WorldWideScience

Sample records for external pressure pulsations

  1. Measurement of pressure pulsations in Francis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kobro, Einar

    2010-11-15

    The work presented in this thesis involves preparation and execution of measurements on Francis runners. The measurements were performed by means of onboard measuring equipment both in model runners and full-scale prototype runners. Also, analysis of the measured data, and the discussion of the results, is presented. The measurements resulted in large data sets. These data sets were used by the author to investigate the dynamic pressure and strain in the runners. The results of the analysis can be used as input in future turbine design. Andritz Hydro AG has used the data for verification of their numerical simulation tools. In connection with the refurbishment of Tokke power plant, two model runners were made available for onboard pressure measurements. To investigate the dynamic pressure in these runners, methods for integration of pressure transducers in the runner blades needed to be developed. After initial difficulties during the preparation, successful measurements were obtained from both model runners. At Tokke power plant, both the original and replacement runners were made accessible for onboard pressure and strain gauge measurements. On the original Kvaerner Brug AS runner, the test was prepared and performed by the author. This test failed, due to water intrusion in the logging chain. The second test was performed on the Andritz Hydro AG replacement runner. This test was prepared and performed by the author in close cooperation with Andritz Hydro AG, and the results were successful. The analysis results from both model and prototype runners show that the wake leaving the guide vanes is the most severe source of dynamic pressure in the runner. The draft tube vortex rope pulsation propagates upstream the runner, but does not appear as a significant frequency in the runner strain measurements. (Author)

  2. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  3. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  4. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  5. 78 FR 29672 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-05-21

    .... FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for... proposed rule (44 FR 13426, March 9, 1979), the Cardiovascular Device Classification Panel (the 1979 Panel... of Subjects in 21 CFR Part 870 Medical devices, Cardiovascular devices...

  6. Metamodeling and optimization of the THF process with pulsating pressure

    Science.gov (United States)

    Bucconi, Marco; Strano, Matteo

    2018-05-01

    Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.

  7. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  8. Pressure pulsation measurements in pipe and cluster flows

    International Nuclear Information System (INIS)

    Benemann, A.; Voj, P.

    1976-01-01

    Measuring and evaluation techniques of pressure pulsations in pipe and cluster flows are described. The measurements were made on a 1 m long SNR rod-cluster and its feed and drain pipes. At Reynolds numbers in the cluster of 8.9 x 10 4 flow velocities of 14 m/sec were achieved. With the aid of a block diagram recording of the measured values by piezoelectric crystal and piezo-resistive strain gange as well as data processing are explained. For the analytical treatment of the pressure pulsation signals characterizing the turbulence field computer codes of a digital computer and a fast-fourier analyzer (Hewlett-Packard 5450 A) were used. The results show good agreement with theoretical curves on the behaviour of turbulent boundary layers of cluster and pipe flows at high Reynolds numbers. (TK) [de

  9. [The implementation of the method of enhanced external counter pulsation for the treatment of cardiovascular diseases].

    Science.gov (United States)

    Badtieva, V A; Voroshilova, D N

    2018-05-21

    The cardiovascular diseases occupy a leading place in the structure of overall morbidity affecting the population not only of Russia but also of the majority of the developed countries throughout the world; they thus impose the heavy social and economic burden on both the public healthcare services and the modern society in general. At the same time, systemic atherosclerosis is considered to be one of the most common, severe, and life-threatening condition. Despite the presence of a large number of pharmaceutical and surgical methods for the treatment of this pathology, they are not infrequently lacking the desired effectiveness. The use of the shunting operations and endovascular methods failed to radically resolve the problem of managing systemic atherosclerosis and atherosclerosis of the lower limbs. A relatively novel approach which currently begins to find the ever increasing application for the treatment of patients presenting with cardiovascular pathology is based on the enhanced external counter-pulsation method although both the clinical and theoretical prerequisites of its application were developed rather long ago. This non-invasive therapeutic method allows to increase the perfusion pressure in the coronary arteries in diastole and to reduce the resistance to the cardiac ejection in the systole. The objective of this review article was to perform the analysis of the available literature publications on the use of the enhanced external counter-pulsation technique for the treatment of the patients presenting with the diseases of the cardiovascular system and to evaluate the clinical effectiveness of this approach as well as the availability of the treatment for the patients.

  10. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  11. 78 FR 79304 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 870 [Docket No. FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for...--CARDIOVASCULAR DEVICES 0 1. The authority citation for 21 CFR part 870 continues to read as follows: Authority...

  12. Effect of external pulsation on kinematics of fluid particles in the field ...

    Indian Academy of Sciences (India)

    The effect of external pulsation on a pair of stationary Lamb–Oseen vortices of equal strength has been analyzed to investigate kinematic behavior of a fluid particle. The assumption of vortices being treated stationary or fixed vortex filaments is valid in a reference frame attached to the vortex system with axes along and ...

  13. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    International Nuclear Information System (INIS)

    Rivetti, A; Lucino, C; Liscia, S; Muguerza, D; Avellan, F

    2012-01-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  14. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Science.gov (United States)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  15. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  16. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  17. Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Miglio, A; Montalban, J; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium); Grigahcene, A [CRAAG - Algiers Observatory BP 63 Bouzareah 16340, Algiers (Algeria)], E-mail: MA.dupret@obspm.fr

    2008-10-15

    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid {beta} Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid {delta} Sct-{gamma} Dor pulsators.

  18. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2017-01-01

    Full Text Available Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject’s left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05. The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05. When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3. Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase.

  19. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  20. Study on pressure pulsation and piping vibration of complex piping of reciprocating compressor

    International Nuclear Information System (INIS)

    Xu Bin; Feng Quanke; Yu Xiaoling

    2008-01-01

    This paper presents a preliminary research on the piping vibration and pressure pulsation of reciprocating compressor piping system. On the basis of plane wave theory, the calculation of gas column natural frequency and pressure pulsation in complex pipelines is done by using the transfer matrix method and stiffness matrix method, respectively. With the discretization method of FEM, a mathematical model for calculating the piping vibration and stress of reciprocating compressor piping system is established, and proper boundary conditions are proposed. Then the structural modal and stress of the piping system are calculated with CAESAR II. The comparison of measured and calculated values found that the one dimensional wave equation can accurately calculate the natural frequency and pressure pulsation in gas column of piping system for reciprocating compressor. (authors)

  1. Minimisation of pressure pulsations in the screw compressor discharge piping

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, D. [Grasso GmbH Refrigeration Technology, Berlin (Germany). R and D Screw Compressors

    2006-07-01

    A problem of noise and vibration in the piping between the screw compressor and oil separator arises if the natural gas pulsations in the piping get in the resonance with the pulsations sent by the compressor. Several typical piping geometries such as a short and a long pipe with the open end and a short pipe with agglomerator have been studied to evaluate the natural frequency of the gas column. It was found that because of the wave reflection from the open pipe end the gas in such a pipe has several natural frequencies dependent on the sound speed and on the pipe length. Since the sound speed of various refrigerants differs significantly, the resonance pipe length will also vary strongly from one refrigerant to another. Hence, to avoid the resonance a separate examination for each refrigerant would be required at the compressor package design stage. Unlike open ended pipes, in the pipe with agglomerator the wave reflection at the agglomerator side is reduced. This allows using of one standard discharge pipe geometry resonance-free independent on the refrigerant. (orig.)

  2. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  3. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  4. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  5. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins.

    Science.gov (United States)

    Golzan, S Mojtaba; Graham, Stuart L; Leaney, John; Avolio, Alberto

    2011-01-01

    The amplitude of spontaneous retinal venous pulsations (SRVP) is known to be affected by intraocular pressure (IOP), retinal venous pressure, and intracranial pressure (ICP). This study characterized SRVPs adjacent to the disc and quantified changes in the amplitude of these pulsations during IOP manipulation in normal subjects. The study included 12 subjects (40 ± 15, 4 females, 8 males). Baseline IOP (range 10-25 mmHg) was measured and SRVP recorded using the dynamic retinal vessel analyzer (DVA). IOP was lowered using aproclonidine 0.5% and measured every 15 min, followed by dynamic recording of SRVP. Two subjects were also tested with timolol 0.5%, and three were treated with a placebo drop. Mean amplitude of SRVP was determined within each sample at the same site. Blood pressure and heart rate were tracked continuously. Amplitude of SRVP decreased in all subjects with reduction of IOP with aproclonidine and timolol. Mean SRVP amplitude was 8.5 ± 6 μm at baseline and reduced to 2.5 ± 1.8 μm after 45 min (p blood pressure, and heart rate did not change significantly from the baseline. Analysis of waveforms showed a slight phase shift only (150 ± 78.5 ms, p = 0.93) between disc veins and adjacent retinal vein. SRVPs in the peripapillary retina have similar waveform characteristics to those at the disc. SRVP amplitudes are reduced by manipulation of IOP downwards with pharmacological intervention. The relationship was consistent in all individuals tested for two classes of drugs and was independent of BP or heart rate changes.

  6. Numerical and experimental study of the pressure pulsations at the free discharge of water through the turbine

    Science.gov (United States)

    Platonov, D. V.

    2017-09-01

    The free discharge through the turbine is applied in the course of construction of hydro power plant or in case of excessive water inflow during floods or emergency situation. The experimental and numerical investigation of flow-induced pressure pulsation in hydraulic turbine draft tube at free discharge was performed.

  7. Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis

    Science.gov (United States)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhalev, Yuri A.; Khakhaleva, Larisa V.; Chukalin, Andrei V.

    2017-07-01

    The numerical investigation of the turbulent flow with the impacts, based on a modified Prandtl mixing-length model with using of the analysis of pulsations of pressure, calculation of structure and a friction factor of a turbulent flow is made. These results under the study allowed us to propose a new design of a cooled turbine blade and gas turbine mobile. The turbine blade comprises a combined cooling and cylindrical cavity on the blade surface, and on the inner surfaces of the cooling channels too damping cavity located on the guide vanes of the compressor of a gas turbine engine, increase the supply of gas-dynamic stability of the compressor of a gas turbine engine, reduce the resistance of the guide blades, and increase the efficiency of the turbine engine.

  8. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    Science.gov (United States)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  9. An experimental study of dependence of hydro turbine vibration parameters on pressure pulsations in the flow path

    Science.gov (United States)

    Dekterev, D.; Maslennikova, A.; Abramov, A.

    2017-09-01

    The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.

  10. Collapse of experimental capsules under external pressure

    International Nuclear Information System (INIS)

    Simonen, F.A.; Shippell, R.J. Jr.

    1980-01-01

    Stress analyses and developmental tests of capsules fabricated from thick-walled tubing were performed for an external pressure design condition. In the design procedure no credit was taken for the expected margin in pressure between yielding of the capsule wall and catastrophic collapse or flattening. In tests of AISI-1018 low carbon steel capsules, a significant margin was seen between yield and collapse pressure. However, the experimental yield pressures were significantly below predictions, essentially eliminating the safety margin present in the conservative design approach. The differences between predictions and test results are attributed to deficiencies in the plasticity theories commonly in use for engineering stress analyses. The results of this study show that the von Mises yield condition does not accurately describe the yield behavior of the AISI-1018 steel tubing material for the triaxial stress conditions of interest. Finite element stress analyses successfully predicted the transition between uniform inward plastic deformation and ovalization that leads to catastrophic collapse. After adjustments to correct for the unexpected yield behavior of the tube material, the predicted pressure-deflection trends were found to follow the experimental data

  11. The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the δ Scuti star HD 187547

    Energy Technology Data Exchange (ETDEWEB)

    Antoci, V.; Houdek, G.; Kjeldsen, H.; Trampedach, R.; Arentoft, T. [Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Cunha, M. [Centro de Astrofísca e Faculdade de Ciências, Universidade do Porto, Rua das Estrelas 4150-762 (Portugal); Handler, G. [Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Lüftinger, T. [Institute for Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Murphy, S., E-mail: antoci@phys.au.dk [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2014-12-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of 'pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  12. Patterning of alloy precipitation through external pressure

    Science.gov (United States)

    Franklin, Jack A.

    Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.

  13. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  14. 21 CFR 868.5935 - External negative pressure ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External negative pressure ventilator. 868.5935 Section 868.5935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a...

  15. External Pressures for Adoption of ICT Services Among SMEs

    OpenAIRE

    A. ORDANINI; ARBORE A

    2008-01-01

    This study intends to emphasize the importance that external sources of pressure may have on the level of ICT involvement among small and medium enterprises (SMEs) in Italy. While past research tends to prioritize the role of endogenous conditions for the adoption of information and communication technologies, the high dependence of SMEs on their environment requires paying especial attention to external pressures as well. Both competitive and institutional pressures are proposed and...

  16. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  17. Study of Stage-wise Pressure Pulsation in an Electric Submersible Pump under Variable Frequency Operation at Shut-off Condition

    Science.gov (United States)

    Dhanasekaran, A.; Kumaraswamy, S.

    2018-01-01

    Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.

  18. Bursting pressure of autofrettaged cylinders with inclined external cracks

    International Nuclear Information System (INIS)

    Seifi, Rahman; Babalhavaeji, Majid

    2012-01-01

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.

  19. Bursting pressure of autofrettaged cylinders with inclined external cracks

    Energy Technology Data Exchange (ETDEWEB)

    Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2012-01-15

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.

  20. Ceramic External Pressure Housings For Deep Sea Vehicles

    National Research Council Canada - National Science Library

    Stachiw, J. D; Peters, Donald; McDonald, Glenn

    2006-01-01

    Only glasses, ceramic and carbon fiber reinforced plastic can provide the necessary weight to strength ratio to make the external pressure housings for undersea vehicles positively buoyant at the abyssal design depth...

  1. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  2. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  3. The influence of slightly different main circulation pumps on PWR coolant pressure pulsations

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1989-01-01

    Pressure distribution along the core barrel circumference caused by the simultaneous operation of six main circulating pumps with slightly different revolutions obtained as a result of measurement in operated NPP is determined on the basis of the well-known Penzes method based on the solving of the wave equation with source term using the expansion into the infinite series of eigenfunctions. Results of calculations can be summarized as follows: the pressure distribution and the resulting force acting on the core barrel has a random character. The same is valid for core barrel vibrations and mainly for the joint between core barrel and pressure vessel. (orig.)

  4. Aperiodic pressure pulsation under non optimal hydraulic turbine regimes at low swirl number

    Science.gov (United States)

    Skripkin, S. G.; Tsoy, M. A.; Kuibin, P. A.; Shtork, S. I.

    2017-09-01

    Off-design operating conditions of hydraulic turbines is hindered by pressure fluctuations in the draft tube of the turbine. A precessing helical vortex rope develops, which imperils the mechanical structure and limits the operation flexibility of hydropower station. Understanding of the underlying instabilities of precessing vortex rope at low swirl number is incomplete. In this paper flow regimes with different residual swirl is analysed, particular attention is paid to the regime with a small swirl parameter. Study defines upper and low boundaries of regime where aperiodic pressure surge is observed. Flow field at the runner exit is investigated by Laser Doppler Velocimetry and high-speed visualizations, which are complemented draft tube wall pressure measurements.

  5. Analytical prediction on the pump-induced pulsating pressure in a reactor coolant pipe

    International Nuclear Information System (INIS)

    Lee, K.B.; Im, I.Y.; Lee, S.K.

    1992-01-01

    An analytical method is presented for predicting the amplitudes of pump-induced fluctuating pressures in a reactor coolant pipe using a linear transformation technique which reduces a homogeneous differential equation with non-homogeneous boundary conditions into a nonhomogeneous differential equation with homogeneous boundary conditions. At the end of the pipe, three types of boundary conditions are considered-open, closed and piston-spring supported. Numerical examples are given for a typical reactor. Comparisons of measured pressure amplitudes in the pipe with model prediction are shown to be in good agreement for the forcing frequencies. (author)

  6. Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2015-01-01

    Highlights: • Bespoke non-adiabatic pressure loss boundary for pulse flow turbine modelling. • Predictions show convincing results against experimental and literature data. • Predicted pulse pressure propagation is in good agreement with literature data. • New methodology is time efficient and requires minimal geometrical inputs. - Abstract: This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation

  7. The Role of Turbulent Pressure as a Coherent Pulsational Driving Mechanism: The Case of the δ Scuti Star HD 187547

    DEFF Research Database (Denmark)

    Antoci, V.; Cunha, M.; Houdek, G.

    2014-01-01

    are incompatible with the nature of "pure" stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically......HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results...... excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone....

  8. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  9. Nonlinear vibration of a hemispherical dome under external water pressure

    International Nuclear Information System (INIS)

    Ross, C T F; McLennan, A; Little, A P F

    2011-01-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  10. Nonlinear vibration of a hemispherical dome under external water pressure

    Science.gov (United States)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  11. Schools under Pressure: The External Environment and Recent Organizational Reforms.

    Science.gov (United States)

    Salganik, Laura H.

    Reductions in resources and increases in external demands place schools under pressure that can be relieved to some extent by organizational changes. When resources are sufficient, these changes may take the form of technical rationality--that is, decisions concerning policy and practices are made on the basis of neutral, measurable data rather…

  12. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  13. Vortical structures and pressure pulsations in draft tube of a Francis-99 turbine at part load: RANS and hybrid RANS/LES analysis

    International Nuclear Information System (INIS)

    Gavrilov, A.A.; Sentyabov, A.V.; Dekterev, A.A.; Hanjalić, K.

    2017-01-01

    Highlights: • Simulations showed the formation of spiralling coherent vortices in the draft tube. • Both hybrid RANS-LES and Re-stress models reproduced well the measured fluctuations. • Re-stress model resolved the precessing vortex core and coherent spiralling vortices. - Abstract: Recognizing the limitations of the conventional linear-eddy-viscosity (LEVM) Reynolds-averaged Navier–Stokes (RANS) models to reproduce complex three-dimensional unsteady flows in hydraulic machinery, we performed a comparative assessment of a second-moment (Re-stress model, RSM) RANS closure and a hybrid RANS/LES method in capturing the flow and vortical structures in the draft tube of a Francis hydroturbine at off-design conditions. Considered is a case of part load (PL) at a flow rate of only 35% of the best efficiency point (BEP) characterised by multiple unsteady vortex systems. Despite some remaining uncertainties in generating the inflow conditions, both approaches reproduced reasonably well the measured mean velocity and the rms of its fluctuations, as well as the pressure spectrum with peaks detecting the precessing vortex core. In contrast to the common LEVMs, the Re-stress closure showed sufficient receptivity to intrinsic unsteadiness and reproduced well the overall flow and vortical patterns as well as the associated pressure pulsations in accord with the experiments. The hybrid RANS/LES method gave similar predictions as the RSM, but resolving a wider range of scales, which however, showed no significant effect on the dynamics of the dominant processing vortex core and the pressure pulsations.

  14. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.

    2013-01-01

    This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and

  15. Compressional Pc5 type pulsations in the morningside plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A.; Baumjohann, W.; Haerendel, G.; Nakamura, R.; Kucharek, H.; Klecker, B. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Lessard, M.R. [Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering; Kistler, L.M. [New Hampshire Univ., Durham (United States). Space Science Center; Mukai, T.; Nishida, A. [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-03-01

    We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 R{sub E}, close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000-1700 UT on 9 March 1998, and 0200-0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode), and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations. (orig.)

  16. Solar wind controlled pulsations: A review

    International Nuclear Information System (INIS)

    Odera, T.J.

    1986-01-01

    Studies of the solar wind controlled Pc 3, 4 pulsations by early and recent researchers are highlighted. The review focuses on the recent observations, which cover the time during the International Magnetospheric Study (IMS). Results from early and recent observations agree on one point, that is, that the Pc 3, 4 pulsations are influenced by three main solar wind parameters, namely, the solar wind velocity V/sub 5w/, the IMF orientation theta/sub x/B, and magnitude B. The results can be interpreted, preferably, in terms of an external origin for Pc 3, 4 pulsations. This implies, essentially, the signal model, which means that the pulsations originate in the upstream waves (in the interplanetary medium) and are transported by convection to the magnetopause, where they couple to oscillations of the magnetospheric field lines

  17. On the pathogenesis of bedsores. Skin blood flow cessation by external pressure on the back

    DEFF Research Database (Denmark)

    Larsen, B; Holstein, P; Lassen, N A

    1979-01-01

    This paper is devoted to elucidation of the question: Which external pressure is required to stop skin blood flow at the skin - support interface in humans lying on the back in the supine position? Cessation of blood flow was recorded as cessation of washout of an intracutaneous depot of 131I......-antipyrine mixed with histamine. The external pressure was measured by a small airfilled plastic cushion connected to a mercury manometer. In 11 normal subjects, eight patients with hypertension and seven patients with tetra- or paraplegia the "flow cessation external pressure" (FCEP) was strongly correlated...... to the auscultatory brachial mean blood pressure (p less than or equal to 0.001). The difference mean blood pressure - FCEP was on average 4 mmHg (range (-11) - (+20) mmHg) and there was no significant difference between the three groups studied. Thus external pressure exceeding the actual mean blood pressure...

  18. Influence of Hydraulic Design on Stability and on Pressure Pulsations in Francis Turbines at Overload, Part Load and Deep Part Load based on Numerical Simulations and Experimental Model Test Results

    International Nuclear Information System (INIS)

    Magnoli, M V; Maiwald, M

    2014-01-01

    Francis turbines have been running more and more frequently in part load conditions, in order to satisfy the new market requirements for more dynamic and flexible energy generation, ancillary services and grid regulation. The turbines should be able to be operated for longer durations with flows below the optimum point, going from part load to deep part load and even speed-no-load. These operating conditions are characterised by important unsteady flow phenomena taking place at the draft tube cone and in the runner channels, in the respective cases of part load and deep part load. The current expectations are that new Francis turbines present appropriate hydraulic stability and moderate pressure pulsations at overload, part load, deep part load and speed-no-load with high efficiency levels at normal operating range. This study presents series of investigations performed by Voith Hydro with the objective to improve the hydraulic stability of Francis turbines at overload, part load and deep part load, reduce pressure pulsations and enlarge the know-how about the transient fluid flow through the turbine at these challenging conditions. Model test measurements showed that distinct runner designs were able to influence the pressure pulsation level in the machine. Extensive experimental investigations focused on the runner deflector geometry, on runner features and how they could reduce the pressure oscillation level. The impact of design variants and machine configurations on the vortex rope at the draft tube cone at overload and part load and on the runner channel vortex at deep part load were experimentally observed and evaluated based on the measured pressure pulsation amplitudes. Numerical investigations were employed for improving the understanding of such dynamic fluid flow effects. As example for the design and experimental investigations, model test observations and pressure pulsation curves for Francis machines in mid specific speed range, around n qopt = 50

  19. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  20. Modeling Attitude towards Drug Treament: The Role of Internal Motivation, External Pressure, and Dramatic Relief

    OpenAIRE

    Conner, Bradley T.; Longshore, Douglas; Anglin, M. Douglas

    2008-01-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) enter...

