polymer-rich coacervate phase and a dilute continuous solvent phase. In the presence of a third liquid phase in the form of disperse oil droplets, the coacervate phase tends to wet the oil/water interface. This affinity has long been known and used for the formation of core/shell capsules. However, while encapsulation by simple or complex coacervation has been used empirically for decades, there is a lack of a thorough understanding of the three-phase wetting phenomena that control the formation of encapsulated, compound droplets and the role of the viscoelasticity of the biopolymers involved. In this contribution, we review and discuss the interplay of wetting phenomena and fluid viscoelasticity in coacervate/oil/water systems from the perspective of colloid chemistry and fluid dynamics, focusing on aspects of rheology, interfacial tension measurements at the coacervate/solvent interface, and on the formation and fragmentation of three-phase compound drops.

  20. Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples.

    Science.gov (United States)

    Castells, P; Santos, F J; Galceran, M T

    2003-01-10

    A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.

  1. Phase inversion of particle-stabilized materials from foams to dry water.

    Science.gov (United States)

    Binks, Bernard P; Murakami, Ryo

    2006-11-01

    Small particles attached to liquid surfaces arise in many products and processes, including crude-oil emulsions and food foams and in flotation, and there is a revival of interest in studying their behaviour. Colloidal particles of suitable wettability adsorb strongly to liquid-liquid and liquid-vapour interfaces, and can be sole stabilizers of emulsions and foams, respectively. New materials, including colloidosomes, anisotropic particles and porous solids, have been prepared by assembling particles at such interfaces. Phase inversion of particle-stabilized emulsions from oil in water to water in oil can be achieved either by variation of the particle hydrophobicity (transitional) or by variation of the oil/water ratio (catastrophic). Here we describe the phase inversion of particle-stabilized air-water systems, from air-in-water foams to water-in-air powders and vice versa. This inversion can be driven either by a progressive change in silica-particle hydrophobicity at constant air/water ratio or by changing the air/water ratio at fixed particle wettability, and has not been observed in the corresponding systems stabilized by surfactants. The simplicity of the work is that this novel inversion is achieved in a single system. The resultant materials in which either air or water become encapsulated have potential applications in the food, pharmaceutical and cosmetics industries.

  2. Phase inversion of particle-stabilized materials from foams to dry water

    Science.gov (United States)

    Binks, Bernard P.; Murakami, Ryo

    2006-11-01

    Small particles attached to liquid surfaces arise in many products and processes, including crude-oil emulsions and food foams and in flotation, and there is a revival of interest in studying their behaviour. Colloidal particles of suitable wettability adsorb strongly to liquid-liquid and liquid-vapour interfaces, and can be sole stabilizers of emulsions and foams, respectively. New materials, including colloidosomes, anisotropic particles and porous solids, have been prepared by assembling particles at such interfaces. Phase inversion of particle-stabilized emulsions from oil in water to water in oil can be achieved either by variation of the particle hydrophobicity (transitional) or by variation of the oil/water ratio (catastrophic). Here we describe the phase inversion of particle-stabilized air-water systems, from air-in-water foams to water-in-air powders and vice versa. This inversion can be driven either by a progressive change in silica-particle hydrophobicity at constant air/water ratio or by changing the air/water ratio at fixed particle wettability, and has not been observed in the corresponding systems stabilized by surfactants. The simplicity of the work is that this novel inversion is achieved in a single system. The resultant materials in which either air or water become encapsulated have potential applications in the food, pharmaceutical and cosmetics industries.

  3. Template Directed Oligomer Ligation in Eutectic Phases in Water-Ice

    DEFF Research Database (Denmark)

    Dörr, Mark; Löffler, Philipp M. G.; Wieczorek, Rafal

    2011-01-01

    Eutectic phases of water-ice are protective micro-environments for the non-enzymatic, metal ion mediated polymerization of imidazole-activated ribonucleotides (Monnard 2008). Polymers of up to 30-mer lengths can herein be achieved. Even longer polymers can be obtained by adding activated monomers...... in the middle of the construct). References Monnard P, Szostak JW (2008). Metal-ion catalyzed polymerization in the eutectic phase in water-ice: A possible approach to template-directed RNA polymerization. J.Inorg.Biochem., 102(5-6):1104-1111. Scott WG, Finch JT, Klug A (1995). The crystal structure of an AII...

  4. Phase Equilibria of Ternary and Quaternary Systems Containing Diethyl Carbonate with Water

    OpenAIRE

    Chen, Yao; Wen, Caiyu; Zhou, Xiaoming; Zeng, Jun

    2014-01-01

    In this study liquid phase equilibrium compositions were measured at 298.15 K under atmospheric pressure for (water + propan-1-ol + diethyl carbonate (DEC) + benzene or cyclohexane or heptane) quaternary systems and (water + DEC + propan-1-ol or benzene or cyclohexane) ternary systems. Good correlation of the experimental LLE data was seen for the measured systems by both modified and extended UNIQUAC models. The solubility of DEC in aqueous and organic phases is shown by equilibrium distribu...

  5. Phase Equilibria of Ternary and Quaternary Systems Containing Diethyl Carbonate with Water.

    Science.gov (United States)

    Chen, Yao; Wen, Caiyu; Zhou, Xiaoming; Zeng, Jun

    2014-01-01

    In this study liquid phase equilibrium compositions were measured at 298.15 K under atmospheric pressure for (water + propan-1-ol + diethyl carbonate (DEC) + benzene or cyclohexane or heptane) quaternary systems and (water + DEC + propan-1-ol or benzene or cyclohexane) ternary systems. Good correlation of the experimental LLE data was seen for the measured systems by both modified and extended UNIQUAC models. The solubility of DEC in aqueous and organic phases is shown by equilibrium distribution coefficients calculated from the LLE data.

  6. Phase equilibria from PVT measurements for carbon dioxide, water, and n-decane

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, M.N.

    1987-01-01

    Phase equilibrium properties for the carbon dioxide - water - n-decane system were determined from pressure-temperature-volume (PVT) measurements. PVT properties were also obtained for pure carbon dioxide and water, and the binary mixtures of carbon dioxide - water and carbon dioxide - n-decane. The experiments were conducted at temperatures of 313.17, 353.15 and 393.15 Kelvin, and at pressures from 37 to 416 bar. Measurements for the mixtures were terminated when complete miscibility was observed. The Perturbed-Hard-Chain (PHC) equation of state developed by Gmehling et al (1979) was chosen to correlate the measured data because of its ability to handle the complexity of the molecular interactions in the mixtures. Binary interaction parameters were regressed for the carbon dioxide - water and carbon dioxide - n-decane mixtures while those of water - n-decane were obtained from ternary data. A fiber-optic scope was used to observe the number of phases present and qualitatively measure the equilibrium liquid phase volumes. The measured data were then compared to predictions from the model. Ternary diagrams are presented showing predicted coexisting equilibrium phases for the three isotherms and several pressures.

  7. What is the effective molecular polarizability of water in condensed phases?

    Science.gov (United States)

    Ge, Xiaochuan; Lu, Deyu

    Electronic polarization plays a crucial role in determining the structural and dynamical properties of water with different boundary conditions. Although it is well known that the molecular polarization in condensed phases behaves substantially differently from that in the vacuum due to the intermolecular interaction, these environmental effects have not been fully understood from first principles methods. As a result, how to rigorously define and calculate the effective molecular polarizability of a water molecule in different chemical environments remains an open question. The answer to this question not only improves our fundamental understanding of water, but also has immediate practical impact on computational modeling of water, e.g, through an accurate polarizable force field model. A main challenge to this puzzle arises from the intrinsic non-local nature of the electronic susceptibility.Recently we developed an ab initio local dielectric response theory [arxiv 1508.03563] that partitions dielectric response in real space based on a Wannier representation. In this work we apply this method to compute the effective molecular polarizability of water in the condensed phase, and discuss how the effective molecular polarizability evolves from gas phase to the condensed phase. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  8. Multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle with pressurized heavy-water reactor external feed

    Indian Academy of Sciences (India)

    G Pandikumar; A John Arul; P Puthiyavinayagam; P Chellapandi

    2015-10-01

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with self-sufficiency. It was found that the change in Pu composition becomes negligible (less than 1%) after a few cycles. The core-1 Pu increases by 3% from the beginning of cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th by only 0.3%. In this work, the possibility of multiple recycling of PFBR fuel with external plutonium feed from pressurized heavy-water reactor (PHWR) is examined. Modified in-core cooling and reprocessing periods are considered. The impact of multiple recycling on PFBR core physics parameters due to the changes in the fuel composition has been brought out. Instead of separate recovery considered for the core and axial blankets in the earlier studies, combined fuel recovery is considered in this study. With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% from cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th is only 0.35%. A comparison of the studies done with different external plutonium options viz., PHWR and PFBR radial blanket has also been made.

  9. EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1.60 mm. The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.

  10. Partition of biocides between water and inorganic phases of renders with organic binder

    DEFF Research Database (Denmark)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai

    2016-01-01

    , the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite...... with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render....

  11. NUMERICAL SIMULATION ON 2-D WATER-AIR TWO-PHASE FLOW OVER TOP OUTLET

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Flood discharge over top outlet of dam is simu-lated by 2-dimension water-air two-phase mathematical model.Distribution of dynamic pressure, turbulent kinetic energy (k), turbulent dissipation rate (ε) , free water surface and veloci-ty field have been obtained. The simulated results were testedby physical model, which shows that the computed results areidentical with that of the physical model.

  12. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  13. Chemoradiation in cervical cancer with cisplatin and high-dose rate brachytherapy combined with external beam radiotherapy. Results of a phase-II study

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.G.; Laban, C.; Puschmann, D.; Koelbl, H. [Dept. of Gynecology, Martin-Luther Univ. Halle-Wittenberg (Germany); Kuhnt, T.; Pigorsch, S.; Dunst, J.; Haensgen, G. [Dept. of Radiotherapy, Martin-Luther Univ. Halle-Wittenberg (Germany)

    2002-07-01

    Background: In 1999, five randomized studies demonstrated that chemoradiation with cisplatin and low-dose rate (LDR) brachytherapy has a benefit in locally advanced cervical cancer and for surgically treated patients in high-risk situations. We evaluated the safety and efficacy of concomitant chemoradiation with cisplatin and high-dose rate (HDR) brachytherapy in patients with cervical cancer. Patients and Method: 27 patients were included in our phase-II trial: 13 locally advanced cases (group A) and 14 adjuvant-therapy patients in high-risk situations (group B). A definitive radiotherapy was performed with 25 fractions of external beam therapy (1.8 Gy per fraction/middle shielded after eleven fractions). Brachytherapy was delivered at HDR schedules with 7 Gy in point A per fraction (total dose 35 Gy) in FIGO Stages IIB-IIIB. The total dose of external and brachytherapy was 70 Gy in point A and 52-54 Gy in point B. All patients in stage IVA were treated without brachytherapy. Adjuvant radiotherapy was performed with external beam radiotherapy of the pelvis with 1.8 Gy single-dose up to 50.4 Gy. Brachytherapy was delivered at HDR schedules with two fractions of 5 Gy only in patients with tumor-positive margins or tumor involvement of the upper vagina. The chemotherapeutic treatment schedule provided six courses of cisplatin 40 mg/m{sup 2} weekly recommended in the randomized studies GOG-120 and -123. Results: A total of 18/27 patients (66.7%) completed all six courses of chemotherapy. Discontinuation of radiotherapy due to therapy-related morbidity was not necessary in the whole study group. G3 leukopenia (29.6%) was the only relevant acute toxicity. There were no differences in toxicity between group A and B. Serious late morbidity occurred in 2/27 patients (7.4%). 12/13 patients (92.3%) with IIB-IVA cervical cancer showed a complete response (CR). 13/14 adjuvant cases (92.8%) are free of recurrence (median follow up: 19.1 months). Conclusion: Concomitant

  14. Phase Change Material on Augmentation of Fresh Water Production Using Pyramid Solar Still

    Directory of Open Access Journals (Sweden)

    S. Ravishankara

    2013-10-01

    Full Text Available The augmentation of fresh water and increase in the solar still efficiency of a triangular pyramid is added with phase change material (PCM on the basin. Experimental studies were conducted and the effects of production of fresh water with and without PCM were investigated. Using paraffin as the PCM material, performance of the solar still were conducted on a hot, humid climate of Chennai (13°5′ 2" North, 80°16′ 12"East, India. The use of paraffin wax increases the latent heat storage so that the energy is stored in the PCM and in the absence of solar radiation it rejects its stored heat into the basin for further evaporation of water from the basin. Temperatures of water, Tw, Temperature of phase change material, TPCM, Temperature of cover, Tc were measured using thermocouple. Results show that there is an increase of maximum 20%, in productivity of fresh water with PCM. Keywords: fresh water production; PCM; thermal energy storage; phase change material

  15. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    Science.gov (United States)

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  16. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    Science.gov (United States)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  17. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Weihang Kong

    2016-08-01

    Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  18. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    Science.gov (United States)

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  19. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  20. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    Science.gov (United States)

    Schirò, Giorgio; Fomina, Margarita; Cupane, Antonio

    2013-09-01

    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.

  1. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  2. Microstructure and phase transformation on milled and unmilled Ti induced by water quenching

    CSIR Research Space (South Africa)

    Bolokang, AS

    2014-10-01

    Full Text Available Materials Letters Vol. 132 Microstructure and phase transformation on milled and unmilled Ti induced by water quenching A.S.Bolokang a,b,n, M.J.Phasha c, D.E.Motaung b, F.R.Cummings a,d, T.F.G.Muller a, C.J.Arendse a a Department of...

  3. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    Science.gov (United States)

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  4. On the Implications of aerosol liquid water and phase separation for modeled organic aerosol mass

    Science.gov (United States)

    Current chemical transport models assume that organic aerosol (OA)-forming compounds partition mostly to a water-poor, organic-rich phase in accordance with their vapor pressures. However, in the southeast United States, a significant fraction of ambient organic compounds are wat...

  5. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  6. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  7. Solute mass exchange between water phase and biofilm for a single pore

    NARCIS (Netherlands)

    Qin, C. Z.; Hassanizadeh, S. M.

    2015-01-01

    Currently, there are no tractable approaches available for modeling non-equilibrium mass exchange of a solute between water phase and biofilm in porous media. The present work contributes to a quantitative description of the mass exchange of a solute over a single pore domain under a wide range of p

  8. Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors

    Science.gov (United States)

    Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng

    2016-12-01

    A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil-water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil-water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J   =  0.038 m s-1, and the water superficial velocity at U Jw   =  0.026 m s-1, and oil superficial velocity at U Jo   =  0.034 m s-1. The influencing factors of uncertainty were analyzed.

  9. Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography.

    Science.gov (United States)

    Murakami, Jillian N; Thurbide, Kevin B

    2015-05-01

    The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless-steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless-steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm(2) regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless-steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless-steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless-steel columns were more resistant to etching than 304 stainless-steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless-steel columns used with this supercritical fluid chromatography technique.

  10. 外电场作用下柔性模型水的分子动力学模拟%Effect of an external electric field on liquid water using molecular dynamics simulation with a flexible potential

    Institute of Scientific and Technical Information of China (English)

    孙炜; 陈中; 黄素逸

    2006-01-01

    Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm3 under different strengths of an external electric field, ranging from 0 to 8.0 × 109 V/m, to investigate the influence of an external field on structural and dynamic properties of water.The flexible simple point charge model is used for water molecules.An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure.With increasing field strength, water system has a more perfect structure, which is similar to ice structure.However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient.The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.

  11. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, John R. [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory; Wigmosta, Mark S. [PNNL; Voisin, Nathalie [PNNL; Rakowski, Cynthia [PNNL; Coleman, Andre [PNNL; Lowry, Thomas S. [SNL

    2014-05-19

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  12. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  13. Theoretical insight into the conversion of xylose to furfural in the gas phase and water.

    Science.gov (United States)

    Wang, Meng; Liu, Chao; Li, Qibin; Xu, Xiaoxiao

    2015-11-01

    Furfural (FF) is a valuable ring-containing organic compound in the decomposition of xylose and can be produced massively in hydrothermal condition. In this study, density functional theory (DFT) methods are employed to investigate the formation mechanism of FF from xylose and the solvent effects on FF formation. Kinetic and thermodynamic analyses indicate that xylulose could be the intermediate that leads to the formation of FF in the gas phase and water. The formation of xylulose is initiated by a six-membered transition state with energy barriers of 163.6 and 150.8 kJ mol(-1) in the gas phase and water, respectively. It is found that the strong stabilization of the reactants and transition states and the overall energy barriers of formation pathways of FF are reduced in water. The formation of FF is more thermodynamically favored in water compared with that in the gas phase. In addition, the inclusion of an explicit water molecule transforms four-membered transition states of ring-opening reaction, hydrogenation-cyclization, and dehydrations into less distorted six-membered transition states, which leads to the significant reduction of reaction barriers of FF formation.

  14. Effects of a two-phase oil-water mouthwash on halitosis.

    Science.gov (United States)

    Yaegaki, K; Sanada, K

    1992-01-01

    Many oral microorganisms possess hydrophobic outer surfaces. A two-phase, oil-water mouthwash has, therefore, recently been developed to remove such oral microorganisms. The oil phase consists of olive oil and other essential oils. The aqueous phase includes cetylpyridinium chloride, which is a disinfectant that promotes the adhesion of microorganisms to oil droplets. This study determined the effects of this mouthwash on the production of volatile sulfide in vivo and in vitro. Neither rinsing with water nor brushing teeth decreased the concentration of sulfide in mouth air at 3.5 h after treatment. A reduction of only 30% of sulfide was observed when a commercial mouthwash was used. However, this study demonstrated that use of the two-phase mouthwash led to approximately 80% reduction of sulfide. Furthermore, volatile sulfide and 2-ketobutyrate productions from methionine in a saliva putrefaction system were completely inhibited by the two-phase mouthwash; and consumption of methionine was decreased by 65 percent. It is concluded that the two-phase mouthwash strongly inhibits the production of volatile sulfide.

  15. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface.

    Science.gov (United States)

    Maloney, K M; Grainger, D W

    1993-04-01

    A series of ternary mixed monolayers containing varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and equimolar additions of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LYSO-PC) and palmitic acid (PA) were studied at the air-water interface. These mixed monolayers were used to model phospholipid biomembrane interfaces resulting from phospholipase A2 (PLA2) hydrolysis. Recent work [D.W. Grainger A. Reichert, H. Ringsdorf and C. Salesse (1989) Biochim. Biophys. Acta. 1023, 365-379] has shown that PLA2 hydrolysis of pure phospholipid monolayers results in formation of large PLA2 domains at the air-water interface. These domains are proposed to result from PLA2 adsorption to phase separated regions in the hydrolyzed monolayer. To elucidate the phase behaviour in these monolayer systems, surface pressure-area isotherms were measured for the ternary mixtures on pure water and buffered subphases. Fluorescence microscopy at the air-water interface was used to image fluorescent probe-doped monolayer mixtures during isothermal compressions. A water-soluble cationic carbocyanine dye was used to probe the interfacial properties of the mixed monolayers. Isotherm data do not provide unambiguous evidence for either phase separation or ideal mixing of monolayer components. Fluorescence microscopy is more revealing, showing that lateral phase separation of microstructures containing palmitic acid occurred only when monolayer subphases contained Ca2+ ions at alkaline pH. At either low pH or on Ca(2+)-free subphases, phase separation was not observed.

  16. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.

  17. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Science.gov (United States)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  18. Microbiological Tests Performed During the Design of the International Space Station ECLSS: Part 1, Bulk Phase Water and Wastewater

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.

  19. Analysis of Salvinorin A in plants, water, and urine using solid-phase microextraction-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Barnes, Brian B; Snow, Nicholas H

    2012-02-24

    Salvinorin A, a psychoactive hallucinogen, and related compounds, were analyzed in plants, water, and urine using liquid-liquid extraction (LLE), solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-ToFMS). A semi-qualitative study of the extraction of Salvinorin A and analogs from Salvia divinorum plants by LLE showed ppb levels of Salvinorin A and several analogs in the leaves and stems of S. divinorum plants, much lower than expected. Quantitative analysis of Salvinorin A spiked into water and urine showed much better figures of merit for SPME than LLE, with limit of detection of about 5 ng/mL, linear range from 8 to 500 ng/mL and precision about ±10% for the SPME-based analyses using external standard quantitation. GC×GC-ToFMS was especially effective in separating the peaks of interest from matrix and chromatographic interferences.

  20. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    Science.gov (United States)

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  1. Surface waters as a sink and source of atmospheric gas phase ethanol.

    Science.gov (United States)

    Avery, G Brooks; Foley, Laura; Carroll, Angela L; Roebuck, Jesse Alan; Guy, Amanda; Mead, Ralph N; Kieber, Robert J; Willey, Joan D; Skrabal, Stephen A; Felix, J David; Mullaugh, Katherine M; Helms, John R

    2016-02-01

    This study reports the first ethanol concentrations in fresh and estuarine waters and greatly expands the current data set for coastal ocean waters. Concentrations for 153 individual measurements of 11 freshwater sites ranged from 5 to 598 nM. Concentrations obtained for one estuarine transect ranged from 56 to 77 nM and levels in five coastal ocean depth profiles ranged from 81 to 334 nM. Variability in ethanol concentrations was high and appears to be driven primarily by photochemical and biological processes. 47 gas phase concentrations of ethanol were also obtained during this study to determine the surface water degree of saturation with respect to the atmosphere. Generally fresh and estuarine waters were undersaturated indicating they are not a source and may be a net sink for atmospheric ethanol in this region. Aqueous phase ethanol is likely converted rapidly to acetaldehyde in these aquatic ecosystems creating the undersaturated conditions resulting in this previously unrecognized sink for atmospheric ethanol. Coastal ocean waters may act as either a sink or source of atmospheric ethanol depending on the partial pressure of ethanol in the overlying air mass. Results from this study are significant because they suggest that surface waters may act as an important vector for the uptake of ethanol emitted into the atmosphere including ethanol from biofuel production and usage.