  1. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  2. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  3. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  4. Linear nonradial pulsation theory. Lecture 7

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Many of the upper main-sequence stars pulsate in spheroidal nonradial modes. We know this to be true in numerous cases, as we have tabulated for the #betta# Cephei and delta Scuti variables in previous lectures. However, we cannot identify the actual mode for any star except for the low-order pressure p and f modes of our sun. It remains a great challenge to clearly state what really is occurring, in the process we learn more about how stars evolve and pulsate

  5. Modeling attitude towards drug treament: the role of internal motivation, external pressure, and dramatic relief.

    Science.gov (United States)

    Conner, Bradley T; Longshore, Douglas; Anglin, M Douglas

    2009-04-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) entering drug treatment indicated that internal motivation and external pressure significantly and positively predicted dramatic relief and that dramatic relief significantly predicted attitudes towards drug treatment: chi (2) = 142.20, df = 100, p relief is also likely to be high. When dramatic relief is high, attitudes towards drug treatment are likely to be positive. The findings indicate that interventions to get individuals into drug treatment should include processes that promote Dramatic Relief. Implications for addictions health services are discussed.

  6. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  7. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2001-03-01

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  8. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure

    International Nuclear Information System (INIS)

    Zheng, Dingchang; Murray, Alan

    2011-01-01

    A new arterial distensibility measurement technique was assessed in 100 healthy normotensive subjects. Arterial transmural pressures on the whole right arm were reduced with a 50 cm long cuff inflated to 10, 20, 30 and 40 mmHg. The electrocardiogram, and finger and ear photoplethysmograms were recorded simultaneously. Arm pulse propagation time, pulse wave velocity (PWV) and arterial volume distensibility were determined. With a 40 mmHg reduction in transmural pressure, arm pulse propagation time increased from 61 to 83 ms, PWV decreased from 12 to 8 m s −1 and arterial distensibility increased from 0.102% to 0.232% per mmHg (all P < 0.0001). At all cuff pressures, arterial distensibility was significantly related to resting mean arterial pressure (MAP), diastolic blood pressure (DBP) and age, and for systolic blood pressure at 30 and 40 mmHg (all P < 0.05). At 40 mmHg cuff pressure, arterial distensibility fell by 54% for a MAP increase from 75 to 105 mmHg, 57% for a DBP increase from 60 to 90 mmHg and 47% for an age increase from 20 to 70 years. These changes were more than double than those without cuff pressure. Our technique showed that systemic volume distensibility of the peripheral arm artery reduced with age, with a greater effect at higher external and lower transmural pressures

  9. Analysis of Stiffened Penstock External Pressure Stability Based on Immune Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Wensheng Dong

    2014-01-01

    Full Text Available The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional size of stiffening ring, and spacing between stiffening rings on penstock critical external pressure during huge thin-wall procedure of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural network.

  10. Effects of external pressure loading on human skin blood flow measured by 133Xe clearance

    International Nuclear Information System (INIS)

    Holloway, G.A. Jr.; Daly, C.H.; Kennedy, D.; Chimoskey, J.

    1976-01-01

    Forearm skin blood flow was measured during external pressure loading in normal human subjects using 133 Xe washout from intracutaneous injection sites. Pressures ranging between 5 and 150 mmHg were applied through a 3-cm-diameter disc placed over the site of flow determination. The pressure was maintained constant by a servo-controlled loading mechanism. Flow decreased with pressures from 5 to 10 and 30 to 150 mmHg, but remained constant with pressures from 10 to 30 mmHg. Reactive hyperemia occurred following removal of pressures of 90 mmHg or greater, but did not occur following removal of lower pressures. The pressure-flow curve for parasacral skin of paraplegic subjects closely paralleled the pressure-flow curve of normal skin at pressures tested: 5 to 15 mmHg. These data are interpreted to demonstrate autoregulation of skin blood flow. Autoregulation in parasacral skin of paraplegic subjects suggests a peripheral mechanism. The occurrence of hyperemia at pressures which exceed the ability of skin to autoregulate suggests that both autoregulation and post occlusion hyperemia may have the same mechanism

  11. The application of external vibration monitoring to reactors with concrete pressure vessels

    International Nuclear Information System (INIS)

    Hammill, W.J.

    1979-01-01

    The application of external vibration monitoring techniques to advanced gas cooled reactors (AGR) which have concrete pressure vessels is considered. A monitoring system for a particular AGR coolant circuit structure is developed, whose primary objective is to detect impacting of two components, although the detection of forced vibration response is also considered. Experimental results from instrumented components in the reactor and data from rig tests on full size units have been used together with a mathematical model of some elements of the transmission path in order to establish its dynamic characteristics and relate internal component vibration to externally measured signals. The application of external vibration monitoring to the external detection of the forced vibration response of an internal reactor assembly and the remote monitoring of circulator sound output is discussed. (author)

  12. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  13. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    Science.gov (United States)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  14. Transient pressure and productivity analysis in carbonate geothermal reservoirs with changing external boundary flux

    Directory of Open Access Journals (Sweden)

    Wang Dongying

    2017-01-01

    Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary flux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary flux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary flux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.

  15. New pulsating casing collar to improve cementing quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Southwest Petroleum Inst., Nanchong, Sichuan (China); He, K. [JiangHan Petroleum Administration Bureau, Qianjiang, Hubei (China); Wu, J. [Chevron Petroleum Tech. Co., Houston, TX (United States)

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  16. The lifetime of a long cylindrical shell under external pressure at elevated temperature

    CERN Document Server

    Bargmann, H W

    1972-01-01

    This paper is concerned with creep collapse of a long, thin walled, circular, cylindrical shell subjected to external pressure. The problem has been studied by Hoff et al. (1959), where elasticity has been neglected in the material equations. In the present paper it is pointed out that elasticity must not be neglected in stability problems as it may reduce the lifetime considerably. The improved equation for the lifetime of the shell is presented. Moreover, a procedure is indicated to derive the necessary creep parameters easily from usually available creep data. Numerical values of the lifetime of thin-walled, circular, cylindrical shells under external atmospheric pressure are presented for a wide range of shells of different geometrical characteristics for a number of high-temperature alloys and the temperature range up to 1000 degrees C. Experimental results are reported which are in good agreement with the theoretical prediction. (11 refs).

  17. International certification in developing countries: the role of internal and external institutional pressure.

    Science.gov (United States)

    Fikru, Mahelet G

    2014-11-01

    This paper examines the different internal and external institutional factors that affect the decision of businesses in developing countries to adopt international certification (IC). Past studies focus on pressure from international laws, the role of multinationals, and businesses mimicking practices of their counterparts in developed countries. This paper finds that, in addition to these external factors, internal factors may have a significant role. Even though environmental regulation is weak in developing countries, governments do not ignore industrial pollution and casualties. They respond by increasing bureaucratic regulations for businesses and this can affect the decision to adopt IC. Furthermore, internal pressure may come from workers' unions that push for a safe and healthy working environment. Published by Elsevier Ltd.

  18. Negative pressure wound therapy and external fixation device: a simple way to seal the dressing.

    Science.gov (United States)

    Bulla, Antonio; Farace, Francesco; Uzel, André-Pierre; Casoli, Vincent

    2014-07-01

    Negative pressure therapy is widely applied to treat lower limb trauma. However, sealing a negative pressure dressing in the presence of an external fixation device may be difficult and time consuming. Therefore, screws, pins, wires, etc, may preclude the vacuum, preventing the plastic drape to perfectly adhere to the foam. To maintain the vacuum, we tried to prevent air leaking around the screws putting bone wax at the junction between the pins and the plastic drape. This solution, in our hands, avoids air leakage and helps maintain vacuum in a fast and inexpensive way.

  19. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    Science.gov (United States)

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  20. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  1. Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure.

    Science.gov (United States)

    Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian

    2018-06-04

    Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pressure distribution over an NACA 23012 airfoil with an NACA 23012 external-airfoil flap

    Science.gov (United States)

    Wenzinger, Carl J

    1938-01-01

    Report presents the results of pressure-distribution tests of an NACA 23012 airfoil with an NACA 23012 external airfoil flap made in the 7 by 10-foot wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section on both the main airfoil and on the flap for several different flap deflections and at several angles of attack. A test installation was used in which the airfoil was mounted horizontally in the wind tunnel between vertical end planes so that two-dimensional flow was approximated. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated coefficients for the airfoil-and-flap combination and for the flap alone.

  3. The basic professional knowledge of teachers and suborganizational transformation processes of external pressure?

    DEFF Research Database (Denmark)

    Lund, Jens Hansen

    Danish research (Hansen 2009; Lund 2012) have shown, that the basic professional knowledge of the profession of teachers (theoretical and philosophical pedagogy and didactics ) is under press, when different kinds of extern pressure (Scott 2008, Institutions and Organizations) are to be implemented....../transformed into new practice. Reforms and normative expectations (fx evidence based teaching) etc. are constant and increasing demands from the society to the school. When these kinds of external demands are met and transformed with knowledge in the everyday life of schools, other aspects of knowledge than basic...... professional knowledge seem to take over. Furthermore this seems to happen in a paradoxical way, because it happens against an explicit wish in the profession of teachers. Research question: Which practices on a sub organizational level in schools can secure and support that the basic professional knowledge...

  4. Evaluation of structural reliability for vacuum vessel under external pressure and electromagnetic force

    International Nuclear Information System (INIS)

    Minato, Akio

    1983-08-01

    Static and dynamic structural analyses of the vacuum vessel for a Swimming Pool Type Tokamak Reactor (SPTR) have been conducted under the external pressure (hydraulic and atmospheric pressure) during normal operation or the electromagnetic force due to plasma disruption. The reactor structural design is based on the concept that the adjacent modules of the vacuum vessel are not connected mechanically with bolts in the torus inboard region each other, so as to save the required space for inserting the remote handling machine for tightenning and untightenning bolts in the region and to simplify the repair and maintenance of the reactor. The structural analyses of the vacuum vessel have been carried out under the external pressure and the electromagnetic force and the structural reliability against the static and dynamic loads is estimated. The several configurations of the lip seal between the modules, which is required to make a plasma vacuum boundary, have been proposed and the structural strength under the forced displacements due to the deformation of the vacuum vessel is also estimated. (author)

  5. Raised intraocular pressure and recurrence of retinal detachment as complications of external retinal detachment surgery

    International Nuclear Information System (INIS)

    Jawwad, M.; Khan, B.; Shah, M.A.; Qayyum, I.; Aftab, M.; Qayyum, I.

    2015-01-01

    Patients with Rhegmatogenous retinal detachment may develop raised intraocular pressure and recurrence of retinal detachment when they undergo external retinal detachment surgery. The present study was conducted to determine the postoperative rise in intraocular pressure (IOP) and recurrence of retinal detachment. Methods: The present descriptive study was conducted at Eye department of Lady Reading Hospital, Peshawar on 25 patients of both genders from August 2012 to July 2014. Results: Of the 25 patients, 18 (72%) developed raised IOP in the immediate postoperative period; this figure decreased to 12 (48%) at one week. Following medical or surgical intervention in these 12 cases, there was only 1 (4%) case with mildly raised IOP at two weeks postoperative. Five (20%) cases developed recurrent retinal detachment which later resolved with treatment. There were no significant differences by age or gender. Conclusion: External Retinal Detachment Surgery raised intraocular pressure postoperatively and caused recurrence of retinal detachment. These complications were treated medically and surgically with resolution within two weeks. (author)

  6. Stability analysis of an open shallow cylindrical shell with imperfection under external pressure

    Directory of Open Access Journals (Sweden)

    Psotny Martin

    2017-01-01

    Full Text Available Elastic shallow generalized cylindrical shells of an open cross-section subjected to the various forms of external pressure are analysed in the paper numerically using the finite element method. Load - displacement paths are calculated for the perfect and imperfect geometry, respectively. Special attention is paid to the influence of initial geometric imperfection on the limit load level of fundamental equilibrium path of nonlinear analysis. ANSYS system was used for analysis, arc-length method was chosen for obtaining fundamental load - displacement path of solution.

  7. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Birchall, D.J.

    2007-04-01

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some

  8. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)

    2007-04-15

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen

  9. Bifurcation and Nonlinear Dynamic Analysis of Externally Pressurized Double Air Films Bearing System

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-01-01

    Full Text Available This paper studies the chaotic and nonlinear dynamic behaviors of a rigid rotor supported by externally pressurized double air films (EPDAF bearing system. A hybrid numerical method combining the differential transformation method and the finite difference method is used to calculate pressure distribution of EPDAF bearing system and bifurcation phenomenon of rotor center orbits. The results obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach. The results presented summarize the changes which take place in the dynamic behavior of the EPDAF bearing system as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.

  10. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores.

    Science.gov (United States)

    Niu, Junzhi; Han, Lin; Gong, Fen

    2016-08-15

    BACKGROUND This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. MATERIAL AND METHODS From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. RESULTS Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. CONCLUSIONS Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway.

  11. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  12. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  13. Pulsations in white dwarf stars

    OpenAIRE

    Van Grootel, Valérie; Fontaine, Gilles; Brassard, Pierre; Dupret, Marc-Antoine

    2017-01-01

    I will present a description of the six distinct families of pulsating white dwarfs that are currently known. Pulsations are present at various stages of the evolution (from hot, pre-white dwarfs to cool white dwarfs), at various stellar masses, and for various atmospheric compositions. In all of them, a mechanism linked to opacity changes along the evolution drives the oscillations. The existence of these oscillations offers the opportunity to apply asteroseismology for constraining physics ...

  14. Strength and water-tightness of the closure head and valves of a model cask under high external pressure

    International Nuclear Information System (INIS)

    Terada, O.; Kumada, M.; Hayakawa, T.; Mochizuki, S.; Ohrui, K.

    1978-01-01

    This paper describes experimental research on the strength and water-tightness of the closure head and attached valves of a model cask under high external pressure, in simulation of its having been accidentally lost in the deep sea. Both the external pressure tests and the corrosion tests were carried out using scale models of the closure head of an 80-ton spent-fuel shipping cask, and the full size pressure relief valves and drain valves which were to be attached to the actual cask. Based on the results of the above tests, evaluations were made, and new information was obtained on the pressure-proof strength and water-tightness of the closure head of the cask and the valves. Lastly, research which is being carried on in Japan on the pressure equalizer is also introduced

  15. Experiments of draining and filling processes in a collapsible tube at high external pressure

    Science.gov (United States)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  16. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  17. Review of external ocular compression: clinical applications of the ocular pressure estimator

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-02-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd. Washington, MO, USA; 2Washington University Department of Ophthalmology and Visual Sciences, St Louis, MO, USA; 3Ophthalmology, Hamad Medical Corporation, Doha, Qatar Purpose: The authors have previously validated an Ocular Pressure Estimator (OPE that can estimate the intraocular pressure (IOP during external ocular compression (EOC. The authors now apply the OPE in clinical states where EOC is clinically important. The original work is described for two periods of risk: during sleep and during the digital ocular massage (DOM maneuver used by surgeons after trabeculectomy to keep the operation functional. Other periods of risk for external ocular compression are then reviewed.Methods: The first protocol estimated the IOP in the dependent eye during simulated sleep. Subjects had their IOPs initially measured in an upright-seated position, immediately upon assuming a right eye dependent side sleeping position (with nothing contacting the eye, and then 5 minutes later while still in this position. While maintaining this position, the fluid filled bladder of the OPE was then placed between the subject’s closed eye and a pillow during simulated sleep. The IOP was continuously estimated in this position for 5 minutes. The subjects then had the IOP measured in both eyes in an upright-seated position. The second protocol determined if a larger vertical cup-to-disc ratio was more common on the side that patients reported they preferred to sleep on. The hypothesis was that chronic asymmetric, compression induced, elevations of IOP during sleep would be associated with otherwise unexplained asymmetry of the vertical cup-to-disc ratio. The third protocol assessed the IOP during DOM. The OPE was used to characterize the IOP produced during the DOM maneuver of five glaucoma surgeons. After this, 90 mmHg was chosen as a target pressure for DOM. The surgeons were then verbally coached

  18. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  19. Impulsively started, steady and pulsated annular inflows

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Raouf, Emad [General Field Engineer, Halliburton Energy Services 719 Hangar Dr, New Iberia, LA 70560, United States of America (United States); Sharif, Muhammad A R; Baker, John, E-mail: abdelraouf.em@gmail.com, E-mail: msharif@eng.ua.edu, E-mail: john.baker@eng.ua.edu [Aerospace Engineering and Mechanics Department, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America (United States)

    2017-04-15

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies. (paper)

  20. Competing ground states in LuFe{sub 4}Ge{sub 2} tuned by external pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ajeesh, Mukkattu Omanakuttan; Weber, Katharina; Reis, Ricardo dos; Geibel, Christoph; Nicklas, Michael [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    Tuning competing ground-state properties using external pressure has attracted much attention in current condensed matter research. This is due to the fact that exotic phenomena and unconventional phases occur in regions of competing energy scales. Here, we present an investigation on LuFe{sub 4}Ge{sub 2} by electrical resistivity experiments under external pressure in order to understand the interplay between competing ground states in a frustrated, itinerant magnetic system. At ambient pressure LuFe{sub 4}Ge{sub 2} orders antiferromagnetically below 32 K. The antiferromagnetic (AFM) transition is connected with a structural transition. We have established the temperature - pressure phase diagram: pressure suppresses the original antiferromagnetically ordered state to zero temperature at around 1.7 GPa. Upon further increasing pressure a new pressure-induced phase emerges. This phase exhibits a qualitatively different magnetoresistance compared with the AFM phase suggesting a different type of ordering than at lower pressures. Furthermore, above 1.5 GPa we find a metamagnetic transition at higher magnetic fields. The onset of this phase shifts to lower fields with increasing pressure. Further studies to understand the nature of the new phases are on the way.

  1. In-vivo corneal pulsation in relation to in-vivo intraocular pressure and corneal biomechanics assessed in-vitro. An animal pilot study.

    Science.gov (United States)

    Rogala, Maja M; Danielewska, Monika E; Antończyk, Agnieszka; Kiełbowicz, Zdzisław; Rogowska, Marta E; Kozuń, Marta; Detyna, Jerzy; Iskander, D Robert

    2017-09-01

    The aim was to ascertain whether the characteristics of the corneal pulse (CP) measured in-vivo in a rabbit eye change after short-term artificial increase of intraocular pressure (IOP) and whether they correlate with corneal biomechanics assessed in-vitro. Eight New Zealand white rabbits were included in this study and were anesthetized. In-vivo experiments included simultaneous measurements of the CP signal, registered with a non-contact method, IOP, intra-arterial blood pressure, and blood pulse (BPL), at the baseline and short-term elevated IOP. Afterwards, thickness of post-mortem corneas was determined and then uniaxial tensile tests were conducted leading to estimates of their Young's modulus (E). At the baseline IOP, backward stepwise regression analyses were performed in which successively the ocular biomechanical, biometric and cardiovascular predictors were separately taken into account. Results of the analysis revealed that the 3rd CP harmonic can be statistically significantly predicted by E and central corneal thickness (Models: R 2  = 0.662, p biomechanics in-vitro was confirmed. In particular, spectral analysis revealed that higher amplitude and power of the 3rd CP harmonic indicates higher corneal stiffness, while the 1st CP harmonic correlates positively with the corresponding harmonic of the BPL signal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Baroreflexes originated in vertebral artery zones upon peripheral vein tonus, systemic arterial blood pressure, and external respiration].

    Science.gov (United States)

    Agadzhanian, N A; Kupriianov, S V

    2008-06-01

    The investigation was intended to study the role ofbaroreceptors ofhemodynamically isolated zone of vertebral arteries in regulation of peripheral veins tonus, arterial pressure and external respiration. Pressure decrease in this vascular reflexogenic zone led to reflex responses of increase in femoral vein tonus, elevation of blood pressure level and stimulation of external respiration. The opposite reflex responses of cardio-respiratory functional system to initial pressure activation of vertebral arteries baroreceptors are observed. Basing on generalization of our own findings and similar physiological and morphological researches of other authors, it is established that afferentation from the vertebral artery zone is a reflexogenic factor of somatic muscles' veins tonus regulation. These reflexes of capacity vessels tonic activity changes are part of cardio-respiratory responses of maintaining the tissue gaseous exchange.

  3. Nonlinear pulsations of luminous He stars

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Cox, A.N.

    1986-01-01

    Radial pulsations in models of R Cor Bor stars and BD + 1 0 4381 have been studied with a nonlinear hydrodynamic pulsation code. Comparisons are made with previous calculations and with observed light and velocity curves. 13 refs., 2 tabs

  4. The mechanism of pulsating aurora

    International Nuclear Information System (INIS)

    Johnstone, A.D.

    1983-01-01

    New measurement using ground-based techniques, sounding-rockets and geostationary satellites show that pulsating aurora is almost certainly caused by a modulation of the precipitating electron beam. The modulation is probably imposed near the magnetic equator by an interaction with ELF waves which are observed to be modulated at the same frequency. The measured wave intensity is not strong enough to cause pulsations by variation of the rate of pitch angle diffusion so it is suggested that the pulsation is caused by a coherent interaction involving the generation of ELF chorus. The periodicity arises because the chorus is shut-off after approximately half a bounce period when the increased rate of precipitation removes most of the resonant electrons. The supply is then replenished by pitch angle diffusion

  5. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    A general review of the pulsating δ Scuti variables is given including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Three models of these stars are discussed and used to study the nonlinear hydrodynamic behavior of these stars. The hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions are outlined. Problems of allowing for time-dependent convection and its great sensitivity to temperature and density are presented. Tentative results to date do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. It is found that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. 15 refs., 8 figs., 3 tabs

  6. Mass loss and cepheid pulsation

    International Nuclear Information System (INIS)

    Davis, C.G. Jr.