  2. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    Science.gov (United States)

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated.

  3. Modeling the Thermodynamics of Mixed Organic-Inorganic Aerosols to Predict Water Activities and Phase Equilibria

    Science.gov (United States)

    Zuend, A.; Marcolli, C.; Luo, B.; Peter, T.

    2008-12-01

    Tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behavior. While the thermodynamics of aqueous inorganic systems at atmospheric temperatures are well established, little is known about the physicochemistry of mixed organic-inorganic particles. Salting-out and salting-in effects result from organic-inorganic interactions and are used to improve industrial separation processes. In the atmosphere, they may influence the aerosol phases. Liquid-liquid phase separations into a mainly polar (aqueous) and a less polar organic phase may considerably influence the gas/particle partitioning of semi-volatile substances compared to a single phase estimation. Moreover, the phases present in the aerosol define the reaction medium for heterogeneous and multiphase chemistry occurring in aerosol particles. A correct description of these phases is needed when gas- or cloud-phase reaction schemes are adapted to aerosols. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems. This model allows to compute vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semiempirical middle

  4. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter

  5. A case study of ethanol water demand during industrial phase in Brazil

    Science.gov (United States)

    Hernandes, T.; Scarpare, F. V.; Guarenghi, M.; Pereira, T.; Galdos, M. V.

    2012-12-01

    Thayse A. D. Hernandesb, Fábio V. Scarparea, Marjorie M. Guarenghib, Tássia P. Pereirab, Marcelo V. Galdosa a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil, E-mail: fabio.scarpare@bioetanol.org.br b Faculdade de Engenharia Mecânica, Unicamp, Cidade Universitária "Zeferino Vaz", CEP 13083-860, Campinas, SP, Brazil In São Paulo State, the water resources have being used by sugarcane industry responsibly, through high reuse rates that may reach 95% during industrial process. The average amount of catchment water stays around 2.0 m3 Mg 1 of industrial sugarcane stalk. However, in some modern mills which use higher technical level of closed water circuit, the standard goal for sugarcane industry, 1.0 m3 Mg 1 can be reached. In some regions where the uptake water for industrial segment is high as in São Paulo State, water use assessment is desired for sustainable ethanol production. Thus, two regions in São Paulo State with two plants each were taken as a case study aiming to assess ethanol water demand during the industrial phase. Araraquara was the first study region where the water demand was classified as in critical condition in 2010 according to the Water and Electrical Energy Department of São Paulo State (DAEE). The industrial activities were responsible for 50% of the water catchment. Araçatuba was the second study region where water demand was classified as being of concern (DAEE) due to high percentage of catchment water for industrial activities, around 90%. Data regarding the amount of millable cane processed, days of the plant operation, ratio of cane used for ethanol production in 2010/2011 season were used for direct water demand estimation considering different water catchment scenarios of 2.0, 1.0 and 0.7 (technological development prediction scenario) m3 Mg-1 of millable cane. For indirect water demand estimation, data regarding installed capacity of each

  6. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  7. Measurement of drinking water contaminants by solid phase microextraction initially quantified in source water samples by the USGS.

    Science.gov (United States)

    Stiles, Robert; Yang, Ill; Lippincott, Robert Lee; Murphy, Eileen; Buckley, Brian

    2008-04-15

    Two adsorbent solid phase microextraction (SPME) fibers, 70 microm Carbowax divinylbenzene (CW/DVB) and 65 microm polydimethylsiloxane divinylbenzene (PDMS/DVB), were selected for the analysis of several target analytes (phenols, phosphates, phthalates, polycyclic aromatic hydrocarbons, and chlorinated pesticides) identified by the USGS in surface waters. Detection limits for standards ranged from 0.1 to 1 ng/mL for the CW/ DVB fiber and 0.1 to 2 ng/mL for the PDMS/DVB fiber for 20 of the analytes. The remaining analytes were not extracted because their polarity precluded their partition to the solid phase of the SPMEfiber. Groundwater and treated water samples collected from wells in northern New Jersey were then sampled for the USGS analytes by the SPME method as well as a modified version of EPA 525.5 using C-18 bonded solid phase extraction columns. Nine of the USGS analytes-bisphenol A, bis(2-ethylhexyl) phthalate, butylated hydroxytoluene, butlyated hydroxyanisole, diethyltoulamide, diethyl phthalate, bis(2-ethylhexyl) adipate, 1,4-dichlorobenzene, and triphenyl phosphate-were detected in groundwater samples using the CW/ DVB fiber.

  8. The order parameter and susceptibility of the 3D Ising-like system in an external field near the phase transition point

    Directory of Open Access Journals (Sweden)

    M.P. Kozlovskii

    2010-01-01

    Full Text Available The present work is devoted to the investigation of the 3D Ising-like model in the presence of an external field in the vicinity of critical point. The method of collective variables is used. General expressions for the order parameter and susceptibility are calculated as functions of temperature and the external field as well as scaling functions of that are explicitly obtained. The results are compared with the ones obtained within the framework of parametric representation of the equation of state and Monte Carlo simulations. New expression for the exit point from critical regime of the order parameter fluctuations is proposed and used for the calculation.

  9. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    Science.gov (United States)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-06

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems.

  10. Packed column supercritical fluid chromatography using stainless steel particles and water as a stationary phase.

    Science.gov (United States)

    Murakami, Jillian N; Thurbide, Kevin B

    2015-09-15

    Stainless steel (SS) particles were demonstrated as a novel useful support for a water stationary phase in packed column supercritical fluid chromatography using a CO2 mobile phase. Separations employed flame ionization detection, and the system was operated over a range of temperatures and pressures. Retention times reproduced well with RSD values of 2.6% or less. Compared to analogous separations employing a water stationary phase coated onto a SS capillary column, the packed column method provided separations that were about 10× faster, with nearly 8-fold larger analyte retention factors, while maintaining good peak shape and comparable column efficiency. Under normal operating conditions, the packed column contains about 131 ± 4 μL/m of water phase (around a 5% m/m coating), which is over 25× greater than the capillary column and also affords it a 20-fold larger sample capacity. Several applications of the packed column system are examined, and the results indicate that it is a useful alternative to the capillary column mode, particularly where analyte loads or sample matrix interference is a concern. Given its high sample capacity, this packed column method may also be useful to explore on a more preparative scale in the future.

  11. Gastric stromal tumor: two-phase dynamic CT findings with water as oral contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Hyo; Cho, June Sik; Shin, Kyung Sook; Jeong, Ki Ho; Park, Jin Yong; Yu, Ho Jun; Kim, Young Min; Jeon, Kwang Jin [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)

    2000-01-01

    To evaluate two-phase dynamic CT with water as oral contrast agents in the CT diagnosis of gastric stromal tumors. We retrospectively reviewed the CT findings in 21 patients with pathologically proven gastric stromal tumors. Six were found to be benign, twelve were malignant, and there were three cases of STUMP (stromal tumor uncertain malignant potential). Two-phase dynamic CT scans with water as oral contrast agents were obtained 60-70 secs (portal phase) and 3 mins (equilibrium phase) after the start of IV contrast administration. We determined the size, growth pattern, and enhancement pattern of the tumors and overlying mucosa, the presence or absence of ulceration and necrosis, tumor extent, and lymph nod and distant metastasis. The CT and pathologic findings were correlated. All six benign tumors and three STUMP were less than 5.5 cm in size, and during the portal phase showed round endogastric masses with highly enhanced, intact overlying mucosa. Twelve malignant tumors were 4.5-15.5 cm in size (mean, 11.5 cm); an endogastric mass was seen in three cases, an exogastric mass in one, and a mixed pattern in eight. On portal phase images the tumors were not significantly enhanced, but highly enhanced feeding vessels were noted in five larger tumors (greater than 10 cm). All 12 malignant tumors showed ulceration and necrosis, and interruption of overlying mucosa was clearly seen during the portal phase. We were readily able to evaluate tumor extent during this phase, and in ten malignant tumors there was no invasion of adjacent organs. Seven malignant tumors showed air density within their necrotic portion (p less than 0.05). On equilibrium phase images, all malignant tumors showed heterogeneous enhancement due to necrosis, and poorly enhanced overlying mucosa. Dynamic CT during the portal phase with water as oral contrast agents was useful for depicting the submucosal origin of gastric stromal tumors and for evaluating the extent of malignant stromal tumors. Our

  12. Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide

    Indian Academy of Sciences (India)

    Susheel Kalia; Anju Sharma; B S Kaith

    2007-11-01

    Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization of formamide. Gas phase tautomerization of maleimide requires large amount of energy (23.21 kcal/mol) in comparison to formamide (15.05 kcal/mol) at HF/6-31+G* level. Thus making the proton transfer reaction a difficult process in gas phase. Water molecule lowers the energy barrier of tautomerization thus facilitating the tautomerization of maleimide to 5-hydroxy-pyrrol-2-one. Water assisted tautomerization of maleimide requires 19.60 kcal/mol energy at HF/6-31+G* and 17.63 kcal/mol energy at B3LYP/6-31+G* level, a decrease of 3.61 and 5.96 kcal/mol over gas phase tautomerization. Whereas, tautomerization of formamide requires 14.16 and 12.84 kcal/mol energy, a decrease of 0.89 and 2.01 kcal/mol energy over gas phase tautomerization at HF/6-31+G* and B3LYP/6-31+G* level, respectively. Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2.83 kcal/mol from 10.41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule.

  13. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    Science.gov (United States)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  14. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  15. Combinatorial Investigations of High Temperature CuNb Oxide Phases for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Skorupska, Katarzyna; Maggard, Paul A; Eichberger, Rainer; Schwarzburg, Klaus; Shahbazi, Paria; Zoellner, Brandon; Parkinson, Bruce A

    2015-12-14

    High-throughput combinatorial methods have been useful in identifying new oxide semiconductors with the potential to be applied to solar water splitting. Most of these techniques have been limited to producing and screening oxide phases formed at temperatures below approximately 550 °C. We report the development of a combinatorial approach to discover and optimize high temperature phases for photoelectrochemical water splitting. As a demonstration material, we chose to produce thin films of high temperature CuNb oxide phases by inkjet printing on two different substrates: fluorine-doped tin oxide and crystalline Si, which required different sample pyrolysis procedures. The selection of pyrolysis parameters, such as temperature/time programs, and the use of oxidizing, nonreactive or reducing atmospheres determines the composition of the thin film materials and their photoelectrochemical performance. XPS, XRD, and SEM analyses were used to determine the composition and oxidation states within the copper niobium oxide phases and to then guide the production of target Cu(1+)Nb(5+)-oxide phases. The charge carrier dynamics of the thin films produced by the inkjet printing are compared with pure CuNbO3 microcrystalline material obtained from inorganic bulk synthesis.

  16. Phase Behavior and Dielectric Spectroscopy of the Sodiun Dodecyl Trioxyethylene Sulfate/n-Butanol/Water System

    Institute of Scientific and Technical Information of China (English)

    WEI, Su-Xiang; MU, Jian-Hai; ZHAO, Kong-Shuang; LEI, Jian-Ping; LI, Gan-Zuo

    2003-01-01

    The phase diagram of the ternary system of sodium dodecyl trioxyethylene sulfate (SDES)/n-butanol/water is obtained at (30.0 ± 0.1) ℃. There exists a clear, isotropic, and low-viscosity L phase, which could be divided into W/O micelle, bicontinuous (B. C. ) phase and O/W micelle by conductivity measurements. Dielectric Relaxation Spectroscopy (DRS) measurements are applied to investigate microstructure changes of this system. For samples with a fixed weight ratio, SDES/nbutanol = 3/7, DRS indicates a structure transition from W/Oto O/W micelles via B.C. Phase with the increase of water content. For the samples with a fixed weight ratio, SDES/H2O =4/6, DRS can presents that there exist changes of onefold structure size of W/O micelles as n-butanol content increases. The results obtained from DRS and their analyses are in good agreement with those from phase diagram and conductivity measurements.

  17. Phase separation kinetics in amorphous solid dispersions upon exposure to water.

    Science.gov (United States)

    Purohit, Hitesh S; Taylor, Lynne S

    2015-05-04

    The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.

  18. Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling

    Science.gov (United States)

    Ivall, Jason; Langlois-Rahme, Gabriel; Coulombe, Sylvain; Servio, Phillip

    2017-02-01

    Multiwall carbon nanotube nanofluids are regularly investigated for phase change enhancement between liquid and solid states owing to their improved heat transfer properties. The potential applications are numerous, the most notable being latent heat thermal energy storage, but the success of all nanofluid-assisted technologies hinges greatly on the ability of nanoparticles to remain stably dispersed after repeated phase change cycles. In this report, the stability of aqueous nanofluids made from oxygen-functionalized multiwall carbon nanotubes (f-MWCNTs) was profiled over the course of 20 freeze/thaw cycles. Sonication was used after each cycle to re-disperse clusters formed from the crystallization process. This study offers a quantitative evaluation of f-MWCNT-nanofluid stability as a result of phase change through optical characterization of concentration and particle size. It also provides insight into the integrity of the surface functionalities through zeta potential and XPS analyses. Concentration and particle size measurements showed moderate and consistent recoverability of f-MWCNT dispersion following ultrasonication. XPS measurements of solid-state MWCNTs exposed to freeze/thaw cycling in water, and zeta potential analyses of the nanofluids indicate that the surface oxygen content is preserved throughout phase change and over repeated cycles. These results suggest a resilience of oxygen-functionalized MWCNTs to the freezing and thawing of water, which is ideal for their utilization as phase change enhancers.

  19. DEVELOPMENT OF SINGLE-PHASED WATER-COOLING RADIATOR FOR COMPUTER CHIP

    Institute of Scientific and Technical Information of China (English)

    ZENG Ping; CHENG Guangming; LIU Jiulong; YANG Zhigang; SUN Xiaofeng; PENG Taijiang

    2007-01-01

    In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software,ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator.

  20. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  1. Infrared intensity of 1-monolaurin-water systems in the gel phase

    Science.gov (United States)

    Kanesaka, Isao; Ishizaka, Makiko; Shimizu, Kunihiko

    2000-11-01

    The infrared spectra of 1-monolaurin-water systems, where KSCN is added as the intensity standard, were observed and the infrared intensity of the bands due to acyl groups measured relatively to that of the CN stretching. The infrared intensities of the bands parallel and perpendicular to the paraffin chains decrease and increase, respectively, on going from the crystalline β phase to the gel phase, confirming that these intensity changes result from the long-range interaction among oscillating dipoles. The infrared spectra with no CH 2 rocking and the splitting of the CH 2 rocking are also discussed with the same interaction model.

  2. Periodic structures induced by director reorientation in the lyotropic nematic phase of disodium cromoglycate-water

    Science.gov (United States)

    Hui, Y. W.; Kuzma, M. R.; San Miguel, M.; Labes, M. M.

    1985-07-01

    A nonequilibrium periodic structure is induced by a magnetic field H applied to an aligned lyotropic uniaxial nematic phase of disodium cromoglycate-water. A series of parallel lines perpendicular to H represents boundaries between 180° out-of-phase regions of director reorientation. The distance between the lines decreases with increasing H. The line spacing is also directly proportional to thickness of the sample (in a limited range of thickness), and a secondary periodicity, consisting of nodes in these lines, is observed in thicker samples. An extension of a theoretical model by Guyon et al. is used to qualitatively interpret the abovementioned dependencies.

  3. Morphology and Phase Compositions of Hydroxyapatite Powder Particles Plasma-sprayed into Water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray difiractometer. The results show that the molten HA particles have a central hollow morphology and high crystallinity. The hollow morphology was caused by sublimated P2O5 and H2O, which will have an efiect on surface morphology, cohesive and adhesive strength as well as dissolution and degradation of coating. The high crystallinity is attributed to lower cooling speed in water.

  4. Sub-critical Column and Capillary Chromatography with Water as Mobile Phase and Flame Ionization Detection

    Institute of Scientific and Technical Information of China (English)

    LuFeng; LiLing; SunPeng; WuYutian

    2001-01-01

    A sub-critical chromatography (SubWC) with water as mobile phase and FID detection system is employed to separate several alcohols with high or medium polarity, with pure water as the eluent. The flow rate gets up to 50 μ1-min-1 for packed column (1 mm i.d.) and 70 μ1-min-1 for capillary (50 μm i.d.). Increasing the temperatureup to 140℃, together with temperature programming, markedly improves the separation and peak shapes within short analysis time. Sub-critical state is guaranteed.

  5. OIL-WATER TWO-PHASE FLOW INSIDE T-JUNCTION

    Institute of Scientific and Technical Information of China (English)

    WANG Li-yang; WU Ying-xiang; ZHENG Zhi-chu; GUO Jun; ZHANG Jun; TANG Chi

    2008-01-01

    The oil / water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture model. Some experiments of oil / water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends on the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.

  6. [Determination of eight bisphenol diglycidyl ethers in water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Haijing; Lin, Shaobin

    2014-07-01

    A solid phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) method was developed for the determination of eight bisphenol diglycidyl ethers, including bisphenol A diglycidyl ether (BADGE), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE x HCl), bisphenol A bis (3-chloro-2-hydroxypropyl) ether (BADGE x 2HCl), bisphenol A (2, 3-dihydroxypropyl) glycidyl ether (BADGE x H2O), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE x 2H2O), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE x HCl x H2O), bisphenol F diglycidyl ether (BFDGE) and bisphenol F bis (3-chloro-2-hydroxypropyl) ether (BFDGE 2HCl) in water. A total of ten samples were collected from the leaching of the coatings for drinking water supply system. Then, 200 mL exposure water was preconcentrated on C18 solid-phase extraction cartridge. The eight compounds were analyzed by liquid chromatography-tandem mass spectrometry method on a C18 column by the gradient elution with methanol, water and 5 mmol/L ammonium acetate as mobile phases in the multiple reaction monitoring (MRM) scan mode. The external matrix standard solutions were used for the quantitative determination and the calibration curves of the eight compounds showed good linearity in the range of 0.007-5.00 microg/L with the correlation coefficients more than 0.999 0. The limits of quantification (LOQs) of the method were 7-91 ng/L. The spiked recoveries ranged from 79.1% to 101% with the relative standard deviations of 4.0% - 12%. The method is sensitive and accurate, and is applicable to the determination of bisphenol diglycidyl ethers in water.

  7. Isolation of tetracyclines in milk using a solid-phase extracting column and water eluent.

    Science.gov (United States)

    Furusawa, Naoto

    2003-01-01

    An isolating method using a solid-phase extraction (SPE) ISOLUTE(R) C8 endcapped syringe-column for routine monitoring of residual tetracyclines (TCs) (oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), and doxycycline (DC)) in cow's milk is presented. In the simplest and most environmentally harmless method, milk samples could be applied directly to the SPE column, following which all TCs were eluted with water. No organic solvents were used at all. The purified sample was injected into a high-performance liquid chromatography (HPLC) with a photo-diode array detector (PDAD). For the HPLC determination/identification, a LiChrospher(R) 100 RP-8 endcapped column and a mobile phase of acetonitrile -7% (v v(-1)) acetic acid solution (in water) (35:65, v v(-1)) with a PDAD was used. The total time required for the analysis of one sample was 80 and <5%, respectively.

  8. Numerical simulation of air-water two-phase flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xiangju; CHEN; Yongcan

    2006-01-01

    Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.

  9. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... to Pneumococcal Vaccine Additional Content Medical News External Otitis (Swimmer's Ear) By Bradley W. Kesser, MD, Associate ... the Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis External otitis ...

  10. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids

    Science.gov (United States)

    Zeinali Heris, Saeed; Fallahi, Marjan; Shanbedi, Mehdi; Amiri, Ahmad

    2016-01-01

    In this paper, the effects of different acids on the thermal performance of oxidized carbon nanotubes (CNT)/water nanofluids in a two-phase closed thermosyphon were studied. The structures morphology and functionalization degree were studied concurrently. The results indicated that strong oxidants increased dispersivity of CNT in the nanofluids. In other words, as the number of COOH groups increased in the nanofluids, an upward trend was also observed in the thermal efficiency of the thermosyphon.

  11. Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system.

    Science.gov (United States)

    Jiang, Yangyang; Xia, Hansong; Guo, Chen; Mahmood, Iram; Liu, Huizhou

    2007-01-01

    In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.

  12. Thermal reversible gelation during phase separation of poly(N-isopropyl acrylamide)/water solution

    Institute of Scientific and Technical Information of China (English)

    曾钫[1; 刘新星[2; 童真[3; 杨燕银[4; 吴水珠[5

    2000-01-01

    By dynamic viscoelastic measurement for PNIPAM/water solution it has been found that below the phase separation temperature (about 32 ℃), the system is homogeneous fluid; while upon being heated to about 32 ℃, the solution undergoes phase separation and the storage modulus G’ increases sharply and exceeds the loss modulus G", indicating the physical network formation during the phase separation. Based on the percolation model, the gel points Tgel, were obtained by applying the dynamic scaling theory (DST) and winter’s criterion. The critical exponent n was also obtained to be 0.79 through DST, which is different from 0.67, the critical point of chemically crosslinked network predicted through DST. The obtained n value reflects the special property of physical network being different from chemical network.

  13. Numerical simulation of oil-water two-phase flow in horizontal pipes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michelly Martuchele; Ramirez, Ramiro Gustavo [Federal University of Itajuba (UNIFEI), MG (Brazil)], E-mail: ramirez@unifei.edu.br

    2010-07-01

    The numerical simulation of two phase flow through the CFD techniques have become of great interest due to the complexity of this type of flow. The present work aims to simulate the oil-water two-phase flow in horizontal pipes for stratification analysis of the mixture. In numerical simulations, incompressible flow, isothermal, steady state and laminar flow were considered. Numerical analysis of flow stratification was carried out for horizontal straight and curved pipe. FLUENT was the commercial software employed in the simulation. Three-dimensional mesh generated by ICEM-CFD program was used for numerical simulation. The numerical analysis flow pattern was carried out employing the Eulerian model, considering the drag and lift interphase forces. The simulation results for the horizontal straight pipe were qualitatively validated with experimental data obtained in the Laboratory of Phase Separation of UNIFEI. (author)

  14. Thermal reversible gelation during phase separation of poly(N-isopropyl acrylamide)/water solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By dynamic viscoelastic measurement for PNIPAM/water solution it has been found that below the phase separation temperature (about 32℃), the system is homogeneous fluid; while upon being heated to about 32℃, the solution undergoes phase separation and the storage modulus G′ increases sharply and exceeds the loss modulus G″, indicating the physical network formation during the phase separation. Based on the percolation model, the gel points Tgel were obtained by applying the dynamic scaling theory (DST) and Winter's criterion. The critical exponent n was also obtained to be 0.79 through DST, which is different from 0.67, the critical point of chemically crosslinked network predicted through DST. The obtained n value reflects the special property of physical network being different from chemical network.

  15. Phase diagram of water-methane by first-principles thermodynamics: discovery of MH-IV and MH-V hydrates.

    Science.gov (United States)

    Cao, Xiaoxiao; Huang, Yingying; Jiang, Xue; Su, Yan; Zhao, Jijun

    2017-06-21

    Searching novel gas hydrates is an enduring topic of scientific investigations, owing to its outstanding implications on planetology, the origin of life and the exploitation of energy resources. Taking the methane-water system as a representative, we disclose two new dense methane hydrate phases (MH-IV and MH-V) using the Monte-Carlo packing algorithm and density-functional theory (DFT) optimization. Both of these methane clathrates with (CH4)(H2O)4 stoichiometry can be regarded as filled ices, since their hydrogen bond networks are closely related to that of ice i and ice XI, respectively. In particular, the former ice i network is observed for the first time in all gas hydrates. A new chemical composition phase diagram of methane hydrate is constructed. Our newly identified methane hydrate IV emerges in the transition zone for a water-methane ratio between 2 : 1 and 5.75 : 1. It suggests that our MH-IV phase can be stabilized without external pressure, which is superior to previous reported filled ices to apply to energy storage. These findings attest to the importance of composition effects on the packing mechanism of gas hydrate, and provide new perspectives for understanding the physicochemical and geophysical processes in the giant planets of the solar system.

  16. HYDRATION AND PHASE SEPARATION OF TEMPERATURE-SENSITIVE WATER-SOLUBLE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Fumihiko Tanaka; Tsuyoshi Koga; Hiroyuki Kojima; Francoise M. Winnik

    2011-01-01

    Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very flat LCST phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules and higher fractal assembly, are studied by USANS with theoretical modeling of the scattering function.

  17. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  18. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    Science.gov (United States)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  19. Modeling phase distribution of water-soluble organics in aqueous solutions using surface tension data

    Science.gov (United States)

    Cline, B.; Hiatt, J.; Aumann, E.; Cabrera, J.; Tabazadeh, A.

    2006-12-01

    A good fraction (greater than 30 percent) of submicron particle mass in the atmosphere is often composed of water-soluble organic carbon. Identifiable, water-miscible organics, such as, known sugars, small alcohols, small diacids, etc. comprise only a small fraction of the water-soluble mass (about 1-2 percent). Most of the water-soluble mass is often composed of unidentifiable, humic-like materials, which are commonly refereed to as HULIS. Humic substances are known to form colloids in aqueous solutions at very low aqueous concentrations. Thus, it is likely for HULIS to also be colloid-forming in aqueous solutions. Here, we present surface tension measurements of water-miscible and colloid-forming organics, using methanol and sodium laurate as analogs, respectively. By relating the change in surface tension to chemical potential of the solution, we determine a relationship between surface tension and the surface excess of solute; that is, the number of molecules of solute adsorbed at the surface. Assuming surface acts as a monolayer, we model the adsorption with a Langmuir isotherm to extract the surface excess as a function of solute mole fraction. This relationship allows us to calculate the solute's distribution between bulk and surface phases for methanol, and in bulk, surface and colloid phases for sodium laurate. A colloid of sodium laurate contains approximately 100 laurate anions in a spherical cluster. We present adsorption constants for methanol and sodium laurate (derived from our surface tension data), critical micelle concentration for sodium laurate (derived from our surface tension data), and all the other thermocehmical constants (obtained from the literature) required to constrain a model for determining phase partitioning of organics in aqueous solutions.

  20. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...

  1. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Essadki, A.H., E-mail: essadki@hotmail.com [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Vial, Ch. [Laboratoire de Genie Chimique et Biochimique, LGCB-UBP/ENSCCF, 24 avenue des Landais, BP 206, 63174 Aubiere Cedex (France); Delmas, H. [Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France); Bennajah, M. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France)

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm{sup 2}, but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H{sub 2} microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  2. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor.

    Science.gov (United States)

    Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  3. [Determination of 23 antibiotics and 3 β-agonists in livestock drinking water by ultra performance liquid chromatography-tandem mass spectrometry coupled with solid-phase extraction].

    Science.gov (United States)

    Shi, Ao

    2016-02-01

    A method has been developed for the simultaneous determination of 23 antibiotics (four categories) and 3 β-agonists in livestock drinking water using solid-phase extraction and ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS). The samples were adjusted pH to 5. 0, added Na2EDTA, enriched and cleaned-up by an HLB solid-phase extraction cartridge. The target compounds were confirmed and quantified by UPLC-ESI MS/MS with external standard method for the anti- biotics and internal standard method for the β-agonists. The recoveries were assessed by using lab tap water as matrix. The average recoveries of the 23 antibiotics and the 3 β-agonists were in the range of 50. 7%-104. 6% and the relative standard deviations (RSDs) were 2. 6%-8. 8% (n= 3). Under the optimal conditions, the calibration curves of the 23 antibiotics and the 3 β-agonists showed good linearity with the correlation coefficients better than 0. 994. The limits of detection (LODs, S/N≥3) ranged from 0. 01-0. 20 ng/L. The developed method was applied to analyze the livestock drinking waters in 36 Beijing intensive livestock farms. The results showed that some antibiotics were detected.

  4. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREACTOR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R.S. Bowman; E.J. Sullivan

    2003-04-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from October 2002 to March 2003. In this starting stage of this study, we have continued our investigation of SMZ regeneration from our previous DOE project. Two saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. Preliminary results suggest that BTEX sorption actually increases with the number of saturation/regeneration cycles. Furthermore, the experimental vapor phase bioreactors for this project have been designed and are

  5. Water defluoridation by hydrotalcite and takovite and subsequent formation of new fluoride-bearing phases.

    Science.gov (United States)

    Guo, Qinghai; Guo, Qingshan

    2013-01-01

    Hydrotalcite, takovite and their calcination products were used to remove fluoride from water at various molar ratios of initial fluoride to solid (F(initial):hydrotalcite or F(initial):takovite) ranging from 0.1 to 2.0, and their theoretical fluoride uptake limit. X-Ray powder diffraction and 19F magic-angle spinning nuclear magnetic resonance spectra were used to characterize the solid samples and to investigate the fluoride removal mechanisms. Water defluoridation by uncalcined and calcined hydrotalcite attributes mainly to the intercalation of F- into their interlayers and adsorption of F- onto their external surfaces. The fluoride removal percent of calcined hydrotalcite are higher than those of uncalcined hydrotalcite at F(initial):hydrotalcite ratios varying between 0.1 and 1.5, whereas the situation is the reverse at a ratio of 2.0 in the 30 d sorption runs. It was induced by the precipitation of fluoride-bearing nordstrandite and sellaite during a long contact of high concentration fluoride solution with uncalcined hydrotalcite. In contrast, the sorption of fluoride by uncalcined and calcined takovite occurs predominantly on their external surfaces. Fluoride-bearing gibbsite or nordstrandite and NiF2 were formed as the fluoride solutions were treated by uncalcined takovite in the 30 d runs, which enhanced its defluoridation effect. The fluoride removal efficiency of calcined takovite is much lower than uncalcined takovite and calcined hydrotalcite, because the expected restoration of original layered structure of takovite did not happen during the reaction of calcined takovite with the fluoride solution.

  6. Online analytical investigations on solvent-, temperature- and water vapour-induced phase transformations of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Helmdach, L.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, Halle (Saale) (Germany); Feth, M.P. [Sanofi-Aventis Deutschland GmbH, Chemical and Process Development Frankfurt Chemistry, Frankfurt (Germany)

    2012-09-15

    It was demonstrated exemplarily for the crystallization of citric acid that the usage of an ultrasound device as well as Raman spectroscopy enables the inline measurement and the control of phase transitions. The influence of different solvent compositions (water and ethanol-water) on the crystallization of citric acid was investigated. By increasing the ethanol content the transformation point was shifted towards higher temperatures. In addition, a strong impact on the nucleation point as well as on the crystal habit was detected in ethanol-water mixtures. The results lead to the assumption that a citric acid solvate exists, which is, however, highly unstable upon isolation from mother liquor and converts fast into the known anhydrate or monohydrate forms of citric acid. The presence of such a solvate, however, could not be proven during this study. Furthermore, factors such as temperature and humidity which might influence the phase transition of the solid product were analyzed by Hotstage-Raman Spectroscopy and Water Vapor Sorption Gravimetry-Dispersive Raman Spectroscopy. Both, temperature as well as humidity show a strong influence on the behaviour of CAM. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Onset of ice VII phase during ps laser pulse propagation through liquid water

    Science.gov (United States)

    Kumar, V. Rakesh; Kiran, P. Prem

    2017-01-01

    Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.

  8. Water induced size and structure phase transition of CdS crystals and their photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyan [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Xi, Yi, E-mail: yxi6@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Hu, Chenguo; Wang, Xue [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2013-02-15

    Graphical abstract: Excellent photocatalytic activity in degradation of RhB was found with the hexagonal CdS nanorods growing along [0 0 0 1] direction, which is a result of the exposed (0 0 0 1) facets in the ends. Display Omitted Highlights: ► CdS microwires and nanorods were attained by a modified CHM approach. ► The phase transition (cubic to hexagonal) was achieved by tuning the amount of H{sub 2}O. ► Excellent photocatalytic activity was found with the hexagonal CdS. ► Hexagonal CdS has the better catalytic property due to more (0 0 0 1) facets exposed. -- Abstract: Single-crystalline CdS microwires (mixed cubic and hexagonal phase) and nanorods (pure hexagonal phase) were synthesized by a modified composite-hydroxide-mediated (CHM) approach. Photocatalytic degradation of rhodamine B with the CdS nanorods was studied under the simulated sunlight irradiation. Crystalline phase transition from cubic to hexagonal phase was achieved by adding a small amount of water in the melts. The phase structures and morphologies of the prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area of electron diffraction (SAED) and scanning electron microscopy (SEM), respectively. The results show that the pure hexagonal phase structure could be obtained with 5 mL or more than 5 mL water added in the composite-hydroxide melts. The band–gap of the hexagonal nanorods was 2.435 eV observed from UV–vis reflection spectrum. Compared with the CdS nanoparticles (mixed cubic and hexagonal phase), we found that the hexagonal phase structure CdS nanorods revealed much better photocatalytic activity owing to the exposure of (0 0 0 1) polar facet on the end. It is expected that the present research may offer useful guidance to the potential application of CdS in the treatment of environmental pollution.

  9. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters.

    Science.gov (United States)

    Berkowitz, Jacob; Anderson, Michael A; Graham, Robert C

    2005-10-01

    Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to Lake Elsinore water. Surface areas also decreased over time as crystals reordered to form gibbsite/microcrystalline gibbsite species. DSC-TGA results suggested that the initially formed amorphous Al(OH)3 underwent transformation to >45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

  10. Modeling of phase equilibrium of North Sea oils with water and MEG

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Kontogeorgis, Georgios; von Solms, Nicolas

    2016-01-01

    The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become very important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals......, such as water and ethylene glycol (MEG). Using these new correlations for prediction of all binary interactions, the CPA EoS satisfactorily describes the mutual solubility of the “binary systems” reservoir fluid and MEG and promising results are also obtained with CPA for ternary mixtures (reservoir fluid...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  11. A modified Rusanov scheme for shallow water equations with topography and two phase flows

    Science.gov (United States)

    Mohamed, Kamel; Benkhaldoun, F.

    2016-06-01

    In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.

  12. Toward a universal water model: First principles simulations from the dimer to the liquid phase

    CERN Document Server

    Babin, Volodymyr; Paesani, Francesco

    2012-01-01

    A full-dimensional molecular model of water, HBB2-pol, derived entirely from first principles, is introduced and employed in computer simulations ranging from the dimer to the liquid. HBB2-pol provides excellent agreement with the measured second and third virial coefficients and, by construction, reproduces the dimer vibration-rotation tunneling spectrum. The model also predicts the relative energy differences between isomers of small water clusters within the accuracy of highly correlated electronic structure methods. Importantly, when combined with simulation methods that explicitly include zero-point energy and quantum thermal motion, HBB2-pol accurately describes both structural and dynamical properties of the liquid phase. The predictive power of the HBB2-pol quantum simulations opens the door to the long-sought molecular-level understanding of water under different conditions and in different environments.

  13. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  14. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  15. Direct chiral resolution of metalaxyl and metabolite metalaxyl acid in aged mobile phases: the role of trace water.

    Science.gov (United States)

    Zhang, Xiaoxiang; Xia, Tingting; Chen, Jingwen; Huang, Liping; Cai, Xiyun

    2010-04-28

    The separation of chiral transformation products greatly complements the understanding of the stereochemistry of chiral pollutants. In this study, direct enantiomeric resolution of metalaxyl and its main degradation product metalaxyl acid, often co-occurring in the environment, was carried out in normal-phase high-performance liquid chromatography with a Chiralcel OJ-H column. (R)-Metalaxyl acid and (S)-metalaxyl, which were almost parallel bonding to the chiral stationary phase, tended to separate, started to overlap, coeluted, and separated again with subtle changes of the mobile phase consisting of n-hexane, 2-propanol, acetic acid, and trace water. Their competition above hampered an acceptable direct separation in fresh mobile phases. Aged mobile phases with a storage period of 3-5 days, however, significantly improved their separation, in which trace water from moisture air diffusion was found to play a major role. Trace water differentially affected peak width and retention times and then induced enhanced peak separation, confirmed by deliberate addition of water to fresh mobile phases. Furthermore, none of the studied factors, involving temperature, concomitant analytes, and trace water, could cause changes of the configuration of the chiral stationary phase. Simultaneous enantiomeric separation of both compounds was achieved in aged or fresh mobile phases with adventitious or added water and gave satisfactory peak separation, all with Rs values of more than 1.20 in environmental samples.

  16. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  17. Design and evaluation of a two-phase turbine for low quality steam--water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Comfort, W.J. III

    1977-05-16

    A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

  18. Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Robert D; Byars, Bruce W

    2009-11-24

    Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial

  19. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature.

    Science.gov (United States)

    Das Arulsamy, Andrew; Kregar, Zlatko; Eleršič, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-09-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.

  20. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    Science.gov (United States)

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  1. Local Structure in Ab Initio Liquid Water: Signatures of Amorphous Phases

    Science.gov (United States)

    Santra, Biswajit; Distasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water This work was supported by the DOE: DE-SC0008626, DE-SC0005180.

  2. Phases equilibria at low temperature between light hydrocarbons mixtures, methanol and water: measures and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossilhol, N.

    1995-12-01

    In this work we discuss phase equilibria of mixtures similar to those formed during natural gas treatment (transportation and purification). The mixtures can contain light hydrocarbons (methane, ethane, propane, etc), acid gases (hydrogen sulfide, carbon dioxide), methanol (solvent, inhibitor) and (water). We present a low temperature phase equilibrium equipment to obtain two and three phase equilibrium data of light hydrocarbon-methanol-water mixtures. The realisation of the equipment, the measuring procedure and some determination of binary, ternary and quaternary systems are described. The range of application is - 100 deg. C to 0 deg. C in temperature and between 0 and 100 bar in pressure. The binary subsystems of the systems mentioned above are calculated in order to study the possibilities of the MHV2 and Wong and Sandler methods to represent simultaneously their vapor-liquid and liquid-liquid equilibria. According to the formalism proposed by the two methods, the cubic Soave-Redlich-Kwong equation of state is systematically combined with the NRTL excess Gibbs energy model. (authors). 72 refs., 47 figs., 38 tabs.

  3. Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat

    Science.gov (United States)

    Yamanaka, H.; Nakagawa, M.

    2013-04-01

    Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.

  4. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  5. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  6. Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft

    Science.gov (United States)

    Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,

    2011-01-01

    Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.

  7. AQUEOUS TWO-PHASE GAS FLOATATION SPECTROPHOTOMETRIC DETERMINATION OF TRACE TETRACYCLINE IN ENVIRONMENTAL WATER SAMPLE

    Institute of Scientific and Technical Information of China (English)

    HOU Yanmin; YAN Yongsheng; LI Chunxiang; ZHAO Xiaojun; WANG Liang

    2008-01-01

    A green method for separating and enriching trace tetracycline (TC) in environment water by Aqueous Two-phase Gas Fioatation Spectrophotometry has been proposed, the principium was discussed.In this paper, the hydrophobic complex composed of Mg(Ⅱ) and TC was floated into organic phase under the optimal conditions: pH=10, the floatatlon equipment is home-made, n-propyl alcohol as the organic solvent, sodium chloride as the separating phase reagent.The data were obtained by spectrophotometry after floatatlon; The linear regression ,equation is A=2.33×105 C(mol/L)+0.2179, linear range is from 3.77×107mol/L to 6.32×105mol/L, respectively, with the correlation coefficient (r) better than 0.9997, relative recoveries is 99.7% to 100.3%, limit of detection was 4.29×10-8mol/L, The method can be applied to analyse the trace TC in water sample, the result is better.

  8. AQUEOUS TWO-PHASE GAS FLOATATION SPECTROPHOTOMETRIC DETERMINATION OF TRACE TETRACYCLINE IN ENVIRONMENTAL WATER SAMPLE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A green method for separating and enriching trace tetracycline (TC) in environment water by Aqueous Two-phase Gas Floatation Spectrophotometry has been proposed, the principium was discussed. In this paper, the hydrophobic complex composed of Mg(II) and TC was floated into organic phase under the optimal conditions: pH=10, the floatation equipment is home-made, n-propyl alcohol as the organic solvent, sodium chloride as the separating phase reagent. The data were obtained by spectrophotometry after floatation; The linear regression equation is A=2.33×105C(mol/L)+0.2179, linear range is from 3.77×10-7mol/L to 6.32×10-5mol/L, respectively, with the correlation coefficient (r) better than 0.9997, relative recoveries is 99.7% to 100.3%, limit of detection was 4.29×10-8mol/L, The method can be applied to analyse the trace TC in water sample, the result is better.

  9. Micro-Scale Simulation of Water Transport in Porous Media Coupled with Phase Change

    Science.gov (United States)

    Etemad, Sahand; Behrang, Arash; Mohammadmoradi, Peyman; Hejazi, Hossein; Kantzas, Apostolos

    2015-11-01

    Sub-pore scale modeling of flow in porous media is gaining momentum. The concept of Digital Core Analysis deals with measurements of virtual core and the purpose of such modeling is to replace conventional and special core analysis when the latter are not feasible. Single phase flow phenomena are nowadays fairly easy to model given a good representation of the porous medium by its digital counterpart. Two phase flow modeling has proven more difficult to represent due to the complexities introduced by the insert of interfaces. These problems were at least partially overcome by the implementation of the ``Volume of Fluid'' method. OpenFOAM is the CFD package of choice in this work. The aforementioned approach is currently being extended in the modeling of phase change within a porous medium. Surface roughness is introduced by the incorporation of wedges of variable density and amplitude on the pore surface. A further introduced complication is that the individual grains are of different mineralogy and thus of different wettability. The problem of steam condensation in such media is addressed. It is observed that steam condenses first in the smallest of wedges, which act a nucleation sites. Water spreads on water-wet surfaces. Snap-off is observed in several cases leading to temporary trapping of vapor. Grid size effects are also addressed. The application of this modeling effort is the condensation of steam in thermal recovery methods.