    1977-01-01

    Two purposes are served: to discuss the latest improvements in nonlinear pulsation theory indicating the ability to resolve features such as the ''Christy bump'' on the light curves and to show from the results of a bump model and recent observations that mass loss is one of the possible explanations for the mass discrepancy problem between evolutionary and pulsation theories. Recent observations by Sanford and Gow of Los Alamos and Bernat (McDonald Observatory) show that extensive mass loss has occurred in the evolution of the M supergiant α Orionis

  7. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    International Nuclear Information System (INIS)

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-01-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies

  8. Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Directory of Open Access Journals (Sweden)

    Amann Matthias

    2007-11-01

    Full Text Available Abstract Background Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (COPAC measurement by the pulmonary artery catheter (PAC. However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (COAP device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU using COPAC as the method of reference. Methods We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years, who required both arterial and pulmonary artery pressure monitoring. COPAC measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while COAP values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman. Results A total of 164 coupled measurements were obtained. Absolute values of COPAC ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min. The bias and limits of agreement between COPAC and COAP for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between COPAC and COAP was 49.3%. The bias between percentage changes in COPAC (ΔCOPAC and percentage changes in COAP (ΔCOAP for consecutive measurements was -0.70% ± 32.28%. COPAC and COAP showed a Pearson correlation coefficient of 0.58 (p PAC and ΔCOAP was 0.46 (p Conclusion Although the COAP algorithm shows a minimal bias with COPAC over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore, the used algorithm (V 1.03 failed to

  9. Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Science.gov (United States)

    Prasser, Christopher; Bele, Sylvia; Keyl, Cornelius; Schweiger, Stefan; Trabold, Benedikt; Amann, Matthias; Welnhofer, Julia; Wiesenack, Christoph

    2007-01-01

    Background Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (COPAC) measurement by the pulmonary artery catheter (PAC). However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (COAP) device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA) only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU) using COPAC as the method of reference. Methods We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years), who required both arterial and pulmonary artery pressure monitoring. COPAC measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while COAP values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman. Results A total of 164 coupled measurements were obtained. Absolute values of COPAC ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min). The bias and limits of agreement between COPAC and COAP for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between COPAC and COAP was 49.3%. The bias between percentage changes in COPAC (ΔCOPAC) and percentage changes in COAP (ΔCOAP) for consecutive measurements was -0.70% ± 32.28%. COPAC and COAP showed a Pearson correlation coefficient of 0.58 (p < 0.01), while the correlation coefficient between ΔCOPAC and ΔCOAP was 0.46 (p < 0.01). Conclusion Although the COAP algorithm shows a minimal bias with COPAC over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore

  10. Evaluation of pressure pain threshold after external stabilizer application at masseurs

    Directory of Open Access Journals (Sweden)

    Andrzej Milańczyk

    2015-09-01

    Full Text Available Introduction. Physiotherapists are professional group exposed to physical musculo-skeletal overloads and disorders. These disorders reducing their productivity are the most common reason for work disability. The aim of this study was to assess the pressure pain threshold [PPT kPa1] after pneumatic external stabilizer Exonik V.2 application.Material and methods. Ten masseurs of Lower Silesia rehabilitation centers participated in the present study. During examination the PPT of muscles was determined twice: at the end of the 40-hour work week – on Friday, during which the subjects did not use stabilizer Exonic V.2, and after using it within the next 40-hour work week at the end of the last day – on Friday. Results. A statistically significant increase in the average values of the PPT recorded in the reference points located on the same side of the spinous processes of the spine, from the series 2 of measurements, compared with a series 1 (p0.05 was observed. These changes have also been defined as percentage average values, which were higher on the left side than the right side. Comparable percentage changes for the lumbar (L and thoracic (Th were noticed with higher mean values on the right side of the lumbar and on the left side in the thoracic. Conclusions. The obtained results prove the benefits of the application of a stabilizer Exonik V.2 which reduces muscle soreness measured by PPT. This study should be extended to higher number of subjects characterized by same age and work experience.

  11. Fabrication and Characterization of Device Pressure Regulation System Orifice of Manufacturing Process Gel Uranium Column Gelation External

    International Nuclear Information System (INIS)

    Triyono; Sutarni; Indra Suryawan

    2009-01-01

    The device pressure regulation orifice system of manufacturing process gel uranium on external column gelation has been made and characterized. The device consists : compressor 5.75-6.75 kg / cm 2 , air container tank, power supply 24 volts dc, solenoid valve 24 volts dc, pressure indicator 0-100 mbar, pressure indicator 0-250 mbar, mechanical valve and power electric 380 volts 50 Hz. The activity includes: installation device system and characterization with pressure variation orifice 5-75 mbar on the compressor 5.75-6.5 kg/cm 2 continuously for 1 minute. The method of installation i.e: wiring and piping to first component and support component (compressor and pressure air indicator, air container tank and pressure air indicator, solenoid valve, power supply 220 volts / 24 volts dc and orifice). After apparatus installed has been tested by the characterization without feed under air pressure varied to orifice of 5-75 mbar and device characterization with variation diameter orifice of 0.5-1 mm and orifice pressure of 5-75 mbar. The result in the characterization an every component good function, can be operation by input pressure range of 15-185 mbar orifice pressure range of 5-75 mbar. The characterization result device pressure regulation orifice system showed that: the system can be good operation of air pressure regulation orifice between 5-75 mbar with diameter orifice 0.5 mm to result gelation range of 10-25 piece / minute with variation air pressure input between 15-185 mbar of air pressure compressor 5.75-6.5 kg cm 2 . (author)

  12. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells

    Science.gov (United States)

    Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland

    2018-05-01

    The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.

  13. Study on transport safety of fresh MOX fuel. Performance of the cladding tube of fresh MOX fuel against external water pressure

    International Nuclear Information System (INIS)

    Ito, Chihiro

    1999-01-01

    It is important to know the ability of the cladding tube for fresh MOX fuel against external water pressure when they were hypothetically sunk into the sea for unknown reasons. In order to evaluate the ability of cladding tubes for MOX fresh fuel against external water pressure, external water pressure tests were carried out. Resistible limit of cladding tubes against external water pressure is defined when cladding tubes are deformed largely due to buckling etc. The test results show cladding tube of BWR type can resist an external water pressure of 69 MPa (a depth of water of 7,000 m) and that of PWR type fuel can resist an external water pressure of 54 MPa (a depth of water of 5,500 m). Moreover, leak tightness is maintained at an external water pressure of 73 MPa (a depth of water of 7,400 m) for BWR type cladding tubes and at an external water pressure of 98 MPa (a depth of water of 10,000 m) for PWR type cladding tubes. (author)

  14. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  15. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  16. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  17. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  18. Magnetocaloric effect in La(FexSi1-x)13 doped with hydrogen and under external pressure

    International Nuclear Information System (INIS)

    Medeiros, L.G. de; Oliveira, N.A. de

    2006-01-01

    In this paper, we calculate the magnetocaloric effect in the compounds La(Fe x Si 1-x ) 13 doped with hydrogen and subjected to external pressure. We use a microscopical model where the Coulomb interaction between itinerant electrons is treated in the mean field approach. The effect of hydrogen atoms is considered as a chemical pressure. We also include phenomenologically the magnetoelastic coupling via the renormalization of the electron dispersion relation and the Debye temperature. The calculated isothermal entropy changes upon magnetic field variations for the compound La(Fe 0.88 Si 0.12 ) 13 H y are in good agreement with the available experimental data

  19. Analyses on interaction of internal and external surface cracks in a pressurized cylinder by hybrid boundary element method

    International Nuclear Information System (INIS)

    Chai Guozhong; Fang Zhimin; Jiang Xianfeng; Li Gan

    2004-01-01

    This paper presents a comprehensive range of analyses on the interaction of two identical semi-elliptical surface cracks at the internal and external surfaces of a pressurized cylinder. The considered ratios of the crack depth to crack length are b/a=0.25, 0.5, 0.75 and 1.0; the ratios of the crack depth to wall thickness of the cylinder are 2b/t=0.2, 0.4, 0.6, 0.7 and 0.8. Forty crack configurations are analyzed and the stress intensity factors along the crack front are presented. The numerical results show that for 2b/t<0.7, the interaction leads to a decrease in the stress intensity factors for both internal and external surface cracks, compared with a single internal or external surface crack. Thus for fracture analysis of a practical pressurized cylinder with two identical semi-elliptical surface cracks at its internal and external surfaces, a conservative result is obtained by ignoring the interaction

  20. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  1. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    International Nuclear Information System (INIS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.

    2017-01-01

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  2. Interplay between effects of external pressure and dilution of the U sublattice in UCoAl-based materials

    International Nuclear Information System (INIS)

    Andreev, A.V.; Koyama, K.; Mushnikov, N.V.; Sechovsky, V.; Shiokawa, Y.; Satoh, I.; Watanabe, K.

    2007-01-01

    Substitution of Y for U in the itinerant 5f-electron metamagnet, UCoAl, transforms the system to a ferromagnetic state. Application of external hydrostatic pressure above 0.3 GPa suppresses the ferromagnetism and restores the 'UCoAl-type' metamagnetism back. However, the metamagnetic transition becomes of the second order instead of the first order one in parent UCoAl. This is attributed to enhancement of fluctuations of the U magnetic moment upon dilution of the U sublattice

  3. Sweating under pressure: skin conductance level reactivity moderates the association between peer victimization and externalizing behavior.

    Science.gov (United States)

    Gregson, Kim D; Tu, Kelly M; Erath, Stephen A

    2014-01-01

    This study examined whether the association between peer victimization and externalizing behavior may be illuminated by individual differences in skin conductance level reactivity (SCLR) in the context of peer stress. Participants included 123 fifth and sixth graders (Mean age = 12.03 years, 50% females; 42% ethnic minorities). SCLR was assessed in the context of an ecologically relevant, lab-based peer-evaluative stress experience in preadolescence. As hypothesized, self-reported peer victimization was linked with parent- and teacher-reported externalizing behavior, and SCLR consistently moderated these associations. Peer victimization was associated with parent- and teacher-reported externalizing behavior among preadolescents who exhibited lower SCLR, but not among preadolescents who exhibited higher SCLR. Results suggest that promoting engagement with peer stress experiences and enhancing inhibitory control are potential intervention targets that may reduce externalizing behavior in the context of peer victimization (or reduce peer victimization among preadolescents who exhibit externalizing behavior). © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  4. Cepheid pulsation theory and multiperiodic cepheid variables

    International Nuclear Information System (INIS)

    Cox, A.N.; Cox, J.P.

    1975-01-01

    In this review of the multiperiodic Cepheid variables, the subject matter is divided into four parts. The first discusses general causes of pulsation of Cepheids and other variable stars, and their locations on the H-R diagram. In the second section, the linear adiabatic and nonadiabatic theory calculation of radial pulsation periods and their application to the problem of masses and double-mode Cepheids are reviewed. Periodic solutions, and their stability, of the nonlinear radial pulsation equations for Cepheids and RR Lyrae stars are considered in the third section. The last section provides the latest results on nonlinear, nonperiodic, radial pulsations for Cepheids and RR Lyrae stars. (BJG)

  5. Transmitted cardiovascular pulsations on high resolution esophageal impedance manometry, and their significance in dysphagia

    Science.gov (United States)

    Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing

    2017-01-01

    AIM To investigate the behavior of pulsatile pressure zones (PPZ’s) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. METHODS Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). RESULTS Among 317 screened patients, 56% cases and 64% controls had PPZ’s. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ’s in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ’s impaired bolus clearance in 9 additional cases by > 20%. CONCLUSION Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel. PMID:29209125

  6. Transmitted cardiovascular pulsations on high resolution esophageal impedance manometry, and their significance in dysphagia.

    Science.gov (United States)

    Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing

    2017-11-28

    To investigate the behavior of pulsatile pressure zones (PPZ's) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). Among 317 screened patients, 56% cases and 64% controls had PPZ's. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ's in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ's impaired bolus clearance in 9 additional cases by > 20%. Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel.

  7. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  8. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    Science.gov (United States)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  9. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  10. Resection arthroplasty, external fixation, and negative pressure dressing for first metatarsophalangeal joint ulcers.

    Science.gov (United States)

    Stone, Craig; Smith, Nicholas

    2011-03-01

    A frequent complication for the diabetic patient is neuropathic ulceration on the plantar surface of the first metatarsophalangeal (MTP) joint which can be difficult to manage. Debridement and resection arthroplasty with temporary external fixation and VAC dressing (Kinetic Concepts Inc, San Antonio, TX) is an alternative operative treatment to amputation. This study examined the outcomes of one center's experience with patients who have undergone this procedure. This retrospective cohort study examined patients who underwent the procedure between March 2002 and March 2010. Information was obtained on relevant outcomes including: the initial procedure, secondary procedures on either foot, total time in external fixation, time until amputation, cause of ulceration and co-morbid conditions. During the study period, 16 patients underwent resection arthroplasty with external fixation for first MTP ulceration. Fourteen of these patients had underlying diabetes mellitus, one had Charcot-Marie-Tooth disease and one had neuropathy of unknown cause. All were available for followup at the end of the study period. Median followup was 38 (range, 3 to 96) months. At latest followup, six patients required amputation, either transmetatarsal or transtibial, to treat their recurring ulceration. Resection arthroplasty with temporary external fixation appears to be a safe, effective and possible alternative to amputation for the treatment of neuropathic ulceration of the first MTP.

  11. Skin perfusion pressure on the legs measured as the external pressure required for skin reddening after blanching

    DEFF Research Database (Denmark)

    Holstein, P; Nielsen, P.E.; Lund, P

    1980-01-01

    -187) compared to 80.8 mmHg (range 18-158) (P > 0.1). A normal material was obtained from twenty-four subjects measured on the thigh, calf and ankle; the average gradients between the auscultatory brachial mean blood pressure and the BTEP were: thigh 10.7 mmHg (SD 12.7); calf 4.0 mmHg (SD 12.1); ankle 5.1 mm...

  12. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    Science.gov (United States)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  13. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1990-01-01

    In this paper the authors give a general review of the pulsating δ Scuti variables, including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Then we discuss three models of these stars, and use them to study the nonlinear hydrodynamic behavior of these stars, after which the authors outline the hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions. The authors also present the problems of allowing for time-dependent convection and its great sensitivity to temperature and density. Tentative results to data do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. Finally, the authors find that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. The δ Scuti variables are the most common type of variable star in our galaxy except for the white dwarfs. This is because stars in the mass range from just over one M circle-dot up to at least several M circle-dot pass through the yellow giant instability strip in the Hertzsprung-Russell diagram as they evolve off the main sequence to the red. Actually, stars up to the maximum main sequence mass also evolve through this region at higher luminosities, but there are so few of them, and they evolve so rapidly to the red, that they are almost unknown. At the higher luminosity, they probably would be called first-instability strip-crossing Cepheids anyway. Such cepheids are difficult to separate from those that are on the second blueward instability strip crossing that is much slower. Really, the δ Scuti variables are just low-luminosity Cepheids

  14. Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure.

    Science.gov (United States)

    Sydoryk, Ihor; Lim, Alan; Jäger, Wolfgang; Tulip, John; Parsons, Matthew T

    2010-02-20

    We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm(-1) (9.88 and 9.41 microm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

  15. Study of the effect of Ni substitution and external pressure in Li2Pd3B superconductor

    International Nuclear Information System (INIS)

    Mani, Awadhesh; Geetha Kumary, T.; Bharathi, A.; Kalavathi, S.; Sankara Sastry, V.; Hariharan, Y.

    2005-01-01

    Samples belonging to the series Li 2 (Pd 1-x Ni x ) 3 B for x = 0-0.2 have been synthesized. Phase purity of the samples is established using X-ray diffraction. The lattice parameter decreases with increasing Ni substitution. The superconducting transition temperature, T c , exhibits a decrease with increasing Ni concentration. On the application of external pressure up to 3 GPa, the onset T c decreases monotonically at a rate d ln T c /dP of ∼0.064 GPa -1 . The results are seen to be consistent with the behaviour expected of conventional superconductors

  16. Application of dimensional analysis to the study of shells subject to external pressure and to the use of models

    International Nuclear Information System (INIS)

    Lefrancois, A.

    1976-01-01

    The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr

  17. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  18. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  19. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    Science.gov (United States)

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  20. Occurrence and average behavior of pulsating aurora

    Science.gov (United States)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  1. Local characteristics of the nocturnal boundary layer in response to external pressure forcing

    NARCIS (Netherlands)

    van der Linden, S.J.A.; Baas, P.; van Hooft, J.A.; van Hooijdonk, I.G.S.; Bosveld, F.C.; van de Wiel, B.J.H.

    2017-01-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw (The Netherlands). Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be

  2. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  3. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  4. Analysis of pressure distribution originated over the external plate window of the RA-10 nuclear fuel

    International Nuclear Information System (INIS)

    Gramajo, M A; Garcia, J.C

    2012-01-01

    The RA10 is a pool type multipurpose research reactor. The core consists of a rectangular array of MTR fuel type. The refrigeration system at full power and normal operations conditions is carried out by an ascendant flow through the core. To ensure the refrigeration in the sub-channel formed between two adjacent fuels, there is a window orifice over the outer fuel plate. Part of the coolant flow that gets into the fuel will be derived by the window orifice to the sub-channel. Due to the change in the coolant flow direction is necessary to establish the pressure distribution originated over the window In order to achieve this goal a CFD commercial code (FLUENT v6.3.26) was used to perform numerical simulations to obtain the pressure distribution over the window. A quarter of the fuel was modeled using proper symmetry and boundaries conditions (author)

  5. Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure

    International Nuclear Information System (INIS)

    Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F

    2011-01-01

    The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.

  6. Inspection device for external examination of pressure vessels, preferably for ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Figlhuber, D.; Gallwas, J.; Weber, R.; Weber, J.

    1978-01-01

    The inspection device is placed in the annular gap between pressure vessel and biological shield of the BWR. In the annulus there is arranged at least one longitudinal rail which has got vertical guideways. Along it there can be moved on testing paths a manipulator with the ultrasonic search unit. The manipulator drive is outside of the inspection annulus. It is coupled to the manipulator by means of a tension member being guided over a reversing unit mounted at the upper end of the longitudinal rail. As a tension member there may be used a drag chain; the drive and the reversing unit are provided with corresponding chain wheels. (DG) [de

  7. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  8. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  9. Pulsations in M dwarf stars

    OpenAIRE

    Rodríguez-López, C.; MacDonald, J.; Moya, A.

    2011-01-01

    We present the results of the first theoretical non-radial non-adiabatic pulsational study of M dwarf stellar models with masses in the range 0.1 to 0.5M_solar. We find the fundamental radial mode to be unstable due to an \\epsilon mechanism caused by deuterium (D-) burning for the young 0.1 and 0.2M_solar models, by non-equilibrium He^3 burning for the 0.2 and 0.25M_solar models of 10^4Myr, and by a flux blocking mechanism for the partially convective 0.4 and 0.5M_solar models once they reach...

  10. Automated intracranial pressure-controlled cerebrospinal fluid external drainage with LiquoGuard.

    Science.gov (United States)

    Linsler, Stefan; Schmidtke, Mareike; Steudel, Wolf Ingo; Kiefer, Michael; Oertel, Joachim

    2013-08-01

    LiquoGuard is a new device for intracranial pressure (ICP)-controlled drainage of cerebrospinal fluid (CSF). This present study evaluates the accuracy of ICP measurement via the LiquoGuard device in comparison with Spiegelberg. Thus, we compared data ascertained from simultaneous measurement of ICP using tip-transducer and tip-sensor devices. A total of 1,764 monitoring hours in 15 patients (range, 52-219 h) were analysed. All patients received an intraventricular Spiegelberg III probe with the drainage catheter connected to the LiquoGuard system. ICP reading of both devices was performed on an hourly basis. Statistical analysis was done by applying Pearson correlation and Wilcoxon-matched pair test (p drainage. However, LiquoGuard tends to provide misleading results in slit ventricles. Thus, before these drawbacks are further analysed, the authors recommend additional ICP measurement with internal tip-sensor devices to avoid dangerous erroneous interpretation of ICP data.

  11. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  12. Equivalence of chemical and external pressures in RCoLnO

    Energy Technology Data Exchange (ETDEWEB)

    Prando, Giacomo; Ortix, Carmine; Kataev, Vladislav [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW), Dresden (Germany); Profeta, Gianni [SPIN-CNR e Dipartimento di Fisica, Universita dell' Aquila (Italy); Sanna, Samuele [Dipartimento di Fisica, Universita di Pavia (Italy); Khasanov, Rustem [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Pal, Anand; Awana, Veer [National Physical Laboratory (CSIR), New Delhi (India); Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW), Dresden (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany); De Renzi, Roberto [Dipartimento di Fisica, Universita di Parma e CNISM (Italy)

    2015-07-01

    We report on the local magnetic properties of the series of ferromagnetic (FM) materials RCoLnO (R = La, Pr, Nd, Sm; Ln = As, P) as investigated by means of muon spin spectroscopy under pressure P and electron spin resonance (ESR). The effect of P is shown to be quantitatively equivalent to the chemical lattice shrinkage triggered by the different ionic radii of R ions. This is verified for both experimental-dependent quantities (i.e., magnetic field at the muon site) and for intrinsically material-dependent properties (i.e., FM critical temperature T{sub C}). Results of ESR in a wide range of temperature and magnetic field clearly display that magnetism is of localized nature, despite the overall metallic behaviour of these materials.

  13. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention

    Directory of Open Access Journals (Sweden)

    Qin Yi-Xian

    2010-03-01

    Full Text Available Abstract Background Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency. Methods Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison. Results The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency. Conclusions These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.

  14. Influence of transit water flow rate on its dispensation and on inflow through nozzles in pressure pipeline under action of external pressure

    Science.gov (United States)

    Cherniuk, V. V.; Riabenko, O. A.; Ivaniv, V. V.

    2017-12-01

    The influence of transit flow rate of water upon operative of the equipped with nozzles pressure pipeline is experimentally investigated. External pressure, which varies in the range of 1465-2295 mm, acted upon the pipeline. The angle β between vectors of velocities of the stream in the pipeline and jets which branch off through nozzles were given the value: 0° ; 45° ; 90° ; 135° ; 180°. The diameter of the pipeline was of D=20.18 mm, the diameter of nozzles d=6.01 mm. The distances between the nozzles were 180 mm, and the number of them 11. The value of the transit flow rate at input into the pipeline varied from 4.05 to 130.20 cm3 / s. The increase in flow rate of the transit flux Qtr caused increase in non-uniformity of distribution of operating heads and increase in flow rate of water along the pipeline over the segment of its dispensation. On the segment of collecting of water, inverse tendency was observed. The number of nozzles through which water became to be dispensed increased with the increase in Qtr.

  15. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  16. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  17. Buckling Capacity Curves for Steel Spherical Shells Loaded by the External Pressure

    Science.gov (United States)

    Błażejewski, Paweł; Marcinowski, Jakub

    2015-03-01

    Assessment of buckling resistance of pressurised spherical cap is not an easy task. There exist two different approaches which allow to achieve this goal. The first approach involves performing advanced numerical analyses in which material and geometrical nonlinearities would be taken into account as well as considering the worst imperfections of the defined amplitude. This kind of analysis is customarily called GMNIA and is carried out by means of the computer software based on FEM. The other, comparatively easier approach, relies on the utilisation of earlier prepared procedures which enable determination of the critical resistance pRcr, the plastic resistance pRpl and buckling parameters a, b, h, l 0 needed to the definition of the standard buckling resistance curve. The determination of the buckling capacity curve for the particular class of spherical caps is the principal goal of this work. The method of determination of the critical pressure and the plastic resistance were described by the authors in [1] whereas the worst imperfection mode for the considered class of spherical shells was found in [2]. The determination of buckling parameters defining the buckling capacity curve for the whole class of shells is more complicated task. For this reason the authors focused their attention on spherical steel caps with the radius to thickness ratio of R/t = 500, the semi angle j = 30o and the boundary condition BC2 (the clamped supporting edge). Taking into account all imperfection forms considered in [2] and different amplitudes expressed by the multiple of the shell thickness, sets of buckling parameters defining the capacity curve were determined. These parameters were determined by the methods proposed by Rotter in [3] and [4] where the method of determination of the exponent h by means of additional parameter k was presented. As a result of the performed analyses the standard capacity curves for all considered imperfection modes and amplitudes 0.5t, 1.0t, 1.5t

  18. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  19. Epsilon Aur monitoring during predicted pulsation phase

    Science.gov (United States)

    Waagen, Elizabeth O.; Templeton, Matthew R.