  10. Liquid-Liquid Phase Equilibria and Interactions between Droplets in Water-in-Oil Microemulsions.

    Science.gov (United States)

    Yin, Tianxiang; Wang, Mingjie; Tao, Xiaoyi; Shen, Weiguo

    2016-12-20

    The liquid-liquid phase equilibria of [water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane] with the molar ratio w0 of water to AOT being 37.9 and [water/AOT/ethoxylated-2,5,8,11-tetramethyl-6-dodecyne-5,8-diol(Dynol-604)/n-decane] with w0 = 37.9 and the mole fraction α of Dynol-604 in the total surfactants being 0.158 were measured in this study. From the data collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value. A thermodynamic approach based on the Carnahan-Starling-van der Waals type equation was proposed to describe the coexistence curves and to deduce the interaction properties between droplets in the microemulsions. The interaction enthalpies were found to be positive for the studied systems, which evidenced that the entropy effect dominated the phase separations as the temperature increased. The addition of Dynol-604 into the (water/AOT/n-decane) microemulsion resulted in the decrease in the critical temperature and the interaction enthalpy. Combining the liquid-liquid equilibrium data for (water/AOT/n-decane) microemulsions with various w0 values determined previously, it was shown that the interaction enthalpy decreased with w0 and tended to change its sign at low w0, which coincided with the results from the isothermal titration calorimetry investigation. All of these behaviors were interpreted by the effects of entropy and enthalpy and their competition, which resulted from the release of solvent molecules entrapped in the interface of microemulsion droplets and were dependent on the rigidity of the surfactant layers and the size of the droplet.

  11. Evidence of the existence of the low-density liquid phase in supercooled, confined water.

    Science.gov (United States)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-09

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

  12. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed.

  13. Utilization of phase change materials in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Mazman, Muhsin; Evliya, Hunay; Paksoy, Halime Oe. [Chemistry Dept., Art and Science Fac., Cukurova University, Balcali, Adana (Turkey); Cabeza, Luisa F.; Nogues, Miquel [Dept. Informatica i Eng. Industrial, Universitat de Lleida, Jaume II 69, 25001 Lleida (Spain); Mehling, Harald [ZAE Bayern, Division 1, Walther-Meissner-Str. 6, 85748 Garching (Germany)

    2009-06-15

    Thermal energy storage systems which keep warm and cold water separated by means of gravitational stratification have been found to be attractive in low and medium temperature thermal storage applications due to their simplicity and low cost. This effect is known as thermal stratification, and has been studied experimentally thoughtfully. This system stores sensible heat in water for short term applications. Adding PCM (phase change material) modules at the top of the water tank would give the system a higher storage density and compensate heat loss in the top layer because of the latent heat of PCM. Tests were performed under real operating conditions in a complete solar heating system that was constructed at the University of Lleida, Spain. In this work, new PCM-graphite compounds with optimized thermal properties were used, such as 80:20 weight percent ratio mixtures of paraffin and stearic acid (PS), paraffin and palmitic acid (PP), and stearic acid and myristic acid (SM). The solar domestic hot water (SDHW) tank used in the experiments had a 150 L water capacity. Three modules with a cylindrical geometry with an outer diameter of 0.176 m and a height of 0.315 m were used. In the cooling experiments, the average tank water temperature dropped below the PCM melting temperature range in about 6-12 h. During reheating experiments, the PCM could increase the temperature of 14-36 L of water at the upper part of the SDHW tank by 3-4 C. This effect took place in 10-15 min. It can be concluded that PS gave the best results for thermal performance enhancement of the SDHW tank (74% efficiency). (author)

  14. A Continuum Model for Water Transport in the Ionomer-Phase of Catalyst Coated Membranes for PEMFCs

    Directory of Open Access Journals (Sweden)

    Vladimir Gurau

    2010-01-01

    Full Text Available We study the problem of water transport in the ionomer-phase of catalyst coated membranes (CCMs for proton exchange membrane fuel cells (PEMFCs, where microscopic-scale phenomena at the distributed interfaces between structural components control the water management. Existing models for water transport in CCMs describe the transport in systems which consist exclusively of an ionomer-phase. Interfacial water fluxes across distributed interfaces representing various mechanisms of water transfer between ionomer and catalyst layer pores are not captured properly in these models. Here we develop a continuum model for water transport in CCMs using the method of volume averaging. Water is exchanged between ionomer and the catalyst layer pores by electro-osmotic discharge (EOD through the three-phase boundary (TPB regions and by sorption and desorption across the ionomer-pore interfaces. While the former mechanism does not affect directly the water content in the ionomer-phase, it represents an effective mechanism for water transfer during fuel cell operation and controls directly the water saturation in the catalyst pores.

  15. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    Science.gov (United States)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  16. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions

    Science.gov (United States)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-08-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.

  17. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2015-03-01

    Full Text Available Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  18. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    Science.gov (United States)

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  19. An on-line adaptive estimation method for water holdup measurement in oil-water two-phase flow with a conductance/capacitance sensor

    Science.gov (United States)

    Wu, Hao; Tan, Chao; Dong, Feng

    2016-07-01

    Oil-water two-phase flow widely exists in industrial processes such as petroleum engineering and chemical engineering. Accurate and real-time measurement of water holdup is an important problem requiring urgent solutions. In this work, a conductance and capacitance combination sensor (CCCS) system with four conductance rings and two concave capacitance plates was validated for its measurement performance of in situ water holdup through dynamic experiments. An online adaptive weight Kalman estimation (OAWKE) fusion algorithm for the CCCS system is proposed to fuse the conductance measurement and capacitance measurement. The algorithm has fast and dynamic response for the water holdup measurement of oil-water two-phase flow and has improved measurement precision by the adaptive data fusion method. The OAWKE fusion algorithm also has the ability to deal with the abrupt change of water holdup during the measurement process. Therefore, in the low water conductivity condition (tap water), the CCCS system with the OAWKE fusion algorithm can dynamically estimate the real-time full range water holdup of oil-water two-phase flow, which has prospects in the petroleum industry.

  20. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    Science.gov (United States)

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

  1. A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow

    KAUST Repository

    Zhang, Tao

    2017-06-09

    To improve the research methods in petroleum industry, we develop a fast algorithm to simulate droplet motions in oil and water two phase flow, using phase field model to describe the phase distribution in the flow process. An efficient partial difference equation solver—Shift-Matrix method is applied here, to speed up the calculation coding in high-level language, i.e. Matlab and R. An analytical solution of order parameter is derived, to define the initial condition of phase distribution. The upwind scheme is applied in our algorithm, to make it energy decay stable, which results in the fast speed of calculation. To make it more clear and understandable, we provide the specific code for forming the coefficient matrix used in Shift-Matrix Method. Our algorithm is compared with other methods in different scales, including Front Tracking and VOSET method in macroscopic and LBM method using RK model in mesoscopic scale. In addition, we compare the result of droplet motion under gravity using our algorithm with the empirical formula common used in industry. The result proves the high efficiency and robustness of our algorithm and it’s then used to simulate the motions of multiple droplets under gravity and cross-direction forces, which is more practical in industry and can be extended to wider application.

  2. Neural network forecasting model based on phase space re-construction in water yield of mine

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-lin; DONG Zeng-chuan; CHEN Nan-xiang; CAO Lian-hai

    2007-01-01

    The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example,the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision.

  3. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  4. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    . Thesechemicals belong to different families like alcohols, glycols, alkanolamines, surfactants andpolymers. They have various functions, e.g., methanol and MEG are used as gas hydrate inhibitors,surfactants are used to lower interfacial tension between crude oil and microemulsion and polymersin a polymer......-waterflooding process act primarily as thickeners. The main purpose of this work, focusing on the phase equilibrium of complex systems containingthermodynamic gas hydrate inhibitors, is to give a solid contribution in bridging the existing gaps inwhat experimental data is concerned. This was achieved not just...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...

  5. Experimental study of two-phase water flow in vertical thin rectangular channels

    Science.gov (United States)

    Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.

    2001-11-01

    An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.

  6. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei; Geiger, Franz M.; Eisenthal, Kenneth B.

    2016-12-13

    Probing the polarization of water molecules at charged interfaces by second harmonic generation (SHG) spectroscopy1 has been heretofore limited to isotropic solids. The signal intensity follows the interfacial potential, φo, according to I2ω ∝|χ(2)+ χ(3).φo|2, where I2ω is the SHG signal intensity oscillating at frequency 2ω, and χ(2) and χ(3) are the second- and third-order susceptibilities (χ(2) and χ(3)) of the interface probed. Here, we report the first phase-referenced SHG measurements under non-resonant conditions at the interface of z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. Comparison to non-referenced SHG measurements obtained from the fused silica/water interface reveals that the χ(3).φo term takes the form of ( χ(3)±iχ(3)).φo, and that the interference between the χ(3).φo term and the bulk quartz χ(2) term depends on the rotation angle of α-quartz around the z-axis. This newly identified term, iχ(3).φo, which is out of phase from the surface terms, is of bulk origin. The experiment expands the scope of SHG spectroscopy to probe solid/liquid interfaces beyond amorphous and centrosymmetric materials towards crystal classes that lack centrosymmetry. The possibility of internally phase referencing the interfacial SHG response for the interfacial orientation analysis of species or materials in contact with α-quartz are discussed along with the implications for conditions of resonance enhancement.

  7. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.

    Science.gov (United States)

    Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  8. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  9. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    Science.gov (United States)

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria.

  10. Three-Phase Behavior in a Water/C(12)EO(8)/Propanol/Cyclohexane/Heptane System.

    Science.gov (United States)

    Yamaguchi

    1999-10-01

    We studied the three-phase behavior and dissolution behavior of propanol (C(3)OH) in a water/C(12)EO(8)/C(3)OH/cyclohexane (c-C(6))/heptane (C(7)) system at 35 and 45 degrees C. Without C(12)EO(8), a three-phase region (IIIa) consisting of C(3)OH, aqueous (W), and oleic (O) phases exists between R(oil) (c-C(6)/c-C(6) + C(7)) = 0.2 and 0.3 (w/w) above 35 wt% C(3)OH. The C(3)OH phase originates from the W phase and becomes identical to the O phase with increasing R(oil). In the presence of C(12)EO(8), the three-phase region expands below 20 wt% C(3)OH. The surfactant phase behaves in two ways according to the role of C(3)OH. When R(oil) 0.3, a microemulsion (D) phase changes from water-rich to oil-rich in a chiral three-phase body. Most C(3)OH added acts as a lipophilic cosurfactant at R(oil) = 1. The two types of three-phase behavior are transformed into each other via region IIIa. C(3)OH cooperatively acts with C(12)EO(8) and a higher-order phase is formed. Copyright 1999 Academic Press.

  11. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems.

    Science.gov (United States)

    Rodríguez, Carlos; Acharya, Durga P; Hinata, Shigeki; Ishitobi, Masahiko; Kunieda, Hironobu

    2003-06-15

    The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.

  12. Testing for Nonlinearity in Dynamic Characteristics of Vertical Upward Oil-Gas-Water Three-phase Bubble and Slug Flows

    Institute of Scientific and Technical Information of China (English)

    朱雷; 金宁德; 高忠科; 杜萌; 王振亚

    2012-01-01

    Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.

  13. Thermodynamically unfavorable DNA hybridizations can be made to occur by a water to ice phase change.

    Science.gov (United States)

    Krissanaprasit, Abhichart; Guajardo, Cristian; Somasundrum, Mithran; Surareungchai, Werasak

    2013-02-01

    In an apparent contradiction to Debye-Hückel theory, it was possible to hybridize DNA in solutions of Milli-Q water (resistivity>18MΩcm(-1)) containing no added ions. This was demonstrated by hybridizing four bi-complementary DNA sequences to form an 'X' shape, as indicated by acrylamide gel electrophoresis. The requirement for hybridization was that a water-to-ice phase change should occur. Comparative experiments, using freezing by liquid nitrogen and thawing at different temperatures, showed that hybridization could take place during either the freezing or thawing process provided either was slow enough. We speculate that the low solubility of DNA in ice creates liquid inclusions of extremely high DNA and counter-ion concentration prior to complete freezing, and that hence in these inclusions hybridization was actually in accordance with Debye-Hückel theory.

  14. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture

    Science.gov (United States)

    Murata, Ken-Ichiro; Tanaka, Hajime

    2012-05-01

    The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

  15. Enhanced Arabian Sea intermediate water flow during glacial North Atlantic cold phases

    Science.gov (United States)

    Jung, Simon J. A.; Kroon, Dick; Ganssen, Gerald; Peeters, Frank; Ganeshram, Raja

    2009-04-01

    During the last glacial period, polar ice cores indicate climate asynchrony between the poles at the millennial time-scale. Yet, surface ocean circulation in large parts of the globe varied in tune with Greenland temperature fluctuations suggesting that any anti-phase behavior to a substantial degree must lie in the deeper global ocean circulation which is poorly understood outside the Atlantic Ocean. Here we present data from the north-western Indian Ocean which indicate that the timing of maxima in northward extensions of glacial Antarctic Intermediate Water (GAAIW) coincides with dramatically reduced thermohaline overturn in the North Atlantic associated with the Heinrich-ice surge events (HE). The repeated expansion of the GAAIW during HEs, recorded far north of the equator in the Arabian Sea, suggests that southern hemisphere driven intermediate water mass variability forms an integral part of the inter-hemisphere asynchronous climate change behavior at the millennial time-scale.

  16. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  17. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  18. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Colleen A., E-mail: clawton@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, PA (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University School of Medicine, Durham, NC (United States); Gillin, Michael [Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Firat, Selim [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Baikadi, Madhava [Department of Radiation Oncology, Northeast Radiation Oncology Center, Scranton, PA (United States); Crook, Juanita [Department of Radiation Oncology, University of British Columbia, Kelowna, BC (Canada); Kuettel, Michael [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Morton, Gerald [Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Center, Toronto, ON (Canada); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  19. Desalination of water by vapor-phase transport through hydrophobic nanopores

    Science.gov (United States)

    Lee, Jongho; Karnik, Rohit

    2010-08-01

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficient as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m2 s may be feasible if the system is operated at temperatures in the range of 30-50 °C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance.

  20. ACUTE PHASE PROTEINS, LIPID PROFILE AND PROINFLAMMATORY CYTOKINES IN HEALTHY AND BRONCHOPNEUMONIC WATER BUFFALO CALVES

    Directory of Open Access Journals (Sweden)

    Sabry M. El-Bahr

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the diagnostic value of Acute Phase Proteins (APP, lipid profiles and proinflammatory cytokines in healthy and bronchopneumonic water buffalo calves. Therefore, sixty water buffalo calves (9±1 month old, 175±15 kg were divided into two equal groups, the first group represented healthy, control, calves whereas calves of the second group were affected with bronchopneumonia. Total leukocytic and differential counts were determined. Serum total protein, albumin, Triacylglyceol (TAG, low density lipoprotein cholesterol (LDL-c, High Density Lipoprotein cholesterol (HDL-c, Total cholesterol, Alanine Amino Transferase (ALT, Aspartate Amino Transferase (AST, Alkaline Phosphatase (ALP, Fibrinogen (Fb, Haptaglobin (Hp, Serum Amyloid A (SAA, Tumor Necrosis Factor-alpha (TNF-α, Interleukins (IL1β, IL-12 and Interferon-gamma (IFN-γ were also determined. In addition, Bronchoalveolar Lavage (BAL was collected and analyzed. The present findings indicated that, total leukocytic and neutrophils counts were significantly (p<0.05 higher in pneumonic water buffalo calves compare with control. The examined biochemical parameters were significantly (p<0.05 increased in pneumonic calves except for total protein, albumin, cholesterol and HDL-c which were significantly (p<0.05 lower compare with control. Serum concentrations of investigated APP and proinflammatory cytokines were significantly (p<0.05 higher in pneumonic water buffalo calves than those of control. The present study demonstrated that, APP, lipid profile and proinflammatory cytokines perhaps served as biomarkers of bronchopneumonia in water buffalo calves. However, future studies with higher baseline sampling are still needed to establish and validate reference values for APP and cytokines in water buffalo calves.

  1. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  2. Determination of volatile organic compounds in river water by solid phase extraction and gas chromatography

    Institute of Scientific and Technical Information of China (English)

    M. A. Mottaleb; M. Z. Abedin; M. S. Islam

    2004-01-01

    A simple, rapid, and reproducible method is described employing solid-phase extraction(SPE) using dichloromethane followed by gas chromatography(GC) with flame ionization detection(FID) for determination of volatile organic compound(VOC) from the Buriganga River water of Bangladesh. The method was applied to detect the benzene, toluene, ethylbenzene, xylene and cumene(BTEXC) in the sample collected from the surface or 15 cm depth of water. Two-hundred ml of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and average concentrations were obtained as 0.104 to 0.372 (g/ml. The highest concentration of benzene was found as 0.372 (g/ml with a relative standard deviation(RSD) of 6.2%, and cumene was not detected. Factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave better performance for extraction of BTEXC from water.Average recoveries exceeding 90% could be achieved for cumene at 4℃with a 2.7%RSD

  3. Gas phase dispersion in compost as a function of different water contents and air flow rates

    Science.gov (United States)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  4. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase

    Directory of Open Access Journals (Sweden)

    Małgorzata Gumienna

    2011-12-01

    Full Text Available   Background. The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Material and methods. Winter triticale BOGO and “Ethanol Red” Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Results. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol as well as protein and potassium concentrations. Conclusions. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.  

  5. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    Science.gov (United States)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  6. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and

  7. Magnetic ionic liquid aqueous two-phase system coupled with high performance liquid chromatography: A rapid approach for determination of chloramphenicol in water environment.

    Science.gov (United States)

    Yao, Tian; Yao, Shun

    2017-01-20

    A novel organic magnetic ionic liquid based on guanidinium cation was synthesized and characterized. A new method of magnetic ionic liquid aqueous two-phase system (MILATPs) coupled with high-performance liquid chromatography (HPLC) was established to preconcentrate and determine trace amount of chloramphenicol (CAP) in water environment for the first time. In the absence of volatile organic solvents, MILATPs not only has the excellent properties of rapid extraction, but also exhibits a response to an external magnetic field which can be applied to assist phase separation. The phase behavior of MILATPs was investigated and phase equilibrium data were correlated by Merchuk equation. Various influencing factors on CAP recovery were systematically investigated and optimized. Under the optimal conditions, the preconcentration factor was 147.2 with the precision values (RSD%) of 2.42% and 4.45% for intra-day (n=6) and inter-day (n=6), respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were 0.14ngmL(-1) and 0.42ngmL(-1), respectively. Fine linear range of 12.25ngmL(-1)-2200ngmL(-1) was obtained. Finally, the validated method was successfully applied for the analysis of CAP in some environmental waters with the recoveries for the spiked samples in the acceptable range of 94.6%-99.72%. Hopefully, MILATPs is showing great potential to promote new development in the field of extraction, separation and pretreatment of various biochemical samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Controlling the thermodynamic stability of intermediate phases in a cationic-amphiphile-water system with strongly binding counterions.

    Science.gov (United States)

    Gupta, Santosh Prasad; Raghunathan, V A

    2013-07-01

    We have studied the influence of two structurally isomeric organic salts, namely, 2-sodium-3-hydroxy naphthoate (SHN) and 1-sodium-2-hydroxy naphthoate (SHN1), on the phase behavior of concentrated aqueous solutions of the cationic surfactant cetylpyridinium chloride (CPC). Partial phase diagrams of the two systems have been constructed using polarizing optical microscopy and x-ray diffraction techniques. A variety of intermediate phases is seen in both systems for a range of salt concentrations. The CPC-SHN-water system exhibits the rhombohedral and tetragonal mesh phases in addition to the random mesh phase, whereas the CPC-SHN1-water system shows only the tetragonal and random mesh phases. The CPC-SHN-water system also exhibits two nematic phases consisting of cylindrical and disk-like micelles at relatively low and high salt concentrations, respectively. These results show that the concentration of the strongly bound counterion provided by the organic salt can be used as a control parameter to tune the stability of different intermediate phases in amphiphile-water systems.

  9. Effect of Addition of Cosurfactant on the Phase Behaviour of Oil-in-water Aminosilicone Oil Microemulsion

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong LUO; Xiao Li ZHAN; Peng Yong YU

    2004-01-01

    Stable and transparent aminosilicone oil microemulsion of the average particle size below 0.05 micron was prepared. The interaction of the aminosilicone oil, water, complex surfactants and cosurfactant was studied by part pseudoternary phase diagram. The effect of cosurfactants (such as alcohol) and the mechanism of its effect on the phase behaviour of the pseudoternary system were investigated.

  10. New Computational Approach to Determine Liquid-Solid Phase Equilibria of Water Confined to Slit Nanopores.

    Science.gov (United States)

    Kaneko, Toshihiro; Bai, Jaeil; Yasuoka, Kenji; Mitsutake, Ayori; Zeng, Xiao Cheng

    2013-08-13

    We devise a new computational approach to compute solid-liquid phase equilibria of confined fluids. Specifically, we extend the multibaric-multithermal ensemble method with an anisotropic pressure control to achieve the solid-liquid phase equilibrium for confined water inside slit nanopores (with slit width h ranging from 5.4 Å to 7.2 Å). A unique feature of this multibaric-multithermal ensemble is that the freezing points of confined water can be determined from the heat-capacity peaks. The new approach has been applied to compute the freezing point of two monolayer ices, namely, a high-density flat rhombic monolayer ice (HD-fRMI) and a high-density puckered rhombic monolayer ice (HD-pRMI) observed in our simulation. We find that the liquid-to-solid transition temperature (or the freezing point) of HD-pRMI is dependent on the slit width h, whereas that of HD-fRMI is nearly independent of the h.

  11. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    Science.gov (United States)

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  12. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface

    Science.gov (United States)

    Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-Fei; Geiger, Franz M.; Eisenthal, Kenneth B.

    2016-12-01

    Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ(3) × Φ(0), is given by (χ1(3)-iχ2(3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experiments show that this newly identified term, iχ(3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. The possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.