    2014-09-01

    Dr. Robert Stencel (University of Denver Astronomy Program) has requested that AAVSO observers monitor epsilon Aurigae from now through the end of the observing season. "Studies of the long-term, out-of-eclipse photometry of this enigmatic binary suggest that intervals of coherent pulsation occur at roughly 1/3 of the 27.1-year orbital period. Kloppenborg, et al. noted that stable variation patterns develop at 3,200-day intervals' implying that 'the next span of dates when such events might happen are circa JD ~2457000 (2014 December)'. "These out-of-eclipse light variations often have amplitudes of ~0.1 magnitude in U, and ~0.05 in V, with characteristic timescales of 60-100 days. The AAVSO light curve data to the present may indicate that this coherent phenomenon has begun, but we encourage renewed efforts by observers...to help deduce whether these events are internal to the F star, or externally-driven by tidal interaction with the companion star." Nightly observations or one observation every few days (CCD/PEP/DSLR, VUBR (amplitude too small for visual)) are requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Epsilon Aur was the subject of major international campaigns and the AAVSO's Citizen Sky project as it went through its 27.1-year eclipse in 2009-2011. Over 700 observers worldwide submitted over 20,000 multicolor observations to the AAVSO International Database for this project. Much information on eps Aur is available from the AAVSO, including material on the Citizen Sky website (http://www.aavso.org/epsilon-aurigae and http://www.citizensky.org/content/star-our-project). The Journal of the AAVSO, Volume 40, No. 2 (2012) was devoted to discussion of and research results from this event. See full Alert Notice for more details and observations.

  20. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  1. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  2. Theoretical pulsation of metallic-line stars

    International Nuclear Information System (INIS)

    Cox, A.N.; King, D.S.; Hodson, S.W.

    1979-01-01

    The linear-theory radial-pulsation stability of low-helium delta Scuti variable models (1.0--2.5 Msun) has been investigated to see if metallicism and pulsation can occur simultaneously. Metallicism, which occurs in slowly rotating stars after the gravitational settling of He and the loss of the He II convection zone and its deep mixing for Y< or approx. =0.1, can then be established rapidly compared with the evolution time scale. Pulsation can still occur with driving due to the residual helium and the enhanced hydrogen. With the reduced helium giving no connection zone, the pulsation instability strip, whose blue and edges are estimated in this paoer, is about half as wide as with a normal helium abundance. Zero helium in the surface driving regions, however, produces blue edges so red that probably no instability strip exists at all. The red edge, predicted theoretically on the basis of the importance of convection in the outer zone, agrees well with the observational one. Cool, low-helium and metallic-line stars are then predicted to pulsate in a 200--500 K wide strip that is widest between the main-sequence luminosity of 5 Lsun and 15 Lsun. This strip reasonably includes the observed pulsating delta Del and mild Am stars, but there may be conflicts. Since blue edges for varying ionization-zone helium content occur across the entire instability strip, bluer first and higher overtone pulsations are also predicted everywhere from less than 7000 K to over 8000 K, the redder ones probably showing metallicism

  3. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  4. Modeling of pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  5. Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction.

    Science.gov (United States)

    Ruiz-Aceituno, Laura; García-Sarrió, M Jesús; Alonso-Rodriguez, Belén; Ramos, Lourdes; Sanz, M Luz

    2016-04-01

    Microwave assisted extraction (MAE) and pressurized liquid extraction (PLE) methods using water as solvent have been optimized by means of a Box-Behnken and 3(2) composite experimental designs, respectively, for the effective extraction of bioactive carbohydrates (inositols and inulin) from artichoke (Cynara scolymus L.) external bracts. MAE at 60 °C for 3 min of 0.3 g of sample allowed the extraction of slightly higher concentrations of inositol than PLE at 75 °C for 26.7 min (11.6 mg/g dry sample vs. 7.6 mg/g dry sample). On the contrary, under these conditions, higher concentrations of inulin were extracted with the latter technique (185.4 mg/g vs. 96.4 mg/g dry sample), considering two successive extraction cycles for both techniques. Both methodologies can be considered appropriate for the simultaneous extraction of these bioactive carbohydrates from this particular industrial by-product. To the best of our knowledge this is the first time that these techniques are applied for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    Science.gov (United States)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  7. Recent developments in pulsating aurora studies

    International Nuclear Information System (INIS)

    Sandahl, I.

    1985-11-01

    The field of pulsating aurora studies is reviewed. The paper begins with a short description of the characteristics of pulsating auroras and the theoretical ideas which, in view of existing experimental results, seem most important. A selection of new theoretical results and experimental results from both ground based instruments and instruments on rockets and satellites is then presented. There is now convincing evidence that the luminosity modulation is caused by a modulated flux of electron. The electron flux modulation seems to arise from a modulated resonant interaction between electrons and whistler mode waves in the equatorial plane, but the reason for the modulation is not known. Measurements concerning the drift and location of patches and the creation of Pi1 micropulsations are also deiscussed. Finally some suggestions for future research work are outlined. Optical measurements, especially with low light level TV, have proven to be of great importance in experimental studies of pulsating auroras. (author)

  8. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  9. Pulsating star research and the Gaia revolution

    Directory of Open Access Journals (Sweden)

    Eyer Laurent

    2017-01-01

    Full Text Available In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  10. Pulsating star research and the Gaia revolution

    Science.gov (United States)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  11. Pulsation properties of Mira long period variables

    International Nuclear Information System (INIS)

    Cahn, J.H.

    1980-01-01

    A matter of great interest to variable star students concerns the mode of pulsation of Mira long period variables. In this report we first give observational evidence for the pulsation constant Q. We then compare the observations with calculations. Next, we review two interesting groups of papers dealing with hydrodynamic properties of long period variables. In the first, a fully dynamic nonlinear calculation maps out the Mira instability domain. In the second, special attention is paid to shock propagation beyond the photosphere which in large measure accounts for the complex spectra from this region. (orig./WL)

  12. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  13. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  14. Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number

    KAUST Repository

    Yoon, Sung Hwan

    2017-10-12

    According to previous theory, pulsating propagation in a premixed flame only appears when the reduced Lewis number, β(Le-1), is larger than a critical value (Sivashinsky criterion: 4(1 +3) ≈ 11), where β represents the Zel\\'dovich number (for general premixed flames, β ≈ 10), which requires Lewis number Le > 2.1. However, few experimental observation have been reported because the critical reduced Lewis number for the onset of pulsating instability is beyond what can be reached in experiments. Furthermore, the coupling with the unavoidable hydrodynamic instability limits the observation of pure pulsating instabilities in flames. Here, we describe a novel method to observe the pulsating instability. We utilize a thermoacoustic field caused by interaction between heat release and acoustic pressure fluctuations of the downward-propagating premixed flames in a tube to enhance conductive heat loss at the tube wall and radiative heat loss at the open end of the tube due to extended flame residence time by diminished flame surface area, i.e., flat flame. The thermoacoustic field allowed pure observation of the pulsating motion since the primary acoustic force suppressed the intrinsic hydrodynamic instability resulting from thermal expansion. By employing this method, we have provided new experimental observations of the pulsating instability for premixed flames. The Lewis number (i.e., Le ≈ 1.86) was less than the critical value suggested previously.

  15. Impact of external pneumatic compression target inflation pressure on transcriptome-wide RNA expression in skeletal muscle.

    Science.gov (United States)

    Martin, Jeffrey S; Kephart, Wesley C; Haun, Cody T; McCloskey, Anna E; Shake, Joshua J; Mobley, Christopher B; Goodlett, Michael D; Kavazis, Andreas; Pascoe, David D; Zhang, Lee; Roberts, Michael D

    2016-11-01

    Next-generation RNA sequencing was employed to determine the acute and subchronic impact of peristaltic pulse external pneumatic compression (PEPC) of different target inflation pressures on global gene expression in human vastus lateralis skeletal muscle biopsy samples. Eighteen (N = 18) male participants were randomly assigned to one of the three groups: (1) sham (n = 6), 2) EPC at 30-40 mmHg (LP-EPC; n = 6), and 3) EPC at 70-80 mmHg (MP-EPC; n = 6). One hour treatment with sham/EPC occurred for seven consecutive days. Vastus lateralis skeletal muscle biopsies were performed at baseline (before first treatment; PRE), 1 h following the first treatment (POST1), and 24 h following the last (7th) treatment (POST2). Changes from PRE in gene expression were analyzed via paired comparisons within each group. Genes were filtered to include only those that had an RPKM ≥ 1.0, a fold-change of ≥1.5 and a paired t-test value of <0.01. For the sham condition, two genes at POST1 and one gene at POST2 were significantly altered. For the LP-EPC condition, nine genes were up-regulated and 0 genes were down-regulated at POST1 while 39 genes were up-regulated and one gene down-regulated at POST2. For the MP-EPC condition, two genes were significantly up-regulated and 21 genes were down-regulated at POST1 and 0 genes were altered at POST2. Both LP-EPC and MP-EPC acutely alter skeletal muscle gene expression, though only LP-EPC appeared to affect gene expression with subchronic application. Moreover, the transcriptome response to EPC demonstrated marked heterogeneity (i.e., genes and directionality) with different target inflation pressures. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.

    1998-01-01

    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  17. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  18. A Pulsation Mechanism for GW Virginis Variables

    Science.gov (United States)

    Cox, Arthur N.

    2003-03-01

    The mechanism that produces pulsations in the hottest pre-white dwarfs has been uncertain since the early work indicated that helium is a poison that smooths opacity bumps in the opacity-temperature plane caused by the ionizations of the large observed amounts of carbon and oxygen. Very little helium seemed to be needed to prevent the kappa effect pulsation driving, but helium amounts of almost half of the mass in the surface composition are observed in the pulsating PG 1159-035 stars called the GW Virginis variables. Rather little change in the C and O surface abundances is observed from the hottest (RX J2117.1+3412 at 170,000 K) to the coolest (PG 0122+200 at 80,000 K) GW Vir variables. Actually the shortest observed periods (300-400 s) of these variables are generally predicted to be unstable in all models, but the longest observed periods (up to 1000 s) are difficult to excite. Three recent investigations differ in their conclusions, with two finding that helium and even a slight amount of hydrogen does not prevent the kappa effect of C and O ionizations. A more detailed study reported here confirms the poisoning effect of helium. However, the ionization K- and L-edge opacity of the original iron, whose global abundance is unaffected by all previous evolution, especially if enhanced by radiation absorption levitation, can give different, previously unexplored, opacity driving that can explain the observed pulsations. But even this iron ionization driving can be somewhat poisoned by bump smoothing if the C and O abundances are large. Nonvariable GW Vir stars in the observed instability strip could be the result of small composition variations in the pulsation driving layers.

  19. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  20. Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics

    International Nuclear Information System (INIS)

    Herwig, Heinz; Schmandt, Bastian

    2013-01-01

    Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach. (paper)

  1. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria

    International Nuclear Information System (INIS)

    Pilev, I M; Sotnikov, A A; Rigin, V E; Semenova, A V; Cherny, S G; Chirkov, D V; Bannikov, D V; Skorospelov, V A

    2012-01-01

    In the present work new criteria of optimal design method for turbine runner [1] are proposed. Firstly, based on the efficient method which couples direct simulation of 3D turbulent flow and engineering semi empirical formulas, the combined method is built for hydraulic energy losses estimation in the whole turbine water passage and the efficiency criterion is formulated. Secondly, the criterion of dynamic loads minimization is developed for those caused by vortex rope precession downstream of the runner. This criterion is based on the finding that the monotonic increase of meridional velocity component in the direction to runner hub, downstream of its blades, provides for decreasing the intensity of vortex rope and thereafter, minimization of pressure pulsation amplitude. The developed algorithm was applied to optimal design of 640 MW Francis turbine runner. It can ensure high efficiency at best efficiency operating point as well as diminished pressure pulsations at full load regime.

  2. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  3. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1984-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. The author discusses the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of the Sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. (Auth.)

  4. Stellar pulsations in beyond Horndeski gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  5. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  6. Pulsation of high luminosity helium stars

    International Nuclear Information System (INIS)

    King, D.S.; Wheeler, J.C.; Cox, J.P.; Cox, A.N.; Hodson, S.W.

    1979-01-01

    Preliminary calculations are made on a systematic restudy of the linear and nonlinear pulsations of helium stars allowing for more recent and higher estimates of the effective temperature and for the high carbon abundance. Linear and nonlinear models are used. Results show qualitative agreement with earlier ones, models with sufficiently large L/M have a very hot blue edge for their instability strip, very large L/M values lead to dynamically unstable models which would appear to eject mass and therefore may not be realistic models for the pulsating RCrB stars, for the sequence studied a reasonable mass could be greater than or equal to 1.5 Msub solar. 12 references

  7. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  8. High density operation in pulsator

    International Nuclear Information System (INIS)

    Klueber, O.; Cannici, B.; Engelhardt, W.; Gernhardt, J.; Glock, E.; Karger, F.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Morandi, P.

    1976-03-01

    This report summarizes the results of experiments at high electron densities (>10 14 cm -3 ) which have been achieved by pulsed gas inflow during the discharge. At these densities a regime is established which is characterized by βsub(p) > 1, nsub(i) approximately nsub(e), Tsub(i) approximately Tsub(e) and tausub(E) proportional to nsub(e). Thus the toroidal magnetic field contributes considerably to the plasma confinement and the ions constitute almost half of the plasma pressure. Furthermore, the confinement is appreciably improved and the plasma becomes impermeable to hot neutrals. (orig.) [de

  9. Nonradial pulsations of hot evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1987-01-01

    There are three classes of faint blue variable stars: the ZZ Ceti variables (DAV degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DOV degenerate dwarfs). None of these classes of variable stars were known at the time of the last blue star meeting. Observational and theoretical studies of the ZZ Ceti variables, the DBV variables, and the GW Vir variables have shown them to be pulsating in nonradial g-modes. The cause of the pulsation has been determined for each class of variable star and, in all cases, also involves predictions of the stars envelope composition. The predictions are that the ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers with less than 30% (by mass) of helium. Given these compositions, it is found that pulsation driving occurs as a result of the kappa and gamma effects operating in the partial ionization zones of either hydrogen or helium. In addition, a new driving mechanism, called convection blocking, also occurs in these variables. For the GW Vir variables, it is the kappa and gamma effects in the partial ionization regions of carbon and oxygen. 45 refs

  10. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  11. The history and development of nonlinear stellar pulsation codes

    International Nuclear Information System (INIS)

    Davis, C.G.

    1987-01-01

    This review is limited to the history and development of nonlinear stellar pulsation codes and methods. The narrative includes examples of practical interest in the application of these numerical methods to problems in stellar pulsation such as Cepheid mass discrepancy, the delineation of the RR Lyrae instability strip, and the question of the development of double-mode pulsation as observed in Cepheids, RR Lyrae and other variable stars. 15 refs

  12. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  13. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    rotor leading edge suggest that the circumference variation is little (7%) as compared to its variation in time as the pulse progresses. The primary aim of this paper is to investigate the relationship of the turbine speed, as well as the pulsating flow frequency to its performance. It was found that there are no direct instantaneous relationship between the pulsating pressure at the turbine inlet and the turbine efficiency, except when one considers an additional parameter, namely the incidence angle. This paper also intends to investigate the potential loss of information if the performance parameters are simply averaged without considering the instantaneous effects

  14. TV morphology of some episodes of pulsating auroras

    International Nuclear Information System (INIS)

    Vallance Jones, A.; Gattinger, R.L.

    1981-01-01

    Sets of all-sky TV images of pulsating auroras obtained during the displays through which the sounding rockets of the Pulsating Aurora Campaign were fired are presented and discussed. It is emphasized that these displays are considerably more complex and variable than might seem to be the case on the basis of zenith photometer records. The pulsation modulation pattern was observed to be travelling westward during the first flight; later in the same display this apparent motion ceased. For the second flight the pulsation modulation pattern was almost stationary. (auth)

  15. Musical scale estimation for some multiperiodic pulsating stars

    Science.gov (United States)

    Ulaş, B.

    2009-03-01

    The agreement between frequency arrangements of some multiperiodic pulsating stars and musical scales is investigated in this study. The ratios of individual pulsation frequencies of 28 samples of various types of pulsating stars are compared to 57 musical scales by using two different methods. The residual sum of squares of stellar observational frequency ratios is chosen as the indicator of the accordance. The result shows that the arrangements of pulsation frequencies of Y Cam and HD 105458 are similar to Diminished Whole Tone Scale and Arabian(b) Scale, respectively.

  16. Effect of external pressure environment on the internal noise level due to a source inside a cylindrical tank

    Science.gov (United States)

    Clevenson, S. A.; Roussos, L. A.

    1984-01-01

    A small cylindrical tank was used to study the effect on the noise environment within a tank of conditions of atmospheric (sea level) pressure or vacuum environments on the exterior. Experimentally determined absorption coefficients were used to calculate transmission loss, transmissibility coefficients and the sound pressure (noise) level differences in the interior. The noise level differences were also measured directly for the two exterior environments and compared to various analytical approximations with limited agreement. Trend study curves indicated that if the tank transmission loss is above 25 dB, the difference in interior noise level between the vacuum and ambient pressure conditions are less than 2 dB.

  17. Experimental study of Large-scale cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Barba, Maria; Bruce, Romain; Bonelli, Antoine; Baudouy, Bertrand

    2017-12-01

    Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices consisting of a long capillary tube bent into many U-turns connecting the condenser part to the evaporator part. They are thermally driven by an oscillatory flow of liquid slugs and vapor plugs coming from phase changes and pressure differences along the tube. The coupling of hydrodynamic and thermodynamic effects allows high heat transfer performances. Three closed-loop pulsating heat pipes have been developed by the DACM (Department of Accelerators, Cryogenics and Magnetism) of CEA Paris-Saclay, France. Each PHP measures 3.7 meters long (0.35 m for the condenser and the evaporator and 3 m for the adiabatic part), being almost 20 times longer than the longest cryogenic PHP tested. These PHPs have 36, 22 and 12 parallel channels. Numerous tests have been performed in horizontal position (the closest configuration to non-gravity) using nitrogen as working fluid, operating between 75 and 90 K. The inner and outer diameters of the stainless steel capillary tubes are 1.5 and 2 mm respectively. The PHPs were operated at different filling ratios (20 to 90 %), heat input powers (3 to 20 W) and evaporator and condenser temperatures (75 to 90 K). As a result, the PHP with 36 parallel channels achieves a certain level of stability during more than thirty minutes with an effective thermal conductivity up to 200 kW/m.K at 10 W heat load and during forty minutes with an effective thermal conductivity close to 300 kW/m.K at 5 W heat load.

  18. Evaluation of the internal and external responsiveness of the Pressure Ulcer Scale for Healing (PUSH) tool for assessing acute and chronic wounds.

    Science.gov (United States)

    Choi, Edmond P H; Chin, Weng Yee; Wan, Eric Y F; Lam, Cindy L K

    2016-05-01

    To examine the internal and external responsiveness of the Pressure Ulcer Scale for Healing (PUSH) tool for assessing the healing progress in acute and chronic wounds. It is important to establish the responsiveness of instruments used in conducting wound care assessments to ensure that they are able to capture changes in wound healing accurately over time. Prospective longitudinal observational study. The key study instrument was the PUSH tool. Internal responsiveness was assessed using paired t-testing and effect size statistics. External responsiveness was assessed using multiple linear regression. All new patients with at least one eligible acute or chronic wound, enrolled in the Nurse and Allied Health Clinic-Wound Care programme between 1 December 2012 - 31 March 2013 were included for analysis (N = 541). Overall, the PUSH tool was able to detect statistically significant changes in wound healing between baseline and discharge. The effect size statistics were large. The internal responsiveness of the PUSH tool was confirmed in patients with a variety of different wound types including venous ulcers, pressure ulcers, neuropathic ulcers, burns and scalds, skin tears, surgical wounds and traumatic wounds. After controlling for age, gender and wound type, subjects in the 'wound improved but not healed' group had a smaller change in PUSH scores than those in the 'wound healed' group. Subjects in the 'wound static or worsened' group had the smallest change in PUSH scores. The external responsiveness was confirmed. The internal and external responsiveness of the PUSH tool confirmed that it can be used to track the healing progress of both acute and chronic wounds. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  19. Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1999-01-01

    Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence on these paramet......Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence......, r = 1, 0.5 and 0.1), respectively. Results show that J(v), S and Delta E values slightly increase when the velocity of the feed solution increases, but the mixed electrolytes strongly affect both salt rejection and pressure-induced electrical potential. A change in the sign of both parameters...... with respect to the value determined with single electrolytes at the same concentration was obtained, which is attributed to a strong coupling among the fluxes of individual ions and their distribution in the membrane when transport of mixed salt is studied. (C) 1999 Elsevier Science B.V. All rights reserved....

  20. Period--luminosity--color relations and pulsation modes of pulsating variable stars

    International Nuclear Information System (INIS)

    Breger, M.; Bregman, J.N.

    1975-01-01

    The periods of delta Scuti, RR Lyrae, dwarf Cepheid, and W Virginis variables have been investigated for their dependence on luminosity, color, mass, and pulsation modes. A maximum-likelihood method, which includes consideration of the observational errors in each coordinate, has been applied to obtain observational period-luminosity-color (P-L-C) relations

  1. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  2. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  3. Pulsations in white dwarfs: Selected topics

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available This paper presents a very brief overview of the observed properties of g-mode pulsations in variable white dwarfs. We then discuss a few selected topics: Excitation mechanisms (kappa- and convection- mechanisms, and briefly the effect of a strong magnetic field (∼ 1 MG on g-modes as recently found in a hot DQ (carbon-rich atmosphere white dwarf. In the discussion of excitation mechanisms, a simple interpretation for the convection mechanism is given.

  4. Construction of Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  5. The Cepheid mass discrepancy and pulsation-driven mass loss

    NARCIS (Netherlands)

    Neilson, H.R.; Cantiello, M.; Langer, N.

    2011-01-01

    Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10−20%. Aims. We study the role of pulsation-driven mass loss

  6. Pressure monitoring and characterization of external sources of contamination at the site of the payment drinking water epidemiological studies.

    Science.gov (United States)

    Besner, Marie-Claude; Broséus, Romain; Lavoie, Jean; Giovanni, George Di; Payment, Pierre; Prévost, Michèle

    2010-01-01

    The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.

  7. Stress State of Elastic Thick-Walled Ring With Self-Balanced Pressures Distributed on Its Internal and External Borders

    Directory of Open Access Journals (Sweden)

    Kravchuk Aleksandr Stepanovich

    2015-10-01

    Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.

  8. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell

    Directory of Open Access Journals (Sweden)

    Jiankang Li

    2017-01-01

    Full Text Available Extensive studies of the crystal-rich inclusions (CIs hosted in minerals in pegmatite have resulted in substantially different models for the formation mechanism of the pegmatite. In order to evaluate these previously proposed formation mechanisms, the total homogenization processes of CIs hosted in spodumene from the Jiajika pegmatite deposit in Sichuan, China, were observed in situ under external H2O pressures in a new type of hydrothermal diamond-anvil cell (HDAC. The CIs in a spodumene chip were loaded in the sample chamber of HDAC with water, such that the CIs were under preset external H2O pressures during heating to avoid possible decrepitation. Our in situ observations showed that the crystals within the CIs were dissolved in carbonic-rich aqueous fluid during heating and that cristobalite was usually the first mineral being dissolved, followed by zabuyelite and silicate minerals until their total dissolution at temperatures between 500 and 720°C. These observations indicated that the minerals within the CIs were daughter minerals crystallized from an entrapped carbonate- and silica-rich aqueous solution and therefore provided useful information for evaluating the formation models of granitic pegmatites.

  9. Male sex, height, weight, and body mass index can increase external pressure to calf region using knee-crutch-type leg holder system in lithotomy position.

    Science.gov (United States)

    Mizuno, Ju; Takahashi, Toru

    2016-01-01

    Well-leg compartment syndrome (WLCS) is one of the catastrophic complications related to prolonged surgical procedures performed in the lithotomy position, using a knee-crutch-type leg holder (KCLH) system, to support the popliteal fossae and calf regions. Obesity has been implicated as a risk factor in the lithotomy position-related WLCS during surgery. In the present study, we investigated the relationship between the external pressure (EP) applied to the calf region using a KCLH system in the lithotomy position and selected physical characteristics. Twenty-one young, healthy volunteers (21.4±0.5 years of age, eleven males and ten females) participated in this study. The KCLH system used was Knee Crutch(®). We assessed four types of EPs applied to the calf region: box pressure, peak box pressure, contact pressure, and peak contact pressure, using pressure-distribution measurement system (BIG-MAT(®)). Relationships between these four EPs to the calf regions of both lower legs and a series of physical characteristics (sex, height, weight, and body mass index [BMI]) were analyzed. All four EPs applied to the bilateral calf regions were higher in males than in females. For all subjects, significant positive correlations were observed between all four EPs and height, weight, and BMI. EP applied to the calf region is higher in males than in females when the subject is supported by a KCLH system in the lithotomy position. In addition, EP increases with the increase in height, weight, and BMI. Therefore, male sex, height, weight, and BMI may contribute to the risk of inducing WLCS.

  10. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p...

  11. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  12. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; ;and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists

  13. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  14. Interplay between effects of external pressure and dilution of the U-sublattice in UCoAl-based materials

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Koyama, K.; Mushnikov, N. V.; Sechovský, V.; Shiokawa, Y.; Satoh, I.; Watanabe, K.

    2007-01-01

    Roč. 441, - (2007), s. 33-38 ISSN 0925-8388 R&D Projects: GA ČR GA202/06/0178; GA AV ČR(CZ) IAA100100530 Institutional research plan: CEZ:AV0Z10100520 Keywords : uranium intermetallics * single crystals * ferromagnetism * metamagnetism * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2007

  15. Passive cooling applications for nuclear power plants using pulsating steam-water heat pipes

    International Nuclear Information System (INIS)

    Aparna, J.; Chandraker, D.K.

    2015-01-01

    Gen IV reactors incorporate passive principles in their system design as an important safety philosophy. Passive safety systems use inherent physical phenomena for delivering the desired safe action without any external inputs or intrusion. The accidents in Fukushima have renewed the focus on passive self-manageable systems capable of unattended operation, for long hours even in extended station blackout (SBO) and severe accident conditions. Generally, advanced reactors use water or atmospheric air as their ultimate heat sink and employ passive principles in design for enhanced safety. This paper would be discussing the experimental results on pulsating steam water heat-pipe devices and their applications in passive cooling. (author)

  16. Theory of ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Chen, Liu.

    1991-03-01

    Long-period (T = 10-600 s) geomagnetic pulsations are known to be associated with magnetohydrodynamic (MHD) perturbations in the Earth's magnetosphere. Broadly speaking, there are two categories of excitation mechanisms. The first category corresponds to impulsive/external excitations, where MHD waves exhibit the stable discrete as well as continuous spectra. The second category corresponds to spontaneous/internal excitations, where MHD instabilities are excited either reactively or via wave-particle interactions. In this tutorial lecture, we briefly review theories concerning both categories of excitation mechanisms and compare theoretical predictions with available satellite observations. 20 refs

  17. Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors.

    Science.gov (United States)

    Vikas; Chayawan

    2014-01-01

    For predicting physico-chemical properties related to environmental fate of molecules, quantitative structure-property relationships (QSPRs) are valuable tools in environmental chemistry. For developing a QSPR, molecular descriptors computed through quantum-mechanical methods are generally employed. The accuracy of a quantum-mechanical method, however, rests on the amount of electron-correlation estimated by the method. In this work, single-descriptor QSPRs for supercooled liquid vapor pressure of chloronaphthalenes and polychlorinated-naphthalenes are developed using molecular descriptors based on the electron-correlation contribution of the quantum-mechanical descriptor. The quantum-mechanical descriptors for which the electron-correlation contribution is analyzed include total-energy, mean polarizability, dipole moment, frontier orbital (HOMO/LUMO) energy, and density-functional theory (DFT) based descriptors, namely, absolute electronegativity, chemical hardness, and electrophilicity index. A total of 40 single-descriptor QSPRs were developed using molecular descriptors computed with advanced semi-empirical (SE) methods, namely, RM1, PM7, and ab intio methods, namely, Hartree-Fock and DFT. The developed QSPRs are validated using state-of-the-art external validation procedures employing an external prediction set. From the comparison of external predictivity of the models, it is observed that the single-descriptor QSPRs developed using total energy and correlation energy are found to be far more robust and predictive than those developed using commonly employed descriptors such as HOMO/LUMO energy and dipole moment. The work proposes that if real external predictivity of a QSPR model is desired to be explored, particularly, in terms of intra-molecular interactions, correlation-energy serves as a more appropriate descriptor than the polarizability. However, for developing QSPRs, computationally inexpensive advanced SE methods such as PM7 can be more reliable than

  18. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  19. Thermodynamic properties of a high pressure subcritical UF6He gas volume (irradiated by an external source)

    International Nuclear Information System (INIS)

    Sterritt, D.E.; Lalos, G.T.; Schneider, R.T.

    1976-12-01

    A computer simulation study concerning a compressed fissioning UF 6 gas is presented. The compression is to be achieved by a ballistic piston compressor. Data on UF 6 obtained with this compressor were incorporated in the simulation study. As a neutron source to create the fission events in the compressed gas, a fast burst reactor was considered. The conclusion is that it takes a neutron flux in excess of 10 15 n/cm 2 -s to produce measurable increases in pressure and temperature, while a flux in excess of 10 19 n/cm 2 -s would probably damage the compressor

  20. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire

    International Nuclear Information System (INIS)

    Rezaei, G.; Mousavi, S.; Sadeghi, E.

    2012-01-01

    Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.

  1. The ionospheric signature of Pi 2 pulsations observed by STARE

    International Nuclear Information System (INIS)

    Sutcliffe, P.R.; Nielsen, E.

    1992-01-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 degree phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere

  2. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure)

    International Nuclear Information System (INIS)

    Hernandez, O.

    1997-01-01

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict

  3. Regional Externalities

    NARCIS (Netherlands)

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  4. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  5. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  6. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  7. Copper alloys disintegration using pulsating water jet

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klich, Jiří; Foldyna, Josef; Hloch, Sergej; Królczyk, J. B.; Cárach, J.; Krolczyk, G.

    2016-01-01

    Roč. 82, March 2016 (2016), s. 375-383 ISSN 0263-2241 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * generation of pulses * disintegration * surface morphology * copper alloys Subject RIV: JQ - Machines ; Tools Impact factor: 2.359, year: 2016 http://ac.els-cdn.com/S0263224116000154/1-s2.0-S0263224116000154-main.pdf?_tid=8f8d1de6-99e9-11e6-afbc-00000aacb362&acdnat=1477314089_59912e52847e91e2030d6a1afd09e7b2

  8. Masses and pulsations of BL Herculis variables

    International Nuclear Information System (INIS)

    Hodson, S.W.; Cox, A.N.; King, D.S.

    1981-01-01

    From linear results, the masses of BL Her variables must be nearer to 0.55 M /sub sun/ than 0.75 M /sub sun/ if the bump phase transition (resonance) is to be located anywhere near the observed period range of 1./sup d/5 to 1./sup d/7. The nonlinear results are consistent with the Simon resonance concept, but demonstrate that light and velocity curve shapes are a nonlinear phenomenon that require nonlinear period ratios to display the resonances only in the narrow, observed range of 1./sup d/5 to 1./sup d/7. The mass near 0.55 M /sub sun/ is in good agreement with evolution calculations (Sweigart and Gross, 1976) and nonlinear pulsation studies of Carson, Stothers, and Vemury (1981) and Stothers

  9. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  10. In-vessel core debris retention through external flooding of the reactor pressure vessel. SCDAP/RELAP5 assessment for the SBWR lower head

    International Nuclear Information System (INIS)

    Heel, A.M.J.M. van.

    1995-09-01

    In this report the results are discussed from various analyses on the feasibility and phenomenology of the External Flooding (EF) concept for an SBWR lower head, filled with a large heat generating corium mass. In applying External Flooding as an accident management strategy after or during core melt down, the lower drywell is filled with water up to a level where a large portion of the Reactor Pressure Vessel (RPV) is flooded. The purpose of this method is to establish cooling of the vessel wall, that is challenged by the heat load resulting from the corium, in such a way that its structural integrity if not endangered. The analysis discussed in this report focus on the thermal response of the vessel wall and the ex-vessel boiling processes under the conditions described above. For these analyses the SCDAP/REALP5 MOD 3.1 code was used. The major outcome of the calculations is, that a major part of the vessel wall remains well below themelting temperature of carbon steel, as long as flooding of the external surface of the lower head is established. The SCDAP/RELAP5 analyses indicated that low-quality Critical Heat Flux (CHF) was not exceeded, under all the conditions that had been tested. However, a comaprison of the heat fluxes, as calculated in RELAP5, with the CHF values obtained from the Zuber correlation and the Vishnev correction factor (for boiling at inclined surfaces) proved that CHF values, based on these criteria, were exceeded in several surface points of the lower head mesh. The correlations, as resident in the current version of RELAP5 MOD 3.1, might lead to over-estimation of CHF for the EF analyses discussed in this report. The use of the more conservative Zuber correlation with the Vishnev correction factor is recommended for EF analyses. (orig.)

  11. Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy

    Science.gov (United States)

    Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.

    2018-06-01

    A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0  →  5 T. The most interesting observation is the  ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.

  12. The multi-layered ring under parabolic distribution of radial stresses combined with uniform internal and external pressure

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-04-01

    Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.

  13. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology.

    Science.gov (United States)

    Casini, Arturo; Chang, Fang-Yuan; Eluere, Raissa; King, Andrew M; Young, Eric M; Dudley, Quentin M; Karim, Ashty; Pratt, Katelin; Bristol, Cassandra; Forget, Anthony; Ghodasara, Amar; Warden-Rothman, Robert; Gan, Rui; Cristofaro, Alexander; Borujeni, Amin Espah; Ryu, Min-Hyung; Li, Jian; Kwon, Yong-Chan; Wang, He; Tatsis, Evangelos; Rodriguez-Lopez, Carlos; O'Connor, Sarah; Medema, Marnix H; Fischbach, Michael A; Jewett, Michael C; Voigt, Christopher; Gordon, D Benjamin

    2018-03-28

    Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.

  14. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  15. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  16. A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset

    Science.gov (United States)

    Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.

    2016-12-01

    Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.

  17. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  18. Pulsations of stellar models in H and He burning phases

    International Nuclear Information System (INIS)

    Gurm, H.S.; Sukhija, H.M.; Badalia, J.K.

    1983-01-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of #betta# Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram. (orig.)

  19. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  20. Pulsating Heat Pipe for Cryogenic Fluid Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A passive Pulsating Heat Pipe (PHP) system is proposed to distribute cooling over broad areas with low additional system mass. The PHP technology takes advantage of...

  1. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  2. Pulsations of stellar models in H and He burning phases

    Energy Technology Data Exchange (ETDEWEB)

    Gurm, H S; Sukhija, H M; Badalia, J K [Punjabi Univ., Patalia (India). Dept. of Astronomy and Space Sciences

    1983-02-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of ..beta.. Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.

  3. The Case of the Woman Who Did Never Dare to Fly: Headache Attributed to Imbalance Between Intrasinusal and External Air Pressure.

    Science.gov (United States)

    Mainardi, Federico; Maggioni, Ferdinando; Zanchin, Giorgio

    2016-02-01

    A new form of headache, Headache attributed to aeroplane travel (AH), has been recognized within the International Classification of Headache Disorders 3 beta (ICHD-3beta). In 8 out of 85 AH cases we identified the coexistence of a headache with identical features of AH, but appearing during the rapid descent by car from a high mountain. Pain began shortly after the rapid descent from a medium altitude of 1920 m above sea level, the maximum peak of intensity developing within a few minutes. All of the patients reported the disappearance of pain within 20 minutes of the rapid descent. We recently observed a 36-year-old woman who experienced recurrent headache attacks that were constantly triggered by rapid descent from high altitude by car. Negatively shaped by this experience, the patient never dared to fly. Headache attacks sharing the same features and occurring in three distinct conditions of pressure variations (aeroplane travel, rapid altitude mountain descent, snorkelling, or scuba diving) have already been reported, although the last two only anecdotally. If confirmed by further case series, they could be gathered together in a unique heading: Headache attributed to imbalance between intrasinusal and external air pressure within the 10th chapter: Headache attributed to disorders of the homoeostasis. © 2016 American Headache Society.

  4. GD 154: White dwarf with multi- and monoperiodic pulsation

    Directory of Open Access Journals (Sweden)

    Bognár Zs.

    2013-03-01

    Full Text Available We present the white dwarf GD 154 as an example where either monoperiodic or multiperiodic pulsation were found at different epochs. The mono-multi-monoperiodic stage seems to alternate. Many questions have been raised. Is this behaviour connected to the evolution of DAV stars? How often does it happen? Is there any regularity in this change of the pulsational behaviour or is it irregular?

  5. Structure of Alpha Virginis. III. The pulsation characteristics

    International Nuclear Information System (INIS)

    Odell, A.P.

    1980-01-01

    Stellar structure models which were generated to match the photometric and binary properties of the B1.5 IV star Spica (α Vir) are analyzed for pulsation characteristics. The pulsation computations were linear and adiabatic and included both radial and nonradial (l=2) motions. Three sets of models were tested: normal evolution using Cox-Steward opacities, normal evolution using opacities increased substantially over Cox-Stewart, and evolution models using Cox-Stewart opacities but with a nonshrinking convective core

  6. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  7. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  8. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    Science.gov (United States)

    Reed, M. D.; Kawaler, S. D.; Østensen, R. H.; Bloemen, S.; Baran, A.; Telting, J. H.; Silvotti, R.; Charpinet, S.; Quint, A. C.; Handler, G.; Gilliland, R. L.; Borucki, W. J.; Koch, D. G.; Kjeldsen, H.; Christensen-Dalsgaard, J.

    2010-12-01

    We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool (Teff≈ 23 900 K) and for the first time hybrid pulsators which have larger g-mode amplitudes than p-mode ones. All of these pulsators are quite rich with many frequencies and we are able to apply asymptotic relationships to associate periodicities with modes for KIC010670103. Kepler data are particularly well suited for these studies as they are long duration, extremely high duty cycle observations with well-behaved noise properties.

  9. Experimental study of exhaust noise generated by pulsating flow downstream of pipe end; Myakudoryu ni yori yukisareru kantanbu karyu ni okeru haiki soon no jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Higashiyama, J; Iwamoto, J [Tokyo Denki University, Tokyo (Japan)

    1997-10-01

    A experimental study was carried out for the emissoin of the exhaust noise from an open end of the pipe generated by the pulsating flow in the pipe. The pressure histories along the pipe, the exhaust noise and visualized the flow field downstream of the pipe end were obtained. And a characteristic of frequency for the exhaust noise was examined, using Wigner distribution (WD). A relation between the pulsating flow in the pipe and the exhaust noise was important for understanding the mechanism of the exhaust noise generation. 4 refs., 8 figs., 1 tab.

  10. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν  ∼< 10 -11  μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  11. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  12. Photometric Survey to Search for Field sdO Pulsators

    Science.gov (United States)

    Johnson, C.; Green, E.; Wallace, S.; O'Malley, C.; Amaya, H.; Biddle, L.; Fontaine, G.

    2014-04-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011) of four rapidly pulsating sdO stars in the globular cluster ω Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in ω Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the ω Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  13. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  14. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  15. Doubling the number of pulsating DB white dwarfs

    International Nuclear Information System (INIS)

    Nitta, Atsuko; Kleinman, S J; Krzenski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, F; Nather, R E; Winget, D E; Sullivan, D; Thompson, Susan E

    2009-01-01

    We are searching for new pulsating DB white dwarf stars (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, DAVs or ZZ Ceti stars. Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. At the time of the meeting, we reported on the nine new DBVs, doubling the number of previously known DBVs. Here we report the new nine pulsators' lightcurves and power spectra.

  16. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  17. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  18. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  19. The effect of tides on self-driven stellar pulsations

    Science.gov (United States)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  20. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  1. Modulation depth analysis in fast pulsations of solar radio emission

    International Nuclear Information System (INIS)

    Chernov, G.P.; Kurts, Yu.; Akademie der Wissenschaften der DDR, Berlin

    1990-01-01

    A model of millisecond pulsations due to a pulsation regime of a whistler spectrum is confirmed by the statistical analysis of the modulation depth in five type IV bursts; a modulation depth distribution ΔI/I versus the period (p) grows linearly (with the different slope) up to the maximum at the value ΔI/I ≅ 0.5-0.6. The same dependence ΔI/I(p) for spikes, observed during the same events, testifies also in favour of this model. The overlap on fast pulsations of fiber bursts and of sudden reductions are displayed in the ΔI/I(p) distribution by diffuse tails which are naturally explained by the known models of this fine structure

  2. Theory of auroral zone PiB pulsation spectra

    International Nuclear Information System (INIS)

    Lysak, R.L.

    1988-01-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere

  3. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  4. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  5. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  6. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    Science.gov (United States)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  7. Prevention of pulsations caused by flexible risers

    NARCIS (Netherlands)

    Belfroid S.P.C; Golliard, J.; Korst, H.J.C.

    2013-01-01

    In the last few decades, flexible risers have increasingly been used in the offshore oil and gas industry. In gas applications these risers can generate high amplitude tonal pressure fluctuations when the gas velocity reaches a threshold value. The resulting pressure fluctuations can then cause high

  8. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear......The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  9. Antecedents of Teachers Fostering Effort within Two Different Management Regimes: An Assessment-Based Accountability Regime and Regime without External Pressure on Results

    Science.gov (United States)

    Christophersen, Knut-Andreas; Elstad, Eyvind; Turmo, Are

    2012-01-01

    This article focuses on the comparison of organizational antecedents of teachers' fostering of students' effort in two quite different accountability regimes: one management regime with an external-accountability system and one with no external accountability devices. The methodology involves cross-sectional surveys from two different management…

  10. Theoretical research of helium pulsating heat pipe under steady state conditions

    International Nuclear Information System (INIS)

    Xu, D; Liu, H M; Li, L F; Huang, R J; Wang, W

    2015-01-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied. (paper)

  11. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  12. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  13. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  14. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  15. A test of Pulsation Theory in Hot B Subdwarfs

    Science.gov (United States)

    Fontaine, Gilles

    There are currently of the order of 15 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of millimag), short-period (100-500 s), multiperiodic luminosity variations. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that, in several instances, variable and non-variable objects with similar effective temperatures and gravities may coexist in the HR diagram. This result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will i) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters; ii) provide a consistency check with our wind models; and iii) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  16. A Test of Pulsation Theory in Hot B Subdwarfs (bis)

    Science.gov (United States)

    Fontaine, G.

    There are currently 33 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of mmag), short-period (100-500 s), multiperiodic luminosity variations caused by acoustic mode instabilities. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron and other iron-peak elements) abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that variable and nonvariable objects with similar effective temperatures and gravities coexist in the log g-Teff diagram. This puzzling result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will 1) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters, 2) provide a consistency check with our wind models, and 3) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  17. Massive B-type pulsators in low-metallicity environments

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2009-07-01

    Massive B-type pulsators such as β Cep and slowly pulsating B (SPB) stars pulsate due to layers of increased opacity caused by partial ionization. The increased opacity blocks the energy flux to the surface of the stars which causes the layers to rise and the opacity to drop. This cyclical behavior makes the star act as a heat engine and the star will thus pulsate. For β Cep and SPB stars the increased opacity is believed to be caused by partial ionization of iron and these stars should therefore contain non-insignificant quantities of the metal. A good test of this theory is to search for β Cep and SPB stars in low-metallicity environments. If no stars are found the theory is supported, but, on the other hand, if a substantial number of β Cep and SPB stars are found in these environments then the theory is not supported and a %solutions solution is needed. With a growing number of identified β Cep and SPB stars in the low-metallicity Magellanic Clouds we seem to be left with the second case. We will in this context discuss recent findings of β Cep and SPB stars in the Magellanic Clouds and some possible solutions to the discrepancy between these observations and the theory. We also describe an ambitious project that we have initiated on the Small Magellanic Cloud open cluster NGC 371 which will help to evaluate these solutions.

  18. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  19. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude dependent phase-shifts of 180°, at the

  20. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  1. Pulsating instabilities and chaos in lasers

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, R G; Biswas, D J

    1985-01-01

    A detailed state of the art survey of deterministic chaos in laser systems is presented. The mechanism of single mode instability is discussed, including spontaneous and induced mode splitting and the threshold for laser instabilities. Single mode homogeneously broadened systems are addressed, including optically pumped far infrared lasers and near-resonantly pumped midinfrared systems. Single mode inhomogeneously broadened systems are considered, including the He-Xe laser and the He-Ne laser at 3.39 microns. Single mode lasers with external control parameter are discussed, as is the multimode laser. 297 references.

  2. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  3. Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure.

    Science.gov (United States)

    Di Rocco, C; Pettorossi, V E; Caldarelli, M; Mancinelli, R; Velardi, F

    1977-11-15

    Experimental hydrocephalus has been induced in lambs by artificial increase of the amplitude of intraventricular cerebrospinal fluid (CSF) oscillations related to arterial pulsations, without concomitant changes of the mean CSF-pressure. The characteristics of this hydrocephalus demonstrate that the intraventricular CSF-pulsations can play a role in the genesis of ventricular dilation. Such a method may be used to produce an original model of hydrocephalus independent of changes of CSF-circulation or absorption.

  4. A hybrid method of estimating pulsating flow parameters in the space-time domain

    Science.gov (United States)

    Pałczyński, Tomasz

    2017-05-01

    This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.