  13. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  14. Novel polymeric resin for solid phase extraction and determination of lead in waters

    Energy Technology Data Exchange (ETDEWEB)

    Karaaslan, Nagihan M.; Cengiz, Emine; Yaman, Mehmet [Science Faculty, Department of Chemistry, Firat University, Elazig (Turkey); Senkal, B. Filiz [Science and Arts Faculty, Department of Chemistry, Istanbul Technical University, Istanbul (Turkey)

    2010-11-15

    Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry and the high costs of other sensitive methods in compared to flame atomic absorption spectrometry (FAAS). Among preconcentration techniques, solid-phase extraction is the most popular because of a number of advantages. In this work, thiol-containing sulfonamide resin was synthesized, characterized, and applied as a new sorption material for solid phase extraction and determination of lead in natural water samples. The optimization of experimental conditions was performed using the parameters including pH, contact time, and volumes of initial and elution solutions. After preconcentration procedure, FAAS was used for determinations. The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent as well as high sorption capacity. Consequently, 280-fold improvement in the sensitivity of analytical scheme was achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the developed preconcentration method. The limit of detection was found to be 0.15 ng mL{sup -1}. The Pb{sup 2+} concentrations in the studied water samples were found to be in the range of 0.9-6.7 ng mL{sup -1}. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Nuclear Quantum Effects in Ice Phases and Water from First Principles Calculations

    Science.gov (United States)

    Pamuk, Betul

    Despite the simplicity of the molecule, condensed phases of water show many physical anomalies, some of which are still unexplained to date. This thesis focuses on one striking anomaly that has been largely neglected and never explained. When hydrogen (1H) is replaced by deuterium (2 D), zero point fluctuations of the heavy isotope causes ice to expand, whereas in normal isotope effect, heavy isotope causes volume contraction. Furthermore, in a normal isotope effect, the shift in volume should decrease with increasing temperature, while, in ice, the volume shift increases with increasing temperature and persists up to the melting temperature and also exists in liquid water. In this dissertation, nuclear quantum effects on structural and cohesive properties of different ice polymorphs are investigated. We show that the anomalous isotope effect is well described by first principles density functional theory with van der Waals (vdW-DF) functionals within the quasi-harmonic approximation. Our theoretical modeling explains how the competition between the intra- and inter-molecular bonding of ice leads to an anomalous isotope effect in the volume and bulk modulus of ice. In addition, we predict a normal isotope effect when 16O is replaced by 18O, which is experimentally confirmed. Furthermore, the transition from proton disordered hexagonal phase, ice Ih to proton ordered hexagonal phase, ice XI occurs with a temperature difference between 1H and 2D of 6K, in good agreement with experimental value of 4K. We explain, for first time for that this temperature difference is entirely due to the zero point energy. In the second half of this thesis, we expand our study to the other ice phases: ice Ic, ice IX, ice II, ice VIII, clathrate hydrates, and low and high density amorphous ices. We employ the methodology that we have developed to investigate the isotope effect in structures with different configurations. We show that there is a transition from anomalous isotope effect

  16. Phase diagram of aggregation of oppositely charged colloids in salty water.

    Science.gov (United States)

    Zhang, R; Shklovskii, B I

    2004-02-01

    Aggregation of two oppositely charged colloids in salty water is studied. We focus on the role of Coulomb interaction in strongly asymmetric systems in which the charge and size of one colloid is much larger than the other one. In the solution, each large colloid (macroion) attracts a certain number of oppositely charged small colloids (Z-ion) to form a complex. If the concentration ratio of the two colloids is such that complexes are not strongly charged, they condense in a macroscopic aggregate. As a result, the phase diagram in a plane of concentrations of two colloids consists of an aggregation domain sandwiched between two domains of stable solutions of complexes. The aggregation domain has a central part of total aggregation and two wings corresponding to partial aggregation. A quantitative theory of the phase diagram in the presence of monovalent salt is developed. It is shown that as the Debye-Hückel screening radius r(s) decreases, the aggregation domain grows, but the relative size of the partial aggregation domains becomes much smaller. As an important application of the theory, we consider solutions of long double-helix DNA with strongly charged positive spheres (artificial chromatin). We also consider implications of our theory for in vitro experiments with the natural chromatin. Finally, the effect of different shapes of macroions on the phase diagram is discussed.

  17. HYDRODYNAMIC AND THERMODYNAMIC EFFECTS IN PHASE INVERSION EMULSIFICATION PROCESS OF EPOXY RESIN IN WATER

    Institute of Scientific and Technical Information of China (English)

    Yuan-ze Xu; Yu-zhe Wu; Jian-mao Yang

    2006-01-01

    The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties,conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.

  18. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiyuan; Sun Baojiang

    2009-01-01

    It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.

  19. Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes

    Science.gov (United States)

    Kalaiarasi, S.; Jose, M.

    2017-08-01

    TiO2 nanostructures were successfully prepared via hydrothermal technique using water-soluble complexes. The phase, functional groups, and morphological analysis of the synthesized nanostructures were characterized using powdered X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analyses, respectively. Impedance spectroscopy was applied to investigate the dielectric behavior of nanostructured TiO2 at anatase phase. The average grain size of polymorphic anatase phase TiO2 NPs was found to be 18 nm using Debye-Scherrer equation. More significantly, synthesized nanostructures ensure predominant dielectric constant at Curie temperature, with less dielectric loss 0.026 (1 kHz) and constant chemical capacitance (67 pF). In addition, it was inferred that maximum activation energy (0.5 eV) was encountered at mid frequency region and subsequently, the dielectric relaxation behavior was investigated through dielectric modulus formulation. These results indicate that the synthesized nanoparticles can be an efficient candidate for applications in microelectronics when operated at mid frequency region at 100 °C.

  20. Determination of crystal violet in water by direct solid phase spectrophotometry after rotating disk sorptive extraction.

    Science.gov (United States)

    Manzo, Valentina; Navarro, Orielle; Honda, Luis; Sánchez, Karen; Inés Toral, M; Richter, Pablo

    2013-03-15

    The microextraction of crystal violet (CV) from water samples into polydimethylsiloxane (PDMS) using the rotating disk sorptive extraction (RDSE) technique was performed. The extracting device was a small Teflon disk that had an embedded miniature magnetic stirring bar and a PDMS (560 μL) film attached to one side of the disk using double-sided tape. The extraction involves a preconcentration of CV into the PDMS, where the analyte is then directly quantified using solid phase spectrophotometry at 600 nm. Different chemical and extraction device-related variables were studied to achieve the best sensitivity for the determination. The optimum extraction was performed at pH 14 because under this condition, CV is transformed to the neutral and colorless species carbinol, which can be quantitatively transferred to the PDMS phase. Although the colorless species is the chemical form extracted in the PDMS, an intense violet coloration appeared in the phase because the -OH bond in the carbinol molecule is weakened through the formation of hydrogen bonds with the oxygen atoms of the PDMS, allowing the resonance between the three benzene rings to compensate for the charge deficit on the central carbon atom of the molecule. The accuracy and precision of the method were evaluated in river water samples spiked with 10 and 30 μg L(-1) of CV, yielding a relative standard deviation of 6.2% and 8.4% and a recovery of 98.4% and 99.4%, respectively. The method detection limit was 1.8 μg L(-1) and the limit of quantification was 5.4 μg L(-1), which can be decreased if the sample volume is increased.

  1. Impact of solution phase behaviour and external fields on thin film morphology: PCBM and RRa-P3HT model system.

    Science.gov (United States)

    Guilbert, A A Y; Cabral, J T

    2017-01-25

    We report the impact of the ternary solution phase behaviour on the film morphology and crystallization of a model polymer:fullerene system. We employ UV-Vis absorption spectroscopy, combined with sequential filtration and dilution, to establish the phase diagram for regio-random poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (PCBM) in chlorobenzene. Films are systematically cast from one- and two-phase regions decoupling homogeneous and heterogenous nucleation, and the role of pre-formed aggregates from solutions. Increasing annealing temperature from 120 to 200 °C reveals a highly non-monotonic nucleation profile with a maximum at 170 °C, while the crystal growth rate increases monotonically. UV ozonolysis is employed to vary substrate energy, and found to increase nucleation rate and to promote a binary crystallization process. As previously found, exposure to light, under an inert atmosphere, effectively suppresses homogeneous nucleation; however, it has a considerably smaller effect on heterogeneous nucleation, either from solution aggregates or substrate-driven. Our results establish a quantitative link between solution thermodynamics, crystallization and provide insight into morphological design based on processing parameters in a proxy organic photovoltaic system.

  2. Phase behavior in the system tetrahydrofuran-water-ammonia from calorimetry and Raman spectroscopy

    Science.gov (United States)

    Munoz-Iglesias, Victoria; Vu, Tuan; Choukroun, Mathieu; Hodyss, Robert; Smythe, William; Sotin, Christophe

    2016-10-01

    From geochemical models and Cassini-Huygens mission data it can be postulated that the icy crust of Titan is composed by water ice, clathrate hydrates and ammonia hydrates. When the shell evolves thermically, the first minerals in dissociating are the ammonia hydrates. Ammonia is a powerful antifreeze, promoting the drop of the equilibrium curves of both water ice and clathrates to values as low as 170 K and 203 K respectively. Calorimetry, using a Setaram BT 2.15 Calvet calorimeter, has allowed to identify the different phases formed in the system THF-H2O-NH3 when the molar ratio H2O:THF is 1:X 17, which corresponds with the THF-clathrate stoichiometric ratio, and at NH3 concentrations up to 30 wt%. When X 17, the H2O is in excess; the formation of ammonia hydrates, water ice and THF-clathrate is observed. Since under this condition, all available THF is trapped in the clathrate, no THF-NH3 phase is observed. In all the scenarios, the release of NH3 (from the melting of THF-NH3 solid or ammonia hydrates) promotes partial dissociation of THF clathrates, which start at much lower temperature the equilibrium dissociation of the clathrates. This research is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association (USRA) through a contract with NASA. Support from the NASA Outer Planets Research program and government sponsorship acknowledged.

  3. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    Science.gov (United States)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  4. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  5. Pivot method for global optimization: A study of structures and phase changes in water clusters

    Science.gov (United States)

    Nigra, Pablo Fernando

    In this thesis, we have carried out a study of water clusters. The research work has been developed in two stages. In the first stage, we have investigated the properties of water clusters at zero temperature by means of global optimization. The clusters were modeled by using two well known pairwise potentials having distinct characteristics. One is the Matsuoka-Clementi-Yoshimine potential (MCY) that is an ab initio fitted function based on a rigid-molecule model, the other is the Sillinger-Rahman potential (SR) which is an empirical function based on a flexible-molecule model. The algorithm used for the global optimization of the clusters was the pivot method, which was developed in our group. The results have shown that, under certain conditions, the pivot method may yield optimized structures which are related to one another in such a way that they seem to form structural families. The structures in a family can be thought of as formed from the aggregation of single units. The particular types of structures we have found are quasi-one dimensional tubes built from stacking cyclic units such as tetramers, pentamers, and hexamers. The binding energies of these tubes form sequences that span smooth curves with clear asymptotic behavior; therefore, we have also studied the sequences applying the Bulirsch-Stoer (BST) algorithm to accelerate convergence. In the second stage of the research work, we have studied the thermodynamic properties of a typical water cluster at finite temperatures. The selected cluster was the water octamer which exhibits a definite solid-liquid phase change. The water octamer also has several low lying energy cubic structures with large energetic barriers that cause ergodicity breaking in regular Monte Carlo simulations. For that reason we have simulated the octamer using paralell tempering Monte Carlo combined with the multihistogram method. This has permited us to calculate the heat capacity from very low temperatures up to T = 230 K. We

  6. Loetschberg low-level tunnel: thermal use of tunnel water at the south portal - Feasibility study, phase II; Waermenutzung Tunnelwasser Basistunnel Loetschberg, Suedportal. Machbarkeitsstudie Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Dups, Ch.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results obtained from phase II of a feasibility study on the thermal use of drainage water from the Loetschberg basis railway tunnel under the Swiss Alps. The potential for the use of the drainage water is discussed and the possible use of the heat in the industrial estates in Raron and Niedergesteln is looked at. The report recommends the further investigation of the use of the water as a source of heat for heat-pumps and its treatment for further use as drinking water. Other possible uses examined include the heating of greenhouses, in fish farms, as a water supply for a gravel and concrete works and for keeping local roads and motorways frost-free.

  7. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2014-03-01

    Full Text Available We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  8. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Science.gov (United States)

    Hrubý, Jan; Duška, Michal

    2014-03-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation) properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  9. Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples.

    Science.gov (United States)

    Wu, Qiuhua; Feng, Cheng; Zhao, Guangying; Wang, Chun; Wang, Zhi

    2012-01-01

    Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber-coating material for the solid-phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene-coated fiber coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05-0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0  ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene-coated fiber showed higher extraction efficiency.

  10. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Mengliang Zhang

    2015-02-01

    Full Text Available A method for the determination of trichloroethylene (TCE in water using portable gas chromatography/mass spectrometry (GC/MS was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME, is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solvents (i.e., 20 µL hexane. The absolute recoveries of TCE at different concentrations were increased from 11%–17% for the samples extracted by SPME to 29%–41% for the samples extracted by LLME–SPME. The method was demonstrated to be linear from 10 to 1000 ng mL−1 for TCE in water. The improvements on extraction efficiencies were also observed for toluene and 1, 2, 4-trichlorobenzene in water by using LLME–SPME method. The LLME–SPME method was optimized by using response surface modeling (RSM.

  11. SIMULATION OF OIL-WATER TWO PHASE FLOW AND SEPARATION BEHAVIORS IN COMBINED T JUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-lei; HE Li-min; LUO Xiao-ming; BAI Hai-tao; WEI Yan-hai

    2012-01-01

    The combined T junctions used for the oil-water separation have the advantages of compactness in structure,consistency in effects and economy in cost.The mixture k-ε turbulence model and the Eulerian multi-fluid model are used to simulate the flow and phase distribution in the combined T junctions.The effects of structural parameters such as the branched pipe interval and height on the flow distribution and the separation behaviors are studied.The results show that the combined T junctions under fixed inlet and outlet boundary conditions form a single hydraulic equilibrium system in which the fluid energy distributes freely till a balance is achieved.The split-flow promotes the separation of the immiscible oil and the water.The separation efficiency increases with the increase of the branched pipe interval and changes slightly with the increase of the branched pipe height.The structural change of the combined T junctions may change the flow direction in the branched pipes.Simulation results can provide some guidance for the design of the combined T junctions as one kind of oil-water separator.

  12. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  13. Dynamics of patient reported quality of life and symptoms in the acute phase of online adaptive external beam radiation therapy for locally advanced cervical cancer.

    Science.gov (United States)

    Heijkoop, S T; Nout, R A; Quint, S; Mens, J W M; Heijmen, B J M; Hoogeman, M S

    2017-08-19

    For locally advanced cervical cancer patients, treated with External Beam Radiotherapy (EBRT), Quality of Life (QoL) questionnaires arefrequently used to evaluate treatment-related symptoms and functioning scales. Currently, it is unknown how those evolve during the radiation treatment course. In this prospective study we report on weekly-captured patient-reported QoL and symptoms during image-guided adaptive radiotherapy (IGART) of cervical cancer patients. Between January 2012 and September 2016, all locally advanced cervical cancer patients treated with IGART and brachytherapy with or without chemotherapy or hyperthermia, were eligible. QoL was assessed at baseline; weekly during the first five weeks of treatment; 1week, 1 and 3months after treatment, using the EORTC QLQ-C30 and the QLQ-CX24 questionnaires. Comparisons were made with an age-matched norm population. Among the 138 (70%) responders, most symptoms showed a moderate-to-large increase, reaching a maximum at the end of treatment, or first week after treatment with return to baseline value at 3months after treatment. While most symptoms gradually increased during the first five weeks, diarrhea and bowel cramps already markedly increased within the first three weeks to reach a plateau at the 5th week of treatment. Global health and functioning were temporarily decreased and returned to a plateau at baseline level 3months after treatment, except for cognitive functioning. A profound impact on QoL was observed during the radiation treatment course, temporarily affecting functioning. The maximum impaired was reached at the end of EBRT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. SPIDIA-RNA: second external quality assessment for the pre-analytical phase of blood samples used for RNA based analyses.

    Directory of Open Access Journals (Sweden)

    Francesca Malentacchi

    Full Text Available One purpose of the EC funded project, SPIDIA, is to develop evidence-based quality guidelines for the pre-analytical handling of blood samples for RNA molecular testing. To this end, two pan-European External Quality Assessments (EQAs were implemented. Here we report the results of the second SPIDIA-RNA EQA. This second study included modifications in the protocol related to the blood collection process, the shipping conditions and pre-analytical specimen handling for participants. Participating laboratories received two identical proficiency blood specimens collected in tubes with or without an RNA stabilizer. For pre-defined specimen storage times and temperatures, laboratories were asked to perform RNA extraction from whole blood according to their usual procedure and to return extracted RNA to the SPIDIA facility for further analysis. These RNA samples were evaluated for purity, yield, integrity, stability, presence of interfering substances, and gene expression levels for the validated markers of RNA stability: FOS, IL1B, IL8, GAPDH, FOSB and TNFRSF10c. Analysis of the gene expression results of FOS, IL8, FOSB, and TNFRSF10c, however, indicated that the levels of these transcripts were significantly affected by blood collection tube type and storage temperature. These results demonstrated that only blood collection tubes containing a cellular RNA stabilizer allowed reliable gene expression analysis within 48 h from blood collection for all the genes investigated. The results of these two EQAs have been proposed for use in the development of a Technical Specification by the European Committee for Standardization.

  15. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  16. Individual extraction constants of some univalent anions in the two-phase water-phenyltrifluoromethyl sulfone system.

    Science.gov (United States)

    Makrlík, Emanuel; Selucký, Pavel; Vaňura, Petr

    2011-12-01

    From extraction experiments and g-activity measurements, the extraction constants corresponding to the general equilibrium Cs+(aq) + A- (aq) Cs+(org) + A- (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (FS 13) system (A-= I-, ClO4-, MnO4-, Br-3, I-3, picrate, tetraphenylborate (BPh-4); aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of these 7 anions in the mentioned two-phase system were calculated; they were found to increase in the series of I-< ClO4- < Br-3 < MnO4-, picrate < I-3 < BPh-4.

  17. Effect of water structure on gelation of agar in glycerol solutions and phase diagram of agar organogels.

    Science.gov (United States)

    Boral, Shilpi; Bohidar, H B

    2012-06-21

    A comprehensive study of hydration of polyanionic agar molecules in its solution and gel phase in glycerol-water binary solvent is reported. Raman spectroscopy results predict differential water structure arrangement for glycerol-water binary solvent, 0.02% (w/v) agar in glycerol solution and 0.3% (w/v) agar organogel. The 3200 cm(-1) Raman band pertaining to ice-like structure of water was found to increase in gel phase alike in glycerol-water solvent while it decreased in agar solutions with increase in glycerol concentration. In contrast, the partially structured water corresponding to the component 3310 cm(-1) of Raman spectra increased in agar solution, and decreased in gel phase similar to glycerol-water solvent case. We have explained these observations based on a simple model where the available oxygen to hydrogen atom ratio in a given solvent-polymer system uniquely defines hydration in solution and gel phases. The gelation concentration was found to increase from 0.18 (for water) to 0.22% (w/v) (50% v/v glycerol solution) as the glycerol concentration was raised. Correspondingly, the gelation temperature, T(g), showed a decline from 40 to 20 °C, and the gel melting temperature, T(m), revealed a reduction from 81 to 65 °C in the same glycerol concentration regime. Two distinctive features are evident here: (i) presence of glycerol as a cosolvent does not favor the gelation of agar as compared to water and (ii) agar organogels are softer than their hydrogels. A unique 3D phase diagram for the agar organogel is proposed. Circular dichroism data confirmed that the agar molecules retained their biological activity in these solvents. Thus, it is shown that thermo-mechanical properties of these organogels could be systematically tuned and adapted as per application requirement.

  18. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Zhou, Guangjun [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    Graphical abstract: A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots with a small hydrodynamic diameter (less than 10 nm) via silanization. Highlights: Black-Right-Pointing-Pointer A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). Black-Right-Pointing-Pointer The control of ligand exchange plays an important role to retain high fluorescence quantum yields. Black-Right-Pointing-Pointer The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. Black-Right-Pointing-Pointer The QD phase transfer by silanization is a well-established method for generating biocompatible QDs. -- Abstract: A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO{sub 2}-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO{sub 2}-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO{sub 2}-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.

  19. A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs.

    Science.gov (United States)

    Kossena, Greg A; Charman, William N; Boyd, Ben J; Porter, Christopher J H

    2004-09-30

    The existence of a novel cubic liquid crystalline phase is described within the pseudo-ternary system comprising lauric acid, monolaurin, and simulated endogenous intestinal fluid (SEIF). This phase behaviour has been characterized using cross-polarizing light microscopy (CPLM), and the structure of the cubic phase identified by small angle X-ray scattering (SAXS). The presence of the cubic phase was found to be temperature sensitive within the 20-37 degrees C range making it putative material for in situ gelation purposes. The cubic phase was shown to have a high capacity to solubilise a model poorly water-soluble drug, cinnarizine, and initial in vitro release data highlight the potential of this phase to provide sustained release. Absorption of cinnarizine from the cubic phase was studied in an unconscious rat model via duodenal administration and blood sampling via the carotid artery. The rate of absorption was significantly reduced when compared to a simple suspension formulation, a likely combination of retarded erosion of the cubic phase together with hindered drug release from the cubic matrix. The results of this study suggest that this cubic phase may potentially be of benefit in the delivery of poorly water-soluble compounds due to its high loading capacity and potential for sustained release. The ability to manipulate this system using temperature may warrant further interest in delivery applications via other routes of administration.

  20. Investigation of Regularities of Heat and Mass Transfer and Phase Transitions during Water Droplets Motion through High-Temperature Gases

    Directory of Open Access Journals (Sweden)

    Roman S. Volkov

    2014-06-01

    Full Text Available The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging” usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.

  1. Bond-selective fragmentation of water molecules with intense, ultrafast, carrier envelope phase stabilized laser pulses

    CERN Document Server

    Mathur, D; Dharmadhikari, J A; Dharmadhikari, A K

    2013-01-01

    Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^+$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.

  2. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions).

    Science.gov (United States)

    Huš, Sebastjan; Kolar, Mitja; Krajnc, Peter

    2016-03-11

    Removal of silver, lead and cadmium ions from both model solutions and real contaminated water was achieved, in a flow through manner, by using highly porous functionalized poly(glycidyl methacrylate) materials, prepared by the polymerisation of high internal phase emulsions (polyHIPE), with significant sorption differences between metals allowing for selective removal. PolyHIPEs, initially prepared from glycidyl methacrylate as a functional monomer, were functionalized with pentaerythritol tetrakis(3-mercaptopropionate), 1,9-nonanedithiol and 2-aminobenzenethiol via the epoxy ring opening on the polymer supports and applied in a flow-through manner via encasements into dedicated disk holders. Capacity of 21.7mg Ag per gram of polymer was found for 1,9-nonanedithiol functionalized polymers, while the capacity was decreasing with the decreasing ionic radius of the metal; the dynamics of sorption also depended on metal ion size and furthermore on the thiol used for the polymer functionalization.

  3. Rapid determination of atrazine in environmental water samples by a novel liquid phase microextraction

    Institute of Scientific and Technical Information of China (English)

    Qing Xiang Zhou; Guo Hong Xie; Long Pang

    2008-01-01

    A novel method was described for the rapid determination of atrazine using dispersive liquid phase microextraction incombination with high performance liquid chromatography (HPLC). Possible impact parameters such as sample pH, extraction anddisperser solvents, salting-out effect, and extraction time were investigated. The experimental results indicated that proposedmethod possessed an excellent analytical performance. The linear range, detection limit, and precision (R.S.D.) were 0.1-50 ng mL-1 (R2 = 0.9955), 0.601 ng mL-1 and 6.4%, respectively. The proposed method was validated with the real water samples,and the spiked recoveries were in the range of 69.9-89.8%, respectively. These results indicated that the established method withhigh enrichment factor, short extraction time was an excellent alternative for the routine analysis of atrazine in environmentalsamples.

  4. Partitioning regularity of non-ionic organic mixtures in organic phase/water system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partitioning regularity of nonionic organic mixtures in organic phase/water system is revealed. The equation for calculating the partition coefficients of mixtures (KMD), together with the determination model, is derived from the equilibrium partitioning models (EPMs). Based on these derived equations, the KMD values of 20 mixtures conraining halogenated benzenes are obtained. The results show that stronger hydrophobicity of an individual chemical in the mixture results in the stronger hydrophobicity of the mixture and the greater the proportion of this chemical, the stronger the hydrophobicity of the mixture will be. This partitioning regularity is helpful to the study of the toxicity for mixtures and the environmental behavior, such as transfer or accumuiation, for mixed organic pollutants.``

  5. Surface-induced solid-liquid phase transitions in ultra-thin water films at T > 0 ^oC

    Science.gov (United States)

    Chakraborty, Animesh; Gellman, Andrew; Baker, Layton; Broitman, Estebahn

    2008-03-01

    We report here the measurements of both the adsorption isotherms and the dissipation in ultra-thin films of water adsorbed on the surfaces of SiO2 . The measurements were made in a small high vacuum chamber in which we have mounted a QCM. The chamber was evacuated to ˜10-8 Torr and then filled with water vapor at pressures ranging from 10-3 -- 40 Torr (the vapor pressure of water at room temperature is ˜22 Torr). In addition the temperature of the apparatus can be varied in the range 10 -- 60^oC. This is sufficient to measure the adsorption isotherm and to probe the phase of adsorbed water films over the range of conditions. Recently published work studying the adsorption of water on the SiO2 layer formed on Si single crystals has suggested that the phase of the water at temperatures well above 0^oC is actually that of a solid, ice-like structure rather than liquid water [1]. That work is based on the comparison of the vibrational spectrum of thin water films with those of liquid water and ice. In our study we are using the QCM to investigate the possibility of formation of Ice-like structures on SiO2. [1] Asay, D. B. and Kim, S.H., Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B. 2005, 109, 16760-16763

  6. Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions

    Directory of Open Access Journals (Sweden)

    Nikolovski Branislava G.

    2011-01-01

    Full Text Available The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly decrease the amount of some emulsifier that is normally involved in every emulsification process. A central composite rotatable experimental design was implemented to analyze the impact of the contents of polyglycerol polyricinoleate and pumpkin seed oil in the continuous phase, as well as water phase content in the emulsion on droplet size distribution and the response surface methodology was used to obtain optimal conditions for water-in-oil emulsion preparation. Mean size diameter of water droplets was in a range from 400 to 850 nm, with mean peak width of 100 to 220 nm, respectively. The influence of all three investigated factors on the emulsification was determined. Additionally, the emulsions prepared with pumpkin seed oil showed a higher stability during the storage time compared to the emulsions with sunflower oil.

  7. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    V. Alagesan

    2012-06-01

    Full Text Available Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form. h1φ = a NmRe.The two-phase multiplier, Φ L, was related to the Lockhart Martinelli (L-M parameter, χtt², using the two-phase data and a correlation Φ L = b+c(χtt²+d/(χtt²² was established. The two-phase heat transfer coefficient was calculated based on the coefficients 'a' and 'm' for pure diesel and pure water along with ФL and the L-M parameter. The calculated values of the two-phase heat transfer coefficient h2φ based on pure diesel and pure water suggest that diesel is a better reference fluid since the average error is much smaller compared to pure water as reference.

  8. Critical organs and external irradiation in gynaecological cancers: can water be used as contrast agent to make easier the delineation of the small intestine?; Organes critiques et irradiation externe des cancers gynecologiques: l'eau peut-elle etre utilisee comme produit de contraste pour faciliter la delineation de l'intestin grele?

    Energy Technology Data Exchange (ETDEWEB)

    Firouzmand, M.; Barillot, I.; Truc, G.; Bossi, E.; Peignaux, K.; Maingon, P. [Centre Georges-Francois-Leclerc, Dept. de radiotherapie, 21 - Dijon (France); Vaillant, D. [Centre Georges-Francois-Leclerc, Dept. de radiotherapie, Service de radiodiagnostic, 21 - Dijon (France)

    2004-06-01

    Purpose. - To validate the use of water as contrast agent for the delineation of the small intestine on the planning CT of external beam in patients treated with conformal radiotherapy for gynaecological tumours. Patients and methods. - From March to September 2003, 20 patients received an external irradiation for a gynaecological carcinoma (13 with cervix carcinoma, seven with endometrial carcinoma) in the radiotherapy department of the Centre G.F. Leclerc of Dijon. The protocol of opacification of the small intestine consisted in administration of a 'negative' contrast agent: water. The protocol commonly used for the bladder filling, i.e. absorption of 500 cm{sup 3} of water from 60 to 30 min before the CT-scan, was applied for the evaluation of the visualisation of the small intestine in the 12 first patients (group I). For the last eight patients (group II), the absorption of the same amount of water was fractionated, every 10 min within half an hour before the start of the examination. Results. - The small bowel identification was possible in 100% of cases without any need of administration of a 'positive' contrast agent. In overall, the identification of the small intestine was considered as easy in 14 patients (70%) and as difficult in two patients (10%). In group I, the delineation was considered as easy in 50% of cases, moderately easy in 33% of cases and none easy in 17% of cases. Conversely, no difficulty was encountered for the definition of the small bowel in all patients of group II. Conclusions. - Water is an efficient 'negative' contrast agent for the differentiation of the small bowel from the colon on the planning abdomino-pelvic CT. Nevertheless, the delineation was really made easier only when the fractionated protocol of water absorption within half an hour before CT was used. (authors)

  9. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    Science.gov (United States)

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion

  10. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)], E-mail: mshamsipur@yahoo.com

    2007-12-12

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter ({pi}{sup *}) and hydrogen-bond basicity ({beta}), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents.

  11. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures.

    Science.gov (United States)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-12-12

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (pi*) and hydrogen-bond basicity (beta), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (logP) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents.

  12. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model

    Science.gov (United States)

    Penn, James; Vallis, Geoffrey K.

    2017-06-01

    Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension of the well-studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.

  13. Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bento, F.M. [Dept. of Soils, Faculty of Agronomy, UFRGS, 7712 Bento Goncalves Avenue, CEP: 91540-001, POA, RS (Brazil); Englert, G.E.; Muller, I.L. [Dept. of Metallurgy, Biocorrosion and Biofilms Lab, UFRGS, 99 Osvaldo Aranha Avenue s.615D, CEP: 90035-190, POA, RS (Brazil); Gaylarde, C.C. [Dept. of Biophisics, UFRGS POA, RS (Brazil)

    2004-08-01

    Storage tanks containing microbially contaminated diesel oil are susceptible to corrosion. This process may be evaluated electrochemically in the laboratory using simulated storage systems containing diesel oil and an aqueous phase. The simulated aqueous phase must supply mineral nutrients for microbial growth, together with adequate electrical conductivity, without, however, being too corrosive, so as to allow the aggressive nature of the microbial metabolites to be detected. In this investigation, microbial growth was measured in six electrically conductive media overlaid with metropolitan diesel oil containing an additive package. The microorganisms were the filamentous fungi, Hormoconis resinae, Paecilomyces variotii and Aspergillus fumigatus, the bacterium Bacillus subtilis and the yeast Candida silvicola, all previously isolated from contaminated diesel oil. After 60 days incubation with pure or mixed inocula of these microorganisms, pH, conductivity and viable microorganisms were measured. The electrochemical behaviour of carbon steel ASTM 283-93-C was determined in each of the six media (uninoculated) and in selected inoculated medium via measurements of open circuit potential and potentiostatic polarization curves. The uptake of phosphate (corrosion inhibitor), microbial growth, pH, conductivity and anodic and cathodic polarization curves were assessed in the water phase after 30 and 60 days of incubation with each single species Aspergillus fumigatus and Hormoconis resinae and with the consortium. The medium which proved most appropriate was Bushnell-Haas medium modified by the omission of chlorides, which allowed satisfactory microbial growth and had low aggressivity towards the steel. The performance of electrochemical tests in aerated, rather than deaerated, electrolyte solutions is suggested to be important to allow the detection of microbial influence on passive film formation and stability. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Phase III trial of postoperative cisplatin, interferon alpha-2b, and 5-FU combined with external radiation treatment versus 5-FU alone for patients with resected pancreatic adenocarcinoma – CapRI: study protocol [ISRCTN62866759

    Directory of Open Access Journals (Sweden)

    Schmitz-Winnenthal H

    2005-04-01

    Full Text Available Abstract After surgical intervention with curative intention in specialised centres the five-year survival of patients with carcinoma of the exocrine pancreas is only 15%. The ESPAC-1 trial showed an increased five-year survival of 21% achieved with adjuvant chemotherapy. Investigators from the Virginia Mason Clinic have reported a 5-year survival rate of 55% in a phase II trial evaluating adjuvant chemotherapy, immunotherapy and external-beam radiation. Design The CapRI study is an open, controlled, prospective, randomised multi-centre phase III trial. Patients in study arm A will be treated as outpatients with 5-Fluorouracil; Cisplatin and 3 million units Interferon alpha-2b for 5 1/2 weeks combined with external beam radiation. After chemo-radiation the patients receive continuous 5-FU infusions for two more cycles. Patients in study arm B will be treated as outpatients with intravenous bolus injections of folinic acid, followed by intravenous bolus injections of 5-FU given on 5 consecutive days every 28 days for 6 cycles. A total of 110 patients with specimen-proven R0 or R1 resected pancreatic adenocarcinoma will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patients' enrolment. Discussion The aim of this study is to evaluate the overall survival period attained by chemo-radiotherapy including interferon alpha 2b administration with adjuvant chemotherapy. The influence of interferon alpha on the effectiveness of the patients' chemoradiation regimen, the toxicity, the disease-free interval and the quality of life are analysed. Different factors are tested in terms of their potential role as predictive markers.

  15. Heat transfer characteristics of titanium/water two-phase closed thermosyphon

    Energy Technology Data Exchange (ETDEWEB)

    Qi Baojin [State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang Li [State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)], E-mail: lzhang@ecust.edu.cn; Xu Hong; Sun Yan [State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2009-09-15

    Experimental investigations were carried out to study heat transfer characteristics of titanium (commercially pure titanium, TA2)/water two-phase closed thermosyphon (Ti/H{sub 2}O TPCT). Experiments of copper/water (Cu/H{sub 2}O) TPCT with same dimension and manufacturing process had also been performed for contrast. Experimental results show that there are no remarkable differences of heat transfer coefficients in evaporator (h{sub e}) between the two kinds of TPCTs, whereas surprisingly the experimental results of heat transfer coefficient in condenser (h{sub c}) of Ti/H{sub 2}O TPCTs are about 2-3 times more than that of Cu/H{sub 2}O TPCTs, moreover the Nusselt's theoretical correlation based on laminar filmwise condensation is not suitable for simulating the h{sub c} of Ti/H{sub 2}O TPCTs. Experimental results and theoretical analysis of surface free energy difference between condensate and solid surface indicate that the mixed condensation mode with dropwise and filmwise condensation coexisting on titanium surface result in the higher h{sub c} for Ti/H{sub 2}O TPCTs. Experiments on condensation mechanism of titanium surface are ongoing to further validate the point.

  16. Heat transfer characteristics of titanium/water two-phase closed thermosyphon

    Energy Technology Data Exchange (ETDEWEB)

    Baojin, Qi; Li, Zhang; Hong, Xu; Yan, Sun [State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China Univ. of Science and Technology, Shanghai 200237 (China)

    2009-09-15

    Experimental investigations were carried out to study heat transfer characteristics of titanium (commercially pure titanium, TA2)/water two-phase closed thermosyphon (Ti/H{sub 2}O TPCT). Experiments of copper/water (Cu/H{sub 2}O) TPCT with same dimension and manufacturing process had also been performed for contrast. Experimental results show that there are no remarkable differences of heat transfer coefficients in evaporator (h{sub e}) between the two kinds of TPCTs, whereas surprisingly the experimental results of heat transfer coefficient in condenser (h{sub c}) of Ti/H{sub 2}O TPCTs are about 2-3 times more than that of Cu/H{sub 2}O TPCTs, moreover the Nusselt's theoretical correlation based on laminar filmwise condensation is not suitable for simulating the h{sub c} of Ti/H{sub 2}O TPCTs. Experimental results and theoretical analysis of surface free energy difference between condensate and solid surface indicate that the mixed condensation mode with dropwise and filmwise condensation coexisting on titanium surface result in the higher h{sub c} for Ti/H{sub 2}O TPCTs. Experiments on condensation mechanism of titanium surface are ongoing to further validate the point. (author)

  17. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction.

    Science.gov (United States)

    Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa

    2011-08-01

    A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment.

    Science.gov (United States)

    Zhao, C; Mumford, K G; Kueper, B H

    2014-08-01

    In situ thermal treatment technologies, such as electrical resistance heating and thermal conductive heating, use subsurface temperature measurements in addition to the analysis of soil and groundwater samples to monitor remediation performance. One potential indication of non-aqueous phase liquid (NAPL) removal is an increase in temperature following observations of a co-boiling plateau, during which subsurface temperatures remain constant as NAPL and water co-boil. However, observed co-boiling temperatures can be affected by the composition of the NAPL and the proximity of the NAPL to the temperature measurement location. Results of laboratory heating experiments using single-component and multi-component NAPLs showed that local-scale temperature measurements can be mistakenly interpreted as an indication of the end of NAPL-water co-boiling, and that significant NAPL saturations (1% to 9%) remain despite observed increases in temperature. Furthermore, co-boiling of multi-component NAPL results in gradually increasing temperature, rather than a co-boiling plateau. Measurements of gas production can serve as a complementary metric for assessing NAPL removal by providing a larger-scale measurement integrated over multiple smaller-scale NAPL locations. Measurements of the composition of the NAPL condensate can provide ISTT operators with information regarding the progress of NAPL removal for multi-component sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach.

    Science.gov (United States)

    Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J

    2015-11-05

    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility

  20. Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples.

    Science.gov (United States)

    Yılmaz, Erkan; Soylak, Mustafa

    2016-09-01

    A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL(-1) and 17.5µgL(-1), respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures.

  1. Leveraging External Sources of Innovation

    DEFF Research Database (Denmark)

    West, Joel; Bogers, Marcel

    2014-01-01

    This paper reviews research on open innovation that considers how and why firms commercialize external sources of innovations. It examines both the “outside-in” and “coupled” modes of open innovation. From an analysis of prior research on how firms leverage external sources of innovation...... cited work beyond those journals. A review of 291 open innovation-related publications from these sources shows that the majority of these articles indeed address elements of this inbound open innovation process model. Specifically, it finds that researchers have front-loaded their examination...... external innovations create value rather than how firms capture value from those innovations. Finally, the interaction phase considers both feedback for the linear process and reciprocal innovation processes such as cocreation, network collaboration, and community innovation. This review and synthesis...

  2. Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2017-02-24

    Mineral nucleation can be catalyzed by the presence of mineral substrates; however, the mechanisms of heterogeneous nucleation remain poorly understood. A combination of in situ time-sequenced measurements and nano-manipulation experiments were performed using atomic force microscopy (AFM) to probe the mechanisms of heteroepitaxial nucleation of otavite (CdCO3) on calcite (CaCO3) single crystals that exposed the (10-14) surface. Otavite and calcite are isostructural carbonates that display a 4% lattice mismatch, based on their (10-14) surface areas. AFM observations revealed a two-stage process in the nucleation of cadmium carbonate surface precipitates. As evidenced by changes in height, shape, growth behavior, and friction signal of the precipitates, a precursor phase was observed to initially form on the surface and subsequently undergo an epitaxy-mediated phase transformation to otavite, which then grew epitaxially. Nano-manipulation experiments, in which the applied force was increased progressively until precipitates were removed from the surface, showed that adhesion of the precursor phase to the substrate was distinctively weaker than that of the epitaxial phase, consistent with that of an amorphous phase. These findings demonstrate for the first time that heterogeneous mineral nucleation can follow a non-classical pathway like that found in homogenous aqueous conditions.

  3. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  4. Investigation Of Water Assisted Phase Transformation Process From AlPO4-5 to AlPO4-tridymite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suochang; Zhao, Zhenchao; Hu, Mary Y.; Han, Xiuwen; Hu, Jian Z.; Bao, Xinhe

    2016-03-15

    Water assisted phase transformation process from crystalized AlPO4-5 to AlPO4-tridymite was studied by the combination of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and in situ multinuclear MAS NMR. It is found that water first activates the residue amorphous aluminophosphate in crystalized AlPO4-5 sample through hydrolysis and condensation reactions. Then the activated aluminophosphate species reassemble into AlPO4-tridymite crystalline. Meanwhile, AlPO4-5 transforms into orthorhombic phase during heating process. With further crystallization of AlPO4-tridymite, the amorphous phase is gradually consumed, and mass transportation between AlPO4-5 and AlPO4-tridymite is established through gradually amorphization of AlPO4-5. Finally, most of the AlPO4-5 transforms into the thermodynamically stable dense phase AlPO4-tridymite.

  5. The selective partitioning of the oligomers of polyethoxylated surfactant mixtures between interface and oil and water bulk phases.

    Science.gov (United States)

    Graciaa, Alain; Andérez, José; Bracho, Carlos; Lachaise, Jean; Salager, Jean-Louis; Tolosa, Laura; Ysambertt, Fredy

    2006-11-16

    Because their affinities for the oil and water phases vary considerably with the number of ethylene oxide units in their hydrophilic group, the ethoxylated nonionic species occurring in commercial products tend to behave in a non-collective way, with the low ethoxylation oligomers partitioning mostly in the oil phase. This results in a surfactant mixture at the interface which is more hydrophilic than the one which was introduced in the system in the first place. The pseudophase model is used to study the partitioning in Winsor III type systems, and to estimate the deviation of the interfacial mixture composition from the overall one. New results indicate that the selective partitioning into the oil phase increases when the oil phase becomes aromatic, when the total surfactant concentration decreases and when the water-to-oil ratio decreases.