  5. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  6. Comparative pulsation calculations with OP and OPAL opacities

    Science.gov (United States)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  7. Energy confinement in the tokamak devices pulsator and ASDEX

    International Nuclear Information System (INIS)

    Klueber, O.; Murmann, H.

    1982-04-01

    The energy confinement of ohmically heated hydrogen plasmas obtained in the ASDEX and Pulsator tokamaks is investigated. In both devices, the confinement time does not follow a simple scaling law of the type tausub(E) approx. equal to nsub(e)a 2 . In the case of Pulsator, a regime is identified in which the transport is governed by electron heat conduction. The experimental data are compared with an analytic solution of the energy balance equation from which a heat diffusivity chisub(e) approx. equal to Zsub(eff)sup(1/3)/nsub(e)(r)Tsub(e)sup(1/2)(r)q(r) is inferred. chisub(i) is supposed to be neoclassical (plateau regime). Heat conduction following these laws is shown to lead to a consistent description of the full data set. (orig.)

  8. Results on (UNPublished Wet Runs on Pulsating DB White Dwarfs

    Directory of Open Access Journals (Sweden)

    Handler G.

    2003-03-01

    Full Text Available I have collected all the WET archival data on the pulsating DB white dwarf stars (DBVs and re-reduced them. In addition, the WET has recently observed three DBVs. Preliminary results on PG 1115+158, PG 1351+489, KUV 05134+2605, PG 1654+160 and PG 1456+103 are presented, and the future use of the data is outlined.

  9. Decreasing of pulsation intensity levels in X-ray receivers

    CERN Document Server

    Dvoryankin, V F; Kudryashov, A A; Petrov, A G

    2002-01-01

    The low frequency filter is applied in the multichannel receiver on the basis of the GaAs epitaxial structures for decreasing the pulsations level at the signals amplifier outlet. The optimal band of the filter is determined by the transition processes by the detector scanning in the roentgen beams. The X-ray source of radiation with the medium-frequency feeding generator is used for verifying the quality of the obtained X-ray image

  10. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  11. The effect of cushion-ram pulsation on hot stamping

    Science.gov (United States)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  12. Are dayside long-period pulsations related to the cusp?

    Directory of Open Access Journals (Sweden)

    V. Pilipenko

    2015-03-01

    Full Text Available We compare simultaneous observations of long-period ultra-low-frequency (ULF wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5–6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open–closed boundary also seems doubtful. Transient currents producing broadband Pc5–6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5–6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.

  13. Metallicism and pulsation: an analysis of the delta Delphini stars

    International Nuclear Information System (INIS)

    Kurtz, D.W.

    1976-01-01

    Fine abundance analyses of seven delta Delphini stars and one delta Scuti star relative to four comparison standards are presented. Five of the delta Del stars are shown to have abundances most similar to the evolved Am stars. It is argued that these abundances are different from the classical Am star and Ap star abundances and that similarities to the Ba II star abundances are coincidental. We suggest that the anomalous abundance delta Del stars are evolved metallic line stars on the basis of their abundances, position in the β, M/sub v/ plane, inferred rotational velocities, and perhaps their binary incidence. Some of the delta Del stars are delta Scuti pulsators. We argue that pulsation and metallicism are mutually exclusive among the classical Am stars but may coexist in other stars related to the classical Am stars. A preference for the diffusion hypothesis model for the metallic line stars is stated and supported and the implications of the coexistence of pulsation and diffusion are discussed

  14. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  15. Reasons for the appearance of pulsations in gas-lift wells and methods of eliminating them

    Energy Technology Data Exchange (ETDEWEB)

    Sibirev, A P; Grekhov, V V; Leonov, V A; Shigapov, R R

    1985-01-01

    It is shown that the main reason for pulsation in the gas-lift well output is lack of coordinated operation between the bed and the gas-lift lifter. A plan is suggested for making decisions to conduct work to detect and eliminate pulsations in the gas-lift well output which permit elimination of the pulsation in the shortest time and with the least outlays.

  16. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    Science.gov (United States)

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  17. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    International Nuclear Information System (INIS)

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  18. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  19. Simulation of a scenario of total loss of external and internal power (Sbo) for different vent pressures of the containment of a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V.

    2014-10-01

    The simulation of a Station Black Out (Sbo) was realized with intervention of the vent containment by means of a rigid vent coming from the dry-well and that discharges directly to the atmosphere, with the MELCOR code version 2.1. This scenario was carried out for a BWR-5 and containment type Mark II, with a thermal power of 2317 MWt similar to the reactor of nuclear power plant of Laguna Verde. For this scenario was considered as only available system for coolant injection to the reactor to the Reactor Core Isolation Cooling (Rcic), which remained operating 4 hours with batteries bank. The Security and Relief Valves (SR V) were considered functional (by simplicity) and that they mechanically do not exceed their capacity to liberate pressure due to the performances in their safety way. The operator maneuver to perform the SR V and to de pressurize the vessel until the pressure (13 kg/cm 2 ) to operate the low pressure systems was modeled. The results cover approximately 48 hours (172000 seconds), time in which was observed the behavior of the level and pressure in the vessel. Also the scenario evolution was analyzed to different vent pressures of the primary containment (2.0, 3.0, 4.5, 6.0, and 10.0 kg/cm 2 ), the temperature profiles of the dry-well, the hydrogen accumulation in the containment, the radio-nuclides liberation through rigid vent to the atmosphere and the inventory of these. In this work an analysis of the pressure behavior in the primary containment is presented, with the purpose of minimizing liberated fission products to the environment. (Author)

  20. External temperature and pressure effects on thermodynamic properties and mechanical stability of yttrium chalcogenides YX (X=S, Se and Te)

    Energy Technology Data Exchange (ETDEWEB)

    Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Bouhemadou, A.; Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Sayede, A. [Université Lille Nord de France, F-59000 Lille (France); Université-Artois, UCCS, F-62300 Lens (France); CNRS, UMR 8181, F-59650 Villeneuve d’Ascq (France); Varshney, D. [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001, Madhya Pradesh (India); Al-Douri, Y. [Institute of Nono Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2013-11-01

    The full potential linearized augmented plane wave method within the framework of density functional theory is employed to investigate the structural, thermodynamic and elastic properties of the yttrium chalcogenides (YX: X=S, Se, and Te) in their low-pressure phase (Fm3{sup ¯}m) and high-pressure phase (Pm3{sup ¯}m). The exchange-correlation potential is treated with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE). Temperature dependence of the volume and both adiabatic and isothermal bulk moduli is predicted for a temperature range from 0to1200K for the both phases of the herein considered materials. Furthermore, we have analyzed the thermodynamic properties such as the heat capacities, C{sub V} and C{sub P}, thermal expansion, α, and Debye temperature, Θ{sub D,} under variable pressure and temperature. We have calculated the isothermal elastic constants C{sub ij}{sup T} of the YX monochalcogenides in both NaCl-B1 and CsCl-B2 phases at zero pressure and a temperature range 0−1200K. The results show that rare earth yttrium monochalcogenides are mechanically stable at high temperature. The elastic anisotropy of all studied materials in the two phases has been studied using three different methods.

  1. Optical pulsations in AM Her systems. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs.

  2. Optical pulsations in AM Her systems. Revision 1

    International Nuclear Information System (INIS)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs

  3. Four new massive pulsating white dwarfs including an ultramassive DAV

    Science.gov (United States)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  4. Mitsui model with diagonal strains: A unified description of external pressure effect and thermal expansion of Rochelle salt NaKC4H4O6·4H2O

    Directory of Open Access Journals (Sweden)

    I.R. Zachek

    2011-12-01

    Full Text Available We elaborate a modification of the deformable two-sublattice Mitsui model of [Levitskii R.R. et al., Phys. Rev. B. 2003, Vol. 67, 174112] and [Levitskii R.R. et al., Condens. Matter Phys., 2005, Vol. 8, 881] that consistently takes into account diagonal components of the strain tensor, arising either due to external pressures or due to thermal expansion. We calculate the related to those strains thermal, piezoelectric, and elastic characteristics of the system. Using the developed fitting procedure, a set of the model parameters is found for the case of Rochelle salt crystals, providing a satisfactory agreement with the available experimental data for the hydrostatic and uniaxial pressure dependences of the Curie temperatures, temperature dependences of spontaneous diagonal strains, linear thermal expansion coefficients, elastic constants cijE and ci4E, piezoelectric coefficients d1i and g1i (i=1,2,3. The hydrostatic pressure variation of dielectric permittivity is described using a derived expression for the permittivity of a partially clamped crystal. The dipole moments and the asymmetry parameter of Rochelle salt are found to increase with hydrostatic pressure.

  5. Limits in the application of harmonic analysis to pulsating stars

    Science.gov (United States)

    Pascual-Granado, J.; Garrido, R.; Suárez, J. C.

    2015-09-01

    Using ultra-precise data from space instrumentation, we found that the underlying functions of stellar light curves from some AF pulsating stars are non-analytic, and consequently their Fourier expansion is not guaranteed. This result demonstrates that periodograms do not provide a mathematically consistent estimator of the frequency content for this type of variable stars. More importantly, this constitutes the first counterexample against the current paradigm, which considers that any physical process is described by a continuous (band-limited) function that is infinitely differentiable.

  6. Study of sdO models. Pulsation Analysis

    OpenAIRE

    Rodríguez-López, C.; Moya, A.; Garrido, R.; MacDonald, J.; Oreiro, R.; Ulla, A.

    2009-01-01

    We have explored the possibility of driving pulsation modes in models of sdO stars in which the effects of element diffusion, gravitational settling and radiative levitation have been neglected so that the distribution of iron-peak elements remains uniform throughout the evolution. The stability of these models was determined using a non-adiabatic oscillations code. We analysed 27 sdO models from 16 different evolutionary sequences and discovered the first ever sdO models capable of driving h...

  7. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  8. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  9. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  10. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...... whose periods range from 130 to 190 s. It also shows one periodicity at a period of 3165 s. If this periodicity is a high-order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light...... are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion....

  11. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  12. Temperature-controlled radiofrequency ablation of cardiac tissue: an in vitro study of the impact of electrode orientation, electrode tissue contact pressure and external convective cooling

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1999-01-01

    A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available for the frequently used...... temperature-controlled mode. The purpose of the present experimental study was to evaluate the impact during temperature-controlled radiofrequency ablation of three basic factors regarding electrode-tissue contact and convective cooling on lesion size....

  13. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  14. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  15. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  16. Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Baigorri, F; de Monte, A; Blanch, L; Fernández, R; Vallés, J; Mestre, J; Saura, P; Artigas, A

    1994-11-01

    To study the effect of positive end-expiratory pressure (PEEP) on right ventricular hemodynamics and ejection fraction in patients with chronic obstructive pulmonary disease and positive alveolar pressure throughout expiration by dynamic hyperinflation (auto-PEEP). Open, prospective, controlled trial. General intensive care unit of a community hospital. Ten patients sedated and paralyzed with an acute exacerbation of chronic obstructive pulmonary disease undergoing mechanical ventilation. Insertion of a pulmonary artery catheter modified with a rapid response thermistor and a radial arterial catheter. PEEP was then increased from 0 (PEEP 0) to auto-PEEP level (PEEP = auto-PEEP) and 5 cm H2O above that (PEEP = auto-PEEP +5). At each level of PEEP, airway pressures, flow and volume, hemodynamic variables (including right ventricular ejection fraction by thermodilution technique), and blood gas analyses were recorded. The mean auto-PEEP was 6.6 +/- 2.8 cm H2O and the total PEEP reached was 12.2 +/- 2.4 cm H2O. The degree of lung inflation induced by PEEP averaged 145 +/- 87 mL with PEEP = auto-PEEP and 495 +/- 133 mL with PEEP = auto-PEEP + 5. The PEEP = auto-PEEP caused a right ventricular end-diastolic pressure increase, but there was no other significant hemodynamic change. With PEEP = auto-PEEP + 5, there was a significant increase in intravascular pressures; this amount of PEEP reduced cardiac output (from 4.40 +/- 1.38 L/min at PEEP 0 to 4.13 +/- 1.48 L/min; p 10% in only five cases and this group of patients had significantly lower right ventricular volumes than the group with less cardiac output variation (right ventricular end-diastolic volume: 64 +/- 9 vs. 96 +/- 26 mL/m2; right ventricular end-systolic volume: 38 +/- 6 vs. 65 +/- 21 mL/m2; p < .05) without significant difference in the other variables that were measured. Neither right ventricular ejection fraction nor right ventricle volumes changed as PEEP increased, but there were marked interpatient

  17. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  18. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  19. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M ∼ sun undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  20. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  1. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  2. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  3. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  4. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  5. An unusual nonlinear system in the magnetosphere: A possible driver for auroral pulsations

    International Nuclear Information System (INIS)

    Davidson, G.T.; Chiu, Y.T.

    1991-01-01

    Many aspects of the relation between spatial and temporal structures in morningside aurorae can be explained with the aid of a nonlinear model that describes the interactions between energetic electrons and VLF waves. The simplest form of the model consists of three differential equations, with time derivatives generated in reference frames moving with either the energetic electrons, the cold plasma; or the VLF waves that interact with the energetic electrons. Although unstable solutions that could explain the origin of spatial structures are not found, the existence of spatial structures having sufficiently fine scales can provide a repetitive perturbation that maintains the temporal variations. An analysis of the behavior of solutions of the nonlinear system reveals that a strange attractor does not occur in the autonomous system; but when the repetitive perturbations are regarded as external periodic forcing terms, unusual forms of nonlinear behavior are revealed. If the frequencies of the forcing terms are not commensurate with the natural periods of the system, the solutions present some of the characteristics of deterministic chaos. The nearest analogy is a driven nonlinear oscillator with asymmetric damping. However, because of the stiffness of the system, even those solutions that are not truly chaotic (in the commonly accepted usage) will be indistinguishable from chaos over tens to hundreds of pulsation cycles. In certain cases, when damping terms are reduced to zero, the system displays a form of behavior with many of the important characteristics of chaos, but the phase trajectories do not appear to be bounded

  6. High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground

    Directory of Open Access Journals (Sweden)

    F. W. Menk

    2003-02-01

    Full Text Available We report the simultaneous observation of 1.6–1.7 mHz pulsations in the ionospheric F-region with the CUTLASS bistatic HF radar and an HF Doppler sounder, on the ground with the IMAGE and SAMNET magnetometer arrays, and in the upstream solar wind. CUTLASS was at the time being operated in a special mode optimized for high resolution studies of ULF waves. A novel use is made of the ground returns to detect the ionospheric signature of ULF waves. The pulsations were initiated by a strong, sharp decrease in solar wind dynamic pressure near 09:28 UT on 23 February 1996, and persisted for some hours. They were observed with the magnetometers over 20° in latitude, coupling to a field line resonance near 72° magnetic latitude. The magnetic pulsations had azimuthal m numbers ~ -2, consistent with propagation away from the noon sector. The radars show transient high velocity flows in the cusp and auroral zones, poleward of the field line resonance, and small amplitude 1.6–1.7 mHz F-region oscillations across widely spaced regions at lower latitudes. The latter were detected in the radar ground scatter returns and also with the vertical incidence Doppler sounder. Their amplitude is of the order of ± 10 ms-1. A similar perturbation frequency was present in the solar wind pressure recorded by the WIND spacecraft. The initial solar wind pressure decrease was also associated with a decrease in cosmic noise absorption on an imaging riometer near 66° magnetic latitude. The observations suggest that perturbations in the solar wind pressure or IMF result in fast compressional mode waves that propagate through the magnetosphere and drive forced and resonant oscillations of geomagnetic field lines. The compressional wave field may also stimulate ionospheric perturbations. The observations demonstrate that HF radar ground scatter may contain important information on small-amplitude features, extending the scope and capability of these radars to track

  7. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine

    Directory of Open Access Journals (Sweden)

    Klopsch Vincent

    2015-09-01

    Full Text Available The reduction of the pulsation of flow and pressure as well as the increase of the mean flow of a displacement pump will be a benefit to many technical processes, especially in the pharmaceutical industry and in biomedicine. By reducing the flow pulsation, microreactors could work more efficiently and thin-film coatings or fluids in biomedical applications could be applied with more precision. This article presents a new toolbox to analyse and compare different types of gerotor pump gear profiles. The main objective was the development of a toolbox to analyse the mean flow and the flow ripple of theoretical and reverse engineered gerotor gear sets. For that reason, the presented toolbox does not work with analytic functions, but with numerical methods based on point cloud data. A comparison of four different profile types shows that these profiles perform very differently if they are limited by a given maximal outer root diameter and by the numbers of the teeth of both rotors.

  8. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  9. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  10. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2013-01-01

    Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating

  11. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    Science.gov (United States)

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  12. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  13. Protecting nuclear power plants. Chapter 2. On the importance of the security and safety of the reactor pressure vessel to external threats

    International Nuclear Information System (INIS)

    Ballesteros, A.; Gonzalez, J.; Debarberis, L.

    2006-01-01

    Nuclear power plants have blong been recognized as potential targets of terrorist attacks, and critics have long questioned the adequacy of the existing measures to defend against such attacks. The 11-S 2001, 11-M 2004 and 7-J 2005 attacks in USA, Spain and UK illustrated the deadly intention and abilities of modern terrorist groups. These attacks also brought to surface long standing concerns about the vulnerability of nuclear installations to possible terrorist attacks. Commercial nuclear reactors contain large inventory of radioactive fission products which, if dispersed, could pose a direct radiation hazard on the population. The reactor pressure vessel (RPV), which contains the nuclear fuel, is the most critical component of the plant. This paper shows that small amount of explosive material can produce irreversible damage in the RPV and the release of radioactive material. Therefor, access of working personal to the vicinity of the RPV during the refuelling outage should be stricktly limited. It should be considered a high priority security issue

  14. High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    OpenAIRE

    Thompson, Susan E.; Clemens, J. C.; van Kerkwijk, M. H.; Koester, D.

    2003-01-01

    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage ...

  15. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  16. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  17. A dynamic film model of the pulsating heat pipe

    International Nuclear Information System (INIS)

    Nikolayev, Vadim S.

    2011-01-01

    This article deals with the numerical modeling of the pulsating heat pipe (PHP) and is based on the film evaporation/condensation model recently applied to the single-bubble PHP (Das et al., 2010, 'Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube', Int. J. Heat Mass Transfer, 53(19-20), pp. 3905-3913). The described numerical code can treat the PHP of an arbitrary number of bubbles and branches. Several phenomena that occur inside the PHP are taken into account: coalescence of liquid plugs, film junction or rupture, etc. The model reproduces some of the experimentally observed regimes of functioning of the PHP such as chaotic or intermittent oscillations of large amplitudes. Some results on the PHP heat transfer are discussed. (author)

  18. Evidence for Pulsation-Driven Mass Loss from δ Cephei

    Science.gov (United States)

    Marengo, M.; Evans, N. R.; Matthews, L. D.; Bono, G.; Barmby, P.; Welch, D. L.; Romaniello, M.; Su, K. Y. L.; Fazio, G. G.; Huelsman, D.

    We found the first direct evidence that the Cepheid class namesake, δ Cephei, is currently losing mass. These observations are based on data obtained with the Spitzer Space Telescope in the infrared, and with the Very Large Array in the radio. We found that δ Cephei is associated with a vast circumstellar structure, reminiscent of a bow shock. This structure is created as the wind from the star interacts with the local interstellar medium. We measure an outflow velocity of ≈ 35. 5 km s- 1 and a mass loss rate of ≈ 10- 7-10- 6 M ⊙ year- 1. The very low dust content of the outflow suggests that the wind is possibly pulsation-driven, rather than dust-driven as common for other classes of evolved stars.

  19. Construction of the Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  20. The effects of 3:1 resonances in stellar pulsations

    International Nuclear Information System (INIS)

    Moskalik, P.; Buchler, J.R.

    1989-01-01

    The effects of a 3:1 resonance are studied and compared to those of a 2:1 resonance. When the growth rate of the higher frequency mode is negative it is shown that a 3:1 resonance affects the pulsation in a very similar fashion to a 2:1 resonance. In fact, it may be very difficult to discriminate in observational data between these two types of coupling. On the other hand, when the higher frequency mode is linearly unstable a 3:1 resonance, contrary to a 2:1 case, is unable to saturate the instability in the absence of nonresonant coupling terms. Astrophysical applications are discussed. 19 refs

  1. Numerical investigation on pulsating heat pipes with nitrogen or hydrogen

    Science.gov (United States)

    Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.

    2017-12-01

    With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.

  2. A 'one in a million' case of pulsating thoracoabdominal mass.

    LENUS (Irish Health Repository)

    Tan, Lay Ong

    2012-11-01

    Ectopia cordis is a rare congenital malformation in which the heart is located partially or totally outside the thoracic cavity. It comprises 0.1% of congenital heart diseases. The authors present a case of a male baby born at term by emergency caesarean section due to prolonged fetal bradycardia, who was noted to have a large pulsating mass in the thoracoabdominal area. In view of lower thoracolumbar abdominal defect, ectopic placement of the umbilicus, deficiency of the diaphragmatic pericardium, deficiency of anterior diaphragm and intracardiac abnormalities, a diagnosis of ectopia cordis-Pentalogy of Cantrell was made. He was transferred to a tertiary centre and required oxygen supplement initially. He was sent home after 1 week, on propanolol, with weekly oxygen saturation checks. He is awaiting further surgical intervention pending the required weight gain.

  3. RR lyrae variable pulsations and the Oosterhoff groups

    International Nuclear Information System (INIS)

    Cox, A.N.

    1981-01-01

    It is concluded that Oosterhoff group I clusters have 0.55 M/sub sun/ stars and group II clusters have 0.65 M/sub sun/ stars. The Y value is always about 0.29. Mean log L/L/sub sun/ values are 1.66 and 1.78 giving M/sub bol/ = 0.60 and 0.30 for the RR Lyrae variables in these two groups of clusters. For field RR Lyrae variables at M = approx. 0.5 M/sub sun/ or less, perhaps M/sub bol/ = 0.90 or even larger as Clube and Jones propose. Apparently all evolution is blueward for RR Lyrae variables, and the color overlap of F and 1H pulsators is not real

  4. Pulsating jet-like structures in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)

    2016-08-15

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  5. Pulsation, Mass Loss and the Upper Mass Limit

    Science.gov (United States)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION

  6. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study

    International Nuclear Information System (INIS)

    Bhadelia, R.A.; Bogdan, A.R.; Kaplan, R.F.; Wolpert, S.M.