  6. Early Side Effects of Three-Dimensional Conformal External Beam Accelerated Partial Breast Irradiation to a Total Dose of 40 Gy in One Week (A Phase II Trial)

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, Celine, E-mail: bourgier@igr.fr [Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Pichenot, Charlotte; Verstraet, Rodolfe [Department of Physics, Institut Gustave Roussy, Villejuif (France); El Nemr, Mohamed; Heymann, Steve [Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Biron, Bruno [Department of Physics, Institut Gustave Roussy, Villejuif (France); Delaloge, Suzette [Department of Breast Oncology, Institut Gustave Roussy, Villejuif (France); Mathieu, Marie-Christine [Department of Pathology, Institut Gustave Roussy, Villejuif (France); Garbay, Jean-Remy [Department of Breast Surgery, Institut Gustave Roussy, Villejuif (France); Bourhis, Jean [Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Marsiglia, Hugo [Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Radiotherapy Unit, University of Florence, Florence (Italy)

    2011-12-01

    Purpose: Several accelerated partial breast irradiation (APBI) techniques are described in the literature, and apparently, the three-dimensional (3D)-conformal technique is being used increasingly. Nonetheless, the optimal radiation dose is not yet known. Here, we report feasibility and early toxicities of APBI delivering 40 Gy over 5 days, in a phase II trial. Methods and Materials: From October 2007 to September 2008, 25 patients with pT1N0 cancer received 3D-conformal APBI. The prescribed radiation dose was 40 Gy in 4-Gy fractions given twice daily. This technique used two minitangents and an 'en face' electron field. Toxicities were systematically assessed at 1, 2, and 6 months and then once every 6 months. Results: The planning tumor volume for evaluation (PTV{sub E}VAL) coverage was adequate: the mean dose to the PTV{sub E}VAL was 41.8 Gy (range, 41-42.4 Gy). Mean doses to the ipsilateral lung and heart were 1.6 Gy (range, 1.0-2.3 Gy) and 1.2 Gy (range, 1.0-1.6 Gy), respectively. One and two months after completion of APBI, most patients had no or mild erythema (n = 16 patients at 1 month; n = 25 patients at 2 months); none of these patients developed moist desquamation. After a median follow-up of 12 months, only 1 patient had a significant moderate field contracture (grade 2). Other reported late toxicities were grade 1. Conclusions: 3D-conformal APBI (with two minitangents and an 'en face' electron field) using a total dose of 40 Gy in 10 fractions twice daily over 5 days achieved appropriate PTV{sub E}VAL coverage and offered significant sparing of normal tissue. Early tolerance was excellent.

  7. Preoperative oxaliplatin, capecitabine, and external beam radiotherapy in patients with newly diagnosed, primary operable, cT3NxMo, low rectal cancer. A phase II study

    Energy Technology Data Exchange (ETDEWEB)

    Oefner, Dietmar [Paracelsus Private Medical Univ., Salzburg (Austria). Dept. of Surgery; Innsbruck Medical Univ. (Austria). Dept. of Visceral, Transplant and Thoracic Surgery; DeVries, Alexander F. [Feldkirch Hospital (Austria). Dept. of Radio-Oncology; Schaberl-Moser, Renate [Medical Univ. Graz (AT). Div. of Oncology] (and others)

    2011-02-15

    Purpose: In patients with locally advanced rectal cancer (LARC), preoperative chemoradiation is known to improve local control, and down-staging of the tumor serves as a surrogate for survival. Intensification of the systemic therapy may lead to higher downstaging rates and, thus, enhance survival. This phase II study investigated the efficacy and safety of preoperative capecitabine and oxaliplatin in combination with radiotherapy. Patients and Methods: Patients with LARC of the mid and lower rectum, T3NxM0 staged by MRI received radiotherapy (total dose 45 Gy) in combination with oral capecitabine (825 mg/m{sup 2} twice a day on radiotherapy days; weeks 1-4) and oxaliplatin 50 mg/m{sup 2} intravenously (days 1, 8, 15, and 22). Efficacy was evaluated as rate of tumor down-categorization at the T level. Results: A total of 59 patients were enrolled (19 women, 40 men; median age of 61 years) and all were evaluable for efficacy and toxicity. Down-categorization at the T level was observed in 53% with pathological complete response in 6 patients (10%). Actual total radiotherapy, oxaliplatin and capecitabine doses received were 97%, 90%, and 93% of the protocol-specified preplanned doses, respectively. Grade 3/4 toxicity was observed in 15 patients (25%). The most frequent was diarrhea (12%). Conclusions: Preoperative chemoradiation with capecitabine and oxaliplatin is feasible in patients with MRI-proven cT3 LARC. The only clinically relevant toxicity was diarrhea. Overall, efficacy of the multimodality treatment was good, but not markedly exceeding that of 5-FU- or capecitabine-based chemoradiation approaches. (orig.)

  8. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  9. Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field.

    Science.gov (United States)

    Wang, Heping; Li, Xiaoguang; Li, Yanggui; Geng, Xingguo

    2017-05-01

    This paper presents an exploration for separation of oil-in-water and coalescence of oil droplets in ultrasound field via lattice Boltzmann method. Simulations were conducted by the ultrasound traveling and standing waves to enhance oil separation and trap oil droplets. The focus was to the effect of ultrasound irradiation on oil-in-water emulsion properties in the standing wave field, such as oil drop radius, morphology and growth kinetics of phase separation. Ultrasound fields were applied to irradiate the oil-in-water emulsion for getting flocculation of the oil droplets in 420kHz case, and larger dispersed oil droplets and continuous phases in 2MHz and 10MHz cases, respectively. The separated phases started to rise along the direction of sound propagation after several periods. The rising rate of the flocks was significantly greater in ultrasound case than that of oil droplets in the original emulsion, indicating that ultrasound irradiation caused a rapid increase of oil droplet quantity in the progress of the separation. The separation degree was also significantly improved with increasing frequency or irradiation time. The dataset was rearranged for growth kinetics of ultrasonic phase separation in a plot by spherically averaged structure factor and the ratio of oil and emulsion phases. The analyses recovered the two different temporal regimes: the spinodal decomposition and domain growth stages, which further quantified the morphology results. These numerical results provide guidance for setting the optimum condition for the separation of oil-in-water emulsion in the ultrasound field.

  10. Amorphous Solid Water (ASW): Macroscale Environmentally-Neutral Application for Remediation of Hazardous Pollutants using Condensed-Phase Cryogenic Fluids

    Science.gov (United States)

    de Strulle, Ronald; Rheinhart, Maximilian

    2012-03-01

    We report macroscale environmentally-neutral use of cryogenic fluids to induce phase transitions from crystalline water-ices to amorphous solid water (ASW). New IP and uses in remediation of oil-spills and hazardous immiscibles from aquatic environments. We display high-resolution images of the transitions from hexagonal to cubic crystalline water-ice, then to hydrophobic ASW. Accretion and encapsulation of viscous pollutants within crystalline water-ice, and sequestration of condensed volatiles (PAH, methane) and low viscosity fluids within the interstitial cavities of ASW are shown and differentiated for: crude oils, diesel (heating) and blended oils, petroleum byproducts, vegetable and mineral oils, lipids, and light immiscible fluids. The effects of PdV work and thermal energy transfers during phase changes are shown, along with the sequestration efficiencies for hexagonal and cubic ice lattices vs. non-crystalline ASW, for a range of pollutant substances. The viability of ASW as a medium for study of quantum criticality phases is also proposed. The process is environmentally-neutral in that only substantially condensed-phase air liquefaction products, e.g. nitrogen in >90% liquid phase are employed as an active agent. The applications are also presented in terms of the scale-up of experiments performed at the nanoscale.

  11. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  12. Ab Initio Studies on the Preferred Site of Protonation in Cytisine in the Gas Phase and Water

    Directory of Open Access Journals (Sweden)

    Małgorzata Darowska

    2005-01-01

    Full Text Available Abstract: Ab initio calculations (HF, MP2, DFT for isolated and PCM for solvated molecules were performed for cytisine (1 and its model compounds: N-methyl-2-pyridone (2 and piperidine (3. Among three heteroatomic functions (carbonyl oxygen, pyridone and piperidine nitrogens considered as the possible sites of protonation in 1, surprisingly the carbonyl oxygen takes preferentially the proton in the gas phase whereas in water the piperidine nitrogen is firstly protonated. For model compounds, the piperidine nitrogen in 3 is more basic than the carbonyl oxygen in 2 in both, the gas phase and water.

  13. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes

    Science.gov (United States)

    Bourlinos, Athanasios B.; Georgakilas, Vasilios; Zboril, Radek; Steriotis, Theodore A.; Stubos, Athanasios K.; Trapalis, Christos

    2009-12-01

    Treatment of crystalline graphite fine powder with an aqueous solution of the harmless and versatile substance polyvinylpyrrolidone under sonication results in water-soluble, polymer-protected graphene single layers without oxidation or destruction of the sp 2 character of the carbon core. The liquid-phase extraction of graphene monolayers was evidenced by TEM and AFM techniques, while their graphitic character was checked with Raman spectroscopy. Besides PVP, the water-soluble biopolymers albumin and sodic carboxymethylcellulose were also employed successfully in the aqueous-phase exfoliation of graphite, thereby supporting the generic character of the present method using a variety of suitable polymeric extractants.

  14. Loss of Propiconazole and its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Science.gov (United States)

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-wa...

  15. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    OpenAIRE

    Essadki, Abdel Hafid; Gourich, Bouchaib; Vial, Christophe; Delmas, Henri; Bennajah, Mounir

    2009-01-01

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency...

  16. Water-carbon dioxide mixtures at high temperatures and pressures: Local order in the water rich phase investigated by vibrational spectroscopy

    Science.gov (United States)

    Oparin, R.; Tassaing, T.; Danten, Y.; Besnard, M.

    2005-12-01

    Raman scattering combined with near- and midinfrared absorption spectroscopies was used to investigate the evolution of the local order in the water rich phase of water-CO2 mixtures under isobaric heating (T=40-360°C,P=250bars). The quantitative analysis of the spectra shows that tetramers and larger oligomers are the main constituents of water at moderate temperatures below 80 °C. As the temperature increases, the dimer and trimer concentrations considerably increase at the expense of larger oligomers. Finally, water dimers are predominant at the highest temperature investigated close to the temperature of total miscibility of the mixture (T=366°C,P=250bars). This result is consistent with our previous investigation [R. Oparin T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 120, 10691 (2004)] on water dissolved in the CO2 rich phase where we found that close to the temperature of total miscibility water also exists mainly under dimeric form. The current study combined with that mentioned above provides a model investigation of the evolution of the state of aggregation of water molecules in binary mixture involving a hydrophobic solvent in a wide range of temperature.

  17. An Experimental Study on the Flow Characteristics of OilWater Two-Phase Flow in Horizontal Straight Pipes

    Institute of Scientific and Technical Information of China (English)

    刘文红; 郭烈锦; 吴铁军; 张西民

    2003-01-01

    The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe with 40mm ID respectively. No. 46 mechanical oil and tap water were used as working fluids. The superficial velocity ranges of oil and water were: 0.04-1.2m·s-1 and 0.04-2.2 m·s-1, respectively. The flow patterns were identified by visualization and by transient fluctuation signals of differential pressure drop. The flow patterns were defined according to the relative distribution ofoil and water phases in the pipes. Flow pattern maps were obtained for both pipelines. In addition, semi-theoretical transition criteria for the flow patterns were proposed, and the proposed transitional criteria are in reasonable agreement with available data in liquid-liquid systems.

  18. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  19. Dipolar fluids under external perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Sabine H L [Stranski-Laboratorium fuer Physikalische und Theoretische Chemie Sekretariat TC7, Technische Universitaet Berlin, Strasse des 17. Juni 124, D-10623 Berlin (Germany)

    2005-04-20

    We discuss recent developments and present new findings on the structural and phase properties of dipolar model fluids influenced by various external perturbations. We concentrate on systems of spherical particles with permanent (point) dipole moments. Starting from what is known about the three-dimensional systems, particular emphasis is given to dipolar fluids in different confining situations involving both simple and complex (disordered) pore geometries. Further topics concern the effect of quenched positional disorder, the influence of external (electric or magnetic) fields, and the fluid-fluid phase behaviour of various dipolar mixtures. It is demonstrated that due to the translational-orientational coupling and due to the long range of dipolar interactions even simple perturbations such as hard walls can have a profound impact on the systems. (topical review)

  20. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  1. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Clovis A. Linkous; Darlene K. Slattery

    2000-09-11

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H{sub 2} via photocatalytic decomposition of water. While it has been demonstrated that H{sub 2} and O{sub 2} can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown.

  2. Measurement and Correlation of Equilibrium Data for Aqueous Two-phase System Ethanol+Water+K2HPO4

    Institute of Scientific and Technical Information of China (English)

    LIN Jin-qing; TAN Ping-hua; JIN Chun-ying; LI Ming-chun

    2004-01-01

    The isothermal solubility data of aqueous two-phase system ethanol+water+K2HPO4 were determined with the turbidity titration method at 303.2 K. The binodal curves were described by using the Mistry equation very well. An experimental procedure for measuring the liquid-liquid equilibrium data of the aqueous two-phase system was proposed, in which the concentrations of the coexisting phases were determined with the corresponding densities of the solution. The tie lines were satisfactorily described by using the Othmer Tobias and Bancroft equations.

  3. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  4. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  5. Solubility and phase separation of benzocaine and salicylic acid in 1,4-dioxane-water mixtures at several temperatures.

    Science.gov (United States)

    Peña, M Angeles; Bustamante, Pilar; Escalera, Begoña; Reíllo, Aurora; Bosque-Sendra, Juan Manuel

    2004-11-15

    The solubilities of benzocaine and salicylic acid were determined in water-dioxane mixtures at several temperatures (5-40 degrees C for benzocaine and 10-40 degrees C for salicylic acid). The solubility curves as a function of dioxane ratio showed a maximum at 90% dioxane at all temperatures. Above 25 degrees C, the homogeneous mixture splits into two liquid immiscible phases. For benzocaine, the initial dioxane concentration range at which phase separation takes place increased with temperature (50-60% at 25 degrees C, 50-70% at 30-35 degrees C and 40-70% at 40 degrees C). For salicylic acid, the dioxane concentration required for phase separation (40-60% dioxane) did not change with temperature. Phase separation was not related to solid phase changes (polymorphism or solvates). The phase composition and drug extraction at the drug-rich phase were determined. The apparent enthalpies of the solution process were a nonlinear function of the dioxane ratio for both drugs. The apparent enthalpy of solution of benzocaine was larger than that expected at the upper limit of phase separation (70% dioxane), whereas for salicylic acid the apparent enthalpy of solution decreased abruptly at the region corresponding to phase separation (40-70% dioxane). Both drugs showed a nonlinear pattern of enthalpy-entropy compensation.

  6. Salts and Co-crystals of Theobromine and their phase transformations in water

    Indian Academy of Sciences (India)

    Palash Sanphui; Ashwini Nangia

    2014-09-01

    Theobromine, a xanthine derivative analogous to caffeine and theophylline, is an effective central nervous system stimulant. It has lower aqueous solubility than caffeine and theophylline. Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using liquid-assisted grinding (LAG). Proton transfer from the strong acid to the weak base imidazole N resulted in N+-H…O− hydrogen-bonded supramolecular assemblies of theobromine salts. The mesylate salt is polymorphic with amide N-H…O dimer and catemer synthons for the theobromine cations. A variable stoichiometry for phosphate salts (1:3 and 1:2.5) were observed with the latter being more stable. All new salts were characterized by FT-IR, PXRD, DSC and finally single crystal X-ray diffraction. In terms of stability, these salts transformed to theobromine within 1 h of dissolution in water. Remarkably, the besylate and tosylate salts are 88 and 58 times more soluble than theobromine, but they dissociated within 1 h. In contrast, theobromine co-crystals with gallic acid, anthranilic acid and 5-chlorosalicylic acid were found to be stable for more than 24 h in the aqueous slurry conditions, except malonic co-crystal which transformed to theobrominewithin 1 h.Water mediated phase transformation of theobromine salts and co-crystalmay be due to the incongruency (high solubility difference) between the components. These results suggest that even though traditional salts are highly soluble compared to co-crystals, co-crystals can be superior in terms of stability.

  7. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.

    Science.gov (United States)

    Sanwlani, Shilpa; Kumar, Pradip; Bohidar, H B

    2011-06-09

    We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.

  8. Removal of volatile to semi-volatile organic contaminants from water using hollow fiber membrane contactors and catalytic destruction of the contaminants in the gas phase

    OpenAIRE

    Tarafder, Shamsul Abedin

    2007-01-01

    Abstract Chlorinated organic compounds and ether compounds are frequently found in groundwater and efficient treatment options are needed. In this study, the efficient transferal of the compounds from the water phase to the gas phase was studied followed by the catalytic treatment of the gas phase. For the removal of the organic contaminants from water, a microporous polypropylene hollow fiber membrane (HFM) module was operated under low strip gas flow to water flow ratios (_< 5:1). Rem...

  9. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Science.gov (United States)

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to org...

  10. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  11. Hybrid QTAIM and electrostatic potential-based quantum topology phase diagrams for water clusters.

    Science.gov (United States)

    Kumar, Anmol; Gadre, Shridhar R; Chenxia, Xiao; Tianlv, Xu; Kirk, Steven Robert; Jenkins, Samantha

    2015-06-21

    The topological diversity of sets of isomers of water clusters (W = H2O)n, 7 ≤ n ≤ 10, is analyzed employing the scalar fields of total electronic charge density ρ(r) and the molecular electrostatic potential (MESP). The features uncovered by the MESP are shown to be complementary to those revealed by the theory of atoms in molecules (QTAIM) analysis. The MESP is known to exhibit the electron localizations such as lone pairs that are central to water cluster behavior. Therefore, a 'hybrid' QTAIM and MESP quantum topology phase diagram (QTPD) for Wn, 7 ≤ n ≤ 10, is introduced in addition to the QTPD. The 'spanning' QTPD with upper and lower bounds is constructed from the solutions of the Poincaré-Hopf relation involving the non-degenerate critical points. The changing subtle balance between the planar and three dimensional character of the growing water clusters Wn, 4 ≤ n ≤ 10, is revealed. Characterization of the structure of the QTPDs, possible with new tools, demonstrated the migration of the position of the global minimum on the spanning QTPD from the lower bound to upper bound as the Wn, 4 ≤ n ≤ 10, cluster grows in size. Differences in the structure of the QTPD are found between the clusters containing even versus odd monomers for Wn, n = 7-10. The energetic stability of the clusters which possess even number of monomers viz. n = 8, 10 is higher than that of the n = 7, 9 clusters due to relatively higher numbers of hydrogen-bond BCPs in the n = 8, 10 clusters, in agreement with energetic results reported in the literature. A 'hybrid' QTPD is created from a new chemical relation bHB + l ≥ 2n for Wn that relates the number of hydrogen-bond bond critical points (bHB) with the number of oxygen lone pairs exclusively specified by the negative valued MESP (3,+3) critical points (l). The topologies of the subset bHB + l = 2n for Wn, point the way to the discovery of unknown 'missing' lower energy isomers. A discussion of the relative merits and

  12. Phase and extraction equilibria in water-polyethyleneglycol ethers of monoethanolamides of synthetic fatty acid-ammonium chloride systems

    Science.gov (United States)

    Lesnov, A. E.; Golovkina, A. V.; Kudryashova, O. S.; Denisova, S. A.

    2016-08-01

    Phase equilibria in layering systems of water, polyethyleneglycol ethers of monoethanolamides of synthetic fatty acids (SFAs) (synthamide-5), and ammonium chloride are studied. The possibility of using such systems for the liquid extraction of metal ions is evaluated. The effect the nature of salting-out agents has on the processes of segregation of the systems has been considered.

  13. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...

  14. Application of Magnetic Dicationic Ionic Liquid Phase Transfer Catalyst in Nuclophilic Substitution Reactions of Benzyl Halids in Water

    OpenAIRE

    Manouchehr Aghajeri; Ali Reza Kiasat; Bijan Mombeni Goodajdar

    2016-01-01

    magnetic dicationic ionic liquid (MDIL) was successfully prepared and evaluated as phase-transfer catalyst for nucleophilic substitution reactions. The reactions was occurred in water and furnished the corresponding benzyl derivatives in high yields. No evidence for the formation of by-product for example benzyl alcohol of the reaction was observed and the products were obtained in pure form without further purification.

  15. Determination of Methanol Increment in Mobile Phase Consisting of Methanol and Water by On-line UV Spectrometry in Reversed Phase Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    GENG,Xin-Du(耿信笃); REGNIER,Fred E(弗莱德 依 瑞格涅尔)

    2002-01-01

    An on-line UV spectrometric method for the quantitative determination of methanol increment of methanol-water in the mobile phase(i.e., ofgreater concentration than that of the mobile phase ) by frontal analysis (FA) of insulin in reversed phase liquid chromatography (RPLC) was presented. When the methanol increment concentration ranged from 0.05% to 0.50%, V( CH3OH)/ V(H2O), a set of elution curves could be obtained at 198 nm by a diode-array detector in the presence of 47% methanol, V(CH3OH)/V(H2O) containing 0.03% hydrochloric acid, V ( CH3OH-H2O ) / V ( HCl ) in the mobile phase. The plateau height of the elution curves of the methanol increment was found to be proportional to the methanol increment in the mobile phase. The methanol increment could be determined on a quantitative basis. When the method was used to investigate the elution curve of insulin by FA in RPLC, a small plateau, being the methanol increment,was detected before the usual insulin plateau of each elution curve. In this case the methanol increment was found to vary with insulin concentration in the mobile phase. When that concentration was between 0.025 mg/mL and 0.30 mg/mL,the methanol increment could be determined in the range from 0.03% to0.19% with a deviation of ±0.02% and a relative deviation of ± 10%. A nuclear magnetic resonance spectrometer (NMR) was also employed to confirm the obtained result. A methodology with a very rigorous experimental procedure for obtaining results of such accuracy is also included.The presented result may be used to prove that a displacement process definitely occurs as insulin is adsorbed by the RPLC stationary phase inFA.

  16. PRODAN dual emission feature to monitor BHDC interfacial properties changes with the external organic solvent composition.

    Science.gov (United States)

    Agazzi, Federico M; Rodriguez, Javier; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2013-03-19

    We have investigated the water/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/n-heptane:benzene reverse micelles (RMs) interfaces properties using 6-propionyl-2-(N,N-dimethyl)aminonaphthalene, PRODAN, as molecular probe. We have used absorption and emission (steady-state and time-resolved) spectroscopy of PRODAN to monitor the changes in the RMs interface functionalities upon changing the external organic solvent blend. We demonstrate that PRODAN is a useful probe to investigate how the external solvent composition affects the micelle interface properties. Our results show that changes in the organic solvent composition in water/BHDC/n-heptane:benzene RMs have a dramatic effect on the photophysics of PRODAN. Thus, increasing the aliphatic solvent content over the aromatic one produces PRODAN partition and PRODAN intramolecular electron transfer (ICT) processes. Additionally, the water presence in these RMs makes the PRODAN ICT process favored with the consequent decreases in the LE emission intensity and a better definition of the charge transfer (CT) band. All this evidence suggests that the benzene molecules are expelled out of the interface, and the water-BHDC interactions are stronger with more presence of water molecules in the polar part of the interface. Thus, we demonstrate that a simple change in the composition of the external phase promotes remarkable changes in the RMs interface. Finally, the results obtained with PRODAN together with those reported in a previous work in our lab reveal that the external phase is important when trying to control the properties of RMs interface. It should be noted that the external phase itself, besides the surfactant and the polar solvent sequestrated, is a very important control variable that can play a key role if we consider smart application of these RMs systems.

  17. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.

  18. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Alger, T.W.

    1978-08-09

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 ..mu..m and a nominal mass-mean droplet diameter of 2.4 ..mu..m. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 ..mu..m, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow.

  19. Study of organic compounds-water interactions by partition in aqueous two-phase systems.

    Science.gov (United States)

    Madeira, Pedro P; Bessa, Ana; Teixeira, Miguel A; Álvares-Ribeiro, Luís; Aires-Barros, M Raquel; Rodrigues, Alírio E; Zaslavsky, Boris Y

    2013-12-27

    Partition coefficients of fourteen organic compounds were determined in 10 or 20 different polymer/polymer aqueous two-phase systems (ATPS) all at physiological pH (0.15M NaCl in 0.01M phosphate buffer, pH 7.4). Solute-specific coefficients characterizing different types of solute-water interactions for the compounds examined were determined by the multiple linear regression analysis. It is shown that (i) the partition behavior for the polar organic compounds is affected not only by dipole-dipole and hydrogen-bond interactions with aqueous environment but, notably, in most cases also by dipole-ion interactions; (ii) it is possible to predict partition behavior for compounds with pre-determined solute-specific coefficients in ATPS with characterized solvent features; and (iii) linear combinations of the solute-specific coefficients for the organic compounds might be useful in the development of quantitative structure-activity relationship (QSAR) analysis to describe their odor detection threshold.

  20. Water-carbon dioxide solid phase equilibria at pressures above 4 GPa.

    Science.gov (United States)

    Abramson, E H; Bollengier, O; Brown, J M

    2017-04-11

    A solid phase in the mixed water-carbon dioxide system, previously identified as carbonic acid, was observed in the high-pressure diamond-anvil cell. The pressure-temperature paths of both its melting and peritectic curves were measured, beginning at 4.4 GPa and 165 °C (where it exists in a quadruple equilibrium, together with an aqueous fluid and the ices H2O(VII) and CO2(I)) and proceeding to higher pressures and temperatures. Single-crystal X-ray diffraction revealed a triclinic crystal with unit cell parameters (at 6.5 GPa and 20 °C) of a = 5.88 Å, b = 6.59 Å, c = 6.99 Å, α = 88.7°, β = 79.7°, and γ = 67.7°. Raman spectra exhibit a major line at ~1080 cm(-1) and lattice modes below 300 cm(-1).

  1. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation

    Directory of Open Access Journals (Sweden)

    H. Abbasi

    2015-05-01

    Full Text Available The present work considers the preparation of medium-density polyetherimide foams reinforced with variable amounts of graphene nanoplatelets (1–10 wt% by means of water vapor-induced phase separation (WVIPS and their characterization . A homogeneous closed-cell structure with cell sizes around 10 µm was obtained, with foams exhibiting zero crystallinity according to X-ray diffraction (XRD. Thermogravimetric analysis under nitrogen showed a two-step thermal decomposition behaviour for both unfilled and graphene-reinforced foams, with foams containing graphene presenting thermal stability improvements, related to a physical barrier effect promoted by the nanoplatelets. Thermo-mechanical analysis indicated that the specific storage modulus of the nanocomposite foams significantly increased owing to the high stiffness of graphene and finer cellular morphology of the foams. Although foamed nanocomposites displayed no further sign of graphene nanoplatelets exfoliation, the electrical conductivity of these foams was significant even for low graphene contents, with a tunnel-like model fitting well to the evolution of the electrical conductivity with the amount of graphene.

  2. A method for controlling hydrogen sulfide in water by adding solid phase oxygen.

    Science.gov (United States)

    Chang, Yu-Jie; Chang, Yi-Tang; Chen, Hsi-Jien

    2007-01-01

    This work evaluates the addition of solid phase oxygen, a magnesium peroxide (MgO(2)) formulation manufactured by Regenesis (oxygen-releasing compounds, ORC), to inhibit the production of hydrogen sulfide (H(2)S) in an SRB-enriched environment. The initial rate of release of oxygen by the ORC was determined over a short period by adding sodium sulfite (Na(2)SO(3)), which was a novel approach developed for this study. The ability of ORCs to control H(2)S by releasing oxygen was evaluated in a bench-scale column containing cultured sulfate reducing bacteria (SRB). After a series of batch tests, 0.4% ORC was found to be able to inhibit the formation of H(2)S for more than 40 days. In comparison, the concentration of H(2)S dropped from 20 mg S/L to 0.05 mg S/L immediately after 0.1% hydrogen peroxide (H(2)O(2)) was added, but began to recover just four days later. Thus, H(2)O(2) does not seem to be able to inhibit the production of sulfide for an extended period of time. By providing long-term inhibition of the SRB population, ORC provides a good alternative means of controlling the production of H(2)S in water.

  3. Electron impact ionization of water molecules in ice and liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (India); Gangopadhyay, Sumona [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (India); Limbachiya, C G [P S Science College, Kadi (N.G.) 382 715 (India); Vinodkumar, Minaxi [V P and R P T P Science College, Vallabh Vidyanagar-388 120 (India)

    2007-09-15

    Electron scattering processes in ice or water are known to occur in natural as well as man-made systems. But the processes are difficult to investigate in theory or in laboratory. We present our calculations on total ionization cross section (Q{sub ion}) for collisions of electrons with H{sub 2}O molecules in condensed matter (ice and liquid) forms, at impact energies from ionization threshold to 1000 eV, extendable to about 1 MeV. Our theoretical method determines the total inelastic cross section (Q{sub inel}) of electron impact on H{sub 2}O (ice), by starting with the complex scattering potential partial wave formalism. Reasonable approximations are invoked to project out the ionization cross section of H{sub 2}O molecule in ice (or liquid) form by using the Q{sub inel} as an input. Properties of the condensed phase H{sub 2}O are incorporated together with bulk screening effects in the scattering echanism. Due to medium effects, the present Q{sub ion} are found to be lower than the corresponding values for H{sub 2}O in free or gaseous state. Macroscopic cross sections and electron mean free paths for the bulk medium are also calculated. This study has potential applications in radiation biology as well as chemistry and in planetary science and astrophysics.

  4. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    Science.gov (United States)

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds

  5. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs.

  6. Engineering phase transformation of cobalt selenide in carbon cages and the phases’ bifunctional electrocatalytic activity for water splitting

    Science.gov (United States)

    Gao, Jiaojiao; Liu, Li; Qiu, Hua-Jun; Wang, Yu

    2017-08-01

    Using Co-based metal-organic frameworks as the precursor, we synthesized cobalt selenide (CoSe2) nanoparticles imbedded in carbon cages. By simply controlling the annealing conditions, phase transformation of CoSe2 from the orthorhombic phase to the cubic phase has been realized. Benefitting from the metallic character, the cubic phase CoSe2 shows greatly enhanced electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The as-prepared cubic phase CoSe2 electrode possesses onset overpotentials of 43 and 200 mV, and Tafel slopes of 51 and 83 mV dec-1 for HER and OER, respectively, which are remarkably superior to that of the orthorhombic phase CoSe2 catalyst and comparable to those of commercial noble-metal catalysts. In addition, the cubic phase CoSe2 electrode also demonstrates excellent stability after long-term operations. Our work not only provides a high performance catalyst for water splitting, but also introduces a new route to the design of a highly efficient catalyst by phase transformation.

  7. Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune

    CERN Document Server

    Wilson, Hugh F; Militzer, Burkhard

    2012-01-01

    Using density functional molecular dynamics free energy calculations, we show that the body-centered-cubic phase of superionic ice previously believed to be the only phase is in fact thermodynamically unstable compared to a novel phase with oxygen positions in fcc lattice sites. The novel phase has a lower proton mobility than the bc phase and may exhibit a higher melting temperature. We predict a transition between the two phases at a pressure of 1 +/- 0.5 Mbar, with potential consequences for the interiors of ice giants such as Uranus and Neptune.

  8. Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area

    Directory of Open Access Journals (Sweden)

    R. Fisseha

    2006-01-01

    Full Text Available Gas and aerosol samples were taken using a wet effluent diffusion denuder/aerosol collector (WEDD/AC coupled to ion chromatography (IC in the city of Zurich, Switzerland from August to September 2002 and in March 2003. Major water soluble inorganic ions; nitrate, sulfate, and nitrite were analyzed online with a time resolution of two hours for the gas and aerosol phase. The fraction of water soluble inorganic anions in PM10 varied from 15% in August to about 38% in March. Seasonal and diurnal variations of nitrate in the gas and aerosol phase were observed with more than 50% of the total nitrate in the gas phase during August and more than 80% of nitrate in the aerosol phase during March exceeding the concentration of sulfate by a factor of 2. Aerosol sulfate, on the other hand, did not show significant variability with season. However, in the gas phase, the SO2 concentration was 6.5 times higher in winter than in summer. Nitrous acid (HONO also showed a diurnal variation in both the gas and aerosol phase with the lowest concentration (0.2–0.6 µg/m3 in the afternoon. The primary pollutants, NO, CO and SO2 mixing ratios were often at their highest between 04:00–10:00 local time due to the build up of fresh vehicle emission under a nocturnal inversion.

  9. Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station

    Science.gov (United States)

    Bühl, Johannes; Seifert, Patric; Myagkov, Alexander; Ansmann, Albert

    2016-08-01

    An analysis of the Cloudnet data set collected at Leipzig, Germany, with special focus on mixed-phase layered clouds is presented. We derive liquid- and ice-water content together with vertical motions of ice particles falling through cloud base. The ice mass flux is calculated by combining measurements of ice-water content and particle Doppler velocity. The efficiency of heterogeneous ice formation and its impact on cloud lifetime is estimated for different cloud-top temperatures by relating the ice mass flux and the liquid-water content at cloud top. Cloud radar measurements of polarization and Doppler velocity indicate that ice crystals formed in mixed-phase cloud layers with a geometrical thickness of less than 350 m are mostly pristine when they fall out of the cloud.

  10. Water holdup measurement of oil-water two-phase flow in a horizontal well using a dual-circle conductance probe array

    Science.gov (United States)

    Xu, Lijun; Zhang, Wen; Cao, Zhang; Zhao, Jiayu; Xie, Ronghua; Liu, Xingbin; Hu, Jinhai

    2016-11-01

    This paper presents a minimum root-mean-square error (RMSE)-based method for a dual-circle conductance probe array to measure the water holdup of an oil-water two-phase flow in a horizontal oil well. The dual-circle conductance probe array consisting of 24 conductance probes, half of which are equidistantly distributed on a 34 mm radius inner circle and the other half on a 48 mm radius outer circle, is used to estimate the oil-water interface and hence the water holdup in the horizontal oil well. For the same water holdup, the number of probes immersed in water may vary with varying the azimuth angle due to the limited number of probes. The limited number of probes and unknown azimuth angle of the probe array in the oil well limit the measurement accuracy of the water holdup. In order to obtain a better water holdup estimate, a water holdup measurement method based on the minimum RMSE was proposed to decrease the effects of the limited number of probes and unknown azimuth angle of the probe array. To verify the proposed method, numerical simulations were carried out and compared with the commonly used equi-weight estimate method; results showed that the RMSE of the water holdup estimates obtained using the proposed method is smaller than that when using the equi-weight estimate method. Experiments were implemented in a 16 m long and 125 mm inner diameter horizontal pipe on an industrial-scale experimental multiphase flow setup in the Daqing Oil Field, China. The RMSEs of water holdup estimates obtained using the proposed and equi-weight estimate methods are 0.0632 and 0.0690, respectively, showing that the proposed method is better than the equi-weight estimate method.

  11. Mineralizing urban net-zero water treatment: Phase II field results and design recommendations

    Science.gov (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design ...

  12. Iodine-water-alkanol and potassium iodide-water-alkanol systems: Phase diagrams and regularities of association according to IR and NMR spectroscopic data

    Science.gov (United States)

    Monakhova, Yu. B.; Varlamova, T. M.; Rubtsova, E. M.; Mushtakova, S. P.

    2015-04-01

    The variation of the iodine and potassium iodide solubilities in water-monoatomic alcohol (ethanol, propanol, isopropanol) solvents is considered from the standpoint of IR spectroscopic and chemometric data on association in water-alkanol binary mixtures. The iodine and potassium iodide solubilities in the mixed solvents vary nonlinearly with solvent composition because of the formation of 1 : 1 and 1 : 3 water-alcohol heteroassociates and alcohol homoassociates. Different kinds of phase diagram are observed for the iodine-water-alcohol systems: the I2-H2O-1-C3H7OH and the I2-H2O-2-C3H7OH diagrams have a phase separation region, while the I2-H2O-C2H5OH diagram does not. This fact is explained in terms of the interaction between the components of the systems. The variation of the potassium iodide solubility in the mixed solvent is discussed: a decrease in the KI solubility is symbatic to an increase in the relative concentration of 1 : 1 associates in the water-alcohol solution. The run of the iodine and potassium iodide solubility curves at low alcohol concentrations is explained on the basis of NMR spectroscopic data on association in aqueous solutions of the monoatomic alcohols.

  13. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  14. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  15. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    Science.gov (United States)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the

  16. Phase diagram of an iodine-potassium iodide-water-ethanol system at 25°C

    Science.gov (United States)

    Varlamova, T. M.; Rubtsova, E. M.; Mushtakova, S. P.

    2012-09-01

    Phase equilibriums are studied in the isothermal-isobaric sections of the phase diagram of a fourcomponent iodine-potassium iodide-water-ethanol system at 25°C and atmospheric pressure. The compositions of the solvent at which it exhibits the greatest ability to dissolve iodine are established. It is shown that in all the investigated sections, there is three-phase eutonic equilibrium with potassium iodide and crystalline iodine as the solid phases. It is revealed that in the sections containing 30 and 50% of ethanol, potassium iodide serves as the salting in agent for crystalline iodine, due to the formation of polyiodide complexes of various composition in the studied system.

  17. Critical points, phase transitions and water-like anomalies for an isotropic two length scale potential with increasing attractive well

    Science.gov (United States)

    Pinheiro, L.; Furlan, A. P.; Krott, L. B.; Diehl, A.; Barbosa, M. C.

    2017-02-01

    Molecular Dynamic and Monte Carlo studies are performed in a system of particles interacting through core-softened (CS) potential, composed by two length scales: a repulsive shoulder at short distances and the another a variable scale, that can be repulsive or strongly attractive depending on the parameters used. The system show water-like anomalous behavior. The density, diffusion and structural anomalous regions in the pressure versus temperature phase diagram shrink in pressure as the system becomes more attractive. The transition appears with the increase of the attraction well. We found that the liquid-gas phase transition is Ising-like for all the CS potentials and its critical temperature increases with the increase of the attraction. No Ising-like behavior for the liquid-liquid phase transition was detected in the Monte Carlo simulations what might be due to the presence of stable amorphous phases.

  18. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.

    Science.gov (United States)

    Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M

    2011-02-10

    The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.

  19. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system.

  20. Luminous phase of nanosecond discharge in deionized water: morphology, propagation velocity and optical emission

    Science.gov (United States)

    Šimek, Milan; Pongrác, Branislav; Babický, Václav; Člupek, Martin; Lukeš, Petr

    2017-07-01

    We employed the techniques of time-resolved intensified charge-coupled device (ICCD) microscopy and spectroscopy to register basic morphologic and emission fingerprints of micro-discharges produced in deionized water. Fast rise-time positive high-voltage pulses (full width at half maximum of ˜7 ns and amplitude of ˜100 kV) in a point-to-plane electrode geometry produced micro-discharges, either periodically or in a single-pulse regime with the energy of ˜0.1 J dissipated during a single discharge event. Time resolved ICCD images evidence typical streamer-like branched filamentary morphology. Luminous discharge filaments show very fast and approximately linear initial expansion of the length with propagation velocity of ˜2 × 105 m s-1. When the HV pulse reaches its maximum value, the length of the primary luminous filaments reaches ˜1.3 mm. After initial expansion, the length of luminous filaments collapses and can be characterised by velocity of ˜1.9 × 104 m s-1. The first collapse is followed by a second slightly slower expansion, which is driven by the arrival of a reflected HV pulse, and which can be roughly approximated by propagation velocity of ˜1.5 × 105 m s-1. The second collapse (occurring after second expansion) proceeds at a nearly identical velocity compared with the first one. By combining two ICCD based techniques, we have been able to associate, for the first time ever, characteristic emission spectra with the most important phases of the micro-discharge development. The UV-vis-NIR emission spectra show a broad-band continuum evolving during the first expansion and collapse, followed by the well-known HI/OI atomic lines occurring together with continuum emission during the second expansion and collapse. We conclude that bound-free and free-free radiative transitions are basic emission characteristics of the nanosecond discharge initiation mechanism in liquid water which does not involve the formation of vapour bubbles.

  1. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  2. Use of a surfactant coacervate phase to extract trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Kimchuwanit, W.W.; Scamehorn, J.F.; Osuwan, S. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1996-10-01

    At temperatures above the cloud point, aqueous nonionic surfactant solutions can separate into two phases: a surfactant-rich coacervate phase and a surfactant-dilute phase. Since the coacervate phase can be a concentrated micellar solution, organic solute tends to concentrate in the coacervate due to solubilization. In this study, up to 90% of trichloroethylene was shown to be extracted into the coacervate phase in one stage. Increasing temperature, surfactant concentration, and added NaCl concentration all improved the fraction of TCE extracted.

  3. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase.

    Science.gov (United States)

    Hemmateenejad, B; Shamsipur, M; Safavi, A; Sharghi, H; Amiri, A A

    2008-10-19

    The retention behavior of 28 synthesized 9,10-anthraquinone derivatives in a reversed-phase (RP) high performance liquid chromatography (HPLC) system has been studied on a C18-RP column using acetonitrile-water mixtures as mobile phase. The influences of the composition of mobile phase and the solute structure on the retention times of 9,10-anthraquinone derivatives were investigated by linear solvation free energy relationship (LSFER) and quantitative structure-retention relationship (QSRR) analyses. Among different solvatochromic parameters of solvent systems, their polarity/polarizability parameter (pi*) was identified as the controlling factor affecting retention behavior of these compounds. A four-parametric QSRR model was obtained between solute structures and retention indices. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. The resulted QSRR models could explain and predict higher than 90% of variances in the retention indices. Among the solvent properties, polarity/polarizability parameter (pi*), and among the solute properties, HATS5v (leverage-weighted autocorrelation of lag 5/weighted by atomic van der Waals volumes, GETAWAY descriptors), Mor14p (3D-MoRSE-signal 14/weighted by atomic polarizabilities, 3D-MoRSE descriptors), GATS5p (Geary autocorrelation-lag 5/weighted by atomic polarizabilities, 2D autocorrelations) and R6u+(R maximal autocorrelation of lag 6/unweighted, GETAWAY descriptors) were identified as controlling factors in the RP-HPLC behavior of 9,10-anthraquinone derivatives in actonitrile-water binary solvents.

  4. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  5. ACUTE PHASE PROTEIN RESPONSES IN MICE INFECTED WITH RIVER WATER CONTAMINATED BY PASTEURELLA MULTOCIDA TYPE B: 2

    Directory of Open Access Journals (Sweden)

    Mohammed Muqdad Khaleel

    2013-01-01

    Full Text Available Animals are predisposed to infections through varieties of ways which activate the innate immune systems at the initial phase of acute infections. Hemorrhagic Septicemia (HS is a devastating septicemic disease of cattle and buffaloes caused by a particular serotypes of Pasteurella multocida and serotype B: 2 is the most important cause of the disease in Asia. Therefore, the present study aims to investigate on acute phase protein responses in mice infected with river water contaminated by Pasteurella multocida type B: 2. Five infected mice were placed in each tank containing river water for 24, 48 and 72 h. The groups comprise of five mice each made up of the control, intraperitoneal, oral and the aerosol routes. There were increased concentrations of Haptoglobin (Hp in the mice inoculated with infected river water kept for 24 h intraperitoneally (p<0.0454 relative to the control, oral and the aerosol routes. There was significant increased concentration of Serum Amyloid A (SAA in the mice that were inoculated with infected river water kept for 72 h intraperitoneally (p<0.0020 compared to control, orally and the aerosol routes. The intraperitoneal route though most effective in response but practically not feasible for vaccine administration in larger animals and the oral routes was inadequate in eliciting acute phase response in the present study