    1997-01-01

    Our purpose in this investigation was to explain the heterogeneity in the cerebrospinal fluid (CSF) flow pulsation amplitudes. To this end, we determined the contributions of the cerebral arterial and jugular venous flow pulsations to the amplitude of the CSF pulsation. We examined 21 healthy subjects by cine phase-contrast MRI at the C2-3 disc level to demonstrate the CSF and vascular flows as waveforms. Multiple regression analysis was performed to calculate the contributions of (a) the arterial and venous waveform amplitudes and (b) the delay between the maximum systolic slopes of the arterial and venous waveforms (AV delay), in order to predict the amplitude of the CSF waveform. The contribution of the arterial waveform amplitude was positive (r = 0.61; p 0.003) to the CSF waveform amplitude and that of the venous waveform amplitude was negative (r = -0.50; p = 0.006). Both in combination accounted for 56 % of the variance in predicting the CSF waveform amplitude (p < 0.0006). The contribution of AV delay was not significant. The results show that the variance in the CSF flow pulsation amplitudes can be explained by concurrent evaluation of the CSF and vascular flows. Improvement in the techniques, and controlled experiments, may allow use of CSF flow pulsation amplitudes for clinical applications in the non-invasive assessment of intracranial dynamics by MRI. (orig.). With 3 figs., 2 tabs

  7. Development of high temperature reference electrodes for in-pile application: Part I. Feasibility study of the external pressure balanced Ag/AgCl reference electrode (EPBRE) and the cathodically charged Palladium hydrogen electrode

    International Nuclear Information System (INIS)

    Bosch, R.W.; Van Nieuwenhove, R.

    1998-10-01

    The main problems connected with corrosion potential measurements at elevated temperatures and pressures are related to the stability and lifetime of the reference electrode and the correct estimation of the potential related to the Standard Hydrogen Scale (SHE). Under Pressurised Water Reactor (PWR) conditions of 300 degrees Celsius and 150 bar, the choice of materials is also a limiting factor due to the influence of radiation. Investigations on two reference electrodes that can be used under PWR conditions are reported: the cathodically charged palladium hydrogen electrode, and the external pressure balanced silver/silver chloride electrode. Preliminary investigations with the Pd-electrode were focused on the calculation of the required charging time and the influence of dissolved oxygen. High temperature applications are discussed on the basis of results reported in the literature. Investigations with the silver/silver chloride reference electrode mainly dealt with the salt bridge which is necessary to connect the reference electrode with the testing solution. It is shown that the thermal junction potential is independent of the length of the salt bridge. In addition, the high temperature contributes to an increase of the conductivity of the solution, which is beneficial for the salt bridge connection

  8. Numerical analysis of pulsating heat pipe based on separated flow model

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Im, Yong Bin; Bui, Ngoc Hung

    2005-01-01

    The examination on the operating mechanism of a Pulsating Heat Pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3 mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased

  9. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.

    2014-01-01

    cylinders subjected to an externally imposed steady flow. Results on the pressure drop associated with viscous losses will be compared with predictions from a simple analytical model in which the interaction between the streaming flows developed around the particles and between the oscillating and steady flows are neglected.

  10. The Nainital Cape Survey Project : A Search for Pulsation in Chemically Peculiar Stars

    Science.gov (United States)

    Chakradhari, Nand Kumar; Joshi, Santosh

    2018-04-01

    The Nainital-Cape Survey is a dedicated search programme initiated in 1999 in the coordination of astronomers from SAAO South Africa, ARIES Nainital and ISRO Bangalore. Over the last 17 years a total of 345 chemically peculiar stars were monitored for photometric variability, making it one of the longest ground-based survey to search for pulsation in chemically peculiar stars in terms of both time span and sample size. Under this survey, we discovered rapid pulsation in the Ap star HD12098 while δ Scuti-type pulsations were detected in seven Am stars. Those stars in which pulsations were not detected have also been tabulated along with their detailed astrophysical parameters for further investigation.

  11. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    Science.gov (United States)

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet

  13. Observation of the pulsating aurora by S-520-12 rocket at Norway

    International Nuclear Information System (INIS)

    Tsuruda, K.; Hayakawa, H.; Machida, S.; Mukai, T.; Morioka, A.; Nagano, I.; Miyaoka, H.

    1991-01-01

    Particle, field an wave observations in a pulsating aurora have been carried out using the sounding rocket S-520-12, at northern polar region, Norway, on February 26, 1990. The initial analysis has disclosed two new findings, (i) precipitating low energy electrons associated with the auroral patch region, which suggests the secondary local acceleration of the auroral particles, (ii) pulsating LF wave component that is generated by periodically precipitating energetic electrons above the auroral ionosphere. (author)

  14. The pulsation mode and period-luminosity relationship of cool variables in globular clusters

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1986-01-01

    The period-luminosity-temperature relationship for globular cluster red and yellow variables is examined. The results suggest that the higher temperature, more metal-deficient cluster variables pulsate in the fundamental mode, while the lower temperature more metal-rich variables pulsate in the first overtone. On the assumption that this is correct, a relationship between fundamental period and bolometric magnitude is derived for cluster variables with observed periods of between 1 and 300 days. (author)

  15. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    OpenAIRE

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium n...

  16. Optical pulsations from 4U 0900--40: Do they exist

    International Nuclear Information System (INIS)

    Nelson, J.; Middleditch, J.; Cordova, F.

    1979-01-01

    A search for optical pulsations from 4U 0900--40 (HD 77581) was made in 1977--1978 using Hβ interference filters. No pulsations were detected above 10 -3 of the observed flux. This contrasts with Steiner's detection of pulsatons at the 2% level. Ariel 5 data covering both our observations and Steiner's show that X-ray variability does not support this decrepancy

  17. Externalities of energy. Swedish implementation of the ExternE methodology

    International Nuclear Information System (INIS)

    Nilsson, Maans; Gullberg, M.

    1998-01-01

    The growing interest for developing economic instruments for efficient environmental policies has opened up a large area of multi-disciplinary research. ExternE is an example of this research, combining disciplines such as engineering, ecology, immunology and economics expertise to create new knowledge about how environmental pressures from energy production affect our nature and society. The ExternE Project aims to identify and, as far as possible quantify the externalities of energy production in Europe. The Stockholm Environment Institute has carried out a preliminary aggregation: -Coal Fuel Cycle: centred around Vaesteraas Kraftvaermeverk, Vaesteraas. This is the largest co-generation plant in Sweden, with four blocks and a maximum co-generation output of 520 MW electricity and 950 MW heat. The analysis is carried out on boiler B4. -Biomass Fuel Cycle: centred around Haendeloeverket, Norrkoeping. This plant predominately burns forestry residues, but a variety of fuels are combusted. Haendeloeverket has an installed capacity of 100 MW electricity and 375 MW heat, in a total of three boilers and two back-pressure turbines. The analysis is carried out on boiler P13. -Hydro Fuel Cycle: Klippens Kraftstation, Storuman. Built in 1990-1994, it is the youngest hydro power station in Sweden. It has been designed and built with significant efforts to account for and protect environmental values. Installed capacity is 28 MW. The environmental impact assessment from the construction of this plant is carried out, but the evaluation is still not finalized. The preliminary aggregation aimed to test whether ExternE results could be used to make estimates for the entire Swedish electricity production system. Hence, national results as well as results from other partner countries in ExternE has been applied

  18. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  19. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  20. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  1. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    Science.gov (United States)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  2. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    Energy Technology Data Exchange (ETDEWEB)

    Hippke, Michael [Institute for Data Analysis, Luiter Str. 21b, D-47506 Neukirchen-Vluyn (Germany); Learned, John G. [High Energy Physics Group, Department of Physics and Astronomy, University of Hawaii, Manoa 327 Watanabe Hall, 2505 Correa Road, Honolulu, HI 96822 (United States); Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Edmondson, William H. [School of Computer Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lindner, John F. [Physics Department, The College of Wooster, Wooster, OH 44691 (United States); Kia, Behnam; Ditto, William L. [Department of Physics and Astronomy, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States); Stevens, Ian R., E-mail: hippke@ifda.eu, E-mail: jgl@phys.hawaii.edu, E-mail: zee@kitp.ucsb.edu, E-mail: w.h.edmondson@bham.ac.uk, E-mail: jlindner@wooster.edu, E-mail: wditto@hawaii.edu, E-mail: behnam@hawaii.edu, E-mail: irs@star.sr.bham.ac.uk [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  3. Comparison of the Viscous Liquids Spraying by the OIG and the Oil Configurations of an Effervescent Atomizer at Low Inlet Pressures

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2016-07-01

    Full Text Available In this work we studied the influence of the fluid injection configuration (OIG: outside-in-gas, OIL: outside-in-liquid on the internal flows and external sprays parameters. We sprayed the viscous aqueous maltodextrin solutions (μ = 60 mPa·s at a constant inlet pressure of the gas and the gas to the liquid mass flow ratio (GLR within the range 2.5 to 20%. We found that the fluids injection has a crucial influence on the internal flows. The internal flows patterns for the OIG atomizer were the slug flows, the internal flow of the OIL device was annular which led to the significant improvement of the spray quality: Smaller droplets, faster atomization, fewer pulsations.

  4. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs

    Science.gov (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.

    2015-08-01

    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  5. First Kepler results on compact pulsators – VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars

    DEFF Research Database (Denmark)

    Reed, M.D.; Baran, A.; Quint, A.C.

    2011-01-01

    We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal-period spacings of modes with differing degrees ℓ...

  6. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  7. Evaluation of pump pulsation in respirable size-selective sampling: Part III. Investigation of European standard methods.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Eun Gyung; Lee, Larry A; Kashon, Michael L; Harper, Martin

    2014-10-01

    Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP=8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP=18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN=0.014+0.375×PPNIOSH (adjusted R2=0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods

  8. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  9. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  10. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  11. Spectral structure of Pc3–4 pulsations: possible signatures of cavity modes

    Directory of Open Access Journals (Sweden)

    P. R. Sutcliffe

    2013-04-01

    Full Text Available In this study we investigate the spectral structure of Pc3–4 pulsations observed at low and midlatitudes. For this purpose, ground-based magnetometer data recorded at the MM100 stations in Europe and at two low latitude stations in South Africa were used. In addition, fluxgate magnetometer data from the CHAMP (CHAllenging Minisatellite Payload low Earth orbit satellite were used. The results of our analysis suggest that at least three mechanisms contribute to the spectral content of Pc3–4 pulsations typically observed at these latitudes. We confirm that a typical Pc3–4 pulsation contains a field line resonance (FLR contribution, with latitude dependent frequency, and an upstream wave (UW contribution, with frequency proportional to the IMF (interplanetary magnetic field magnitude BIMF. Besides the FLR and UW contributions, the Pc3–4 pulsations consistently contain signals at other frequencies that are independent of latitude and BIMF. We suggest that the most likely explanation for these additional frequency contributions is that they are fast mode resonances (FMRs related to cavity, waveguide, or virtual modes. Although the above contributions to the pulsation spectral structure have been reported previously, we believe that this is the first time where evidence is presented showing that they are all present simultaneously in both ground-based and satellite data.

  12. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  13. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    Directory of Open Access Journals (Sweden)

    Ketzer Laura

    2017-01-01

    Full Text Available We present a preliminary analysis of the newly–discovered pulsating subdwarf B (sdB star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two–gyro mission of the Kepler space telescope. A time–series analysis of the data revealed 22 independent pulsation frequencies in the g–mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours. The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low–amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  14. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez [Department of Physics, High Point University, One University Parkway, High Point, NC 27268 (United States); Fleming, Scott W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Reichart, Dan E.; Haislip, Josh B.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Linder, Tyler R. [Department of Physics, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920 (United States)

    2017-08-20

    NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.

  15. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  16. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  17. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  18. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  19. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    International Nuclear Information System (INIS)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2015-01-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load. (paper)

  20. Numerical modelling of pulsation and convection in cepheids

    International Nuclear Information System (INIS)

    Mundprecht, E.

    2011-01-01

    In order to simulate the pulsation convection coupling in a Cepheid the ANTARES-code was equipped with a polar and moving grid. The numerical cost of a fully parallelized, sufficiently large, and fully resolved section would be immense. Thus it was not only necessary to find a suitable model, but also save to costs for parallelisation and grid refinement. The equations governing the hydrodynamics were derived for this particular grid and implemented in the code. The grey short characteristics method for the radiative transfer equation was also adjusted. Different methods of parallelisation for the radiative transfer were tested. Abstract Within ANTARES shocks are treated with an essentially non oscillatory (ENO) scheme with Marquina flux splitting. As this method is only valid for grids that are equidistant or uniformly stretched in all directions two differnt sets of ENO-coefficients were implemented and tested. It was found that the traditional approach is indeed no longer valid and the system is not conservative when the original set of coefficients is used. In the upper or hydrogen ionisation zone the gradient of density, temperature etc. is very steep, therefore a finer resolution with a minimum of additional time steps is needed. In order to resolve these few points a co-moving grid refinement was developed. Simulations in one and two dimensions were performed, a comparison between them helps to better understand the effects of convection on the e.c. light curve. Analysis of the fluxes and the work integral was done for the helium ionisation zone. The effects of subgrid modelling were tested on the hydrogen convection zone and compared with a resolved simulation of this zone. (author) [de

  1. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    Science.gov (United States)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  2. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  3. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    International Nuclear Information System (INIS)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M ☉ pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  4. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  5. Radioheliograph observations of a pulsating structure associated with a moving type IV burst

    International Nuclear Information System (INIS)

    Pick, M.; Trottet, G.

    1978-01-01

    Observations of a pulsating structure with the Mark II Nancay Radioheliograph are reported. These fluctuations are found to occur early in the development of a moving type IV burst. It is confirmed that the source of these fluctuations is of small extent and that it is embedded in the moving type IV continuum, plausibly at the top of an expanding arch. The observations suggest that the pulsating structure consists of recurrent enhanced pulses (mean recurrency time 1.7 s) followed by trains of periodic pulses (mean periodicity 0.37 s). The intensity of the mean enhanced pulses has a damping time of about 5 s. It is shown that previous interpretation of the pulsating structure by Rosenberg (1970) cannot account for the present observations. (Auth.)

  6. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  7. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  8. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    Science.gov (United States)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  9. Dependence of current density and intensity of electric field on pulsation of thermodynamic parameters of plasma in the MHD generator

    International Nuclear Information System (INIS)

    Kapron, H.

    1976-01-01

    The investigations of pulsation in the MHD generators are described. The influence of termodynamic parameters pulsation on electric parameters of the MHD generator is presented using the method of little disturbances. The results of this investigation are formulas for momentary and average values of: electrical conductivity, the Hall parameter, current density and intensity of electrical field. Analitical investigations were verified by the experiments. (author)

  10. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months.

    Science.gov (United States)

    Greiner, Jack V

    2012-04-01

    To evaluate the effect of a single treatment with the LipiFlow(®) Thermal Pulsation System on signs of meibomian gland dysfunction (MGD) and dry eye symptoms over a 9-month period. Patients (n = 42 eyes, 21 subjects) diagnosed with MGD and dry eye symptoms were recruited for a non-significant risk, prospective, open-label, 1-month clinical trial. Patients received a single 12-minute treatment using the LipiFlow(®) Thermal Pulsation System on each eye. The LipiFlow(®) device applies heat to the conjunctival surfaces of the upper and lower inner eyelids while simultaneously applying pulsatile pressure to the outer eyelid surfaces to express the meibomian glands. Patient symptoms were evaluated using the Ocular Surface Disease Index (OSDI) and Standard Patient Evaluation for Eye Dryness (SPEED) dry eye questionnaires; tear break-up time was measured with the dry eye test (DET™); and meibomian gland function was evaluated using a standardized diagnostic expression technique. Data are presented for patient's pre-treatment (baseline) and at 1-month and 9-month post-treatment. Meibomian gland secretion scores improved significantly from baseline (4.4 ± 4.0) to 1-month post-treatment (11.3 ± 6.2; p dry eye disease, the LipiFlow(®) Thermal Pulsation System offers a technological advancement for the treatment of dry eye disease secondary to meibomian gland dysfunction. A single 12-minute LipiFlow(®) treatment results in up to 9 months of sustained improvement of meibomian gland function, tear break-up time and dry eye symptoms that are unparalleled with current dry eye treatments.

  11. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  12. High cyclic fatigue of PWR primary piping generated by the pressure pulsations in coolant

    International Nuclear Information System (INIS)

    Zd'arek, J.; Pecinka, L.; Zeman, V.

    1999-01-01

    The protection of nuclear piping Class 1, 2 and 3 against fatigue failure is according to standard western practise and is based on - determining the cumulative usage factor (CUF) using equation (11) of ASME Code, Section III, Article NB 3653 for Class 1 piping; - Markl experiments and equation (10) of ASME Code, Section III, Article NC/ND 3653 for Class 2/3 piping. These evaluations cover only low cyclic loading and the possible influence of high cyclic loading as for example vibratory stresses generated by the main circulating pumps are not taken into account. This problem is fully covered in the Czech and Russian codes. The goal of this paper is 1. to clarify the basic principles; 2. to discuss in detail the methodology for the calculation of high frequency vibratory stresses; and 3. to demonstrate with a numerical example, the degree of influence of the CUF. (orig.)

  13. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Sato, Natsuo; Tonegawa, Yutaka; Yoshino, Takeo; Saemundsson, T.

    1989-01-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere

  14. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  15. Local time asymmetry of Pc 4--5 pulsations and associated particle modulations at synchronous orbit

    International Nuclear Information System (INIS)

    Kokubun, S.; Erickson, K.N.; Fritz, T.A.; McPherron, R.L.

    1989-01-01

    Magnetic field and particle flux observations on board ATS 6 at synchronous altitude are used to examine the dawn-dusk asymmetry of characteristics of Pc 4--5 waves and associated particle flux modulation. Most waves at synchronous orbit having ground correlations are polarized in the azimuthal direction (A class) and are usually detected in the dawn sector. Waves with a radially oriented polarization ellipse (R-class) are almost never observed near the subsatellite point on the ground, except for the regular pulsations known as giant pulsation Pg, observed in the early morning. R class Pc 4 waves occur at all local times and have an occurrence peak in the afternoon

  16. Comparison of computer codes for evaluation of double-supply-frequency pulsations in linear induction pumps

    International Nuclear Information System (INIS)

    Kirillov, Igor R.; Obukhov, Denis M.; Ogorodnikov, Anatoly P.; Araseki, Hideo

    2004-01-01

    The paper describes and compares three computer codes that are able to estimate the double-supply-frequency (DSF) pulsations in annular linear induction pumps (ALIPs). The DSF pulsations are the result of interaction of the magnetic field and induced in liquid metal currents both changing with supply-frequency. They may be of some concern for electromagnetic pumps (EMP) exploitation and need to be evaluated at their design. The results of computer simulation are compared with experimental ones for annular linear induction pump ALIP-1

  17. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  18. Using nonradial pulsations to determine the envelope composition of very evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.

    1986-01-01

    Recent observational and theoretical studies of the ZZ Ceti variables (DA degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DO degenerate dwarfs) have shown them to be pulsating in nonradial g + -modes. The pulsation mechanism has been identified for each class of variable star and, in all cases, involves predictions of the stars envelope composition. The ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers. 44 refs

  19. Research on Initial Geometric Deviation Description for Numerical Simulation of Cylindrical Shells under External Pressure%外压模拟计算中圆筒初始几何偏差描述方法的研究

    Institute of Scientific and Technical Information of China (English)

    邓志军; 陈冰冰; 郑浣琪; 魏协宇; 高增梁

    2015-01-01

    The simulation result of cylindrical shells under external pressure is influenced greatly by different initial geometric deviation. Two forms of initial geometric deviations i.e., the first-order buckling mode of shell and the Fourier series representation, are briefly introduced. A simplified method of Fourier series is developed according to circumferential wavel(2-8), initial phase angleφ12-φ18 and 5 groups initial geometric deviations data. According to the basic dimension, maximum initial geometric deviation, elastic modulus and yield strength of cylindrical shells in the existing reference, simplified Fourier series and first-order buckling mode method are applied to describe the initial geometric deviations of cylindrical shells in the double nonlinear buckling simulation, bilinear material model is adopted to the constitutive relation of materials. The results are discussed and the values regarding the buckling pressure obtained by the simulation are compared with those from experiments reported in reference. The results show that the values of buckling pressure obtained by first-order buckling mode method are generally smaller than the experimental values, and the results obtained by the simplified Fourier series method are in good agreement with the experimental values in the reference. This illustrates that the initial geometric deviations of cylindrical shells can be better expressed by the simplified Fourier series.%在圆筒外压模拟计算中,初始几何偏差施加方式的不同对模拟计算结果影响较大。就“一致缺陷模态法”和傅里叶级数两种初始几何偏差的描述方法进行简述。根据5组初始几何偏差实测数据,取周向波数l=2~8和初始相位角φ12~φ18,提出一种描述卷焊圆筒初始几何偏差的傅里叶级数简化方法。根据文献提供的42组圆筒基本尺寸、最大初始几何偏差值、材料的弹性模量和屈服强度,分别采用“简化傅里叶级数法

  20. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    International Nuclear Information System (INIS)

    Nannipieri, P; Anichini, M; Barsocchi, L; Becatti, G; Buoni, L; Celi, F; Catarsi, A; Di Giorgio, P; Fattibene, P; Ferrato, E; Guardati, P; Mancini, E; Meoni, G; Nesti, F; Piacquadio, S; Pratelli, E; Quadrelli, L; Viglione, A S; Zanaboni, F; Mameli, M

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign. (paper)

  1. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...

  2. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    Science.gov (United States)

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  3. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  4. Pressure-driven peristaltic flow

    International Nuclear Information System (INIS)

    Mingalev, S V; Lyubimov, D V; Lyubimova, T P

    2013-01-01

    The peristaltic motion of an incompressible fluid in two-dimensional channel is investigated. Instead of fixing the law of wall's coordinate variation, the law of pressure variation on the wall is fixed and the border's coordinate changes to provide the law of pressure variation on the wall. In case of small amplitude of pressure-variation on the wall A, expansion wave propagates along the length of channel and the wave results in the peristaltic transport of fluid. In the case of large A, the channel divides into two parts. The small pulsating part in the end of the tube creates the flow as a human heart, while the other big part loses this function. The solution of problem for the first peristaltic mode is stable, while the solution for the second 'heart' mode is unstable and depends heavily on boundary conditions.

  5. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    Energy Technology Data Exchange (ETDEWEB)

    Foster, H. M.; Reed, M. D. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Telting, J. H. [Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, E-38711 Breña Baja (Spain); Østensen, R. H. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Baran, A. S. [Uniwersytet Pedagogiczny, Obserwatorium na Suhorze, ul. Podchorażych 2, 30-084 Kraków (Poland)

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  6. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  7. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  8. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    International Nuclear Information System (INIS)

    Hora, H.; Aydin, M.

    1992-01-01

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too

  9. Pulsational instability of high-luminosity H-rich pre-white dwarf star

    Directory of Open Access Journals (Sweden)

    Calcaferro Leila M.

    2017-01-01

    Full Text Available We present a pulsational stability analysis on high-luminosity H-rich (DA white dwarf models evolved from low-metallicity progenitors. We found that the ε mechanism due to H-shell burning is able to excite low-order g modes.

  10. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Vít, T.

    2015-01-01

    Roč. 85, June (2015), s. 473-487 ISSN 0017-9310 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : impinging jet * reversible pulsating jet * synthetic jet Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 2.857, year: 2015 http://www.sciencedirect.com/science/article/pii/S001793101500143X

  11. Asymmetry and geometry effects on the dynamic behavior of a pulsating heat pipe

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; Steenhoven, van A.A.; Colin, S; Morini, GL; Brandner, JJ; Newport, D

    2014-01-01

    A mass-spring-damper model is developed to investigate the motion in a pulsating heat pipe (PHP). A heat transfer model is coupled to this mass-spring-damper model in order to study the effectivity of a PHP under different operating conditions. Four different configurations (one PHP with 12 turns;

  12. A mass-spring-damper model of a pulsating heat pipe with asymmetric filling

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; van Steenhoven, A.A.; Tadrist, L.; Graur, I.

    2014-01-01

    A pulsating heat pipe (PHP) is a device that transfers heat from a hot spot to a cold side by oscillating liquid slugs and vapor plugs. Its working principle is based on interplay between convective heat transfer, evaporation of the liquid at the hot side and condensation of the vapor at the cold

  13. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  14. Damage Accumulation in Vertical Breakwaters due to Combined Impact Loading and Pulsating Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R. K.

    1999-01-01

    Vertical wall breakwaters used to protect for example an harbour from large waves usually consist of large concrete caissons placed on the seabed. The wave loads can be divided in two types, pulsating and impact loads. For some types of breakwaters especially the impact wave loads can be very large...

  15. Signatures of the low-latitude Pi 2 pulsations in Egypt

    Directory of Open Access Journals (Sweden)

    Essam Ghamry

    2012-06-01

    The result shows that the Pi 2 observed in the main phase of the geomagnetic storm have larger frequency than those observed in the recovery phase. These results excluded the field line resonance and the plasmapause surface as a possible generation mechanism, and suggest the cavity resonance as a possible generation mechanism of the Pi 2 pulsations at low latitude stations in Egypt.

  16. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  17. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  18. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  19. Optical pulsation from the HZ Her/Her X-1 system

    International Nuclear Information System (INIS)

    Chester, T.J.

    1977-01-01

    A theoretical model for the observed optical pulsation from the x-ray binary HZ Her/Her X-1 is presented. Its foundation is a general computer code for an x-ray illuminated stellar atmosphere. Detailed results are given for several atmospheres applicable to HZ Her. A formalism is developed to calculate the amount of pulsed optical radiation emergent from these atmospheres if they are exposed to pulsed x rays. This formalism is used to calculate the pulsed and unpulsed optical light curves for HZ Her. The calculated optical pulsation agrees with the observed amplitude. A nonuniform x-ray beam can cause the amplitude and velocity of the optical pulsation to vary by more than a factor of two for fixed system parameters. The presence of soft x rays (0.1 to 1 keV) can significantly affect the calculated pulsation amplitude. The model places explicit limits on the system parameters; in particular, if corotation is assumed, 0.8 M/sub sun/ less than or equal to M/sub Her X-1/ less than or equal to 1.7 M/sub sun/

  20. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  1. First Kepler results on compact pulsators - VI. Targets in the final half of the survey phase

    DEFF Research Database (Denmark)

    Østensen, Roy H.; Silvotti, Roberto; Charpinet, S.

    2011-01-01

    We present results from the final 6 months of a survey to search for pulsations in white dwarfs (WDs) and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB...

  2. Forty Cases of Insomnia Treated by Multi-output Electric Pulsation and Auricular Plaster Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Weizhe

    2007-01-01

    @@ The writer has treated 40 cases of insomnia by the method of multi-output electric pulsation in combination with auricular plaster therapy (with a seed of Vaccariae segetalis 王不留行 taped tightly to a particular ear point and pressed) and received satisfactory therapeutic effects. A report follows.

  3. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

    Science.gov (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2008-11-01

    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  4. Dose-remission of pulsating electromagnetic fields as augmentation in therapy-resistant depression

    DEFF Research Database (Denmark)

    Straasø, Birgit; Lauritzen, Lise; Lunde, Marianne

    2014-01-01

    OBJECTIVE: To evaluate to what extent a twice daily dose of Transcranial Pulsating ElectroMagnetic Fields (T-PEMF) was superior to once daily in patients with treatment-resistant depression as to obtaining symptom remission after 8 weeks of augmentation therapy. METHODS: A self-treatment set...

  5. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  6. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Science.gov (United States)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  7. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  8. Temporally and spatially pulsating solitons in a nonlinear stage of the long-wave Buneman instability

    International Nuclear Information System (INIS)

    Kono, M.; Kawakita, M.

    1990-01-01

    A nonlinear equation describing the development of the Buneman instability has been derived and solved with the aid of Hirota's bilinear transform [J. Math. Phys. 14, 810 (1973)] to give a variety of stationary solutions, such as pulsating solitons, temporally localized and spatially periodic solutions, as well as ordinary solitons

  9. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Geomagnetic Pc3 pulsations during the total solar eclipse on Aug 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav; Prikner, Karel

    2003-01-01

    Roč. 47, č. 3 (2003), s. 565-578 ISSN 0039-3169 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * solar eclipse * MHD waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.426, year: 2003

  11. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  12. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  13. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  14. ExternE National Implementation Finland

    International Nuclear Information System (INIS)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  15. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  16. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  17. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  18. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    Directory of Open Access Journals (Sweden)

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  19. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  20. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Rajashekar, R.; Cahill, L.J. Jr.; Engebretson, M.J.; Rosenberg, T.J.; Mende, S.B.

    1987-01-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74 degree-75 degree invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora

  1. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Solomon, J. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay cedex (France); Aulanier, G. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Mikić, Z., E-mail: clara.froment@astro.uio.no [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  2. Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2017-03-01

    Full Text Available High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.

  3. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  4. Effect of Maximal Apnoea Easy-Going and Struggle Phases on Subarachnoid Width and Pial Artery Pulsation in Elite Breath-Hold Divers.

    Directory of Open Access Journals (Sweden)

    Pawel J Winklewski

    Full Text Available The aim of the study was to assess changes in subarachnoid space width (sas-TQ, the marker of intracranial pressure (ICP, pial artery pulsation (cc-TQ and cardiac contribution to blood pressure (BP, cerebral blood flow velocity (CBFV and cc-TQ oscillations throughout the maximal breath hold in elite apnoea divers. Non-invasive assessment of sas-TQ and cc-TQ became possible due to recently developed method based on infrared radiation, called near-infrared transillumination/backscattering sounding (NIR-T/BSS.The experimental group consisted of seven breath-hold divers (six men. During testing, each participant performed a single maximal end-inspiratory breath hold. Apnoea consisted of the easy-going and struggle phases (characterised by involuntary breathing movements (IBMs. Heart rate (HR was determined using a standard ECG. BP was assessed using the photoplethysmography method. SaO2 was monitored continuously with pulse oximetry. A pneumatic chest belt was used to register thoracic and abdominal movements. Cerebral blood flow velocity (CBFV was estimated by a 2-MHz transcranial Doppler ultrasonic probe. sas-TQ and cc-TQ were measured using NIR-T/BSS. Wavelet transform analysis was performed to assess cardiac contribution to BP, CBFV and cc-TQ oscillations.Mean BP and CBFV increased compared to baseline at the end of the easy phase and were further augmented by IBMs. cc-TQ increased compared to baseline at the end of the easy phase and remained stable during the IBMs. HR did not change significantly throughout the apnoea, although a trend toward a decrease during the easy phase and recovery during the IBMs was visible. Amplitudes of BP, CBFV and cc-TQ were augmented. sas-TQ and SaO2 decreased at the easy phase of apnoea and further decreased during the IBMs.Apnoea increases intracranial pressure and pial artery pulsation. Pial artery pulsation seems to be stabilised by the IBMs. Cardiac contribution to BP, CBFV and cc-TQ oscillations does not

  5. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... otitis. Fungal external otitis (otomycosis), typically caused by Aspergillus niger or Candida albicans, is less common. Boils are ... in the ear. Fungal external otitis caused by Aspergillus niger usually causes grayish black or yellow dots (called ...

  6. ExternE: Externalities of energy Vol. 2. Methodology

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  7. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  8. lamda 557.7 nm pulsations within quiet pre-breakup aurorae at L=8.7

    International Nuclear Information System (INIS)

    Thomas, I.L.

    1974-01-01

    Pulsations in the [OI] Λ557.7 nm emission, with a typical period of 10-20 s, were consistently observed within quiet pre-breakup auroral forms from Mawson, Antarctica (L = 8.7), during 1967. By relating these observations to the model location of the auroral oval, an indication of the parent magnetospheric region is gained. From these results, and other reports, it is concluded that optical pulsations are a basic feature of the auroral display. The occurrence of an 'optical auroral pulsation pearl necklace' is reported. (author)

  9. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    Science.gov (United States)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  10. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  11. Long duration Pc 5 compressional pulsations inside the Earth's magnetotail lobes

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available Pc 5-type magnetic field pulsations are detected by the IMP-8 spacecraft well inside the Earth's magnetotail lobes. The three studied events with an average duration of 3 h and mean amplitude of ΔB/B=6.6% show a strong longitudinal oscillation. The clockwise polarization sense of the magnetic field arrowheads in the north lobe (as well as the counterclockwise in the south lobe on the XZ plane is consistent with that expected when periodic solar wind lateral pressures squeeze the magnetotail axisymmetrically while moving tailward. In the two case studies, the latter property has been found to concur with quasi-periodic upstream density fluctuations detected by ISEE-3 and/or ISSE-1. The lobe magnetic field oscillations are classified in two distinct modes. The manifestations of the first mode are tailward-travelling waves detectable along the By and Bz magnetic field traces (i.e., with regard to the Bz the spacecraft encounters constantly the same conspicuous signature of south-then-north tilting of field lines around each local compression region. The second mode is associated with prolonged periods of extremely low geomagnetic activity and exhibits a signature along the By component inconsistent with travelling waves. Thus, the maxima of compressions occur simultaneously with the maxima of By excursions: a feature that is explained in terms of tail-aligned current density flowing at the boundary which separates the stable magnetic field in the tail lobe from the very irregular in the magnetosheath. In this case, the spacecraft was located in the vicinity of the high-latitude tail boundary and the observed By excursions are consistent with those anticipated by the tail-aligned current polarity, which is determined by the dominant By-component of the interplanetary magnetic field (IMF. On the

  12. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.

    Science.gov (United States)

    Yokoyama, Yoshimasa; Kawaguchi, Osamu; Kitao, Takashi; Kimura, Taro; Steinseifer, Ulrich; Takatani, Setsuo

    2010-09-01

    The ventricular performance is dependent on the drainage effect of rotary blood pumps (RBPs) and the performance of RBPs is affected by the ventricular pulsation. In this study, the interaction between the ventricle and RBPs was examined using the pressure-volume (P-V) diagram of the ventricle and dynamic head pressure-bypass flow (H-Q) curves (H, head pressure: arterial pressure minus ventricular pressure vs. Q, bypass flow) of the RBPs. We first investigated the relationships in a mock loop with a passive fill ventricle, followed by validation in ex vivo animal experiments. An apical drainage cannula with a micro-pressure sensor was especially fabricated to obtain ventricular pressure, while three pairs of ultrasonic crystals placed on the heart wall were used to derive ventricular volume. The mock loop-configured ventricular apical-descending aorta bypass revealed that the external work of the ventricle expressed by the area inside the P-V diagrams (EW(Heart) ) correlated strongly with the area inside dynamic H-Q curves (EW(VAD)), with the coefficients of correlation being R² = 0.869 ∼ 0.961. The results in the mock loop were verified in the ex vivo studies using three Shiba goats (10-25 kg in body weight), showing the correlation coefficients of R² = 0.802 ∼ 0.817. The linear regression analysis indicated that the increase in the bypass flow reduced pulsatility in the ventricle expressed in EW(Heart) as well as in EW(VAD) . Experimental results, both mock loop and animal studies, showed that the interaction between cardiac external work and H-Q performance of RBPs can be expressed by the relationships "EW(Heart) versus EW(VAD) ." The pulsatile nature of the native heart can be expressed in the area underneath the H-Q curves of RBPs EW(VAD) during left heart bypass indicating the status of the level of assistance by RBPs and the native heart function. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and

  13. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  14. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    Science.gov (United States)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  15. Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling

    Science.gov (United States)

    Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with

  16. Origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, G; Bailey, J; Axon, D J; Hough, J H

    1986-12-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded.

  17. The origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    International Nuclear Information System (INIS)

    Berriman, G.; Axon, D.J.; Hough, J.H.

    1986-01-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded. (author)

  18. PCS: an Euler--Lagrange method for treating convection in pulsating stars using finite difference techniques in two spatial dimensions

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters

  19. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  20. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin.

    Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  1. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin. Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  2. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    Science.gov (United States)

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  3. ExternE: Externalities of energy Vol. 1. Summary

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  4. Externalities of fuel cycles 'ExternE' project. Summary report

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  5. The EPR-a comprehensive design concept against external events

    International Nuclear Information System (INIS)

    Stoll, U.; Waas, U.

    2006-01-01

    The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissibly affected by any external hazards that might be postulated for the intended site of the plant. In the design of the European Pressurized Water Reactor (EPR) particular attention was paid to external hazards such as earthquake, airplane crash, and explosion pressure wave. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The loads for the design basis airplane crash and - if required - for the design extension airplane crash as well as for external Explosion Pressure Wave are defined depending on site specific requirements. Protection against other external load cases such as extreme winds and external flooding is also included in the standard design

  6. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks

  7. Investigation of free level fluctuations in a simulated model of a sodium cooled Fast Breeder Reactor using pulsating conductance monitoring device

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Pandey, G.K.; Malathi, N.; Arun, A.D.; Ananthanarayanan, R.; Banerjee, I.; Sahoo, P.; Padmakumar, G.; Murali, N.

    2012-01-01

    Highlights: ► An innovative approach for measurement of water level fluctuation is presented. ► Measurement was conducted with a PC based pulsating type level sensor. ► Deployed the technique in monitoring level fluctuation in PFBR simulated facility. ► The technique helped in validation of hot pool design of PFBR, India. - Abstract: A high resolution measurement technique for rapid and accurate monitoring of water level using an in-house built pulsating conductance monitoring device is presented. The technique has the capability of online monitoring of any sudden shift in water level in a reservoir which is subjected to rapid fluctuations due to any external factor. We have deployed this novel technique for real time monitoring of water level fluctuations in a specially designed ¼ scale model of the Prototype Fast Breeder Reactor (PFBR) at Kalpakkam, India. The water level measurements in various locations of the simulated test facility were carried out in different experimental campaigns with and without inclusion of thermal baffles to it in specific operating conditions as required by the reactor designers. The amplitudes and the frequencies of fluctuations with required statistical parameters in hot water pool of the simulated model were evaluated from the online time versus water level plot in more convenient way using system software package. From experimental results it is computed that the maximum free level fluctuation in the hot pool of PFBR with baffle plates provided on the inner vessel is 30 mm which is considerably less than the value (∼82 mm) obtained without having any baffle plates. The present work provided useful information for assessment of appropriate design which would be adopted in the PFBR for safe operation of the reactor.

  8. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  9. Pulsational stabilities of a star in thermal imbalance: comparison between the methods

    International Nuclear Information System (INIS)

    Vemury, S.K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes.For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms

  10. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  11. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  12. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  13. External radiation surveillance

    International Nuclear Information System (INIS)

    Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site

  14. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  15. Dynamical zoning within a Lagrangian mesh by use of DYN, a stellar pulsation code

    International Nuclear Information System (INIS)

    Castor, J.I.; Davis, C.G.; Davison, D.K.

    1977-02-01

    A method of dynamical zoning within a Lagrangian mesh is used to resolve the motion of the hydrogen ionization front in a time-dependent nonlinear model of a pulsating star. The resulting coupling with the radiative-transfer improves the calculated light curves. The method is described is some detail and then applied to a model of the Cepheid eta Aq1. 8 figures, 1 table

  16. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  17. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  18. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    Science.gov (United States)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  19. Pulsating strings from two-dimensional CFT on (T4N/S(N

    Directory of Open Access Journals (Sweden)

    Carlos Cardona

    2015-04-01

    Full Text Available We propose a state from the two-dimensional conformal field theory on the orbifold (T4N/S(N as a dual description for a pulsating string moving in AdS3. We show that, up to first order in the deforming parameter, the energy in both descriptions has the same dependence on the mode number, but with a non-trivial function of the coupling.

  20. FOLLOW-UP OBSERVATIONS OF THE SECOND AND THIRD KNOWN PULSATING HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    Dufour, P.; Green, E. M.; Fontaine, G.; Brassard, P.; Francoeur, M.; Latour, M.

    2009-01-01

    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al. that the Hot DQ white dwarfs SDSS J220029.08 - 074121.5 and SDSS J234843.30 - 094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3. We find that the light curve of SDSS J220029.08 - 074121.5 is dominated by an oscillation at 654.397 ± 0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576 ± 0.226 s and 254.732 ± 0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30 - 094245.3 is dominated by a pulsation with a period of 1044.168 ± 0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919 ± 0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08 - 074121.5 is likely magnetic, while SDSS J234843.30 - 094245.3 is probably not.

  1. Pitch angle scattering and particle precipitation in a pulsating aurora - an experimental study

    International Nuclear Information System (INIS)

    Sandahl, I.

    1984-10-01

    A pulsating aurora occurring during the recovery phase of a substorm on January 27, 1979 was monitored by a large set of instruments. The Swedish sounding rocket S23-L2 was launched at magnetic midnight over pulsating patches, some of which exhibited 3+-1 Hz modulation. The ground based instrumentation included auroral TV cameras, all sky cameras, photometers and magnetometers. The geostationary satellite GEOS-2 was located in the equatorial plane, approximately conjugate to the rocket. The central experiment of this study is the particle experiment on the rocket. Several aspects of pulsating auroras have been investigated. The auroral luminosity variations were very well correlated to variations in the flux of precipitating hot electrons. The 1-20 second pulsations were caused by increased fluxes of 4-40 keV electrons. The 3+-1 Hz modulation was detected in 7-200 keV electrons, but the biggest energy flux modulation occurred for electrons of about 60 keV. Model calculations involving the electron distributions measured by the sounding rocket and GEOS-2, consistently show that the electrons may have been scattered into the loss cone through the Doppler shifted gyroresonance with whistler mode waves. The scattering was not a pure pitch angle scattering as in the classical Coroniti and Kennel theory, but involved also a systematic energy loss from the particles. The waves were probably hiss with some chorus elements. The equatorial plane plasma density was estimated in two independent ways to be about 2x10 6 m- 3 . The 3+-1 Hz modulation was measured both by the particle experiment on the rocket and by the wave experiment on GEOS-2. Properties of the modulated fluxes are described and a qualitative model for the cause of the modulation is proposed. (author)

  2. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  3. VizieR Online Data Catalog: Sample of faint X-ray pulsators (Israel+, 2016)

    Science.gov (United States)

    Israel, G. L.; Esposito, P.; Rodriguez Castillo, G. A.; Sidoli, L.

    2018-04-01

    As of 2015 December 31, we extracted about 430000 time series from sources with more than 10 counts (after background subtraction); ~190000 of them have more than 50 counts and their PSDs were searched for significant peaks. At the time of writing, the total number of searched Fourier frequencies was about 4.3x109. After a detailed screening, we obtained a final sample of 41 (42) new X-ray pulsators (signals), which are listed in Table 1. (1 data file).

  4. Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty

    Czech Academy of Sciences Publication Activity Database

    Hloch, Sergej; Foldyna, Josef; Pude, F.; Kloc, J.; Zeleňák, Michal; Hvizdoš, P.; Monka, P.; Smolko, I.; Ščučka, Jiří; Kozak, D.; Sedmak, A.; Mihalčinová, E.

    2015-01-01

    Roč. 22, č. 6 (2015), s. 1609-1616 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : bone cement * revision arthroplasty * ultrasonic pulsating water jet Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://www.tehnicki-vjesnik.com/web/public/archive

  5. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    Science.gov (United States)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  6. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  7. Non-contact method of search and analysis of pulsating vessels

    Science.gov (United States)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  8. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States)

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  9. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    International Nuclear Information System (INIS)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-01-01

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T eff = 9100 ± 170 K and log g = 6.22 ± 0.06, which corresponds to a mass of ∼0.17 M ☉ . This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  10. Outcomes of Thermal Pulsation Treatment for Dry Eye Syndrome in Patients With Sjogren Disease.

    Science.gov (United States)

    Godin, Morgan R; Stinnett, Sandra S; Gupta, Preeya K

    2018-04-26

    To evaluate the clinical outcomes of thermal pulsation treatment in patients with meibomian gland dysfunction (MGD) and dry eye secondary to Sjogren disease. Twenty-four eyes from 13 patients with previously diagnosed Sjogren disease who presented to our institution with dry eye symptoms and had thermal pulsation treatment were prospectively followed up. Patients underwent comprehensive slit-lamp examination, including MGD grading, gland oil flow, corneal and conjunctival staining scores, and tear break-up time (TBUT). Tear osmolarity was tested before and after treatment. The average patient age was 62.4 years (range, 31-78 yrs); 12 were women and 1 a man. The average meibomian gland oil flow score showed an increase from pretreatment 0.71 to 1.75 at 1 year posttreatment (range 9-15 months) (P = 0.001). The average corneal staining score decreased from a pretreatment grade of 1.04 to a posttreatment grade of 0.36 (P dry eye disease in patients with Sjogren disease and should not be overlooked when considering treatment options. Thermal pulsation is a therapeutic option for patients with Sjogren disease who have MGD and dry eye symptoms. After a single treatment, patients exhibited increased oil flow and tear break-up time with an associated decrease in corneal and conjunctival staining.

  11. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  12. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  13. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  14. O-C analysis of the pulsating subdwarf B star PG 1219 + 534

    Science.gov (United States)

    Otani, Tomomi; Stone-Martinez, Alexander; Oswalt, Terry D.; Morello, Claudia; Moss, Adam; Singh, Dana; Sampson, Kenneth; DeAbreu, Caila; Khan, Aliyah; Seepersad, Austin; Shaikh, Mehvesh; Wilson, Linda

    2017-01-01

    PG 1219 + 534 (KY Uma) is a subdwarf B pulsating star with multiple periodicities between 120 - 175 s. So far, the most promising theory for the origin of subdwarf B (sdB) stars is that they result from binary mass transfer near the Helium Flash stage of evolution. The observations of PG 1219 +534 reported here are part of our program to constrain this evolutional theory by searching for companions and determining orbital separations around sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion or planet. If the star emits a periodic signal like pulsations, its orbital motion around the system’s center of mass causes periodic changes in the light pulse arrival times. PG 1219 + 534 was monitored for 90 hours during 2010-1 and 2016 using the 0.9m SARA-KP telescope at Kitt Peak National Observatory (KPNO), Arizona, and the 0.8 m Ortega telescope at Florida Institute of Technology in Melbourne. In this poster we present our time-series photometry and O-C analysis of this data.

  15. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  16. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  17. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  18. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  19. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  20. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars