WorldWideScience

Sample records for external oxygen concentration

  1. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration

    Science.gov (United States)

    Avenhaus, Ulrike; Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2016-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  2. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  3. A Small Oxygen Concentrator

    Science.gov (United States)

    1985-12-01

    150- S40- 20- 10 0 0 10 i0 30 40 NUIT PRESS=R (psig Figure 7. Percentage of oxygen. versus inlet pressure when using Soc with 131 molecular s ieve. 70...chick valve ano *move the plunger and spring. Disca the plunger; the spring will W• reused. Mill a SS sleeve to 0.535" 0.0. and 0.50" I.D. and press tit...the fjur 1" caps. The i n- side of two of the caps is milled flat to a diameteýr of 7/8". P-Kace one ena of a 10’, length of 1/2" SS tube in each Of

  4. Medical Oxygen Concentrator for Microgravity Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have all seen people carrying portable oxygen tanks or concentrators to provide critical life support respiratory oxygen. Heavy, bulky, and for O2 concentrators,...

  5. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method

    OpenAIRE

    Andrews, O. D.; Bindoff, N. L.; P. R. Halloran; Ilyina, T.; Le Quéré, C.

    2012-01-01

    Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen concentration ([O&...

  6. Effect of oxygen concentration on singlet oxygen luminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longchao; Lin, Lisheng; Li, Yirong; Lin, Huiyun; Qiu, Zhihai [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Gu, Ying [Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853 (China); Li, Buhong, E-mail: bhli@fjnu.edu.cn [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China)

    2014-08-01

    Singlet oxygen ({sup 1}O{sub 2}) is a major phototoxic component in photodynamic therapy (PDT) and its generation is dependent on the availability of tissue oxygen. To examine the effect of oxygen concentration on {sup 1}O{sub 2} detection, two hydrophilic photosensitizer (PS), rose bengal (RB) and meso-metra (N-methyl-4-pyridyl) porphine tetra tosylate (TMPyP) were used as model PS. Irradiation was carried out using 523 nm under hypoxic (2%, 13%), normoxic (21%) and hyperoxic (65%) conditions. The spectral and spatial resolved {sup 1}O{sub 2} luminescence was measured by near-infrared (NIR) photomultiplier tube (PMT) and camera, respectively. Upon the irradiation, the emission signal mainly consisted of background scattering light, PS fluorescence and phosphorescence, and {sup 1}O{sub 2} luminescence. The PS phosphorescence was evidently dependent on the oxygen concentration and PS type, which resulted in the change of emission profile of {sup 1}O{sub 2} luminescence. This change was further demonstrated on {sup 1}O{sub 2} luminescence image. The present study suggests that the low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection. - Highlights: • Both spectral and spatial resolved {sup 1}O{sub 2} luminescence measurements were performed. • Effect of oxygen concentration on {sup 1}O{sub 2} generation was quantitatively evaluated. • Low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection.

  7. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the “Great Oxidation” of the Earth’s surface about 2.3 to 2.4 billion years ago. Here, we show......Molecular oxygen (O2) is the second most abundant gas in the Earth’s atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully...

  8. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method

    Science.gov (United States)

    Andrews, O. D.; Bindoff, N. L.; Halloran, P. R.; Ilyina, T.; Le Quéré, C.

    2013-03-01

    Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen concentration ([O2]) changes between ∼1970 and ∼1992 using simulations from two Earth System Models (MPI-ESM-LR and HadGEM2-ES). We detect a response to external forcing at a 90% confidence level and find that observed [O2] changes are inconsistent with internal variability as simulated by models. This result is robust in the global ocean for depth-averaged (1-D) zonal mean patterns of [O2] change in both models. Further analysis with the MPI-ESM-LR model shows similar positive detection results for depth-resolved (2-D) zonal mean [O2] changes globally and for the Pacific Ocean individually. Observed oxygen changes in the Atlantic Ocean are indistinguishable from natural internal variability. Simulations from both models consistently underestimate the amplitude of historical [O2] changes in response to external forcing, suggesting that model projections for future ocean deoxygenation may also be underestimated.

  9. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method

    Directory of Open Access Journals (Sweden)

    O. D. Andrews

    2012-09-01

    Full Text Available Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen concentration ([O2] changes between ~ 1970 and ~ 1992 using simulations from two Earth System Models (MPI-ESM-LR and HadGEM2-ES. We detect a response to external forcing at a 90% confidence level and find that observed [O2] changes are inconsistent with internal variability as simulated by models. This result is robust in the global ocean for depth-averaged (1-D zonal mean patterns of [O2] change in both models. Further analysis with the MPI-ESM-LR model shows similar positive detection results for depth-resolved (2-D zonal mean [O2] changes globally and for the Pacific Ocean individually. Observed oxygen changes in the Atlantic Ocean are indistinguishable from natural internal variability. Simulations from both models consistently underestimate the amplitude of historical [O2] changes in response to external forcing, suggesting that model projections for future ocean deoxygenation may also be underestimated.

  10. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method

    Directory of Open Access Journals (Sweden)

    O. D. Andrews

    2013-03-01

    Full Text Available Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen concentration ([O2] changes between ∼1970 and ∼1992 using simulations from two Earth System Models (MPI-ESM-LR and HadGEM2-ES. We detect a response to external forcing at a 90% confidence level and find that observed [O2] changes are inconsistent with internal variability as simulated by models. This result is robust in the global ocean for depth-averaged (1-D zonal mean patterns of [O2] change in both models. Further analysis with the MPI-ESM-LR model shows similar positive detection results for depth-resolved (2-D zonal mean [O2] changes globally and for the Pacific Ocean individually. Observed oxygen changes in the Atlantic Ocean are indistinguishable from natural internal variability. Simulations from both models consistently underestimate the amplitude of historical [O2] changes in response to external forcing, suggesting that model projections for future ocean deoxygenation may also be underestimated.

  11. High-Pressure Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  12. High-Pressure Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  13. Control of Oxygen Concentration by Using a Carbonaceous Substance

    Directory of Open Access Journals (Sweden)

    Mohanad Jadan

    2005-01-01

    Full Text Available The control of oxygen concentration in gas flow may be used in chemical industry, heat power engineering, ecology, automobile construction and other industrial branches. This control is realized over a broad range of oxygen concentrations. The control of the oxygen concentration is based on passing of gas flow through a measuring cavity of radio spectrometer and measurement of a magnetic resonance signal. A change in the magnetic resonance signal of a dispersed carbonaceous substance, placed into the cavity, indicates to the changes in oxygen concentrations. The dispersed anthracite and thermal treatment cellulose substance in the oxygen-free medium are proposed to use as a carbonaceous substance.

  14. Elastic Stability of Concentric Tube Robots Subject to External Loads.

    Science.gov (United States)

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E

    2016-06-01

    Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released. External loads on the robot also influence elastic stability. In this paper, we provide a second-order sufficient condition, and also a separate necessary condition, for elastic stability. Using methods of optimal control theory, we show that these conditions apply to general concentric tube robot designs subject to arbitrary conservative external loads. They can be used to assess the stability of candidate robot configurations. Our results are validated via comparison with other known stability criteria, and their utility is demonstrated by an application to stable path planning.

  15. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...

  16. A Solar Powered, Ceramic Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Oxygen is an essential treatment for several life-threatening conditions including pneumonia, the single biggest cause of death in children less than five years of...

  17. Quasistatic Modeling of Concentric Tube Robots with External Loads.

    Science.gov (United States)

    Lock, Jesse; Laing, Genevieve; Mahvash, Mohsen; Dupont, Pierre E

    2010-12-03

    Concentric tube robots are a subset of continuum robots constructed by combining pre-curved elastic tubes. As the tubes are rotated and translated with respect to each other, their curvatures interact elastically, enabling control of the robot's tip configuration as well as the curvature along its length. This technology is projected to be useful in many types of minimally invasive medical procedures. Because these robots are flexible by design, they deflect considerably when applying forces to the external environment. Thus, in contrast to rigid-link robots, their kinematic and static force models are coupled. This paper derives a multi-tube quasistatic model that relates tube rotations and translations together with externally applied loads to robot shape and tip configuration. The model can be applied in robot design, procedure planning as well as control. For validation, the multi-tube model is compared experimentally to a computationally-efficient single-tube approximate model.

  18. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  19. Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method

    OpenAIRE

    Andrews, O. D.; Bindoff, N. L.; P. R. Halloran; Ilyina, T.; Quéré, C.

    2013-01-01

    Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr. Although this signal is largely consistent with oxygen changes expected from anthropogenic climate change, the contribution of external forcing to recent deoxygenation trends relative to natural internal variability is yet to be established. Here we conduct a formal optimal fingerprinting analysis to investigate if external forcing has had a detectable influence on observed dissolved oxygen ...

  20. Oxygen concentration distribution in an airlift loop reactor

    Institute of Scientific and Technical Information of China (English)

    李国庆; 杨守志; 蔡昭铃; 陈家镛

    1995-01-01

    Oxygen, concentration distributions of the liquid and gas phases along the axial direction of an airlift loop reactor have been calculated for various gas superficial velocities and oxygen consumption rates with water and CMC solutions respectively by applying the axial backmixing model to the riser and the downcomer and the complete mixing model for the separator. The results show that the dissolved oxygen concentration is zero at the bottom part of the downcomer when the rate of dissolved oxygen consumption by microorganisms is very high.

  1. Temporal Dynamics of Dissolved Oxygen Concentrations in the Hyporheic Zone.

    Science.gov (United States)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2016-12-01

    Dissolved oxygen (DO) concentration profiles and DO consumption rates are primary indicators of the redox state of porewaters in the hyporheic zone (HZ). Previous studies (mostly numeric) of reactive solute transport, in the HZ, are steady state and give a fixed, in time, view of the biogeochemical activity and redox state of the HZ. Through the use of a novel, multichannel fiber optic DO measurement system and a robotic surface probe system in a large flume experiment, we have been able to track DO concentration, in the HZ, over time and at high spatial and temporal resolutions never achieved before. Our research shows that in carbon-limited systems (i.e., ones in which organic carbon replenishment is largely episodic), DO concentration profiles and consumption rates will vary as a function of time. As the most readily available organic carbon is consumed, (first near the bed surface/water interface) respiration rates, in that area, will drop and DO will be transported deeper into the HZ. Over time, and lacking either an external source of bioavailable carbon or an alternate electron donor substrate, microbial metabolic activity will slow substantially and the majority of the HZ will be rendered oxic. Hyporheic fluxes affect the time scale of biological reactions resulting in faster growth of the aerobic zone in high-flux systems. While this temporal variability can result in a multitude of DO consumption curves (DO vs. residence time), the careful application of dimensional analysis can collapse the consumption curves to a single characteristic curve that accounts for a wide range of morphology and reactivity.

  2. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    Science.gov (United States)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  3. Dissolved oxygen concentration affects hybrid striped bass growth

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  4. [Measurement of oxygen concentration using multimode diode laser absorption spectroscopy].

    Science.gov (United States)

    Gao, Guang-zhen; Cai, Ting-dong; Hu, Bo; Jia, Tian-jun

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technique for high sensitivity, good selectivity and fast response. It is widely used in environment monitoring, industrial process control and biomedical sensing. In order to overcome the drawbacks of TDLAS including high cost, poor stability and center wavelength shift problem. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure O2 concentration near 760nm at the 1%~30% range of near room temperature. During the experiment, the light is splitter into two beams, respectively through the sample and measuring cell, two receiving optical signal collection containing gas concentration information sent back stage treatment, invert the oxygen concentration through correlation and ratio between measured signal and reference signal, the correlation spectroscopy harmonic detection technique is used to improve the stability of the system and the signal to noise ratio. The result showed that, there was a good linear relationship between the measured oxygen concentration and the actual concentration value. A detection limit of 280 pmm. m in the 1 atmospheric which approved of the same sample. A continuous measurement for oxygen with the standard deviation of 0. 056% in ambient air during approximately 30 minutes confirms the stability and the capability of the system. The design of the system includes soft and hardware can meet the needs of oxygen online monitoring. The experimental device is simple and easy to use, easy to complex environment application.

  5. The effect of external dummy transmitters on oxygen consumption and performance of swimming Atlantic cod

    DEFF Research Database (Denmark)

    Steinhausen, M.F.; Andersen, Niels Gerner; Steffensen, J.F.

    2006-01-01

    Decreased critical swimming speed and increased oxygen consumption (Mo-2) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0 center dot 9 body length (total length, L-Gamma) s(-1). No difference was found in the standard metabolic rate, indicating...

  6. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    Science.gov (United States)

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  7. Is the quickness of resuscitation after hypoxia influenced by the oxygen concentration? Metabolomics in piglets resuscitated with different oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Federica Murgia

    2013-06-01

    Full Text Available Perinatal asphyxia is one of the leading causes of morbidity and mortality in the neonatal period. There is an on-going debate in the literature concerning the correct oxygen concentration to be used during neonatal resuscitation. Aim of this study was to investigate whether different metabolic profiles occurred according to oxygen concentration administered and quickness of resuscitation. We tested the hypothesis that the metabolic profile may be affected by the response to the different oxygen concentration and influenced the different time of recovery. Forty male Landrace/Large newborn piglets were the subjects of the present study. As a consequence of the different time of resuscitation, a metabolomics analysis between the two classes of reoxygenated piglets with the slowest and fastest recovery was carried out: first group (4 piglets RT < 15 minutes and second group (6 piglets RT > 68 minutes. In addition, 1H-NMR metabolomics study was performed showing different metabolic profiles between the two groups. The most significant metabolites were: N-phenylacetylglycine, acetoacetate, methanol, glucose, sarcosine, succinate, dimethylamine and alanine. Our results seem to indicate that the rapidity of resuscitation is influenced by the oxygen concentration. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  8. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  9. Si3O cluster: excited properties under external electric field and oxygen-deficient defect models

    Institute of Scientific and Technical Information of China (English)

    Xu Guo-Liang; Liu Xue-Feng; Xie Hui-Xiang; Zhang Xian-Zhou; Liu Yu-Fang

    2011-01-01

    This paper investigates the excited states of Si3O molecule by using the single-excitation configuration interaction and density functional theory. It finds that the visible light absorption spectrum of SisO molecule comprises the yellow and the purple light without external electric field, however all the visible light is included except the green light under the action of external electric field. Oxygen-deficient defects, which also can be found in Si3O molecule, have been used to explain the luminescence from silicon-based materials but the microstrnctures of the materials are still uncertain.Our results accord with the experimental values perfectly, this fact suggests that the structure of Si3O molecule is expected to be one of the main basic structures of the materials, so the oxygen-deficient defect structural model for Si3O molecule also has been provided to research the structures of materials.

  10. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration

    DEFF Research Database (Denmark)

    Sørensen, H; Rasmussen, P; Sato, K

    2014-01-01

    .012)] as arterial carbon dioxide pressure decreased (P=0.003). ICAf was stable and ECAf increased by 11 (4-18%; P=0.005) with administration of ephedrine while SskinO₂ did not change. CONCLUSIONS: The effect of phenylephrine on ScO₂ is governed by a decrease in external carotid blood flow since it increases......BACKGROUND: Phenylephrine and ephedrine affect frontal lobe oxygenation ([Formula: see text]) differently when assessed by spatially resolved near infrared spectroscopy. We evaluated the effect of phenylephrine and ephedrine on extra- vs intra-cerebral blood flow and on [Formula: see text]. METHODS......: In 10 healthy males (age 20-54 yr), phenylephrine or ephedrine was infused for an ∼20 mm Hg increase in mean arterial pressure. Cerebral oxygenation (SavO₂) was calculated from the arterial and jugular bulb oxygen saturations. Blood flow in the internal carotid artery (ICAf) and blood flow...

  11. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    Science.gov (United States)

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional FIO2 while pediatric/adult therapy is administered with high FIO2 . We suspected a connection between FIO2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively (P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively (P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a role for

  12. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  13. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  14. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  15. Hydrogen and oxygen concentrations in IXCs: A compilation

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

    1996-06-01

    This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins.

  16. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  17. Effects of Dissolved Oxygen Concentration on Oxygen Consumption and Development of Channel Catfish Eggs and Fry: Implications for Hatchery Management

    Science.gov (United States)

    Channel catfish spawns were incubated under controlled conditions to determine the effect of dissolved oxygen (DO) concentration on development and survival. Routine metabolic rate and limiting oxygen concentration were determined on eggs, sac fry and swim-up fry. Eight channel catfish spawns were s...

  18. Growth of E. coli at Nanomolar Concentrations of Oxygen

    Science.gov (United States)

    Stolper, D. A.; Revsbech, N.; Canfield, D. E.

    2009-12-01

    It has been know since the work of Pasteur (1876) that facultative aerobes transition from aerobic to anaerobic metabolisms when molecular oxygen (O2) is removed from the environment. This transition (the “Pasteur Point”) generally occurs when the O2 concentration in gas in equilibrium with a growth medium is ~.01 of the present atmospheric level (PAL) of O2 (Fenchel and Finlay, 1995). In the earth sciences, the Pasteur Point is sometimes assumed to approximate the O2 level below which aerobic processes cease to be viable (e.g., Goldblatt et al., 2006; Parkinson et al., 2008). If true, this assumption implies that aerobic respiration evolved only after the earth’s atmosphere reached O2 concentrations ≥ .01 PAL. In order to investigate whether the Pasteur Point is a valid proxy for the level at which aerobic metabolisms become non-viable, we designed an experiment in which the presence or absence of aerobic respiration could be measured at O2 concentrations significantly below the Pasteur Point. To do this, we grew E. coli K-12 in a sealed, 1 liter glass reactor with well-mixed M9 media maintained at 37°C. O2 was supplied to the reactor by pumping air-saturated water (maintained at 37°C) through a silicone tube that looped through the reactor. The only carbon source available was glycerol. As E. coli K-12 can only metabolize glycerol by using O2 (except under restricted conditions not present in our experimental setup), growth of E. coli K-12 in the medium signifies aerobic growth. We monitored growth by periodically removing media and measuring its optical density spectrophotometrically. In order to monitor O2 concentrations, we employed a new O2-sensing electrode, termed the “Switchable Trace Oxygen Electrode” (STOX) sensor, which can measure O2 concentrations in solutions down to ~3-5 nM (Revsbech et al., 2009). This corresponds to an equilibrated gas with ~10-5 PAL. Our findings indicate that E. coli K-12 can grow aerobically at O2 levels up to

  19. Sensitivity of oxygen dynamics in the water column of the Baltic Sea to external forcing

    Directory of Open Access Journals (Sweden)

    S. Miladinova

    2010-04-01

    Full Text Available A 1-D biogeochemical/physical model of marine systems has been applied to study the oxygen cycle in four stations of different sub-basins of the Baltic Sea, namely, in the Gotland Deep, Bornholm, Arkona and Fladen. The model consists of the biogeochemical model of Neumann et al. (2002 coupled with the 1-D General Ocean Turbulence Model (GOTM. The model has been forced with meteorological data from the ECMWF reanalysis project for the period 1998–2003, producing a six year hindcast which is validated with datasets from the Baltic Environmental Database (BED for the same period. The vertical profiles of temperature and salinity are relaxed towards both profiles provided by 3-D simulations of General Estuarine Transport Model (GETM and observed profiles from BED. Modifications in the parameterisation of the air-sea oxygen fluxes have led to a significant improvement of the model results in the surface and intermediate water layers. The largest mismatch with observations is found in simulating the oxygen dynamics in the Baltic Sea bottom waters. The model results demonstrate the good capability of the model to predict the time-evolution of the physical and biogeochemical variables at all different stations. Comparative analysis of the modelled oxygen concentrations with respect to observation data is performed to distinguish the relative importance of several factors on the seasonal, interannual and long-term variations of oxygen. It is found that natural physical factors, like the magnitude of the vertical turbulent mixing, wind speed and the variation of temperature and salinity fields are the major factors controlling the oxygen dynamics in the Baltic Sea. The influence of limiting nutrients is less pronounced, at least under the nutrient flux parameterisation assumed in the model.

  20. End expiratory oxygen concentrations to predict central venous oxygen saturation: an observational pilot study

    Directory of Open Access Journals (Sweden)

    Steuerwald Michael

    2006-09-01

    Full Text Available Abstract Background A non-invasive surrogate measurement for central venous oxygen saturation (ScVO2 would be useful in the ED for assessing therapeutic interventions in critically ill patients. We hypothesized that either linear or nonlinear mathematical manipulation of the partial pressure of oxygen in breath at end expiration (EtO2 would accurately predict ScVO2. Methods Prospective observational study of a convenience sample of hemodialysis patients age > 17 years with existing upper extremity central venous catheters were enrolled. Using a portable respiratory device, we collected both tidal breathing and end expiratory oxygen and carbon dioxide concentrations, volume and flow on each patient. Simultaneous ScVO2 measurements were obtained via blood samples collected from the hemodialysis catheter. Two models were used to predict ScVO2: 1 Best-fit multivariate linear regression equation incorporating all respiratory variables; 2 MathCAD to model the decay curve of EtO2 versus expiratory volume using the least squares method to estimate the pO2 that would occur at Results From 21 patients, the correlation between EtO2 and measured ScVO2 yielded R2 = 0.11. The best fit multivariate equation included EtCO2 and EtO2 and when solved for ScVO2, the equation yielded a mean absolute difference from the measured ScVO2 of 8 ± 6% (range -18 to +17%. The predicted ScVO2 value was within 10% of the actual value for 57% of the patients. Modeling of the EtO2 curve did not accurately predict ScVO2 at any lung volume. Conclusion We found no significant correlation between EtO2 and ScVO2. A linear equation incorporating EtCO2 and EtO2 had at best modest predictive accuracy for ScVO2.

  1. Energy harvesting through charged nanochannels using external flows of different salt concentrations

    Science.gov (United States)

    Chanda, Sourayon; Tsai, Peichun Amy

    2016-11-01

    Renewable electricity may be generated by mixing of two solutions of different salt concentrations through charged nanochannels or pores, by leveraging ion-selective effect of the nano-confinements. We numerically investigate such a continuous power generation system using reverse electrodialysis (RED) with external flows. In the simulation model, two reservoirs are connected using a nanochannel of constant surface charge density. Solutions of high and low concentrations flow through the two reservoirs at a constant velocity. We examine the effects of (salt) concentration gradients and nanochannel dimensions on the power generation. Moreover, the effect of external flow velocity on the process is analyzed. Our results show that the maximum surface charge density, open circuit voltage, channel resistance, and energy conversion efficiency of the process are significantly affected by the difference of the high and low concentrations and the nanochannel dimension ratio.

  2. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    Science.gov (United States)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  3. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2017-06-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2 /L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2 /L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  4. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.

    Science.gov (United States)

    Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il

    2010-05-01

    Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.

  5. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M., E-mail: meigikos@if.uff.br [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); Juri Ayub, J. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); GEA-Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, CCT-San Luis, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Cid, A.S.; Cardoso, R.; Lacerda, T. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil)

    2011-11-15

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of {sup 232}Th, {sup 226}Ra, and {sup 40}K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg{sup -1}, 4.9-160 Bq kg{sup -1} and 190-2029 Bq kg{sup -1}, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m x 4.0 m area, 2.8 m height) was found to be 120 nGy h{sup -1}, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h{sup -1} due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of {sup 226}Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h{sup -1}) will be lower than 100 Bq m{sup -3}, value recommended as a reference level by the World Health Organization. - Highlights: > We used indirect methods to predict external gamma dose rate and radon concentration. > The gamma-ray dose rate was estimated by a Monte Carlo simulation method. > The results were validated by in-situ measurements with a NaI spectrometer. > Radon concentrations in the room were estimated by a simple mass balance equation. > Radon concentration in the room ventilated adequately will be lower than 100 Bq m{sup -3}.

  6. Effects of oxygen concentration and flow rate on cognitive ability and physiological responses in the elderly

    Institute of Scientific and Technical Information of China (English)

    Hyun-Jun Kim; Soon-Cheol Chung; Hyun-Kyung Park; Dae-Woon Lim; Mi-Hyun Choi; Hyun-Joo Kim; In-Hwa Lee; Hyung-Sik Kim; Jin-Seung Choi; Gye-Rae Tack

    2013-01-01

    The supply of highly concentrated oxygen positively affects cognitive processing in normal young adults. However, there have been few reports on changes in cognitive ability in elderly subjects following highly concentrated oxygen administration. This study investigated changes in cognitive ability, blood oxygen saturation (%), and heart rate (beats/min) in normal elderly subjects at three different levels of oxygen [21% (1 L/min), 93% (1 L/min), and 93% (5 L/min)] administered during a 1-back task. Eight elderly male (75.3 ± 4.3 years old) and 10 female (71.1 ± 3.9 years old) subjects, who were normal in cognitive ability as shown by a score of more than 24 points in the Mini-Mental State Examination-Korea, participated in the experiment. The experiment consisted of an adaptation phase after the start of oxygen administration (3 minutes), a control phase to obtain stable baseline measurements of heart rate and blood oxygen saturation before the task (2 minutes), and a task phase during which the 1-back task was performed (2 minutes). Three levels of oxygen were administered throughout the three phases (7 minutes). Blood oxygen saturation and heart rate were measured during each phase. Our results show that blood oxygen saturation increased, heart rate decreased, and response time in the 1-back task decreased as the concentration and amount of administered oxygen increased. This shows that administration of sufficient oxygen for optimal cognitive functioning increases blood oxygen saturation and decreases heart rate.

  7. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    Science.gov (United States)

    2015-04-22

    insulated and is supplied with a nylon cover for further insulation. A pin attached to a wire is pulled to activate the device. Oxygen begins to flow... nylon cover for additional insulation. The device has two pins that must be pulled to initiate the reaction process. Oxygen flow begins seconds

  8. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?

    Science.gov (United States)

    Wu, Chuan; Ye, Zhihong; Li, Hui; Wu, Shengchun; Deng, Dan; Zhu, Yongguan; Wong, Minghung

    2012-05-01

    Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.

  9. Production Responses of Channel Catfish to Minimum Daily Dissolved Oxygen Concentrations in Earthen Ponds

    Science.gov (United States)

    The purpose of this study was to determine the effects of the minimum daily dissolved oxygen (DO) concentration on production parameters of channel catfish Ictalurus punctatus in earthen ponds. Fifteen one-acre ponds (5 ponds per treatment) were managed as High Oxygen (minimum DO concentrations aver...

  10. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  11. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  12. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.

    Science.gov (United States)

    Nacev, A; Weinberg, I N; Stepanov, P Y; Kupfer, S; Mair, L O; Urdaneta, M G; Shimoji, M; Fricke, S T; Shapiro, B

    2015-01-14

    The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to the body. One of the factors that has made focusing of therapy to central targets between magnets challenging is Samuel Earnshaw's theorem as applied to Maxwell's equations. These mathematical formulations imply that external static magnets cannot create a stable potential energy well between them. We posited that fast magnetic pulses could act on ferromagnetic rods before they could realign with the magnetic field. Mathematically, this is equivalent to reversing the sign of the potential energy term in Earnshaw's theorem, thus enabling a quasi-static stable trap between magnets. With in vitro experiments, we demonstrated that quick, shaped magnetic pulses can be successfully used to create inward pointing magnetic forces that, on average, enable external magnets to concentrate ferromagnetic rods to a central location.

  13. Long-term climate forcing by atmospheric oxygen concentrations

    Science.gov (United States)

    Poulsen, Christopher J.; Tabor, Clay; White, Joseph D.

    2015-06-01

    The percentage of oxygen in Earth’s atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time.

  14. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  15. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Fagundes Neves

    2013-09-01

    Full Text Available OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each: control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.

  16. The functioning of oxygen concentrators in resource-limited settings: a situation assessment in two countries.

    Science.gov (United States)

    La Vincente, S F; Peel, D; Carai, S; Weber, M W; Enarson, P; Maganga, E; Soyolgerel, G; Duke, T

    2011-05-01

    The paediatric wards of hospitals in Malawi and Mongolia. To describe oxygen concentrator functioning in two countries with widespread, long-term use of concentrators as a primary source of oxygen for treating children. A systematic assessment of concentrators in the paediatric wards of 15 hospitals in Malawi and nine hospitals in Mongolia. Oxygen concentrators had been installed for a median of 48 months (interquartile range [IQR] 6-60) and 36 months (IQR 12-96), respectively, prior to the evaluation in Malawi and Mongolia. Concentrators were the primary source of oxygen. Three quarters of the concentrators assessed in Malawi (28/36) and half those assessed in Mongolia (13/25) were functional. Concentrators were found to remain functional with up to 30 000 h of use. However, several concentrators were functioning very poorly despite limited use. Concentrators from a number of different manufacturers were evaluated, and there was marked variation in performance between brands. Inadequate resources for maintenance were reported in both countries. Years after installation of oxygen concentrators, many machines were still functioning, indicating that widespread use can be sustained in resource-limited settings. However, concentrator performance varied substantially. Procurement of high-quality and appropriate equipment is critical, and resources should be made available for ongoing maintenance.

  17. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.

    Science.gov (United States)

    Yao, Yijun; Shen, Rui; Pennel, Kelly G; Suuberg, Eric M

    2013-12-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation has shown that oxygen can play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration on biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law.

  18. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  19. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  20. Regulation of respiration and fermentation to control the plant internal oxygen concentration.

    Science.gov (United States)

    Zabalza, Ana; van Dongen, Joost T; Froehlich, Anja; Oliver, Sandra N; Faix, Benjamin; Gupta, Kapuganti Jagadis; Schmälzlin, Elmar; Igal, Maria; Orcaray, Luis; Royuela, Mercedes; Geigenberger, Peter

    2009-02-01

    Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.

  1. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R

    2004-05-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity.

  2. The effects of different oxygen concentrations on recruitment maneuver during general anesthesia for laparoscopic surgery.

    Science.gov (United States)

    Topuz, Ufuk; Salihoglu, Ziya; Gokay, Banu V; Umutoglu, Tarik; Bakan, Mefkur; Idin, Kadir

    2014-10-01

    Recruitment maneuvers (RMs), which aim to ventilate the collaborated alveolus by temporarily increasing the transpulmonary pressure, have positive effects in relation to respiration, mainly oxygenation. Although many studies have defined the pressure values used during RM and the application period, our knowledge of the effects of different oxygen concentrations is limited. In this study, we aimed to determine the effects of different oxygen concentrations during RM on the arterial oxygenation and respiration mechanics in laparoscopic cases. Thirty-two patients undergoing laparoscopic cholecystectomy were recruited into the study. The patients were randomly divided into 2 groups. RM with a 30% oxygen concentration was performed in patients within the first group (group I, n=16), whereas patients in the second group (group II, n=16) received RM with 100% oxygen. To study respiratory mechanics, dynamic compliance (Cdyn), airway resistance (Raw), and peak inspiratory pressure were measured at 3 different times: 5 minutes after anesthesia induction, 5 minutes after the abdomen was insufflated, and 5 minutes after the abdomen was desufflated. Arterial blood gases were measured during surgery and 30 minutes after surgery (postoperative). The average postoperative partial arterial oxygen pressure values of the patients in groups I and II were 121 and 98 mm Hg, respectively. The difference between the groups was statistically significant. In addition, the decrease in compliance from induction values after desufflation in group II was statistically significant. On the basis of our results, maintaining oxygen concentrations below 100% during RM may be more beneficial in terms of respiratory mechanics and gas exchange.

  3. Predictive Control of Dissolved Oxygen Concentration in Cynoglossus Semilaevis Industrial Aquaculture

    National Research Council Canada - National Science Library

    Hongjing Liu; Yaoguang Wei; Chunhong Liu; Yingyi Chen

    2014-01-01

    .... The changing process of dissolved oxygen concentration contains nonlinearities and big time-delay because it is restricted by multiple factors, so traditional control methods are difficult to control...

  4. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  5. Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture.

    Science.gov (United States)

    Oze, Hiroki; Hirao, Makoto; Ebina, Kosuke; Shi, Kenrin; Kawato, Yoshitaka; Kaneshiro, Shoichi; Yoshikawa, Hideki; Hashimoto, Jun

    2012-02-01

    Previous studies have demonstrated that oxygen environment is an important determinate factor of cell phenotypes and differentiation, although factors which affect pericellular oxygen concentration (POC) in murine chondrogenic cell culture remain unidentified. Oxygen concentrations in vivo were measured in rabbit musculoskeletal tissues, which were by far hypoxic compared to 20% O(2) (ranging from 2.29 ± 1.16 to 4.36 ± 0.51%). Oxygen concentrations in murine chondrogenic cell (C3H10T1/2) culture medium were monitored in different oxygen concentrations (20% or 5%) in the incubator and in different medium volumes (3,700 or 7,400 μl) within 25-cm(2) flasks. Chondrogenic differentiation was assessed by glycosaminoglycan production with quantitative evaluation of Alcian blue staining in 12-well culture dishes. Expression of chondrogenic genes, aggrecan, and type II collagen α1, was examined by quantitative real-time polymerase chain reaction. Oxygen concentrations in medium decreased accordingly with the depth from medium surface, and POC at Day 6 was 18.99 ± 0.81% in 3,700-μl medium (1,480-μm depth) and 13.26 ± 0.23% in 7,400-μl medium (2,960-μm depth) at 20% O(2) in the incubator, which was 4.96 ± 0.08% (1,480-μm depth) and 2.83 ± 0.42% (2,960-μm depth) at 5% O(2), respectively. The differences of POC compared by medium volume were statistically significant (p = 0.0003 at 20% and p = 0.001 at 5%). Glycosaminoglycan production and aggrecan gene expression were most promoted when cultured in moderately low POC, 1,000 μl (2,960-μm depth) at 20% O(2) and 500 μl (1,480-μm depth) at 5% O(2) in 12-well culture dishes. We demonstrate that medium volume and oxygen concentration in the incubator affect not only POC but also chondrogenic differentiation.

  6. Experimental study of effects of oxygen concentration on combustion and emissions of diesel engine

    Institute of Scientific and Technical Information of China (English)

    YAO MingFa; ZHANG QuanChang; ZHENG ZunQin; ZHANG Pang

    2009-01-01

    Effects of oxygen concentration on combustion and emissions of diesel engine are investigated by experiment. The intake oxygen concentration is controlled by adjusting CO2. The results show that very low levels of both soot and NOx emissions can be achieved by modulating the injection pressure, tim-ing, and boost pressure at the low levels of oxygen concentration. However, both CO and HC emissions and fuel consumption distinctly increase at the low levels of oxygen concentration. The results also indicate that NOx emissions strongly depend on oxygen concentration, while soot emissions strongly depend on injection pressure. Decreasing oxygen concentration is the most effective method to control NOx emissions. High injection pressure is necessary to reduce smoke emissions. High injection pres-sure can also decrease the CO and HC emissions and improve engine efficiency. With the increase of intake pressure, both NOx and smoke emissions decrease. However, it is necessary to use the appro-priate intake pressure in order to get the low HC and CO emissions with high efficiency.

  7. Experimental study of effects of oxygen concentration on combustion and emissions of diesel engine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Effects of oxygen concentration on combustion and emissions of diesel engine are investigated by experiment.The intake oxygen concentration is controlled by adjusting CO2.The results show that very low levels of both soot and NOx emissions can be achieved by modulating the injection pressure,tim-ing,and boost pressure at the low levels of oxygen concentration.However,both CO and HC emissions and fuel consumption distinctly increase at the low levels of oxygen concentration.The results also indicate that NOx emissions strongly depend on oxygen concentration,while soot emissions strongly depend on injection pressure.Decreasing oxygen concentration is the most effective method to control NOx emissions.High injection pressure is necessary to reduce smoke emissions.High injection pres-sure can also decrease the CO and HC emissions and improve engine efficiency.With the increase of intake pressure,both NOx and smoke emissions decrease.However,it is necessary to use the appro-priate intake pressure in order to get the low HC and CO emissions with high efficiency.

  8. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation.

    Directory of Open Access Journals (Sweden)

    So Jin Park

    Full Text Available To investigate the appropriateness of the current vancomycin dosing strategy in adult patients with extracorporeal membrane oxygenation (ECMO, between March 2013 and November 2013, patients who were treated with vancomycin while on ECMO were enrolled. Control group consisted of 60 patients on vancomycin without ECMO, stayed in medical intensive care unit during the same study period and with the same exclusion criteria. Early trough levels were obtained within the fourth dosing, and maintenance levels were measured at steady state. A total of 20 patients were included in the analysis in ECMO group. Sixteen patients received an initial intravenous dose of 1.0 g vancomycin followed by 1.0 g every 12 hours. The non-steady state trough level of vancomycin after starting administration was subtherapeutic in 19 patients (95.00% in ECMO group as compared with 40 patients (66.67% in the control group (p = 0.013. Vancomycin clearance was 1.27±0.51 mL/min/kg, vancomycin clearance/creatinine clearance ratio was 0.90 ± 0.37, and elimination rate constant was 0.12 ± 0.04 h-1. Vancomycin dosingfrequency and total daily dose were significantly increased after clinical pharmacokinetic services of the pharmacist based on calculated pharmacokinetic parameters (from 2.10 ± 0.72 to 2.90 ± 0.97 times/day, p = 0.002 and from 32.54 ± 8.43 to 42.24 ± 14.62mg/kg, p = 0.014 in ECMO group in contrast with those (from 2.11 ± 0.69 to 2.37 ± 0.86 times/day, p = 0.071 and from 33.91 ± 11.85 to 31.61 ± 17.50 mg/kg, p = 0.350 in the control group.Although the elimination rate for vancomycin was similar with population parameter of non ECMO patients, the current dosing strategy of our institution for vancomycinin our ICU was not sufficient to achieve the target trough in the initial period in most patients receiving ECMO.

  9. A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots

    Science.gov (United States)

    Rucker, D. Caleb; Jones, Bryan A.; Webster, Robert J.

    2011-01-01

    Continuum robots, which are composed of multiple concentric, precurved elastic tubes, can provide dexterity at diameters equivalent to standard surgical needles. Recent mechanics-based models of these “active cannulas” are able to accurately describe the curve of the robot in free space, given the preformed tube curves and the linear and angular positions of the tube bases. However, in practical applications, where the active cannula must interact with its environment or apply controlled forces, a model that accounts for deformation under external loading is required. In this paper, we apply geometrically exact rod theory to produce a forward kinematic model that accurately describes large deflections due to a general collection of externally applied point and/or distributed wrench loads. This model accommodates arbitrarily many tubes, with each having a general preshaped curve. It also describes the independent torsional deformation of the individual tubes. Experimental results are provided for both point and distributed loads. Average tip error under load was 2.91 mm (1.5%–3% of total robot length), which is similar to the accuracy of existing free-space models. PMID:21566688

  10. Oxygen supply in disposable shake-flasks: prediction of oxygen transfer rate, oxygen saturation and maximum cell concentration during aerobic growth.

    Science.gov (United States)

    Schiefelbein, Sarah; Fröhlich, Alexander; John, Gernot T; Beutler, Falco; Wittmann, Christoph; Becker, Judith

    2013-08-01

    Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas-liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.

  11. Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor.

    Science.gov (United States)

    Sánchez, Omar; Bernet, Nicolas; Delgenès, Jean-Philippe

    2007-08-01

    A mathematical model based on Activated Sludge Model No. 3 (International Water Association, London) and laboratory-scale experiments were used to investigate ammonia conversion by nitrification in a sequencing batch reactor (SBR). The purpose of the study was to assess the effect of dissolved oxygen concentration on nitrite accumulation in the SBR. As the dissolved oxygen concentration in the SBR depends on the balance between oxygen consumption and oxygen transfer rates, ammonium conversion was measured for different air flowrate values to obtain different dissolved oxygen concentration profiles during the cycle. The ammonia concentration in the feeding medium was 500 mg ammonium as nitrogen (N-NH4(+))/L, and the maximum nitrite concentration achieved during a cycle was approximately 50 mg nitrite as nitrogen (N-NO2)/L. The air flow supplied to the reactor was identified as a suitable parameter to control nitrite accumulation in the SBR. This identification was carried out based on experimental results and simulation with a calibrated model. At a low value of the volumetric mass-transfer coefficient (kLa), the maximum nitrite concentration achieved during a cycle depends strongly on k(L)a, whereas, at a high value of k(L)a, the maximum nitrite concentration was practically independent of kL(a).

  12. A ’Smart’ Molecular Sieve Oxygen Concentrator with Continuous Cycle Time Adjustment.

    Science.gov (United States)

    1996-04-01

    A ’smart’ molecular sieve oxygen concentrator (MSOC) is controlled by a set of computer algorithms . The ’smart’ system automatically adjusts...determine if concentrator performance could be controlled by computer algorithms which continuously adjust concentrator cycle time. A two-bed... Computer algorithms or decision process were developed which allowed the software to control concentrator cycle time. Step changes in product flow from 5

  13. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  14. Acute effect of static stretching on power output during concentric dynamic constant external resistance leg extension.

    Science.gov (United States)

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2006-11-01

    The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.

  15. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    Science.gov (United States)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (Salmonella bacteria than hydrogen peroxide, on a molar basis. We have not observed mutagenicity in these bacteria exposed to sufficient singlet oxygen to kill 60-90% using a variety of bacterial strains and assays.

  16. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  17. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  18. Control of oxygen concentration in BSCCO thin films using solid-state electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsuyoshi (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yatabe, Toshiaki (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yugami, Hiroo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan)); Ishigame, Mareo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan))

    A new electrochemical cell using the oxygen ion conducting solid-state electrolyte, yttria-stabilized zirconia (YSZ), was developed to control the oxygen concentration in high-T[sub c] superconducting Bi[sub 2]Sr[sub 2]Ca[sub 1]Cu[sub 2]O[sub 8+x] (BSCCO) thin films. In the electrochemical cell, YSZ single crystal plate was used as an oxygen ion pump as well as a substrate for the BSCCO thin film. Oxygen ions were removed from or injected into the BSCCO thin film electrochemically by supplying charges to the cell at 500 C in air. T[sub c] and lattice constant c were found to increase with removing oxygen ions from as-fabricated BSCCO thin films, and to decrease with injecting oxygen ions. These parameters varied reversibly and were correlated, depending on the total charges carried by oxygen ions. It was confirmed that this technique is an effective method to control the oxygen concentration in BSCCO thin films.

  19. [Influence of the Concentration of Dissolved Oxygen on Embryonic Development of the Common Toad (Bufo bufo)].

    Science.gov (United States)

    Dmitrieva, E V

    2015-01-01

    Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.

  20. Analysis and methodology for measuring oxygen concentration in liquid sodium with a plugging meter

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, B. K.; Hvasta, M.; Anderson, M. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2012-07-01

    Oxygen concentration in liquid sodium is a critical measurement in assessing the potential for corrosion damage in sodium-cooled fast reactors (SFRs). There has been little recent work on sodium reactors and oxygen detection. Thus, the technical expertise dealing with oxygen measurements within sodium is no longer readily available in the U.S. Two methods of oxygen detection that have been investigated are the plugging meter and the galvanic cell. One of the overall goals of the Univ. of Wisconsin's sodium research program is to develop an affordable, reliable galvanic cell oxygen sensor. Accordingly, attention must first be dedicated to a well-known standard known as a plugging meter. Therefore, a sodium loop has been constructed on campus in effort to develop the plugging meter technique and gain experience working with liquid metal. The loop contains both a galvanic cell test section and a plugging meter test section. Consistent plugging results have been achieved below 20 [wppm], and a detailed process for achieving effective plugging has been developed. This paper will focus both on an accurate methodology to obtain oxygen concentrations from a plugging meter, and on how to easily control the oxygen concentration of sodium in a test loop. Details of the design, materials, manufacturing, and operation will be presented. Data interpretation will also be discussed, since a modern discussion of plugging data interpretation does not currently exist. (authors)

  1. Ability of freshwater fish to extract oxygen at different hydrogen-ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.; McGavock, A.M.; Fuller, A.C.; Markus, H.C.

    1934-01-01

    Pruthi's observations on the stickleback at pH 3.1 have been confirmed for the stickleback as well as several other species of fresh-water fish. Pruthi's criticism of the work of Powers is invalid within the pH range to which the fish are acclimated. The initial oxygen has either no effect on the lethal oxygen or the effect is in the opposite direction from that suggested by Pruthi. Outside of the pH range normal to the species in question the lethal oxygen is dependent in a large measure on the initial oxygen. Several species of freshwater fish--largemouth blackbass, smallmouth blackbass, white crappie, yellow perch, rainbow trout, as well as the goldfish and green sunfish--have the ability to extract oxygen from the water at low oxygen tensions equally well over a fairly wide range of hydrogen-ion concentration. The bluegill has a somewhat narrower range of toleration. The two species of minnow--steel-colored and bluntnose--tolerate a markedly narrower range of difference in hydrogen-ion concentration as shown by the lethal oxygen. The ability of fish to extract oxygen from the water at low pressure depends more or less on the hydrogen-ion concentration of water. The results obtained in this investigation confirm the studies on pH tolerance of fish previously published. These results also confirm the observations that in highly alkaline water fish require a higher concentration of oxygen to survive.

  2. Effect of daily minimum pond dissolved oxygen concentration on hybrid striped bass fingerling yield

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. The purpose of this study was to quantify the production and water quality responses of hybrid striped ...

  3. Effect of dissolved oxygen concentration on growth of fingerling hybrid striped bass

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in production ponds is important because fish growth and yield are greater in ponds with higher DO concentrations. The purpose of this study was to evaluate growth and metabolic responses of hybrid striped bass (Morone chrysops x M. saxatilis; HSB) f...

  4. Effect of Dissolved Oxygen Concentration on Development and Hatching of Channel Catfish Ictalurus punctatus Eggs

    Science.gov (United States)

    Recommendations on required dissolved oxygen (DO) concentrations in channel catfish hatcheries vary widely. This study was conducted to determine effects of DO concentration on development and hatching success of channel catfish eggs. Five channel catfish spawns were collected from a pond at the T...

  5. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    Oxygen (O2) is a fundamental parameter for life. It not only profoundly influences the biogeochemical cycling on a global scale, but also deals with the regulation of metabolic processes at microbial level, in particular the transition between aerobic and anaerobic metabolisms. However, until...... recently, due to the lack of high-resolution methods for O2 concentration determination, several oxygen-related processes, such as aerobic respiration in pelagic aquatic ecosystems and in naturally oxygen poor waters (e.g. Oxygen Minimum Zones, OMZs), or the oxygen regulation of nitrification...... and denitrification, were only partially described. In spite of the importance of aerobic respiration as a key process in the global carbon cycle, the available data are still few, and highly biased with respect to season, latitude and depth. The main aims of this Ph.D were to: i) develop and test a highly...

  6. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    recently, due to the lack of high-resolution methods for O2 concentration determination, several oxygen-related processes, such as aerobic respiration in pelagic aquatic ecosystems and in naturally oxygen poor waters (e.g. Oxygen Minimum Zones, OMZs), or the oxygen regulation of nitrification...... of these pure cultures were lower than found for natural communities of NOB (apparent Km values~ 1- 4 µM), but higher than the ones from the well-studied opportunistic NOB Nitrobacter. The expression of high-affinity terminal oxidases in these NOB could, however, not be confirmed. Overall the results of this Ph......Oxygen (O2) is a fundamental parameter for life. It not only profoundly influences the biogeochemical cycling on a global scale, but also deals with the regulation of metabolic processes at microbial level, in particular the transition between aerobic and anaerobic metabolisms. However, until...

  7. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    Science.gov (United States)

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of cyanide and dissolved oxygen concentration on biological Au recovery.

    Science.gov (United States)

    Kita, Yoshito; Nishikawa, Hiroshi; Takemoto, Tadashi

    2006-07-25

    The number of discarded electric devices containing traces of Au is currently increasing. It is desirable to recover this Au because of its valuable physicochemical properties. Au is usually dissolved with relatively high concentrations of cyanide, which is associated with environmental risk. Chromobacterium violaceum is able to produce and detoxify small amounts of cyanide, and may thus be able to recover Au from discarded electric devices. This study investigated the effects of cyanide and dissolved oxygen concentration on biological Au recovery. Cyanide production by C. violaceum was sufficient to dissolve Au, while maintaining a high cyanide concentration did not enhance Au dissolution. Increased oxygen concentration enhanced Au dissolution from 0.04 to 0.16 mmol/l within the test period of 70 h. Electrochemical measurement clarified this phenomenon; the rest potential of Au in the cyanide solution produced by C. violaceum increased from -400 to -200 mV, while in the sterile cyanide solution, it was constant in cyanide concentrations ranging from 0 to 1.5 mmol/l and increased in dissolved oxygen concentrations ranging from 0 to 0.25 mmol/l. Therefore, it was clarified that dissolved oxygen concentration is the main factor affecting the efficiency of cyanide leaching of gold by using bacteria.

  9. Dependence of the solubility of atmospheric oxygen in weakly alkaline aqueous solutions on surfactant concentration

    Science.gov (United States)

    Chistyakova, G. V.; Koksharov, S. A.; Vladimirova, T. V.

    2012-11-01

    The solubility of atmospheric oxygen in solutions of surfactants of different natures at 293 K and pH 8 is determined by gas chromatography. It is found that additives of nonionic surfactants decrease the oxygen content in the solution in the premicellar region and increase its solubility in the micellar region. It is shown that, for anionic surfactants, a decrease in the solubility of O2 is observed over the entire concentration range.

  10. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    Science.gov (United States)

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  11. Rate of three-body electron attachment to the oxygen molecule in an externally sustained discharge

    Energy Technology Data Exchange (ETDEWEB)

    Krasyukov, A.G.; Naumov, V.G.; Shachkin, L.V.; Shashkov, V.M.

    1981-05-01

    The rate of three-body attachment of electrons to the oxygen molecule has been determined in an atmospheric-pressure discharge sustained by a fast electron beam in a O/sub 2/:N/sub 2/ = 1:20 mixture. The experimental results agree well with theoretical results derived elsewhere. The attachment rate falls off with increasing input energy. A qualitative explanation is offered for this effect.

  12. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  13. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.

    Science.gov (United States)

    Kakarla, Ramesh; Kim, Jung Rae; Jeon, Byong-Hun; Min, Booki

    2015-11-01

    An algae bioreactor (ABR) was externally connected to air-cathode microbial fuel cells (MFCs) to increase power generation by supplying a high amount of oxygen to cathode electrode. The MFC with oxygen fed from ABR produced maximum cell voltage and cathode potential at a fixed loading of 459 mV and 10 mV, respectively. During polarization analysis, the MFC displayed a maximum power density of 0.63 W/m(2) (at 2.06 A/m(2)) using 39.2% O2 from ABR, which was approximately 30% higher compared with use of atmospheric air (0.44 W/m(2), 20.8% O2,). The cyclic voltammogram analysis exhibited a higher reduction current of -137 mA with 46.5% O2 compared to atmospheric air (-115 mA). Oxygen supply by algae bioreactor to air-cathode MFC could also maintain better MFC performance in long term operation by minimizing cathode potential drop over time.

  14. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    Science.gov (United States)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  15. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    Science.gov (United States)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  16. Linear Active Disturbance Rejection Control of Dissolved Oxygen Concentration Based on Benchmark Simulation Model Number 1

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    2015-01-01

    Full Text Available In wastewater treatment plants (WWTPs, the dissolved oxygen is the key variable to be controlled in bioreactors. In this paper, linear active disturbance rejection control (LADRC is utilized to track the dissolved oxygen concentration based on benchmark simulation model number 1 (BSM1. Optimal LADRC parameters tuning approach for wastewater treatment processes is obtained by analyzing and simulations on BSM1. Moreover, by analyzing the estimation capacity of linear extended state observer (LESO in the control of dissolved oxygen, the parameter range of LESO is acquired, which is a valuable guidance for parameter tuning in simulation and even in practice. The simulation results show that LADRC can overcome the disturbance existing in the control of wastewater and improve the tracking accuracy of dissolved oxygen. LADRC provides another practical solution to the control of WWTPs.

  17. Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ka; Chang, Yongqin, E-mail: chang@ustb.edu.cn; Lv, Liang; Long, Yi

    2015-10-01

    Highlights: • Nanocrystalline CeO{sub 2} films were prepared by a facile sol–gel spin coating method. • Oxygen vacancy concentrations can be controlled by annealing temperatures. • The films show perfect thermal stability at various annealing temperatures. • PL, XPS and Raman spectra are obviously affected by oxygen vacancy concentrations. - Abstract: Nanocrystalline CeO{sub 2} films with around 250 nm thickness were deposited on Si (0 0 1) substrates by a facile sol–gel process with spin coating method. The films are of cubic fluorite structure, and some lattice distortions exist in the film. The phase stability and small change in lattice parameter at different annealing temperatures indicate the good thermal stability of the nanocrystalline CeO{sub 2} films. The average grain-size and surface roughness of the films increase with the increase of annealing temperature. The content of Ce{sup 3+} and oxygen vacancy is very high in the nanocrystalline CeO{sub 2} films, while, the films still remain cubic phase regardless of its high level non-stoichiometric composition. All the annealed samples show two emission bands, and the defect peak centered at ∼500 nm shows a red-shift. The intensity of the green-emission band increases with the increasing annealing temperature, which might result from the increasing concentration of oxygen vacancies caused by the valence transition from Ce{sup 4+} to Ce{sup 3+}, and it has also been confirmed by the X-ray photoelectron spectroscopy results. This work demonstrates that oxygen vacancy plays an important role on the properties of the nanocrystalline CeO{sub 2} film, and it also provides a possible way to control the concentration of oxygen vacancies.

  18. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    Science.gov (United States)

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155). There is considerable concern that factors such as eutrophication, ...

  19. Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration

    NARCIS (Netherlands)

    Tran-Duy, A.; Dam, van A.A.; Schrama, J.W.

    2012-01-01

    The objectives of the present study were to determine, for Nile tilapia of different body weights and fed to satiation, (1) the incipient dissolved oxygen (DO) concentration at which feed intake starts to level off and (2) the effect of DO on nitrogen and energy balances. Two successive experiments

  20. 77 FR 63217 - Use of Additional Portable Oxygen Concentrators on Board Aircraft

    Science.gov (United States)

    2012-10-16

    ... manufacturer's names (International Biophysics Corporation's LifeChoice and Delphi Medical Systems' RS-00400...Choice and Delphi Medical Systems' RS-00400) back to the list of approved POCs in SFAR 106. Waiver of...: This action amends the FAA's rules for permitting limited use of portable oxygen concentrator...

  1. 75 FR 739 - Use of Additional Portable Oxygen Concentrator Devices on Board Aircraft

    Science.gov (United States)

    2010-01-06

    ... manner to add two more POC devices, Delphi Medical Systems' RS-00400 and Invacare Corporation's XPO2, to... documentation of the devices to the Department of Transportation's Docket Management System. That documentation... Aviation Regulation 106--Rules for Use of Portable Oxygen Concentrator Systems on Board...

  2. 77 FR 4219 - FAA-Approved Portable Oxygen Concentrators; Technical Amendment

    Science.gov (United States)

    2012-01-27

    ... acceptable for use in SFAR 106 are Delphi Medical Systems' RS-00400 (added to the SFAR in 74 FR 2351) and... manufactured by Oxus, Inc. and not by Delphi Medical Systems. The two companies currently manufacturing these... for Use of Portable Oxygen Concentrator Systems On Board Aircraft * * * * * Section 2....

  3. Prediction of oxygen concentration and temperature distribution in loose coal based on B P neural network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jian; WU Guo-guang; XU Hong-feng; MENG Xian-liang; WANG Guang-you

    2009-01-01

    An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures within coal stockpiles, it is vital to obtain information of self-heating conditions and tendencies of spontaneous coal combustion. For laboratory conditions, we de-signed our own experimental equipment composed of a control-heating system, a coal column and an oxygen concentration and temperature monitoring system, for simulation of spontaneous combustion of block coal (13-25 ram) covered with fine coal (0-3 mm). A BP artificial neural network (ANN) with 150 training samples was gradually established over the course of our experiment. Heating time, relative position of measuring points, the ratio of fine coal thickness, artificial density, voidage and activation energy were selected as input variables and oxygen concentration and temperature of coal column as output variables. Then our trained network was applied to predict the trend on the untried experimental data. The results show that the oxygen concentration in the coal column could be reduced below the minimum still able to induce spontaneous combustion of coal-6% by covering the coal pile with fine coal, which would meet the requirement to prevent spontaneous combustion of coal stockpiles. Based on the predic-tion of this ANN, the average errors of oxygen concentration and temperature were respectively 0.5% and 7 ~C, which meet actual tolerances. The implementation of the method would provide a practical guide in understanding the course of self-heating and spontaneous combustion of coal stockpiles.

  4. Effect of Different Silage Storing Conditions on the Oxygen Concentration in the Silo and Fermentation Quality of Rice.

    Science.gov (United States)

    Uegaki, Ryuichi; Kawano, Kazuo; Ohsawa, Ryo; Kimura, Toshiyuki; Yamamura, Kohji

    2017-06-21

    We investigated the effects of different silage storing conditions on the oxygen concentration in the silo and fermentation quality of rice (Oryza sativa L.). Forage rice was ensiled in bottles (with or without space at the bottlemouth, with solid or pinhole cap, and with oxygen scavenger, ethanol transpiration agent, oxygen scavenger and ethanol transpiration agent, or no adjuvant) and stored for 57 days. The oxygen concentration decreased with the addition of the oxygen scavenger and increased with that of the ethanol transpiration agent. The oxygen scavenger facilitated silage fermentation and fungus generation, whereas the ethanol transpiration agent suppressed silage fermentation and fungus generation. However, the combined use of the oxygen scavenger and ethanol transpiration agent facilitated silage fermentation and also suppressed fungus generation. Overall, this study revealed the negative effects of oxygen on the internal silo and the positive effects of the combined use of the oxygen scavenger and ethanol transpiration agent on silage fermentation quality.

  5. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension

    OpenAIRE

    YAMAGUCHI, TAICHI; Ishii, Kojiro; Yamanaka, Masanori; YASUDA, KAZUNORI

    2007-01-01

    AbstractThe purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pre- treatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors an...

  6. [Monitoring of oxygen concentration based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Shuai; Dong, Feng-Zhong; Zhang, Zhi-Rong; Wang, Yu; Kan, Rui-Feng; Zhang, Yu-Jun; Liu, Jian-Guo; Liu, Wen-Qing

    2009-10-01

    Oxygen is a widely used important gas in the industrial process. It is very meaningful to on-line monitor the oxygen concentration for the enhancement of combustion efficiency and reduction in environmental pollution. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique. With the features of tunability and narrow linewidth of distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to accurately implement gas concentration measurement with very high sensitivity. In the present paper, the authors used a DFB laser was used as the light source, and by employing wavelength modulation method and measuring the second harmonic signal of one absorption line near 760 nm of oxygen molecule, the authors built a system for online monitoring of oxygen concentration. The characteristics of the system are as follows: the scope of detection is 0.01%-20%; detection accuracy is 0.1%, long term stability is 1%.

  7. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Petras Ražanskas

    2015-08-01

    Full Text Available This article presents a study of the relationship between electromyographic (EMG signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2 = 0:77 to R2 = 0:98 (for blood lactate and from R2 = 0:81 to R2 = 0:97 (for oxygen uptake were obtained when using random forest regressors.

  8. Metabolite to parent drug concentration ratios in hair for the differentiation of tramadol intake from external contamination and passive exposure.

    Science.gov (United States)

    Madry, Milena M; Rust, Kristina Y; Guglielmello, Rosetta; Baumgartner, Markus R; Kraemer, Thomas

    2012-11-30

    Tramadol was found in a man's hair sample during an abstinence test necessary to regain his driving license. The suspect denied having taken tramadol claiming external contamination as the reason for the positive result, as he was working in a tramadol production company. Nevertheless, low concentrations of both major metabolites, N-desmethyltramadol (NDMT) and O-desmethyltramadol (ODMT), were found in hair (180 and 6 pg/mg hair, respectively). To assess this case, tramadol concentrations and metabolite to parent drug concentration ratios were determined in hair samples of 75 patients taking tramadol and of eight employees working in the production and laboratory site of the same company. Additionally, wash water used for decontaminating hair was analyzed for both groups, patients and employees. Analysis of hair sample extracts was performed by LC-MS/MS using multiple reaction monitoring (MRM), information dependent acquisition (IDA) and enhanced product ion scan (EPI). High variations of metabolite to parent drug concentration ratios in hair samples of patients were observed. Differences in NDMT and ODMT to tramadol concentration ratios were found when comparing the cohort of patients to employees. The suspect could be included in the cohort of employees considering the ODMT to tramadol concentration ratio in hair and tramadol concentration ratio in wash water versus hair. Metabolite to parent drug concentration ratios of hair samples may represent a helpful tool for the differentiation of tramadol intake versus external contamination. Ratios of tramadol concentrations in wash water versus the subjects' hair may provide additional information for case assessments.

  9. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus

    NARCIS (Netherlands)

    Tran Duy, A.; Schrama, J.W.; Dam, van A.A.; Verreth, J.A.J.

    2008-01-01

    Feed intake and satiation in fish are regulated by a number of factors, of which dissolved oxygen concentration (DO) is important. Since fish take up oxygen through the limited gill surface area, all processes that need energy, including food processing, depend on their maximum oxygen uptake capacit

  10. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    Science.gov (United States)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  11. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  12. Simulations of dissolved oxygen concentration in CMIP5 Earth system models

    Institute of Scientific and Technical Information of China (English)

    BAO Ying; LI Yangchun

    2016-01-01

    The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models (ESMs) from the historical emission driven experiment of CMIP5 (Phase 5 of the Climate Model Inter-comparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature (SST), with both globally-averaged error and root mean square error (RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones (OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation (MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW) and North Pacific Intermediate Water (NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively. Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.

  13. Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea

    Science.gov (United States)

    Ahlgren, Joakim; Grimvall, Anders; Omstedt, Anders; Rolff, Carl; Wikner, Johan

    2017-06-01

    Hypoxia and oxygen deficient zones are expanding worldwide. To properly manage this deterioration of the marine environment, it is important to identify the causes of oxygen declines and the influence of anthropogenic activities. Here, we provide a study aiming to explain the declining oxygen levels in the deep waters of the Bothnian Sea over the past 20 years by investigating data from environmental monitoring programmes. The observed decline in oxygen concentrations in deep waters was found to be primarily a consequence of water temperature increase and partly caused by an increase in dissolved organic carbon (DOC) in the seawater (R2Adj. = 0.83) as well as inflow from the adjacent sea basin. As none of the tested eutrophication-related predictors were significant according to a stepwise multiple regression, a regional increase in nutrient inputs to the area is unlikely to explain a significant portion of the oxygen decline. Based on the findings of this study, preventing the development of anoxia in the deep water of the Bothnian Sea is dependent on the large-scale measures taken to reduce climate change. In addition, the reduction of the nutrient load to the Baltic Proper is required to counteract the development of hypoxic and phosphate-rich water in the Baltic Proper, which can form deep water in the Bothnian Sea. The relative importance of these sources to oxygen consumption is difficult to determine from the available data, but the results clearly demonstrate the importance of climate related factors such as temperature, DOC and inflow from adjacent basins for the oxygen status of the sea.

  14. Effect of oxygen-doping concentration on electrical properties of silicon oxycarbide films for memory application

    Science.gov (United States)

    Chen, Da; Huang, Shihua

    2016-07-01

    We first investigate the effect of oxygen-doping concentration on resistive switching (RS) behaviors in SiCxOy, which were prepared by a radio frequency magnetron sputtering at the oxygen partial pressure ranging from 0% to 6%. Bipolar RS behaviors were achieved in all the fabricated devices and all these devices are valence change memories. With the oxygen partial pressure increasing from 0% to 6% (sample-0% has 40 at. % of oxygen), the mean RHRS increases from 4.5 to 64.8 MΩ and then decreases to 1.5 MΩ, indicating that the device exhibits the largest ON/OFF ratio ˜500 at the oxygen partial pressure of about 2%. Based on the analyses of x-ray photoelectron spectroscopy, fitting current-voltage curves, and resistance-temperature measurements, it is clear that the trap filled limit space charge limited current and a Schottky barrier in the interface of the SiCxOy film and p+-Si are suggested to be dominant in the positive and negative biases, respectively. Most importantly, all devices can keep the data more than 104 s and endure more than 102 continuous cycles, thus confirming the nonvolatile properties.

  15. HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers.

    Science.gov (United States)

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-11-01

    The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.

  16. Optimal Control of Oxygen Concentration in a Magnetic Czochralski Crystal Growth by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Concepts and techniques of response surface methodology have been widely applied in many branches of engineering, especially in the chemical and manufacturing areas. This paper presents an application of the methodology in a magnetic crystal Czochralski growth system for single crystal silicon to optimize the oxygen concentration at the crystal growth interface in a cusp magnetic field. The simulation demonstrates that the response surface methodology is a feasible algorithm for the optimization of the Czochralski crystal growth process.

  17. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies

    Science.gov (United States)

    Canfield, D. E.; Teske, A.

    1996-01-01

    The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.

  18. Periodontal Wound Healing Responses to Varying Oxygen Concentrations and Atmospheric Pressures.

    Science.gov (United States)

    1986-05-01

    ranging from diabetes mellitus to syphilis. The first such chamber was built in the United States by Corning in 1891. In the 1930s, the American Medical...CATALOG NUMBER \\AIT/CI/NR 86-165T 4. TTLE and ubtlte)S. TYPE OF REPORT & PERIOD COVERED Periodontal Wound Healing Responses to TIEisIs/AglrItioW * Varying...OS O6SOSLT SECURITYssona CLSIIAIN DFTIAeelomienasterd ATTACHE ... U. PERIODONTAL WOUND HEALING RESPONSES TO VARYING OXYGEN CONCENTRATIONS AND

  19. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-12-01

    We have measured the reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral-beam injectors using the TMX-U neutral-beam test stand. Our analysis incorporated silicon surface-probe measurements and optical Doppler-shift measurements of the hydrogen alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalence of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, optical monochromator data indicated a reduction in the oxygen concentration of at least a factor of 10 whereas Auger spectroscopy data showed at least a factor-of-eight reduction. Other metallic impurities remained below the level of detection even after gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity, loss of arc operation, and a change in arc performance due to arc chamber gas absorption during operation.

  20. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-10-01

    The reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral beam injectors has been measured. The TMX-U Neutral Beam Test Stand was used for this experiment. Analysis incorporated silicon surface probes and optical Doppler-shift measurements of the Lyman alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalent of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, the oxygen concentration was reduced by at least a factor of 10 according to optical monochromator data, and at least a factor of 8 from Auger spectroscopy data. Simultaneously, other metallic impurities were not increased substantially as a result of gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity and arc operation, and a change in arc performance from arc chamber gas absorption during operation.

  1. In vivo noninvasive monitoring of dissolved oxygen concentration within an implanted tissue-engineered pancreatic construct.

    Science.gov (United States)

    Goh, Fernie; Sambanis, Athanassios

    2011-09-01

    The function of an implanted tissue-engineered pancreatic construct is influenced by many in vivo factors; however, assessing its function is based primarily on end physiologic effects. As oxygen significantly affects cell function, we established a dual perfluorocarbon method that utilizes (19)F nuclear magnetic resonance spectroscopy, with perfluorocarbons as oxygen concentration markers, to noninvasively monitor dissolved oxygen concentration (DO) in βTC-tet cell-containing alginate beads and at the implantation milieu. Beads were implanted in the peritoneal cavity of normal and streptozotocin-induced diabetic mice. Using this method, the feasibility of acquiring real-time in vivo DO measurements was demonstrated. Results showed that the mouse peritoneal environment is hypoxic and the DO is further reduced when βTC-tet cell constructs were implanted. The DO within cell-containing beads decreased considerably over time and could be correlated with the relative changes in the number of viable encapsulated cells. The reduction of construct DO due to the metabolic activity of the βTC-tet cells was also compatible with the implant therapeutic function, as observed in the reversal of hyperglycemia in diabetic mice. The importance of these findings in assessing implant functionality and host animal physiology is discussed. © Mary Ann Liebert, Inc.

  2. Temperature insensitive prediction of glucose concentration in turbid medium using multivariable calibration based on external parameter orthogonalization

    Science.gov (United States)

    Han, Tongshuai; Zhang, Ziyang; Sun, Cuiying; Guo, Chao; Sun, Di; Liu, Jin

    2016-10-01

    The measurement accuracy of non-invasive blood glucose concentration (BGC) sensing with near-infrared spectroscopy is easily affected by the temperature variation in tissue because it would induce an unacceptable spectrum variation and the consequent prediction deviation. We use a multivariable correction method based on external parameter orthogonalization (EPO) to calibrate the spectral data recorded at different temperature values to reduce the spectral variation. The tested medium is a kind of tissue phantom, the Intralipid aqueous solution. The calibration uses a projection matrix to get the orthogonal spectral space to the variable of external parameter, i.e. temperature, and then the useful spectral information relative to glucose concentration has been reserved. Even more, training the projection matrix can be separated to building the calibration matrix for the prediction of glucose concentration as it only uses the representative samples' data with temperature variation. The method presents a lower complexity than modeling a robust prediction matrix, which can be built from comprehensive spectral data involved the all variables both of BGC and temperature. In our test, the calibrated spectra with the same glucose concentration but different temperature values show a significantly improved repeatability. And then the glucose concentration prediction results show a lower root mean squared error of prediction (RMSEP) than that using the robust calibration model, which has considered the two variables. We also discuss the rationality of the representative samples chosen by EPO. This research may be referenced to the temperature calibration for in vivo BGC sensing.

  3. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  4. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics.

    Science.gov (United States)

    Goto, E; Both, A J; Albright, L D; Langhans, R W; Leed, A R

    1996-12-01

    Lettuce (Lactuca sativa L., cv. Ostinata) growth experiments were carried out to study the effect of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system. Pure O2 and N2 gas were supplied to the hydroponic system for precise DO control. This system made it easy to increase the DO concentration beyond the maximum (or saturation) concentration possible when bubbling air into water. Eleven day old lettuce seedlings were grown for 24 days under various DO concentrations: sub-saturated, saturated, and super-saturated. There was no significant difference in fresh weight, shoot and root dry weights among the DO concentrations: 2.1 (25% of saturated at 24 degrees C), 4.2 (50%), 8.4 (saturated), and 16.8 (200%) mg/L. The critical DO concentration for vigorous lettuce growth was considered to be lower than 2.1 mg/L. Neither root damage nor delay of shoot growth was observed at any of the studied DO concentrations.

  5. Pulmonary interstitial fibrosis following near-drowning and exposure to short-term high oxygen concentrations.

    Science.gov (United States)

    Glauser, F L; Smith, W R

    1975-09-01

    Following near-drowning in fresh water, a 19-year-old man experienced severe adult respiratory distress syndrome, necessitating ventilatory support with positive end-expiratory pressure and high oxygen concentrations. Post-extubation, his course was highlighted by persistent hypoxemia and interrupted by a lung abscess which responded promptly to antibiotics. Pulmonary function tests were consistent with severe restrictive disease and chest radiograph revealed persistent bilateral alveolar and interstitial infiltrates. An open lung biopsy on the 26th hospital day showed interstitial fibrosis. Over the ensuing two months, the chest radiograph and pulmonary function tests returned towards normal. We attribute the pulmonary fibrosis to incomplete resolution of the alveolar interstitial pathology secondary to the near-drowning and exposure to high oxygen mixtures.

  6. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses...... of some common, invasive and rare weed species to reduced light levels in greenhouse experiments. The seed germination response of some weed species, field crops, and vegetables to different oxygen concentrations was also quantified in the laboratory experiments. The effect of east-west (EW) and north......-south (NS) row orientations on weed biomass and grain yield of summer barley, oilseed rape, triticale and oat in Denmark was examined. The effect of rolling on biomass production of weeds and grain yield of cereals in Denmark was also investigated in field experiments. It also described that hypoxia...

  7. Proton pump activity of mitochondria-rich cells: The interpretation of external proton-concentration gradients

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Sørensen, Jens N.; Larsen, Erik Hviid

    1997-01-01

    Active Cl*O- transport, reheogenic H*O+ pump, unstirred layer, mathematics of diffusion, proton concentration-profiles outside epithelial cells......Active Cl*O- transport, reheogenic H*O+ pump, unstirred layer, mathematics of diffusion, proton concentration-profiles outside epithelial cells...

  8. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR).

    Science.gov (United States)

    Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin

    2017-01-01

    The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Nielsen, Jens Bredal; Villadsen, John

    1997-01-01

    The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 mM (co...... and cysteine decreased at low dissolved oxygen concentrations. On the basis of the intracellular pool measurements, metabolic control analysis is performed, and the flux control coefficients for the first two enzymes in the penicillin biosynthetic pathway, i.e., delta......The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 m......M (corresponding to 7% and 131% air saturation at 1 bar) solely through manipulations of the inlet gas composition. At dissolved oxygen concentrations above 0.06-0.08 mM, a constant specific penicillin productivity of around 22 (mu mol/g of DW)/h is maintained. At lower oxygen concentrations, the specific...

  10. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise

    Directory of Open Access Journals (Sweden)

    Askew Christopher D

    2009-12-01

    Full Text Available Abstract Background It has been proposed that adenosine triphosphate (ATP released from red blood cells (RBCs may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC. Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

  11. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    Science.gov (United States)

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by

  12. Numerical simulation of dissolved oxygen concentration in water flow over stepped spillways.

    Science.gov (United States)

    Cheng, Xiangju; Chen, Xuewei

    2013-05-01

    This study developed an improved Eulerian model for the simulation of an air-water flow field over stepped spillways. The improved drag model applied different drag coefficients for bubbles and for free surface flows or gas cavities. Void fraction and turbulence correction were used in determining the bubble drag coefficient. The calculated air entrainment and air-water velocity could be adapted using these parameters. With the improved drag model, the Eulerian simulations predicted the location of the inception point, the distributions of air void fraction, velocity distributions, and pressure distributions. The change in the dissolved oxygen (DO) concentration from upstream of the stepped spillways, to downstream, was simulated based on the improved computational fluid dynamics model and the transport equation for DO transferring. The numerical DO concentration coincided with the experimental results. Therefore, the improved CFD model and the numerical methods presented here can provide possible optimization tools for strong air entrainment flows.

  13. Distribution of Nile perch Lates niloticus in southern Lake Victoria is determined by depth and dissolved oxygen concentrations

    NARCIS (Netherlands)

    Goudswaard, P.C.; Katunzi, E.F.B.; Wanink, J.H.; Witte, F.

    2011-01-01

    Although Nile perch Lates niloticus is assumed to be sensitive to low oxygen concentrations, it was found in deep water in Lake Victoria, where oxygen depletion is common during the rainy season. Since factors determining Nile perch distribution are not well understood its spatial distribution in

  14. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    Science.gov (United States)

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  15. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    Science.gov (United States)

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A new highly sensitive method to assess respiration rates and kinetics of natural planktonic communities by use of the switchable trace oxygen sensor and reduced oxygen concentrations.

    Science.gov (United States)

    Tiano, Laura; Garcia-Robledo, Emilio; Revsbech, Niels Peter

    2014-01-01

    Oxygen respiration rates in pelagic environments are often difficult to quantify as the resolutions of our methods for O2 concentration determination are marginal for observing significant decreases during bottle incubations of less than 24 hours. Here we present the assessment of a new highly sensitive method, that combine Switchable Trace Oxygen (STOX) sensors and all-glass bottle incubations, where the O2 concentration was artificially lowered. The detection limit of respiration rate by this method is inversely proportional to the O2 concentration, down to <2 nmol L(-1) h(-1) for water with an initial O2 concentration of 500 nmol L(-1). The method was tested in Danish coastal waters and in oceanic hypoxic waters. It proved to give precise measurements also with low oxygen consumption rates (∼7 nmol L(-1) h(-1)), and to significantly decrease the time required for incubations (≤14 hours) compared to traditional methods. This method provides continuous real time measurements, allowing for a number of diverse possibilities, such as modeling the rate of oxygen decrease to obtain kinetic parameters. Our data revealed apparent half-saturation concentrations (Km values) one order of magnitude lower than previously reported for marine bacteria, varying between 66 and 234 nmol L(-1) O2. Km values vary between different microbial planktonic communities, but our data show that it is possible to measure reliable respiration rates at concentrations ∼0.5-1 µmol L(-1) O2 that are comparable to the ones measured at full air saturation.

  17. Singlet Molecular Oxygen on Ice: Rates of Formation and Steady State Concentrations

    Science.gov (United States)

    Bower, J. P.; Anastasio, C.

    2007-12-01

    Singlet molecular oxygen (1O2*), the first electronically excited state of molecular oxygen, reacts rapidly with certain types of environmental pollutants such as furans, phenols, and polycyclic aromatic hydrocarbons (PAHs). Its formation requires the absorption of light by a chromophore (a.k.a. sensitizer), which subsequently transfers energy to ground state molecular oxygen. In the environment, 1O2* chemistry has been studied primarily in the aqueous phase, such as in surface waters or cloud and fog drops. In this work, we expand our current understanding by investigating the rate of formation (Rf) and steady state concentration ([1O2*]) of 1O2* on ice. To investigate 1O2* kinetics, we use a chemical probe technique in which photoformed 1O2* reacts with furfuryl alcohol (FFA). To generate 1O2*, we illuminated frozen samples containing a sensitizer (Rose Bengal, RB) at 549 nm. The concentration of total solutes in each sample was controlled using sodium sulfate (Na2SO4). Following illumination, the decay of FFA was measured using high performance liquid chromatography (HPLC). Ice tests were conducted at 253, 263, and 268 K. Liquid tests for comparison were conducted at 278 K. Results showed dramatically faster (~104) FFA decay on ice than in liquid samples prepared from the same solutions, in agreement with the calculated solute concentration factor in the quasi-liquid layer (QLL) on ice compared to bulk solution. Varying the concentration of RB resulted in similar changes in both Rf and [1O2*], with magnitudes of change close to those expected. Changing temperature and total solutes, both of which control the volume of the QLL on ice, revealed two model regimes: FFA as a major (1) or minor (2) sink of 1O2*. Experimental results from the former regime show good agreement with expected values for both Rf and [1O2*]. Experiments in the later regime are currently in progress. We will also discuss the potential implications of 1O2* to the chemistry of naturally

  18. The experimental study of a new pressure equalization step in the pressure swing adsorption cycle of a portable oxygen concentrator.

    Science.gov (United States)

    Li, Jianhua

    2014-01-01

    For portable oxygen concentrator by pressure swing adsorption (PSA) method, its volume, mass, power, oxygen flux and oxygen saving efficiency are the most important parameters which are affected strongly by the PSA cycle. In this paper, we propose a new pressure equalization step to optimize the PSA cycle. According to the experimental results, when the product ends of two beds are connected and the feed gas is switched from the high pressure bed to the low pressure bed during the pressure equalization step, the system has a larger oxygen flux, a less energy consumption and a more simple structure.

  19. Plasma concentrations of oseltamivir and oseltamivir carboxylate in critically ill children on extracorporeal membrane oxygenation support.

    Directory of Open Access Journals (Sweden)

    Enno D Wildschut

    Full Text Available INTRODUCTION: To evaluate the effect of extracorporeal membrane oxygenation (ECMO support on pharmacokinetics of oseltamivir and oseltamivir carboxylate (OC in children. METHODOLOGY: Steady state 0-12 hour pharmacokinetic sampling was performed in new influenza A (H1N1 infected children treated with oseltamivir while on ECMO support. Cmax, Cmin and AUC(0-12 h were calculated. The age-specific oseltamivir dosage was doubled to counter expected decreased plasma drug concentrations due to increased volume of distribution on ECMO support. PRINCIPAL FINDINGS: Three patients were enrolled aged 15, 6 and 14 years in this pharmacokinetic case series. For two children the OC plasma concentrations were higher than those found in children and adults not on ECMO. These increased plasma concentrations related to the increased oseltamivir dosage and decreased kidney function. In one patient suboptimal plasma concentrations coincided with a decreased gastric motility. CONCLUSION: Oseltamivir pharmacokinetics do not appear to be significantly influenced by ECMO support. Caution is required in case of nasogastric administration and decreased gastric motility. Due to the limited number of (paediatric patients available further multicenter studies are warranted.

  20. Influence of Chemical Oxygen Demand Concentrations on Anaerobi Ammonium Oxidation by Granular Sludge From EGSB Reactor

    Institute of Scientific and Technical Information of China (English)

    JING KANG; JIAN-LONG WANG

    2006-01-01

    Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4+-N and NO2--N were measured by usingcolorimetric method. NO3--N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2--N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.

  1. Raising and controlling study of dissolved oxygen concentration in closed-type aeration tank.

    Science.gov (United States)

    Chen, C K; Lo, S L

    2005-07-01

    This study investigated the promotion and control of dissolved oxygen (DO) concentration of the closed-type aeration tank via practical experiments in the wastewater treatment system of a 5-star hotel in Taipei. As with limited and treasured space in Taiwan, before the completion of the sewer system construction in cities, to utilize the mat foundation under large buildings as the space of sewage treatment plant still has been one of the alternatives of those sewage treatments. However, aeration tanks constructed in the mat foundation of buildings have smaller effective water depth, which will cause a lower total transfer amount of DO. Controlling the total exhaust gas flow rate can increase the pressure on such closed-type aeration tanks. The DO concentration thus may increase according to Henry's Law. Furthermore, it may enable operators to adjust the DO concentration of the aeration tank more precisely and thus sustain optimal operating conditions in these treatment facilities. Practical experiments indicated that the DO concentration of aeration tank maintains an average of 3.8 mg l(-1), obtaining the optimum operating conditions. The efficiency of the biological treatment facilities in the mat foundation could be markedly improved.

  2. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life.

    Science.gov (United States)

    He, Mingfu; Lau, Kah Chun; Ren, Xiaodi; Xiao, Neng; McCulloch, William D; Curtiss, Larry A; Wu, Yiying

    2016-12-05

    Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O2 battery. Herein we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3 mol kg(-1) ). Raman spectra of NaTFSI/DMSO electrolytes and ab initio molecular dynamics simulation reveal the Na(+) solvation number in DMSO and the formation of Na(DMSO)3 (TFSI)-like solvation structure. The majority of DMSO molecules solvating Na(+) in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O2 batteries can be cycled forming sodium superoxide (NaO2 ) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries.

  3. Comparison of concentric isokinetic dominant shoulder internal and external rotator torque between professional female volleyball and tennis players

    Directory of Open Access Journals (Sweden)

    S. Talebian

    2006-08-01

    Full Text Available Background: The purpose of this study was to measure isokinetic maximum and average peak torque of internal and external rotators of glenohumeral joint in volley ball and tennis players Methods: This study was performed on 17 professional female athletes (7 tennis players &10 volleyball players with age ranged 18-28 years. The subjects had played in a skilled team for more than 3 years. They were free from injury to their dominant shoulder in the past year. Subjects performed a five minute warm up by shoulder wheel and Maximum average Peak Torque (APT were obtained unilaterally by a Biodex System 3 with the arm of players in 90 degree abduction at 120,180 & 210 o/s. Players performed five trails of concentric movements with 30 second rest between them. Results: Maximum and average of maximum torques of shoulder rotator, in both groups, expect for internal rotators of tennis players, reduced by increase of movement speed (P<0.05. There are not significant difference between two groups in maximum, average of maximum torques and normalized data (ratio of maximum torque to weight. There is significant difference between two groups in percentage of APT of External rotator / Internal rotator ratio at 210 o/s (P<0.05. Conclusion: Volleyball and tennis have no effect on isokinetic strength of shoulder rotators. In high speed, ratio of External rotator / Internal rotator is reduced. This indicates that increase in movement speed increase internal rotator in comparison to external rotator in these professional female athletes.

  4. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere

    Science.gov (United States)

    Kasting, J. F.

    1987-01-01

    Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.

  5. Comparison of oxygen consumption in rats during uphill (concentric) and downhill (eccentric) treadmill exercise tests.

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-09-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p < 0.05) in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key PointsVO2 in rats during treadmill race in eccentric and concentric conditions were measured.A novel breath-by-breath device allowing direct access to the animal was used.THREE DIFFERENT SLOPES: +15%, -15% and -30% were used.VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different.

  6. Comparison of Oxygen Consumption in Rats During Uphill (Concentric) and Downhill (Eccentric) Treadmill Exercise Tests

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-01-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key Points VO2 in rats during treadmill race in eccentric and concentric conditions were measured. A novel breath-by-breath device allowing direct access to the animal was used. Three different slopes: +15%, -15% and -30% were used. VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different. PMID:25177200

  7. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  8. Effect of oxygen on active Al concentration in ZnO:Al thin films made by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Kodu, M., E-mail: Margus.Kodu@ut.ee; Arroval, T.; Avarmaa, T.; Jaaniso, R.; Kink, I.; Leinberg, S.; Savi, K.; Timusk, M.

    2014-11-30

    Highlights: • C-axis oriented ZnO:Al thin films were made by pulsed laser deposition. • The nominal Al doping concentration was between 1 and 10 at%. • Films were deposited in oxygen atmosphere and in vacuum. • The effective Al concentration was influenced by deposition ambient. • Vacuum-deposited films had much higher electron concentrations. - Abstract: Al doped ZnO is used as a material for transparent conductive electrodes in solar energy and display screen applications, as well as semiconducting material in electronic and photonic devices. For effective use it is essential to control the electrical and optical properties of ZnO:Al thin films. In order to investigate the influence of oxygen environment on effective Al solubility and intrinsic defects introduced at high doping levels during the film growth, ZnO:Al thin films were deposited in vacuum and oxygen background by pulsed laser deposition method. Films were doped with varying Al concentrations by using targets with Al doping levels of 1–10 at%. In vacuum, substantially increased free electron concentrations were observed for all Al doping levels, which indicates that the formation of acceptor-type defects, acting as electron killer centers, was largely suppressed during the growth in oxygen-poor conditions. The dependence of carrier mobility from Al concentration was also greatly influenced by oxygen conditions during the film growth, suggesting that ionized impurity concentrations in the films deposited in vacuum and oxygen background were significantly different. The results were interpreted in the context of intrinsic acceptor-type defects V{sub Zn} (zinc vacancy), which concentration is strongly modified by the presence of oxygen during the film deposition. These vacancies are assumed to influence free electron concentration and electron mobility by acting as deep electron acceptors and charged electron scattering centers (V{sub Zn}{sup 2−})

  9. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations.

    Science.gov (United States)

    Bücking, Heike

    2004-06-01

    A prerequisite for symbiotic phosphate transfer in an ectomycorrhizal (ECM) association is hypothesized to be conditions in the interface between both symbiotic partners, that either promote the release of inorganic phosphate (P) from the Hartig net into the interfacial apoplast and/or decrease the fungal reabsorption from this location. To get more information about conditions, which might be involved in the regulation of P efflux or P reabsorption, the effect of various external conditions on 33P-orthophosphate (33P) uptake or efflux by axenic cultures of the ECM basidiomycetes Hebeloma crustliniforme, Amanita muscaria and Laccaria laccata was analysed. In short-time experiments the following external conditions were analysed: an external supply of (1) P in the preculture, (2) cations (0.1-100 mM K, 0.1-50 mM Na, Mg and Ca), and (3) carbohydrates (0.5-50 mM glucose, fructose or sucrose). The P absorption was generally reduced in cultures previously supplied with an abundant P supply and with increased P concentrations in their tissues. The P uptake was also affected by an external supply of cations, whereas carbohydrates had only a slight effect. Compared to Na, Mg and Ca, the P absorption by H. crustuliniforme and L. laccata was increased by 0.1 mM K in the labelling solution but decreased after a supply of 100 mM K and then did not differ from the other cation treatments. Compared to other cations, an addition of 50 mM Ca led to a decrease of P absorption by A. muscaria, whereas 50 mM Mg increased the P uptake by H. crustuliniforme. The P efflux from the fungi was affected by both the cation and carbohydrate concentration of the bathing solution. High concentrations of the monovalent cations K and Na (5 mM or 50 mM) in the bathing solution increased the P efflux by H. crustuliniforme (only Na) and L. laccata (K and Na), but had little effects on A. muscaria. By contrast, the same concentrations of the divalent cation Mg reduced the P efflux from all fungal

  10. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mgO2L(-1), which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Three-dimensional non-linear numerical analysis on the oxygen concentration field in underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lanhe [College of Mineral Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008 (China)

    2004-10-15

    The stability of the process of underground coal gasification and its gas compositions depend on, to a large extent, the features of the convection diffusion of the gas and the dynamical conditions of chemical reactions. The dynamic distribution of the gasification agent concentration, in particular, has a great influence on the combustion and gasification reactions. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. Additionally, the determination method of the major model parameters is explained. In order to curb such pseudo-physical effects as numerical oscillation and surfeit frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm-the upstream weighted multi-cell balance method is adopted in this paper to solve the numerical models established. The author also analyzed and discussed the simulated calculation results, which show that, except very few points in loosening zone, where the relative calculation error is comparatively high (>20%) resulting from the low oxygen concentration, the relative calculation error of other points falls between 7% and 17%. Therefore, the calculation value and the experiment value take on a good conformity. According to the simulated results, the calculation value of the oxygen concentration is a little bit lower than the experiment one. On top of that, with the prolonging of gasification time, in high temperature zone, the change gradient of oxygen concentration for experiment value is bigger than that of the calculation value. The oxygen concentration is in direct proportion to its

  12. Evaluation of a portable oxygen concentrator to provide fresh gas flow to dogs undergoing anesthesia.

    Science.gov (United States)

    Burn, Jessica; Caulkett, Nigel A; Gunn, Marta; Cooney, Claire; Kutz, Susan J; Boysen, Søren R

    2016-06-01

    This study evaluated the ability of a portable oxygen concentrator (POC) to provide fresh gas to an anesthetic machine via an Ayre's T-piece or a Bain circuit. Fraction of inspired oxygen (FiO2) was compared at flows of 0.5 to 3.0 L/min. Measured FiO2 was 96% at flow rates ≥ 1 L/min. Mean battery life at 1.0, 2.0, and 3.0 L/min was 4.21 ± 0.45, 2.62 ± 0.37 and 1.5 ± 0.07 hours, respectively. The POC proved to be useful and effective during 2 power outages. The POC was sufficient to prevent rebreathing in 70% of dogs using a T-piece circuit and 20% of dogs with a Bain circuit. A significant negative correlation between inspired CO2 and O2 flow rates was noted. A significant positive correlation between inspired CO2 and ETCO2 was documented. The occurrence of hypercarbia was associated with low O2 flow. Battery back-up was essential during power outages. The POC can be effectively used for delivery of anesthesia.

  13. MORPHOLOGICAL CHARACTERISTICS OF TOMATO IRRIGATED WITH WASTEWATERS WITH DIFFERENT OXYGEN CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available Water scarcity is an ever-aggravating problem worldwide. In particular, there is greater emphasis placed on arid and semi-arid regions like Turkey. Although quite much progress have been achieved, several countries today are still faced to imbalanced water demands and water supplies especially in summer periods due to simultaneous low precipitations, high evaporations and increasing demands for irrigation. Major portion of irrigated agriculture is supported by fresh irrigation water resources, which are surface and groundwater. Not surprisingly, the decrease in natural water resources caused by drought and population growth enforced authorities to establish and to encourage the reuse of wastewater. In this study, different hygiene treatments (control, activated carbon treatment, activated carbon+hydrogen peroxide treatment, ozone treatment and hydrogen peroxide treatment were used for the effluent of Ankara Municipal Wastewater Treatment Plant. Following hygiene treatments, wastewater was used as irrigation water for tomato. The oxygen concentration was achieved as 10 mg/l in all treatments. Oxygen treated wastewater had significant positive influences on some morphological characteristics of tomato.

  14. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  15. Comparison of Oxygen Consumption in Rats During Uphill (Concentric and Downhill (Eccentric Treadmill Exercise Tests

    Directory of Open Access Journals (Sweden)

    Vivien Chavanelle, Pascal Sirvent, Gaël Ennequin, Kévin Caillaud, Christophe Montaurier, Béatrice Morio, Nathalie Boisseau, Ruddy Richard

    2014-09-01

    Full Text Available The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max. In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON and downhill (ECC running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%, positive (+15% incline: CON+15% and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%. Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec. Conversely, VO2 values were lower (p < 0.05 in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds. Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases.

  16. Formation of dioxins on NiO and NiCl2 at different oxygen concentrations.

    Science.gov (United States)

    Yang, Jie; Yan, Mi; Li, Xiaodong; Lu, Shengyong; Chen, Tong; Yan, Jianhua; Olie, Kees; Buekens, Alfons

    2015-08-01

    Model fly ash (MFA) containing activated carbon (AC) as source of carbon, NaCl as source of chlorine and either NiO or NiCl2 as de novo catalyst, was heated for 1h at 350 °C in a carrier gas flow composed of N2 containing 0, 6, 10, and 21 vol.% O2, to study the formation of PCDD/Fs (dioxins) and its dependence on oxygen. The formation of PCDD/Fs with NiCl2 was stronger by about two orders of magnitude than with NiO and the difference augmented with rising oxygen concentration. The thermodynamics of the NiO-NiCl2 system were represented, X-ray absorption near edge structural (XANES) spectroscopy allowed to probe the state of oxidation of the nickel catalyst in the MFA and individual metal species were distinguished using the LCF (Linear combination fitting) technique: thus three supplemental nickel compounds (Ni2O3, Ni(OH)2, and Ni) were found in the fly ash. Principal Component Analysis (PCA) indicates that both Ni2O3 and NiCl2 probably played an important role in the formation of PCDD/Fs.

  17. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs.

    Science.gov (United States)

    Faust, L; Temmink, H; Zwijnenburg, A; Kemperman, A J B; Rijnaarts, H H M

    2014-12-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable organic chemicals. Little is known about the effect of the dissolved oxygen concentration (DO) on this bioflocculation process. To examine this effect, two HL-MBRs were operated, respectively at a low (1 mg L(-1)) and a higher (4 mg L(-1)) DO. The higher DO resulted in a better flocculation efficiency, i.e. 92% of the colloidal COD in the sewage flocculated compared to 69% at the lower DO. The difference was attributed to a higher microbial production of extracellular polymeric substances at a DO of 4 mg L(-1) and to more multivalent cations (calcium, iron and aluminium) being distributed to the floc matrix. In addition, the HL-MBR that was operated at a DO of 4 mg L(-1) gave a bigger mean floc size, a lower supernatant turbidity, better settleability and better membrane filterability than the HL-MBR that was operated at a DO of 1 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of dissolved oxygen concentration on red pigment and citrinin production by Monascus purpureus ATCC 36928

    Directory of Open Access Journals (Sweden)

    D. G. Pereira

    2008-06-01

    Full Text Available The present study investigated the effects of agitation speed, N (200, 500, 600 or 700 rpm, and dissolved oxygen concentration, C (120, >70, 70, 60, 10 or < 10%, on red pigment and citrinin production by Monascus purpureus ATCC 36928, cultivated in liquid medium by a batch process. The gas flow rate was the same for all runs with C controlled by means of the incoming gas composition control (air/N2 or air/O2. From the response surface plots it can be verified that the effect of C was greater than that of N on the production of both metabolites. The absorbance for red pigments varied from 1.6 U (C< 10%; N=200 rpm up to 3.3 U (C=60%; N=600 rpm, an increase of 106%, while citrinin concentration increased 257%, from 14.2 to 50.7 mg.L-1. The most appropriate conditions were C=60% and N=600rpm, under which the highest red pigment absorbance (3.3U and half of the highest citrinin concentration were obtained.

  19. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    Science.gov (United States)

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  20. Fins coloration of perch in relation to external activity concentration of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Yegoreichenkov, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority and University of Tromsoe (Norway)

    2014-07-01

    The Techa River is significantly polluted by radionuclides. This time the content of {sup 90}Sr varies from 5 Bq/l in water of lower Techa to 40 Bq/l in higher Techa, and the concentration of {sup 137}Cs fluctuates from background content to 0,5 Bq/l, and tritium from 100 Bq/l to 450 Bq/l. Miass River are not polluted in the same extent. The perch in these rivers are suitable for examine the potential effect of environmental perturbation on carotenoid based coloration. As vertebrates could not produce carotenoids themselves, and would use more carotenoids due to oxidative stress when exposed radiation, we hypothesized that fish caught in upper part of Techa River will be more pale than fish from lower part and the control river Miass. We used a cost effective method to estimate coloration by photographing the fins in standardized setting. The measuring of fish fins as performed under standardized condition by Adobe Photoshop software in color spaces CIE 1976 L*a*b* and sRGB IEC61966-2.1 was used. In sRGB color space the values of Red, Green, Blue channels were measured and an average wave length was calculated as a function of three elementary light streams of different intensity, appeared as reflection from a fin. In L*a*b color space the values of *a and *b channels shows the position of a color in a color space. To evaluate the red color of a perch fin the most usable channel is the *a channel which shows the position of the color on the red-green axis. Due to low sample size we pooled males and females in our analysis. We used three different station in the Techa: RT-1 in the higher Techa, RT-2 in the middle Techa, and RT-3 in lower Techa. As a control group was taken the fish from Miass river (RM station). Our results shows that perch from RT-3 (570.7 nm) significantly differ in coloration from the perch from RT-2 and RT-1 (p=0.00001 and p=0.0014 respectively, hereinafter used Kruskal-Wallis rank sum test with Nemenyi-Damico-Wolfe-Dunn test as post

  1. Sensitivity of Oxygen Isotopes of Sulfate in Ice Cores to Past Changes in Atmospheric Oxidant Concentrations

    Science.gov (United States)

    Sofen, E. D.; Alexander, B.; Kunasek, S. A.; Mickley, L.; Murray, L. T.; Kaplan, J. O.

    2009-12-01

    The oxygen isotopic composition (Δ17O) of sulfate from ice cores allows for a quantitative assessment of the past oxidative capacity of the atmosphere, which has implications for the lifetime of pollutants (e.g. CO) and greenhouse gases (e.g. CH4), and changes in the sulfur budget on various timescales. Using Δ17O of sulfate measurements from the WAIS-Divide, Antarctica and Site-A, Greenland ice cores as constraints, we use the GEOS-Chem global three-dimensional chemical transport model to study changes in the concentrations of OH, O3, and H2O2 and their impact on sulfate Δ17O between the preindustrial and present-day. The Greenland ice core sulfate oxygen isotope observations are insensitive to changes in oxidant concentrations on the preindustrial-industrial timescale due to the rising importance of metal catalyzed S(IV) oxidation in mid- to high-northern latitudes resulting from anthropogenic metal emissions. The small change in Antarctic ice core sulfate Δ17O observations on this timescale is consistent with simultaneous increases in boundary layer O3 (32%) and H2O2 (49%) concentrations in the Southern Hemisphere, which have opposing effects on the sulfate O-isotope anomaly. Sulfate Δ17O is insensitive to the relatively small (-12%) decrease in Southern Hemisphere OH concentrations on this timescale due to the dominance of in-cloud versus gas-phase formation of sulfate in the mid-to-high southern latitudes. We find that the fraction of sulfate formed globally through gas-phase oxidation has not changed substantially between preindustrial and present times, however the total amount of sulfate formed in the gas-phase has nearly quadrupled due to rising anthropogenic emissions of sulfur dioxide. Measurements over a glacial-interglacial cycle from the Vostok core indicate dramatic changes in the Δ17O of sulfate on this timescale, which provide a strong constraint for glacial-era atmospheric chemistry modeling efforts. We will present preliminary results of

  2. The effects of oxygen concentration, stress, temperature, and cold work on the constant-load stress-rupture behavior of INCOLOY alloy 908

    Energy Technology Data Exchange (ETDEWEB)

    Morra, M.M.; Steeves, M.M.; Ballinger, R.G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1997-06-01

    Constant load stress rupture tests were performed on INCOLOY{reg_sign} alloy 908*. The test matrix varied O{sub 2} concentration, applied load, temperature, and percent cold work. The mechanism for high temperature intergranular fracture in alloy 908 is stress assisted intergranular oxidation cracking. A direct correlation between percent intergranular fracture and O{sub 2} concentration exists. This result is comparable to the oxidation assisted, intergranular fracture behavior of alloy 718. The depth of intergranular oxidation is controlled by both the O{sub 2} concentration and the Cr concentration in the alloy. A transition from intergranular to external oxidation in alloy 908 occurs when the concentration of O{sub 2} is below 0.1 ppm. An oxygen concentration threshold based on zero percent intergranular fracture is a better indicator of the potential for intergranular fracture during heat treatment than one based on time to rupture. An O{sub 2} concentration below 0.1 ppm is recommended for heat treatment of alloy 908 in the presence of residual or applied tensile stresses.

  3. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms.

    Science.gov (United States)

    Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk

    2017-03-15

    Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments.IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. Copyright © 2017 American Society for Microbiology.

  4. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  5. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  6. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Science.gov (United States)

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  7. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration

    DEFF Research Database (Denmark)

    Hansen, M.C.; Palmer, R.J.; Udsen, C.

    2001-01-01

    . A lower limit of oxygen concentration for maturation of the GFP fluorophore was determined: fluorescence was emitted at 0.1 p.p.m. dissolved oxygen (in conventionally prepared anaerobic media lacking reducing agents), whereas no fluorescence was detected in the presence of 0.025 p.p.m. dissolved oxygen......Use of green fluorescent protein (GFP) as a molecular reporter is restricted by several environmental factors, such as its requirement for oxygen in the development of the fluorophore, and its poor fluorescence at low pH. There are conflicting data on these limitations, however, and systematic...... (lateral or vertical) within the >50 mum thick biofilm, and fluorescence development after the shift to aerobic conditions occurred throughout the biofilm (even at the substratum). This suggests that oxygen gradients, which might result in reduced GFP fluorescence, did not exist in the >50 mum thick...

  8. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    Science.gov (United States)

    Calva-Vázquez, G.; Razo-Angel, G.; Rodríguez-Fernández, L.; Ruvalcaba-Sil, J. L.

    2006-08-01

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years.

  9. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Calva-Vazquez, G. [Laboratorio de Contaminacion Atmosferica, FES Zaragoza, UNAM, Calzada I. Zaragoza esq., Av. Guelatao s/n, 09230 Mexico, DF (Mexico); Razo-Angel, G. [Laboratorio de Contaminacion Atmosferica, FES Zaragoza, UNAM, Calzada I. Zaragoza esq., Av. Guelatao s/n, 09230 Mexico, DF (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mexico, DF (Mexico); Ruvalcaba-Sil, J.L. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mexico, DF (Mexico)]. E-mail: sil@fisica.unam.mx

    2006-08-15

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years.

  10. The induction of Sinorhizobium meliloti C4-dicarboxylate transport system(Dct)is regulated by oxygen concentration

    Institute of Scientific and Technical Information of China (English)

    WEN Jin; NAN Beiyan; Fergal O'Gara; WANG Yiping

    2005-01-01

    The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5α strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system occurred only at a certain depth under the surface of M63- 0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.

  11. Detection of low bottom water oxygen concentrations in the North Sea; implications for monitoring and assessment of ecosystem health

    Directory of Open Access Journals (Sweden)

    N. Greenwood

    2009-08-01

    Full Text Available This paper presents new results from high temporal resolution observations over two years (2007 and 2008 from instrumented moorings deployed in the central North Sea, at the Oyster Grounds and on the northern slope of Dogger Bank (North Dogger. The water column was stratified in the summer at both sites, leading to limited exchange of the water in the bottom mixed layer. Data from these moorings revealed the variable nature of summer oxygen depletion at the Oyster Grounds. The combination of in situ and ship-based measurements allowed the physical and biological conditions leading to decreasing dissolved oxygen concentrations in bottom water to be examined. The concentration of dissolved oxygen in the bottom water at both sites was observed to decrease throughout the summer period after the onset of stratification. Depleted dissolved oxygen concentration (6.5 mg l−1, 71% saturation was measured at the North Dogger, a site which is not significantly influenced by anthropogenic nutrient inputs. Lower oxygen saturation (5.2 mg l−1, 60% saturation was measured for short durations at the Oyster Grounds. Increasing bottom water temperature accounted for 55% of the decrease in dissolved oxygen concentration at the Oyster Grounds compared to 10% at North Dogger.

    Dissolved oxygen concentration in bottom water at the Oyster Grounds was shown to be strongly influenced by short term events including storm events and pulses of biomass input. In contrast, dissolved oxygen concentration in bottom water at the North Dogger reflected longer seasonal processes such as gradual temperature increases and a more steady supply of biomass to the bottom mixed layer. The differences between the study sites shows the need for an improved understanding of the mechanisms driving these processes if the use of oxygen in marine management and ensuring ecosystem health is to be meaningful and successful in the future. These observations

  12. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Science.gov (United States)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  13. Investigating the role that the Southern Ocean biological pump plays in determining global ocean oxygen concentrations and deoxygenation

    OpenAIRE

    Keller, David; Oschlies, Andreas

    2013-01-01

    Global ocean circulation connects marine biogeochemical cycles through the long-range transport of nutrients and oxygen with the Southern Ocean (SO) acting as a water mass crossroads. The biological pump in the SO has been shown to play an important role in these dynamics and the amount of export production is known to have a large impact on remote deep ocean nutrients and dissolved inorganic carbon. However, the role that the SO biological pump plays in determining ocean oxygen concentration...

  14. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    Science.gov (United States)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, padaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  15. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  16. A New Approach for Removal of Nitrogen Oxides from Synthetic Gas-streams under High Concentration of Oxygen in Biofilters

    Institute of Scientific and Technical Information of China (English)

    Shao Bin HUANG; Ju Guang ZHANG; He Ping HU; Yue SITU

    2005-01-01

    The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.

  17. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.

    Science.gov (United States)

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P

    2016-06-01

    The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.

  18. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    Science.gov (United States)

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.

  19. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    Science.gov (United States)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  20. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    Directory of Open Access Journals (Sweden)

    K. Castro-Morales

    2012-01-01

    Full Text Available Concentrations of oxygen (O2 and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes. The mixed layer depth (zmix may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using oxygen may be different than zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2, as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by analysis of O2 profiles from the Bellingshausen Sea (west of the Antarctic Peninsula and corroborated by visual inspection. Comparisons of zmix(O2 with zmix based on potential temperature differences, i.e., zmix(0.2 °C and zmix(0.5 °C, and potential density differences, i.e., zmix(0.03 kg m−3 and zmix(0.125 kg m−3, showed that zmix(O2 closely follows zmix(0.03 kg m−3. Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(0.03 kg m−3, which is also the basis for the climatology by

  1. Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil).

    Science.gov (United States)

    Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C

    2009-06-01

    The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.

  2. Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis.

    Science.gov (United States)

    Paltrinieri, Saverio; Ravicini, Sara; Rossi, Gabriele; Roura, Xavier

    2010-12-01

    Leishmania infantum interferes with the oxidative metabolism of phagocytes. In order to assess whether derivatives of reactive oxygen metabolites (d-ROMs) decrease due to infection or increase due to inflammation, d-ROMs were measured in serum collected from control dogs (Group 1; n = 12), from dogs seropositive for Leishmania either symptomatic (Group 2; n = 27) or not (Group 3; n = 14), and from dogs with other diseases (Group 4; n = 16). The concentrations of d-ROMs in the four groups, expressed in Carratelli Units (U CARR) were, respectively, 75.4 ± 39.5 (median, 81.6), 108.2 ± 96.3 (73.4), 73.5 ± 62.2 (62.0), 127.7 ± 97.3 (94.3). There were no significant differences between groups, but dogs with values higher than the reference interval were found, mostly in Groups 2 and 4 (which had serum C-reactive protein levels consistent with inflammation), whilst low values were occasionally found in Groups 2 and 3. Inflammation may mask decreases in d-ROMs induced by Leishmania infection.

  3. Control of oxygen vacancies and Ce{sup +3} concentrations in doped ceria nanoparticles via the selection of lanthanide element

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, N., E-mail: nader83@vt.edu; Meehan, K.; Hudait, M.; Jain, N. [Virginia Tech, Bradley Department of Electrical and Computer Engineering (United States)

    2012-10-15

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce{sup +4} into Ce{sup +3} and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  4. Relative sensitivity of soluble guanylate cyclase and mitochondrial respiration to endogenous nitric oxide at physiological oxygen concentration.

    Science.gov (United States)

    Rodríguez-Juárez, Félix; Aguirre, Enara; Cadenas, Susana

    2007-07-15

    Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.

  5. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension.

    Science.gov (United States)

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2007-11-01

    The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.

  6. Inference of atomic oxygen concentration from remote sensing of optical aurora

    Science.gov (United States)

    Shepherd, M. G.; McConnell, J. C.; Tobiska, W. K.; Gladstone, G. R.; Chakrabarti, S.; Schmidtke, G.

    1995-09-01

    A remote sensing method has been developed for the determination of the [O]/[O-MSIS] ratio in aurora, using ratios of the O I (557.7 nm) and N+2 (391.4 nm) emissions. It is shown that the method can be used for the analysis of measurements integrated along the line of sight, provided data only above the emission rate peak are used. The method is applied to the case of horizontal viewing from a vertically oriented rocket so that a large volume of space was sampled around the rocket. The method can potentially be applied to satellite limb images, provided some independent information about the location of the aurora is available, as it was for the rocket observations. Photometric measurements of the N+2 (391.4 nm) and O I (557.7 nm) emissions obtained during the Energy Budget Campaign 1980 on flight E-2 with the instrument EF11 and its reflight in 1981 were used in the analysis presented. During the first flight the rocket horizontally viewed two distinct aurorae, a nearby diffuse patch, and a more distant pulsating aurora. Results obtained by the same EF11 instrument on a second flight through an auroral arc in 1981 are also presented. Two types of atomic oxygen variability were found in both of the flights. In the first type, [O] is increased above [O-MSIS] by a factor of 1.5 at 180 km, is equal to the MSIS model at 160 km, and is less than MSIS below that; that is, the scale height of [O] was increased. The experimental I(557.7)/I(391.4) ratio was constant with altitude. In the second type, the [O] was depleted by about a factor of 2 over the altitude range of 120-180 km, while the I(557.7)/I(391.4) ratio decreased with altitude. The inferred atomic oxygen concentrations of 0.5 to 2 with respect to MSIS suggested different vertical flows on the two cases. Independent evidence is provided by atmospheric composition measurements made during the same campaign.

  7. Rapid depletion of dissolved oxygen in 96 well microtitre plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration

    OpenAIRE

    Cotter, John J.; O'Gara, James P.; Casey, Eoin

    2009-01-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the...

  8. Effect of Sm on Gas-Sensing Properties of SnO2 with Different Oxygen Vacancy Concentrations

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The SnO2-x with different oxygen vacancy concentrations was modified by adding Sm. The modified SnO2-x was investigated by means of X-ray diffraction, X-ray photoelectron spectroscope, and scanning electron microscopy. Its gas-sensing properties to C2H6, C6H14, C2H5OH, CO, and H2 were studied too. The experiment results show that the gas-sensing properties of Sm/SnO2-x depend upon the amount of oxygen vacancies, therefore it is possible to improve gas-sensing properties of doped SnO2 by controlling its concentration of oxygen vacancy.

  9. The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium

    NARCIS (Netherlands)

    Stal, L.

    2017-01-01

    Heterocysts are differentiated cells formed by some filamentous, diazotrophic (dinitrogen-fixing)cyanobacteria. The heterocyst is the site of dinitrogen fixation providing the oxygen-sensitivenitrogenase with a low-oxygen environment. The diffusion of air into the heterocyst is a compromisebetween t

  10. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater.

    Science.gov (United States)

    Quan, Ying; Han, Hui; Zheng, Shaokui

    2012-09-01

    The successful application of bioaugmentation is largely dependent on the selective enrichment of culture with regards to pH, temperature, salt, or specific toxic organic pollutants. In this study, we investigated the effect of dissolved oxygen (DO) concentrations (aerobic, >2 mg L(-1); microaerobic, concentrations (aerobic/microaerobic) should be considered a secondary selective pressure to achieve successful bioaugmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Science.gov (United States)

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  12. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    Science.gov (United States)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  13. Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus)

    NARCIS (Netherlands)

    Tran, N.T.K.; Dinh, Ngu T.; Tin, Nguyen Hong; Roem, A.J.; Schrama, J.W.; Verreth, J.A.J.

    2016-01-01

    The present study was undertaken to evaluate the individual and combined effects of oxygen concentration and
    diet composition on the growth, nutrient utilization and intestinal morphology of Nile tilapia (Oreochromis
    niloticus). Two recirculating aquaculture systems were used to create the

  14. Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source

    Institute of Scientific and Technical Information of China (English)

    Stèphane Abanades; Stefania Tescari; Sylvain Rodat; Gilles Flamant

    2009-01-01

    The thermal pyrolysis of natural gas as a clean hydrogen production route is examined.The concept of a double-walled reactor tube is proposed and implemented.Preliminary experiments using an external plasma heating source are carded out to validate this concept.The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time.Simulations are performed to predict the conversion rate of CH4 at the reactor outlet,and are consistent with experimental tendencies.A solar reactor prototype featuring four independent double-walled tubes is then developed.The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy.The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window.The gas composition at the reactor outlet,the chemical conversion of CH4,and the yield to H2 are determined with respect to reaction temperature,inlet gas flow-rates,and feed gas composition.The longer the gas residence time,the higher the CH4 conversion and H2 yield,whereas the lower the amount of acetylene.A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms).A temperature increase from 1870 K to 1970 K does not improve the H2 yield.

  15. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    Directory of Open Access Journals (Sweden)

    C. Kalogridis

    2014-01-01

    Full Text Available The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOC in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the Oak Observatory of the Observatoire de Haute Provence (O3HP located in the southeast of France. The field site presents one dominant tree species, Quercus pubescens L., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK and methacrolein (MACR and several other oxygenated VOC (OxVOC were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS, and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2–8 mg m−2 h1. Net isoprene normalised flux (at 30 °C, 1000 μmol m−2 s−1 was estimated at 6.6 mg m−2 h−1. The (MVK+MACR-to-isoprene ratio was used to assess the degree of isoprene oxidation. In-canopy chemical oxidation of isoprene was found to be weak, as indicated by the low (MVK+MACR-to-isoprene ratio (~ 0.13 and low MVK+MACR fluxes, and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy. Evidence of direct emission of methanol was also found exhibiting

  16. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs in vitro and in vivo.

    Science.gov (United States)

    Goh, Fernie; Long, Robert; Simpson, Nicholas; Sambanis, Athanassios

    2011-07-01

    Noninvasive in vivo monitoring of tissue implants provides important correlations between construct function and the observed physiologic effects. As oxygen is a key parameter affecting cell and tissue function, we established a monitoring method that utilizes (19) F nuclear magnetic resonance (NMR) spectroscopy, with perfluorocarbons (PFCs) as oxygen concentration markers, to noninvasively monitor dissolved oxygen concentration (DO) in tissue engineered implants. Specifically, we developed a dual PFC method capable of simultaneously measuring DO within a tissue construct and its surrounding environment, as the latter varies among animals and with physiologic conditions. In vitro studies using an NMR-compatible bioreactor demonstrated the feasibility of this method to monitor the DO within alginate beads containing metabolically active murine insulinoma βTC-tet cells, relative to the DO in the culture medium, under perfusion and static conditions. The DO profiles obtained under static conditions were supported by mathematical simulations of the system. In vivo, the dual PFC method was successful in tracking the oxygenation state of entrapped βTC-tet cells and the surrounding peritoneal DO over 16 days in normal mice. DO measurements correlated well with the extent of cell growth and host cell attachment examined postexplantation. The peritoneal oxygen environment was found to be variable and hypoxic, and significantly lower in the presence of metabolically active cells. The significance of the dual PFC system in providing critical DO measurements for entrapped cells and other tissue constructs, in vitro and in vivo, is discussed. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  17. Effects of Variable Oxygen Concentrations on the Sinking Fluxes and Composition of Organic Matter in The Baltic Sea

    Science.gov (United States)

    Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.

    2016-02-01

    The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.

  18. Effects of dissolved oxygen concentration and iron addition on immediate-early gene expression of Magnetospirillum gryphiswaldense MSR-1.

    Science.gov (United States)

    Zhuang, Shiwen; Anyaogu, Diana Chinyere; Kasama, Takeshi; Workman, Mhairi; Mortensen, Uffe Hasbro; Hobley, Timothy John

    2017-06-15

    We report the effects of dissolved oxygen (DO) concentration and iron addition on gene expression of Magnetospirillum gryphiswaldense MSR-1 cells during fermentations, focusing on 0.25-24 h after iron addition. The DO was strictly controlled at 0.5% or 5% O2, and compared with aerobic condition. Uptake of iron (and formation of magnetosomes) was only observed in the 0.5% O2 condition where there was little difference in cell growth and carbon consumption compared to the 5% O2 condition. Quantitative reverse transcription PCR analysis showed a rapid (within 0.25 h) genetic response of MSR-1 cells after iron addition for all the genes studied, except for MgFnr (oxygen sensor gene) and fur (ferric uptake regulator family gene), and which in some cases was oxygen dependent. In particular, expression of sodB1 (superoxide dismutase gene) and feoB1 (ferrous transport protein B1 gene) was markedly reduced in cultures at 0.5% O2 compared to those at higher oxygen tensions. Moreover, expression of katG (catalase-peroxidase gene) and feoB2 (ferrous transport protein B2 gene) was reduced markedly by iron addition, regardless of oxygen conditions. These data provide a greater understanding of molecular response of MSR-1 cells to environmental conditions associated with oxygen and iron metabolisms, especially relevant to immediate-early stage of fermentation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    Science.gov (United States)

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.

  20. Portable Cathode-Air-Vapor-Feed Electrochemical Medical Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions present significant new challenges to crew health care capabilities, particularly in the efficient utilization of on-board oxygen...

  1. Portable Cathode-Air-Vapor-Feed Electrochemical Medical Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions present significant new challenges to crew health care capabilities, particularly in the efficient utilization of on-board oxygen...

  2. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    National Research Council Canada - National Science Library

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations...

  3. Position Paper: The Feasibility of Lowering Oxygen Concentrations Aboard Submarines in Order to Improve Fire Safety.

    Science.gov (United States)

    2014-09-26

    judgment. Impaired coordination. (32) 0 114 Intermittent breathing. Rapid fatigue. Loss of muscle control. (21) 10,000 109 COMPENSATED HYPOXIA (25...fire safety; fire retardance; submarines; submersibles; oxygen: aerohypoxia; hypoxia ; hypercapnia; carbon dioxide; carbon monoxide; altitude...reduce the partial pressure of atmos- pheric oxygen (P.)2) to the point of causing hypoxia . Since residents of Denver per- form complex tas&s at a P0

  4. Effect of procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration.

    Science.gov (United States)

    Sada, H; Kojima, M; Ban, T

    1979-11-01

    Effects of procainamide (PA), 0.18, 0.37 and 0.74 mmol/l, on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution (external K concentration, [K]0 = 5.4 mmol/l) at the basic driving rate of 1 Hz. PA, at 0.37 mmol/l, significantly reduced the maximum rate of rise of action potential (Vmax) with no change in the resting potential. When 2.7 mmol/l [K]0 of the superfusate was exchanged for 15 mmol/l [K]0 solution a decrease in Vmax induced by 0.37 mmol/l PA became more prominent with decrease in resting potential. The reduction of Vmax at steady state was less at lower driving rates (0.25 and 0.5 Hz) and more at higher driving rates (2-5 Hz) than at 1 Hz in 2.7, 5.4 and 10.0 mmol/l [K]0 solution. Such changes were enhanced concentration-dependently by PA at 5.4 mmol/l [K]0. Also, the changes became more significant with an increase in [K]0 from 2.7 mmol/l to 5.4 mmol/l and then to 10.0 mmol/l. The recovery process of Vmax proceeded with two components. The time course of the slow component seen in the Vmax of the first response after interruption of basic driving stimulation at 1 Hz, followed an approximate monoexponential function. The time constants were 6.3, 4.4 and 5.8 s in the presence of 0.18, 0.37 and 0.74 mmol/l PA at 5.4 mmol/l [K]0 and 3.4 and 3.7 s both in the presence of 0.37 mmol/l PA at 2.7 and 10.0 mmol/l [K]0. Vmax values after 30 or 60 s interruption of stimulation were 80-92% of the predrug Vmax value at 1 Hz. The time constants of the first component, estimated by the peeling-off methods at the driving rate of 0.1 Hz, were 11, 31 and 5-22 ms in the presence of 0.37 mmol/l at 5.4, 10.0 and 2.7 mmol/l [K]0 and did not differ significantly from the time constants in control preparations. The results were found to be consistent, to a certain extent, with the model proposed by Hondeghem and Katzung (1977).

  5. [Effect of reduced oxygen concentrations and hydrogen sulfide on the amino acid metabolism and mesenchymal cells proliferation].

    Science.gov (United States)

    Plotnikova, L N; Berezovskii, V A; Veselskii, S P

    2015-01-01

    We investigated the effect of hydrogen sulfide donor (10(-12) mol/l NaHS--I group) alone and together with the reduced oxygen concentrations (5% O2--II group, 3% O2--III group, 24 h) on the biological processes of human stem cells culture. It was shown that the cells proliferation by the third day of cultivation in I, II and III group decreased 1,7; 2,8 and 4,2 times. On the 4th day of culture proliferation inhibited in I, II and III group by 29; 33 and 54% compared to the control. Thus, adverse effects NaHS enhanced by reducing the oxygen concentration. It was established that in all experimental versions rapidly absorbed from the culture medium amino acids: cysteine and cystine, serine and aspartic acid, valine and tryptophan, proline and hydroxyproline, which are involved in the synthesis of proteins, in particular collagen. In the culture medium increased the concentration of free amino acids of the three factions: arginine, histidine and taurine; glycine and methionine; alanine and glutamine. We believe that in the applied concentration of hydrogen sulfide donor in conditions of low oxygen in a gaseous medium incubation inhibits the proliferation and alters the amino acid metabolism of human cells line 4BL.

  6. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    Science.gov (United States)

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  7. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Directory of Open Access Journals (Sweden)

    Katz I

    2016-09-01

    Full Text Available Ira Katz,1,2 Marine Pichelin,1 Spyridon Montesantos,1 Min-Yeong Kang,3 Bernard Sapoval,3,4 Kaixian Zhu,5 Charles-Philippe Thevenin,5 Robert McCoy,6 Andrew R Martin,7 Georges Caillibotte1 1Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 2Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 3Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, 4Centre de Mathématiques et de leurs Applications, CNRS, UniverSud, Cachan, 5Centre Explor!, Air Liquide Healthcare, Gentilly, France; 6Valley Inspired Products, Inc, Apple Valley, MN, USA; 7Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada Abstract: Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered, and pulse delay (the time for the pulse to be initiated from the start of inhalation as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth, can be

  8. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  9. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. C Appendix C to Part 835—Derived...

  10. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility

    Institute of Scientific and Technical Information of China (English)

    Wolf-BernhardSchill; KerstinDefosse; Hans-HilhelmKoyro; NorbertWeissmann

    2003-01-01

    Aim:To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility.Methods:In washed spermatozoa from 67 ejaculates,the oxygen consumption was determined.Following calculation of the total oxygen consumed by the Ideal Gas Law,the energy consumption of spermatozoa was calculated.In addition,the zinc content of the sperm was determined using an atomic absorption spectrometer.The resulting data were correlated to the vitality and motility.Results:The oxygen consumption averaged 0.24μmol/106 sperm×24h,0.28μmol/106 live sperm×24h and 0.85μmol/106 live & motile sperm×24h.Further calculations revealed that sperm motility was the most energy consuming process(164.31mJ/106 motile spermatozoa×24h),while the oxygen consumption of the total spermatozoa was 46.06mJ/106 spermatozoa ×24h.The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations(r=-0.759;P<0.0001 and r=-0.441;P<0.0001,respectively).However,when correlating sperm energy consumption with the zinc content,a significant positive relation(r=0.323;P=0.01)was observed.Conclusion:Poorly motile sperm are actually wasting the available energy.Moreover,our data clearly support the “Geometric Clutch Model”of the oneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility,especially progressive motility.

  11. Feasibility and reliability of an automated controller of inspired oxygen concentration during mechanical ventilation

    OpenAIRE

    Saihi, Kaouther; Richard, Jean-Christophe M; Gonin, Xavier; Krüger, Thomas; Dojat, Michel; Brochard, Laurent

    2014-01-01

    Introduction Hypoxemia and high fractions of inspired oxygen (FiO2) are concerns in critically ill patients. An automated FiO2 controller based on continuous oxygen saturation (SpO2) measurement was tested. Two different SpO2-FiO2 feedback open loops, designed to react differently based on the level of hypoxemia, were compared. The results of the FiO2 controller were also compared with a historical control group. Methods The system measures SpO2, compares with a target range (92% to 96%), and...

  12. Effect of 50% and maximal inspired oxygen concentrations on respiratory variables in isoflurane-anesthetized horses

    Directory of Open Access Journals (Sweden)

    Lerche Phillip

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to compare the effects of 0.5 fraction of inspired oxygen (FiO2 and >0.95 FiO2 on pulmonary gas exchange, shunt fraction and oxygen delivery (DO2 in dorsally recumbent horses during inhalant anesthesia. The use of 0.5 FiO2 has the potential to reduce absorption atelectasis (compared to maximal FiO2 and augment alveolar oxygen (O2 tensions (compared to ambient air thereby improving gas exchange and DO2. Our hypothesis was that 0.5 FiO2 would reduce ventilation-perfusion mismatching and increase the fraction of pulmonary blood flow that is oxygenated, thus improving arterial oxygen content and DO2. Results Arterial partial pressures of O2 were significantly higher than preanesthetic levels at all times during anesthesia in the >0.95 FiO2 group. Arterial partial pressures of O2 did not change from preanesthetic levels in the 0.5 FiO2 group but were significantly lower than in the >0.95 FiO2 group from 15 to 90 min of anesthesia. Alveolar to arterial O2 tension difference was increased significantly in both groups during anesthesia compared to preanesthetic values. The alveolar to arterial O2 tension difference was significantly higher at all times in the >0.95 FiO2 group compared to the 0.5 FiO2 group. Oxygen delivery did not change from preanesthetic values in either group during anesthesia but was significantly lower than preanesthetic values 10 min after anesthesia in the 0.5 FiO2 group. Shunt fraction increased in both groups during anesthesia attaining statistical significance at varying times. Shunt fraction was significantly increased in both groups 10 min after anesthesia but was not different between groups. Alveolar dead space ventilation increased after 3 hr of anesthesia in both groups. Conclusions Reducing FiO2 did not change alveolar dead space ventilation or shunt fraction in dorsally recumbent, mechanically ventilated horses during 3 hr of isoflurane anesthesia. Reducing FiO2 in

  13. Lanthanum Distribution and Oxygen Vacancy Concentration in SrBi4-x Lax Ti4O15

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun; Chen Xiaobing

    2004-01-01

    The Raman and X-ray photoemission spectroscopy of lanthanum-doped SrBi4Ti4O15 (SBLT -x, x =0.00, 0. 05, 0. 10, 0. 25, 0.50, 0. 75 and 1.00) ferroelectric ceramics were investigated to explore the La substitution site and the influence of La-doping on the oxygen vacancy concentration. The results suggest that La3+ions behave pronounced site selectivity for the A site in the case of x ≤ 0.10, and they are incorporated into Bi2O2 layers at higher content. The oxygen vacancy concentration declines with La-doping, and the decrease seems saturated as La content is higher than 0.10.

  14. Effect of daily minimum dissolved oxygen concentration on production of channel x blue hybrid catfish

    Science.gov (United States)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to pond dissolved oxygen management strategies. The purpose of this study was to quantify the production and water quality responses of the cha...

  15. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity

    NARCIS (Netherlands)

    Raso, S.; Genugten, van B.; Vermuë, M.H.; Wijffels, R.H.

    2012-01-01

    In large-scale microalgal production in tubular photobioreactors, the build-up of O2 along the tubes is one of the major bottlenecks to obtain high productivities. Oxygen inhibits the growth, since it competes with carbon dioxide for the Rubisco enzyme involved in the CO2 fixation to generate

  16. Routine Metabolic Rate and Limiting Oxygen Concentration of Freshwater Prawn Macrobrachium rosenbergii Larvae

    Science.gov (United States)

    Malaysian prawns, Macrobrachium rosenbergii, are hatched and raised indoors in small tanks. Prawns may be raised and shipped at high densities which could result in low dissolved oxygen (DO) conditions. Because DO may play an important role in prawn development and survival, we measured routine me...

  17. Lamp enables measurement of oxygen concentration in presence of water vapor

    Science.gov (United States)

    Brisco, F. J.; Moorhead, J. E.; Paige, W. S.

    1967-01-01

    Open-electrode ultraviolet source lamp radiates sufficient energy at 1800 angstroms and 1470 angstroms for use in a double-beam, duel-wavelength oxygen sensor. The lamp is filled with xenon at a pressure of 100 mm of Hg.

  18. Effect of oxygen concentration on fire growth of various types of cable bending in horizontal and vertical orientations

    Science.gov (United States)

    Pangaribuan, Adrianus; Dhiputra, I. M. K.; Nugroho, Yulianto S.

    2017-03-01

    Electrical cable is a whole of the material including metal (cooper) conductor and its insulation, when an electrical cable is flowed by electric current, based on its own capacity, the temperature of cable conductor increases gradually. If the current flows above the cable carrying capacity, then an extreme temperature rises are expected. When temperature increase, the electric current flow inside cable conductor will decrease gradually related to the resistance and could occur repeatedly in a period. Since electrical faults on electrical cable system are often suspected as the cause of fires, thus this research aims to investigate measures of preventing the fire to start by means of controlling oxygen concentration in a cable compartment. The experimental work was conducted in laboratory by using electrical power cable of 1.5 mm2 size. Two transparent chambers were applied for studying the effect of vertical and horizontal orientations on the cable temperature rise, under various oxygen concentration of the gas streams. In the present work, the electrical was maintained at a constant level during a typical test run. Parametric studies reported in the paper include the use of a bare and insulated cables as well as the bending shape of the cable lines of a straight cable, coiled cable and randomly bent cable which were loaded with the same electric load and oxygen concentration in the gas supply.

  19. Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor.

    Science.gov (United States)

    Eser, Bekir E; Das, Debasis; Han, Jaehong; Jones, Patrik R; Marsh, E Neil G

    2011-12-13

    Cyanobacterial aldehyde decarbonylase (cAD) is, structurally, a member of the di-iron carboxylate family of oxygenases. We previously reported that cAD from Prochlorococcus marinus catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate in a reaction that requires an external reducing system but does not require oxygen [Das et al. (2011) Angew. Chem. 50, 7148-7152]. Here we demonstrate that cADs from divergent cyanobacterial classes, including the enzyme from N. puntiformes that was reported to be oxygen dependent, catalyze aldehyde decarbonylation at a much faster rate under anaerobic conditions and that the oxygen in formate derives from water. The very low activity (<1 turnover/h) of cAD appears to result from inhibition by the ferredoxin reducing system used in the assay and the low solubility of the substrate. Replacing ferredoxin with the electron mediator phenazine methosulfate allowed the enzyme to function with various chemical reductants, with NADH giving the highest activity. NADH is not consumed during turnover, in accord with the proposed catalytic role for the reducing system in the reaction. With octadecanal, a burst phase of product formation, k(prod) = 3.4 ± 0.5 min(-1), is observed, indicating that chemistry is not rate-determining under the conditions of the assay. With the more soluble substrate, heptanal, k(cat) = 0.17 ± 0.01 min(-1) and no burst phase is observed, suggesting that a chemical step is limiting in the reaction of this substrate.

  20. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points are given as hours after fertilisation Results: The timing of the first two cleavage cycles resulting in a 4-cell embryo was not significantly different between the groups. The timing of the third cleavage cycle, i.e. division to 5, 6, 7 and 8 cells was delayed for embryos cultured in 20% oxygen (P5cell =0......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... recently demonstrated to occur from first cleavage cycle in mice using time-lapse microscopy, with the largest impact on the pre-compaction stages. However, embryonic development in mice differs in many aspects from human embryonic development. The objective of this retrospective, descriptive study...

  1. CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

    Science.gov (United States)

    Poulsen, Christopher J; Tabor, Clay; White, Joseph D

    2015-06-12

    The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time.

  2. The Effects of Differing Oxygen Concentrations on Reaction Time Performance at Altitude

    Science.gov (United States)

    2014-12-04

    needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection...Lumb, A. B. (2007). Just a little oxygen to breathe as you go off to sleep… is it always a good idea? British Journal of Anesthesia , 99 (6), 769-771...R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114 (3), 510-532. Van Diest, I., Stegen, K., Van de Woestijne

  3. [Effects of breathing high concentrations of oxygen on changes in blood indices during bicycle exercise].

    Science.gov (United States)

    Nagata, A; Yoshida, M; Fuke, T; Miyazato, I; Shiba, K

    1990-01-01

    The purpose of this study is to examine effects of hyperoxic gas mixtures on changes of blood indices during bicycle exercise of human. Oxygen-enriched gases (30% O2) were inspired during the ramp load exercise of 25 watt/min. Changes of blood indices were analyzed with Sequential Multiple Analyzer with the computer (SMAC). The improvement of exercise performance were discussed about relationship between function of hyperoxic gas and physiological mechanism. Three experimental conditions were set as follows (I) 30% O2 +N2 gases balance, (II) air (21% O2), and (III) 30% O2 +2% CO2 +N2 gases balance. Arterial blood were sampled from the radial artery of the forearm in order to analyze following items; 1) pH level, PaO2, PaCO2, and HCO3 of these blood gases, 2) Blood sugar, TG, and F-CH of the blood contents, 3) red blood corpuscle, white blood corpuscle, Hb, and Ht values, 4) LDH, CK, GOT, and GPT of the blood enzymes, 5) TP, ALB, Na, K, Ca and Cl of the electric ions. In the case of inspiring hyperoxic gases, the recovery rate of blood indices increased after this ramp load exercise remarkably, and the whole exercise metabolism were removed from acidosis tendency to alkalosis value of the resting condition significantly. At hyperoxic experimental conditions, the blood sugar and oxygen consumption were much more decreased than these at normal oxygen content one during both states of exercise and recovery times. These data of the blood indices would support strongly to the hypothesis that improvement of oxygen delivery should be depended upon the enhanced performance with the hyperoxic gases. There might be effects of the hyperoxia on the cellular metabolism and on function of the vascular muscle during those aerobic exercise.

  4. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses of ...... improved the germination of the problematic invader Alliaria petiolate of North American forests. A method was developed to break seed dormancy of the herb garlic mustard using chemicals....

  5. Technical Note: Particulate reactive oxygen species concentrations and their association with environmental conditions in an urban, subtropical climate

    Directory of Open Access Journals (Sweden)

    S. S. Khurshid

    2014-02-01

    Full Text Available Reactions between hydrocarbons and ozone or hydroxyl radicals lead to the formation of oxidized species, including reactive oxygen species (ROS, and secondary organic aerosol (SOA in the troposphere. ROS can be carried deep into the lungs by small aerodynamic particles where they can cause oxidative stress and cell damage. While environmental studies have focused on ROS in the gas-phase and rainwater, it is also important to determine concentrations of ROS on respirable particles. Samples of PM2.5 collected over 3 h at midday on 40 days during November 2011 and September 2012 show that the particulate ROS concentration in Austin, Texas ranged from a minimum value of 0.02 nmol H2O2 (m3 air−1 in December to 3.81 nmol H2O2 (m3 air−1 in September. Results from correlation tests and linear regression analysis on particulate ROS concentrations and environmental conditions (which included ozone and PM2.5 concentrations, temperature, relative humidity, precipitation and solar radiation indicate that ambient particulate ROS is significantly influenced by the ambient ozone concentration, temperature and incident solar radiation. Particulate ROS concentrations measured in this study were in the range reported by other studies in the US, Taiwan and Singapore. This study is one of the first to assess seasonal variations in particulate ROS concentrations and helps explain the influence of environmental conditions on particulate ROS concentrations.

  6. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration.

    Science.gov (United States)

    Di Bella, Gaetano; Torregrossa, Michele

    2013-08-01

    Simultaneous nitrification and denitrification (SND) together with organic removal in granules is usually carried out without Dissolved Oxygen (DO) concentration control, at "low DO" (with a DOoxygen control with big sized granules. More specifically, the paper presents a experimentation focused on the analysis of two Sequencing Batch Reactors (SBRs), in bench scale, working with different aerobic sludge granules, in terms of granule size, and high DO concentration, (with concentration varying from anoxic conditions, about DO ∼0 mg/L, to values close to those of saturation, >7-8 mg/L, during feast and famine conditions respectively). In particular, different strategies of cultivation and several organic and nitrogen loading rate have been applied, in order to evaluate the efficiencies in SND process without dissolved oxygen control. The results show that, even under conditions of high DO concentration, nitrogen and organic matter can be simultaneously removed, with efficiency >90%. Nevertheless, the biological conditions in the inner layer of the granule may change significantly between small and big granules, during the feast and famine periods. From point of view of granule stability, it is also interesting that with a particle size greater than 1.5mm, after the cultivation start-up, the granules are presented stable for a long period (about 100 days) and, despite the variations of operational conditions, the granules breaking was always negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  8. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Temmink, B.G.; Zwijnenburg, A.; Kemperman, A.J.B.; Rijnaarts, H.

    2014-01-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable

  9. Rocket observation of atomic oxygen and night airglow: Measurement of concentration with an improved resonance fluorescence technique

    Directory of Open Access Journals (Sweden)

    K. Kita

    Full Text Available An improved resonant fluorescence instrument for measuring atomic oxygen concentration was developed to avoid the Doppler effect and the aerodynamic shock effect due to the supersonic motion of a rocket. The shock effect is reduced by adopting a sharp wedge-shaped housing and by scanning of the detector field of view to change the distance between the scattering volume and the surface of the housing. The scanning enables us to determine absolute values of atomic oxygen concentration from relative variation of the scattered light signal due to the self-absorption. The instrument was calibrated in the laboratory, and the numerical simulation reproduced the calibration result. Using the instrument, the altitude profile of atomic oxygen concentration was observed by a rocket experiment at Uchinoura (31°N on 28 January 1992. The data obtained from the rocket experiment were not perfectly free from the shock effect, but errors due to the effect were reduced by the data analysis procedure. The observed maximum concentration was 3.8× 1011 cm–3 at altitudes around 94 km. The systematic error is estimated to be less than ±0.7×1011 cm–3 and the relative random error is less than±0.07× 1011 cm–3at the same altitudes. The altitude profile of the OI 557.7-nm airglow was also observed in the same rocket experiment. The maximum volume emission rate was found to be 150 photons cm–3 s–1 at 94 km. The observed altitude profiles are compared with the MSIS model and other in situ observations.

  10. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    Science.gov (United States)

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  11. Nutrient maximums related to low oxygen concentrations in the southern Canada Basin

    Institute of Scientific and Technical Information of China (English)

    JIN Ming-ming; SHI Jiuxin; LU Yong; CHEN Jianfang; GAO Guoping; WU Jingfeng; ZHANG Haisheng

    2005-01-01

    The phenomenon of nutrient maximums at 70~200 m occurred only in the region of the Canada Basin among the world oceans. The prevailing hypothesis was that the direct injection of the low-temperature high-nutrient brines from the Chukchi Sea shelf (<50 m) in winter provided the nutrient maximums. However, we found that there are five problems in the direct injection process. Formerly Jin et al. considered that the formation of nutrient maximums can be a process of locally long-term regeneration. Here we propose a regeneration-mixture process. Data of temperature, salinity, oxygen and nutrients were collected at three stations in the southern Canada Basin during the summer 1999 cruise. We identified the cores of the surface, near-surface, potential temperature maximum waters and Arctic Bottom Water by the diagrams and vertical profiles of salinity, potential temperature, oxygen and nutrients. The historical 129Ⅰ data indicated that the surface and near-surface waters were Pacific-origin, but the waters below the potential temperature maximum core depth was Atlantic-origin. Along with the correlation of nutrient maximums and very low oxygen contents in the near-surface water, we hypothesize that, the putative organic matter was decomposed to inorganic nutrients; and the Pacific water was mixed with the Atlantic water in the transition zone. The idea of the regeneration-mixture process agrees with the historical observations of no apparent seasonal changes, the smooth nutrient profiles, the lowest saturation of CaCO3 above 400 m, low rate of CFC-11 ventilation and 3H-3He ages of 8~18 a around the nutrient maximum depths.

  12. Theoretical constraints on oxygen and carbon dixoide concentrations in the Precambrian atmosphere

    Science.gov (United States)

    Kasting, James F.

    1987-01-01

    Theoretical arguments which bear on the time histories of atmospheric oxygen and carbon dioxide during the Precambrian are reviewed and extended. It is shown that reasonably tight constraints can be placed on atmospheric pCO2 during the early and late Proterozoic, based on the observation that parts of the earth were glaciated at those times. It is demonstrated that an upper bound on early Proterozoic pO2 can be derived from a simple box model of the atmosphere-ocean system.

  13. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations.

    Science.gov (United States)

    Nagodawithana, T W; Castellano, C; Steinkraus, K H

    1974-09-01

    By using 7 x 10(8) cells of Saccharomyces cerevisiae per ml with which 25 degrees Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 x 10(7) to 7.8 x 10(8) cells per ml. At the lowest level of inoculum, 1.1 x 10(7) cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar.

  14. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth

    Science.gov (United States)

    Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.

    2017-01-01

    Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0  ±  4.2 μM to 30.1  ±  16.1 μM with tumor growth from 150  ±  80 mm3 to 1300  ±  650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8  ±  24.7% to 20.2  ±  4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p  Pearson’s correlation coefficient equals 0.8).

  15. Direct measurement of local oxygen concentration in the bone marrow of live animals

    Science.gov (United States)

    Spencer, Joel A.; Ferraro, Francesca; Roussakis, Emmanuel; Klein, Alyssa; Wu, Juwell; Runnels, Judith M.; Zaher, Walid; Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Yusuf, Rushdia; Côté, Daniel; Vinogradov, Sergei A.; Scadden, David T.; Lin, Charles P.

    2014-04-01

    Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.

  16. Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos

    NARCIS (Netherlands)

    Molenaar, R.; Meijerhof, R.; Anker, van den I.; Heetkamp, M.J.W.; Borne, van den J.J.G.C.; Kemp, B.; Brand, van den H.

    2010-01-01

    Environmental conditions during incubation such as temperature and O2 concentration affect embryo development that may be associated with modifications in nutrient partitioning. Additionally, prenatal conditions can affect postnatal nutrient utilization. Using broiler chicken embryos, we studied the

  17. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.

    Science.gov (United States)

    Chopda, Viki R; Rathore, Anurag S; Gomes, James

    2015-11-01

    Biomass production by baker's yeast in a fed-batch reactor depends on the metabolic regime determined by the concentration of glucose and dissolved oxygen in the reactor. Achieving high biomass concentration in turn is dependent on the dynamic interaction between the glucose and dissolved oxygen concentration. Taking this into account, we present in this paper the implementation of a decoupled input-output linearizing controller (DIOLC) for maximizing biomass in a fed-batch yeast process. The decoupling is based on the inversion of 2×2 input-output matrix resulting from global linearization. The DIOLC was implemented online using a platform created in LabVIEW employing a TCP/IP protocol via the reactor's built-in electronic system. An improvement in biomass yield by 23% was obtained compared to that using a PID controller. The results demonstrate superior capability of the DIOLC and that the cumulative effect of smoother control action contributes to biomass maximization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    Science.gov (United States)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  19. Study on the output current for electrochemical low-energy neutrino detector with regards to oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Shoya; Ishibashi, Kenji; Riyana, Eka Sapta [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Aida, Yani Nur [SyarifHidatatullah State Islamic University, Jakarta (Indonesia); Nakamura, Shohei [Infrastructure System Company, Hitachi, Tokyo (Japan); Imahayashi, Yoichi [Mitsubishi Electric, Tokyo (Japan)

    2016-12-15

    Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

  20. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors.

    Science.gov (United States)

    Stadler, Lauren B; Love, Nancy G

    2016-11-01

    Operation at low dissolved oxygen (DO) concentrations (concentration can impact pharmaceutical biotransformation rates during wastewater treatment both directly and indirectly: directly by acting as a limiting substrate that slows the activity of the microorganisms involved in biotransformation; and indirectly by shaping the microbial community and selecting for a community that performs pharmaceutical biotransformation faster (or slower). In this study, nitrifying bioreactors were operated at low (∼0.3 mg/L) and high (>4 mg/L) DO concentrations to understand how DO growth conditions impacted microbial community structure. Short-term batch experiments using the biomass from the parent reactors were performed under low and high DO conditions to understand how DO concentration impacts microbial physiology. Although the low DO parent biomass had a lower specific activity with respect to ammonia oxidation than the high DO parent reactor biomass, it had faster biotransformation rates of ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, acetaminophen, and atenolol in high DO batch conditions. This was likely because the low DO reactor had a 2x higher biomass concentration, was enriched for ammonia oxidizers (4x higher concentration), and harbored a more diverse microbial community (3x more unique taxa) as compared to the high DO parent reactor. Overall, the results show that there can be indirect benefits from low DO operation over high DO operation that support pharmaceutical biotransformation during wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Graded tunnelling barrier and oxygen concentration in thermally grown ultrathin SiO{sub x} gate oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gitlin, Daniel [Device Physics Laboratory, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400 (United States); Karp, James [Device Physics Laboratory, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400 (United States); Moyzhes, Boris [Geballe Laboratory for Advanced Materials, McCullough Building, Stanford University, CA 94305-4045 (United States)

    2007-04-07

    Barrier parameters of a thermally grown SiO{sub x} gate oxide are derived by relating the SIMS oxygen concentration profile to the barrier height. Even in the simple analytical form such a graded barrier model agrees with the tunnelling current and its voltage dependence in both directions. Asymmetrical tunnelling I-Vs in the symmetrical n{sup +}Si-SiO{sub x}-n{sup +}Si structure are due to both graded barrier and penetration of carriers into the gate oxide at the SiO{sub x}-Si substrate interface.

  2. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    Science.gov (United States)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  3. Effects of Changes in Colored Light on Brain and Calf Muscle Blood Concentration and Oxygenation

    Directory of Open Access Journals (Sweden)

    J. Weinzirl

    2011-01-01

    Full Text Available Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

  4. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    Science.gov (United States)

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical

  5. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.

    Science.gov (United States)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-08-30

    Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°С and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  6. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed

    Science.gov (United States)

    Maes, J.; Stevens, M.; Breine, J.

    2007-10-01

    The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.

  7. Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophila.

    Science.gov (United States)

    Wang, Yong-Hong; Fang, Xiang-Ling; Li, Yu-Ping; Zhang, Xing

    2010-10-01

    To evaluate the effects of dissolved oxygen (DO) control strategy on cell growth and the production of antibiotic (cyclo(2-Me-BABA-Gly)) by Xenorhabdus nematophila. The effects of different agitation speeds and DO concentrations on cell growth and antibiotic activity of X. nematophila YL001 were examined. Experiments showed that higher agitation speeds and DO concentrations at earlier fermentation stage were favorable for cell growth and antibiotic production. At mid- and later-stage, properly decreasing DO concentration can strengthen cell growth and antibiotic production. Based on the kinetic information about the effects of agitation speeds and DO concentrations on the fermentation, the two-stage DO control strategy in which DO concentration was controlled to 70% in the first 18 h, and then switched to 50% after 18 h, was established to improve the biomass and antibiotic activity. By applying this DO-shift strategy in X. nematophila YL001 fermentation, maximal antibiotic activity and biomass reached 252.0+/-6.10 U/mL and 30.04+/-2.50 g/L, respectively, thus was 18.99% and 15.36% more than in the cultures at constantly 50% DO. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2014-05-01

    Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.

  10. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  11. Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres.

    Science.gov (United States)

    Kwon, Eilhann E; Castaldi, Marco J

    2012-12-04

    The thermal degradation of tires under various oxygen concentrations (7-30%/Bal. N(2)) was investigated thermo-gravimetrically at 10 °C min(-1) heating rate over a temperature range from ambient to 1000 °C. Significant mass loss (~55%) was observed at the temperature of 300-500 °C, where the thermal degradation rate was almost identical and independent of oxygen concentrations due to simultaneous volatilization and oxidation. A series of gas chromatography/mass spectroscopy (GC/MS) measurements taken from the effluent of a thermo-gravimetric analysis (TGA) unit at temperature of 300-5000 °C leads to the overall thermal degradation mechanisms of waste tires and some insights for understanding evolution steps of air pollutants including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs). In order to describe the fundamental mechanistic behavior on tire combustion, the main constituents of tires, styrene butadiene rubber (SBR) and polyisoprene (IR), has been investigated in the same experimental conditions. The thermal degradation of SBR and IR suggests the reaction mechanisms including bond scissions followed by hydrogenation, gas phase addition reaction, and/or partial oxidation.

  12. [The effects of the microwaves on E. coli cells depend on oxygen concentration and static magnetic field].

    Science.gov (United States)

    Ushakov, V L; Alipov, E D; Shcheglov, V S; Beliaev, I Ia

    2006-01-01

    The effects of non-thermal microwaves (MW), 10(-4) and 10(-10) W/cm(2), on conformation of nucleoids in E. coli cells were analyzed by the method of anomalous viscosity time dependence (AVTD). MW exposure was performed at different values of static magnetic field and concentration of oxygen, 8-90 microT, and 2.3-7.8 mg/l, respectively. It was shown, that slight changes in both static magnetic field and oxygen concentration result in significant changes of MW effects up to their disappearance. It was established, that changes in static magnetic field affected significantly the time kinetics of the MW effects. The obtained data provide further evidence for strong dependence of the effects of non-thermal microwaves on physical parameters of exposure and physiological factors. These dependences should be taken into account in replication studies. The obtained results encourage further investigation of possible modulation of non-thermal MW effects by additional electromagnetic fields.

  13. Volatile Release and Ignition Behaviors of Single Coal Particles at Different Oxygen Concentrations Under Microgravity

    Science.gov (United States)

    Liu, Bing; Zhang, Zhezi; Zhang, Hai; Zhang, Dongke

    2016-05-01

    An experimental study on ignition and combustion of single coal particles under different O 2 concentrations was conducted at both normal (1-g) and microgravity ( μ-g) in the first time. The surface and centre temperatures of the bituminous coal particle with initial diameter of ˜ 2.0mm were measured by the monochromatic imaging technique using a short wavelength infrared (SWIR) camera and an embedded fine thermocouple respectively. Results revealed that at μ-g, ignition of the tested coal particles was homogeneous. O 2 concentration significantly affects the shape, ignition temperature and ignition delay time of the volatile flames. A mathematical model considering thermal conduction inside the coal particle was developed to describe the ignition process of single particle, adopting the volatile matter flammability limit as the homogeneous ignition criterion. The predicted ignition temperatures were slightly lower but closer to μ-g data. And the predicted variation trends of ignition temperature and delay time under different O 2 concentrations agreed well with the μ-g experimental results.

  14. HRE-Type Genes are Regulated by Growth-Related Changes in Internal Oxygen Concentrations During the Normal Development of Potato (Solanum tuberosum) Tubers

    National Research Council Canada - National Science Library

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-01-01

    ... in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow...

  15. Increased apparatus dead space and tidal volume increase blood concentrations of oxygen and sevoflurane in overweight patients: a randomised controlled clinical study.

    OpenAIRE

    Enekvist, Bruno; Bodelsson, Mikael; Johansson, Anders

    2011-01-01

    General anaesthesia impairs respiratory function in overweight patients. We wanted to determine whether increased tidal volume (VT), with unchanged end-tidal carbon dioxide partial pressure (PETCO2), affects blood concentrations of oxygen and sevoflurane in overweight patients.

  16. Effect of Hyperbaric Oxygen Therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    Directory of Open Access Journals (Sweden)

    Hilsted Linda

    2010-06-01

    Full Text Available Abstract Background Hydrogen cyanide (HCN and carbon monoxide (CO may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN intoxication results in cytotoxic hypoxia leading to organ dysfunction and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood. Objective The purpose of the present study was to determine whole blood CN concentrations in fire victims before and after HBO treatment. Materials and methods The patients included were those admitted to the hospital because of CO intoxication, either as fire victims with smoke inhalation injuries or from other exposures to CO. In thirty-seven of these patients we measured CN concentrations in blood samples, using a Conway/microdiffusion technique, before and after HBO. The blood samples consisted of the remaining 2 mL from the arterial blood gas analysis. CN concentration in blood from fire victims was compared to 12 patients from non-fire accidents but otherwise also exposed to CO intoxication. Results The mean WB-CN concentration before patients received HBO did not differ significantly between the two groups of patients (p = 0.42. The difference between WB-CN before and after HBO did not differ significantly between the two groups of patients (p = 0.7. Lactate in plasma before and after did not differ significantly between the two groups of patients. Twelve of the 25 fire patients and one of the non-fire patients had been given a dose of hydroxycobalamin before HBO. Discussion and Conclusion CN

  17. The influence of external subsidies on diet, growth and Hg concentrations of freshwater sport fish: implications for management and fish consumption advisories

    Science.gov (United States)

    Lepak, J.M.; Hooten, M.B.; Johnson, B.M.

    2012-01-01

    Mercury (Hg) contamination in sport fish is a global problem. In freshwater systems, food web structure, sport fish sex, size, diet and growth rates influence Hg bioaccumulation. Fish stocking is a common management practice worldwide that can introduce external energy and contaminants into freshwater systems. Thus, stocking can alter many of the factors that influence Hg concentrations in sport fish. Here we evaluated the influence of external subsidies, in the form of hatchery-raised rainbow trout Oncorhynchus mykiss on walleye Sander vitreus diet, growth and Hg concentrations in two freshwater systems. Stocking differentially influenced male and female walleye diets and growth, producing a counterintuitive size-contamination relationship. Modeling indicated that walleye growth rate and diet were important explanatory variables when predicting Hg concentrations. Thus, hatchery contributions to freshwater systems in the form of energy and contaminants can influence diet, growth and Hg concentrations in sport fish. Given the extensive scale of fish stocking, and the known health risks associated with Hg contamination, this represents a significant issue for managers monitoring and manipulating freshwater food web structures, and policy makers attempting to develop fish consumption advisories to protect human health in stocked systems.

  18. The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration

    Science.gov (United States)

    Payne, Rebecca C.; Britt, Amber V.; Chen, Howard; Kasting, James F.; Catling, David C.

    2016-09-01

    Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the middle Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2. Here we use a 1-D radiative-convective climate model (with no cloud feedback) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10%-35% by volume). Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.

  19. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations

    Science.gov (United States)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2017-04-01

    Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two branched fatty acids that shared a similar production pattern as brGDGTs among the experimental treatments and may be associated with brGDGT biosynthesis.

  20. Bacterial reduction of ferric iron and co-respiration of O2 and Fe3+ at various oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2005-11-01

    Full Text Available Acidiphilium SJH, was cultivated in laboratory bioreactor under aerobic, micro-aerobic and anaerobic conditions. The bacterium oxidized organic substratum D-galactose to carbon dioxide using oxygen and ferric iron as terminal electron acceptor. The reduction of ferric iron to ferrous iron was observed in either fully aerobic or anoxic conditions. Bacterial growth measured as turbidity and the substrate oxidation measured as CO2 production showed an exponential pattern. The maximum specific growth rate μ = 0,12 h-1 (generation time of 5.8 h was observed under aerobic conditions. The molar ratio of CO2 produced to O2 consumed CO2/O2 of approx. 1.16 in fully aerobic conditions indicate bacterial preference of oxygen as electron acceptor though weak reduction of ferric iron by the bacterial culture was apparent. Under conditions with the oxygen limitation, the molar CO2/O2 ratio increased to above 4 with a marked prevalence of Fe3+ as the electron acceptor. The co-respiration of both oxygen and ferric iron regardless of the concentration of soluble oxygen suggests a constitutive synthesis of the “iron-reductase” enzyme system in this bacterium. On the other hand, the bacterial growth was inhibited in cultures sparged with a pure nitrogen gas. The organic substrate oxidation and ferric iron reduction by apparently non-growing bacteria was linear and extremely slow for a few days. The recovery and acceleration of bacterial growth and ferric iron reduction was observed after changing the inconvenient incubation in pure N2 atmosphere into incubation allowing the CO2 accumulation within the medium in a closed reactor. Reduction of ferric iron to ferrous iron in micro-aerobic conditions proceeded most rapidly and completely. The change in the Fe3+/Fe2+ ratio caused decrease of the oxidation-reduction potential of the medium (Eh from approx. 800 mV to approx.350 mV with respect to the Nernst’s equation.

  1. Assessment of the menstrual cycle upon total hemoglobin, water concentration, and oxygen saturation in the female breast

    Science.gov (United States)

    Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.

    2003-07-01

    Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.

  2. Sodium requirement for photosynthesis and its relationship with dinitrogen fixation and the external CO/sub 2/ concentration in cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Maeso, E.S.; Pinas, F.F.; Gonzalez, M.G.; Valiente, E.F.

    1987-10-01

    Cells of Anabaena PCC 7119 and of a mutant strain of Nostoc muscorum unable to fix dinitrogen, grown at pH 8 and under low CO/sub 2/ tension(air), showed a reduced capacity for photosynthesis when cultured in the absence of sodium, this inhibition being followed by symptoms of photooxidation, such as chlorosis, oxygen consumption in the light, and decrease of superoxide dismutase activity. The impairment of photosynthesis preceded that of nitrogenase activity, indicating that the requirement for sodium in photosynthesis was independent of its effects on nitrogen metabolism. However, when cyanobacteria were grown at pH 6.3 or under high CO/sub 2/ tensions, sodium was not required for photosynthesis and no symptoms of photooxidation were observed.

  3. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry.

    Science.gov (United States)

    Kim, Hyo Won; McCloskey, Bryan D; Choi, Tae Hwan; Lee, Changho; Kim, Min-Joung; Freeman, Benny D; Park, Ho Bum

    2013-01-23

    Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O(2) concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier's principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.

  4. External bioenergy-induced increases in intracellular free calcium concentrations are mediated by Na+/Ca2+ exchanger and L-type calcium channel.

    Science.gov (United States)

    Kiang, Juliann G; Ives, John A; Jonas, Wayne B

    2005-03-01

    External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+], was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 +/- 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 +/- 2 nM (n = 23), indicating that Ca2+ entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 +/- 5% (P EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 +/- 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels.

  5. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    Science.gov (United States)

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (5 mg ml-1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml-1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml-1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  6. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration. Plan

  7. Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs

    NARCIS (Netherlands)

    Corona, B.; Cerrajero, E.; San Miguel, G.

    2016-01-01

    The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analy

  8. Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs

    NARCIS (Netherlands)

    Corona, B.; Cerrajero, E.; San Miguel, G.

    2016-01-01

    The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The

  9. A hyperoxic lung injury model in premature rabbits: the influence of different gestational ages and oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Roberta Munhoz Manzano

    Full Text Available BACKGROUND: Many animal models have been developed to study bronchopulmonary dysplasia (BPD. The preterm rabbit is a low-cost, easy-to-handle model, but it has a high mortality rate in response to the high oxygen concentrations used to induce lung injury. The aim of this study was to compare the mortality rates of two models of hyperoxia-induced lung injury in preterm rabbits. METHODS: Pregnant New Zealand white rabbits were subjected to caesarean section on gestational day 28 or 29 (full term  = 31 days. The premature rabbits in the 28-day gestation group were exposed to room air or FiO₂ ≥95%, and the rabbits in the 29-day gestation group were exposed to room air or FiO₂  = 80% for 11 days. The mean linear intercept (Lm, internal surface area (ISA, number of alveoli, septal thickness and proportion of elastic and collagen fibers were quantified. RESULTS: The survival rates in the 29-day groups were improved compared with the 28-day groups. Hyperoxia impaired the normal development of the lung, as demonstrated by an increase in the Lm, the septal thickness and the proportion of elastic fibers. Hyperoxia also decreased the ISA, the number of alveoli and the proportion of collagen fibers in the 28-day oxygen-exposed group compared with the control 28-day group. A reduced number of alveoli was found in the 29-day oxygen exposed animals compared with the control 29-day group. CONCLUSIONS: The 29-day preterm rabbits had a reduced mortality rate compared with the 28-day preterm rabbits and maintained a reduction in the alveoli number, which is comparable to BPD in humans.

  10. Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic-inorganic hybrid materials.

    Science.gov (United States)

    Okada, Hiroshi; Tanaka, Kazuo; Chujo, Yoshiki

    2014-06-15

    Platinum(II) octaethylporphyrin (PtOEP)-loaded organic-inorganic hybrids were obtained via the microwave-assisted sol-gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Gutthann, Franziska; Egert, Melanie; Marques, Alexandra; Appel, Jens

    2007-02-01

    In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.

  12. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-08-01

    In this study, a comparison between generalized regression neural network (GRNN) and multiple linear regression (MLR) models is given on the effectiveness of modelling dissolved oxygen (DO) concentration in a river. The two models are developed using hourly experimental data collected from the United States Geological Survey (USGS Station No: 421209121463000 [top]) station at the Klamath River at Railroad Bridge at Lake Ewauna. The input variables used for the two models are water, pH, temperature, electrical conductivity, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), the mean absolute error (MAE), Willmott's index of agreement (d), and correlation coefficient (CC) statistics. Of the two approaches employed, the best fit was obtained using the GRNN model with the four input variables used.

  13. Laboratory installation for the study of atomic-oxygen and ozone detectors and certain methodological aspects concerning the determination of oxygen-atom concentration by the methods of NO and NO2 titration

    Science.gov (United States)

    Bromberg, D. V.; Perov, S. P.

    A laboratory installation is described which can be used to study various characteristics of atomic oxygen and ozone in the pressure range from 0.01 to 50 Pa. The installation can be used to calibrate rocketborne sensors intended for measurements in the middle atmosphere. Systematic and random errors connected with the determination of oxygen-atom concentration by the NO2 and NO titration methods are examined.

  14. Myometrial oxytocin receptor mRNA concentrations at preterm and term delivery - the influence of external oxytocin.

    Science.gov (United States)

    Liedman, Ragner; Hansson, Stefan Rocco; Igidbashian, Sarah; Akerlund, Mats

    2009-03-01

    The hormonal system for induction of term and preterm labour is not fully understood. Therefore, we investigated myometrial gene expressions for neurohypophyseal hormones and their receptors, prostaglandin F(2alpha) and ovarian steroid receptors in women delivered by Caesarean section. Myometrial tissue for real time PCR was collected from 39 women delivered at term before and after the onset of labour and preterm. Women delivered electively at term had significantly higher oxytocin receptor mRNA expressions (2.52 +/- 0.37 oxytocin receptor/actin; median +/- SEM) than those delivered with ongoing labour at term (1.01 +/- 0.34; p = 0.015) and those at preterm (1.08 +/- 0.25; p = 0.004). Sub-analyses revealed that the difference at term pregnancies solely was related to patients receiving oxytocin during labour (p = 0.007). These patients had higher oxytocin peptide mRNA levels than those without labour at term (p = 0.009). PGF(2alpha) receptor mRNA concentrations were 27.80 +/- 3.55, 11.46 +/- 2.87 and 19.54 +/- 5.52 PGF receptor/actin, respectively, for the groups. Women without labour at term had higher concentration than those with labour (p = 0.005). Our results suggest that oxytocin, its receptor and the PGF(2alpha) receptor are involved in the regulation of labour through a paracrine mechanism.

  15. The Effect of Inspired Oxygen Concentration and Transportation Time on Arterial Hemoglobin Oxygen Saturation During Transport from the Operating Room to the Postanesthesia Care UnitCare Unit

    Science.gov (United States)

    1996-08-14

    oxygen to all ambulatory patients recovering from general anesthesia. The second study involved 71 healthy pediatric patients undergoing general...Male/Female 7. ASA Status (I, II, III) _ 8. Anesthetic Agent Enflurane Halothane Desflurane Isoflurane Nitrous oxide Propofol 9. Narcotic

  16. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I.; Miley, Harry S.; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.

  17. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.

  18. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment.

    Science.gov (United States)

    Bellou, Stamatia; Makri, Anna; Triantaphyllidou, Irene-Eva; Papanikolaou, Seraphim; Aggelis, George

    2014-04-01

    Yarrowia lipolytica, an ascomycete with biotechnological potential, is able to form either yeast cells or hyphae and pseudohyphae in response to environmental conditions. This study shows that the morphology of Y. lipolytica, cultivated in batch cultures on hydrophilic (glucose and glycerol) and hydrophobic (olive oil) media, was not affected by the nature of the carbon source, nor by the nature or the concentration of the nitrogen source. By contrast, dissolved oxygen concentration (DOC) should be considered as the major factor affecting yeast morphology. Specifically, when growth occurred at low or zero DOC the mycelial and/or pseudomycelial forms predominated over the yeast form independently of the carbon and nitrogen sources used. Experimental data obtained from a continuous culture of Y. lipolytica on glycerol, being used as carbon and energy source, demonstrated that the mycelium-to-yeast form transition occurs when DOC increases from 0.1 to 1.5 mg l(-1). DOC also affected the yeast physiology, as the activity of enzymes implicated in lipid biosynthesis (i.e. ATP-citrate lyase, malic enzyme) was upregulated at high DOC whereas the activity of enzymes implicated in glycerol assimilation (such as glycerol dehydrogenase and kinase) remained fundamentally unaffected in the cell-free extract.

  19. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  20. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    Science.gov (United States)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  1. Effects of Dissolved Oxygen Tension and Ammonium Concentration on Polyhydroxybutyrate Synthesis from Cassava Starch by Bacillus cereus IFO 13690

    Directory of Open Access Journals (Sweden)

    Margono .

    2015-11-01

    Full Text Available generated by an Adobe application 11.5606 Attempting to get low price of raw material for producing polyhydroxybutyrate is always studied. Tapioca starch is one of the raw material with low price. The objective of this research was to study the effects of initial ammonium concentration and dissolved oxygen tension (doT on producing PHB by Bacillus cereus IFO 13690 with tapioca starch as the carbon source. This fermentation was carried out in 5 L fementors with a 2 L working volume, temperature of 30 oC, and agitation of 500 rpm. The pH medium was controlled at 5.6 after it came down from the initial pH of 6.8. Meanwhile, the initial doT was 100 % air saturation and also came down to and maintained at doT of experiment, i.e. 1 , 5 , or 10 % air saturation. The best result was obtained when the initial ammonium concentration was 5 g/L and the doT value maintained at 5 % air saturation. By this conditions, the cell growth reached 5,457 g cell dry weight/L containing PHB of 2.42 % cell dry weigh after 29 hours fermentation. Normal 0 36 false false false

  2. Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2

    Science.gov (United States)

    Semkow, K. W.; Haskin, L. A.

    1985-01-01

    The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.

  3. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations.

    Science.gov (United States)

    Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia

    2017-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    Science.gov (United States)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of

  5. Oxygen concentration profiles and the consumption rates at the sediment-water interface off Hachinohe, Northeastern Japan.

    Science.gov (United States)

    Oguri, K.; Toyofuku, T.; Fontanier, C.; Schiebel, R.; de Noojer, L. J.; Koho, K.; Reichart, G. J.; Kitazato, H.

    2012-04-01

    The intermediate waters off Hachinohe (northeastern Japan) signify one of the lowest oxygen (O2) concentrations in the open ocean around Japanese islands today, indicating below 40μM O2 between 800 to 1200m water depths due to high seasonal primary productivity at the sea surface. To investigate biogeochemical microenvironments, especially to unravel the relationships and interactions between distributions of benthic organisms and the O2 distributions where the low O2 water intersect the sea floor, we conducted a multidisciplinary cruise (KT11-20) by R/V Tansei-maru, JAMSTEC from 21 to 25/Aug/2011. During the cruise, we selected twelve sampling sites offshore from 50 to 2000m in water depth. Dissolved O2 concentrations 10m above the sea floor at 200, 500, 1000, 1250, and 2000m absolute water depths were 253, 112, 36.4, 33.1 and 70μM, respectively. From 500, 1000, and 2000m sites, undisturbed sediment cores were collected using with a multiple core sampler. O2 microprofiles in these cores were measured after on board incubations of >7 hours, using an incubator set to the temperatures and O2 concentrations observed at the sampling sites. O2 penetration depths at the respective sites at 500, 1000, and 2000m were 1.5-2.8, 3.9-6.8 and 5.0mm respectively, which implies O2 consumption rates (using the model by Berg et al. 1998) of 2.7-4.2, 0.6-0.7 and 1.4-1.6 mmol/m2/d, respectively. Our results indicate that in O2 depleted area off Hachinohe, minimum remineralization of organic materials by molecular O2 diffusion is very low in the area impacted by O2 depletion (1000m) nevertheless the O2 penetration depths at the site show deeper values than those from 500m depth.

  6. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    Science.gov (United States)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode

  7. Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures

    Science.gov (United States)

    Granier, A.; Chéreau, D.; Henda, K.; Safari, R.; Leprince, P.

    1994-01-01

    The validity of actinometry to monitor oxygen atom concentration in O2-N2 microwave discharges created by surface wave is investigated. The plasma is created with a gas flow in a quartz tube of inner diameter 16 mm at pressures in the Torr range. First, it is shown that the reliability of actinometry can be deduced from the longitudinal profile of the actinometry signal. Second, absolute concentrations of oxygen atoms are estimated from the experimental actinometry signal and agree satisfactorily with concentrations simultaneously measured by vacuum ultraviolet (VUV) absorption downstream from the plasma. Moreover, upon varying the nitrogen percentage (0%-100%), it is evidenced that the actinometry signal is proportional to the concentration measured by VUV absorption. Furthermore, it is evidenced that the oxygen dissociation rate is only 2% in pure oxygen plasmas, while it reaches 15% (433 MHz) or 30% (2450 MHz) for mixtures containing more than 20% of nitrogen. This drastic increase in [O] upon the addition of N2 is extensively discussed and, finally, attributed to a decrease in the recombination frequency of oxygen atoms on the quartz wall, in the presence of nitrogen.

  8. Notes on the exposure of several species of fish to sudden changes in the hydrogen-ion concentration of the water and to an atmosphere of pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.

    1931-01-01

    Several species of fish have been subjected to higher concentrations of dissolved oxygen when an atmosphere of pure oxygen was maintained over the surface of the water and also with a super-stratum of pure oxygen under pressure. Several species of fish have been subjected to sudden transfers from low O/sub 2/ to high O/sub 2/ and the reverse. (5.6 p.p.M. to 40.33 p.p.M. and from 41.0 to 7.3 p.p.M.) The results show (a) that different sizes of several species of fish tolerate large and sudden changes in the concentration of O/sub 2/ in either direction, (b) that these fish can live in water containing a large excess of dissolved oxygen with a super-stratum of pure oxygen over the surface (c) that several species of fish can stand pressure of 10 to 13 lbs. for a period of 24 hours and pressures from 15 to 19 lbs for shorter periods. The increase in dissolved oxygen is followed by a slowing down of the respiratory movements. No instances of exophthalmus, opaqueness of the lens, and of the accumulation of gas bubbles were observed. No fish were observed to lose their equilibrium except in the pressure experiment where depression occurred too rapidly. That exposure to a high concentration of dissolved oxygen with a super-stratum of pure oxygen at atmospheric pressures and under small pressure is not harmful is inferred from the small number of fish lost and from the length of time they survived the experiment. The data presented here suggest that they may by applicable to the problem of handling fish in transportation.

  9. [Standardization of measurement of catalytic activity concentration of enzymes--current situation regarding the external quality assessment program provided by the Japan Medical Association].

    Science.gov (United States)

    Maekawa, Masato

    2010-01-01

    Measurement of the catalytic activity concentration of enzymes has been standardized using a traceability chain, consisting a reference measurement system for enzyme catalytic activity and reference standard-JSCC enzyme. The Japan Medical Association (JMA) has provided an external quality assessment (EQA) survey program for clinical laboratory testing. More than 3,100 clinical laboratories participated in 2008. The EQA program indicated that standardization of the measurement of the catalytic activity concentration of enzymes has been completed for AST, ALT, LD, ALP, gammaGT, and CK in more than 90% laboratories, and for Amy and ChE in nearly 80% of laboratories. Because such a large survey program must use artificial specimens, a matrix effect cannot be avoided, especially in dry chemistry. However, the bias produced by a matrix effect usually has a predictable tendency: it can be corrected. Next, after standardization of the measurement of the catalytic activity concentration of enzymes, we should develop and use common reference intervals. On completing the standardization, we can make standard medical decisions using reference measurement systems and rules.

  10. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  11. A new method combining soil oxygen concentration measurements with the quantification of gross nitrogen turnover rates and associated formation of N2O and N2 emissions

    Science.gov (United States)

    Gütlein, Adrian; Dannenmann, Michael; Sörgel, Christoph; Meier, Rudi; Meyer, Astrid; Kiese, Ralf

    2014-05-01

    Climate change and the expansion of land use have led to significant changes in terrestrial ecosystems. These include changes in the biogeochemical cycle of nitrogen and therewith implications for biodiversity, water cycle and pedosphere-atmosphere exchange. To understand these impacts detailed research on nitrogen turnover and fluxes are conducted at various (semi-) natural and managed ecosystems in the Mt. Kilimanjaro region. In this context, we execute 15N tracing analyses on soil samples in our stable isotope laboratory including a new experimental setup. The soils were sampled from different forest ecosystems of Mt. Kilimanjaro varying in altitude (1600 - 4500 m) and will be analyzed for gross rates of ammonification and nitrification, gross rates of microbial inorganic N uptake as well as for the gaseous losses of ^15N2 and ^15N2O using ^15NH4+ and ^15NO3- tracing and pool dilution approaches. Since nitrogen turnover of nitrification and denitrification is dependent on soil oxygen concentrations we developed an incubation method which allows to adjust soil samples to different oxygen concentrations. For this purpose, soil is incubated in glass bottles with side tubes to ensure a constant gas flow over the whole incubation time. To adjust the oxygen levels in the laboratory experiment as close as possible to the natural conditions, we started to monitor soil oxygen concentrations with a FirestingO2 Sensor (Pyroscience) connected to a timer and a datalogger (MSR 145 IP 60 E3333) at a Mt. Kilimanjaro rainforest site. The equipment is complemented with soil temperature, moisture and pressure sensors (MSR 145 IP 60). A solar panel connected to an energy source guarantees a working time for over 2 years by a measuring frequency of 20 seconds each 30 minutes. The new laboratory incubation method together with in-situ oxygen concentration measurements in soils will facilitate laboratory incubations with realistic oxygen concentrations and thus will allow for a better

  12. WE-G-BRE-06: New Potential for Enhancing External Beam Radiotherapy for Lung Cancer Using FDA-Approved Concentrations of Cisplatin Or Carboplatin Nanoparticles Administered Via Inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Altundal, Y; Sajo, E [University Massachusetts Lowell, Lowell, MA (United States); Detappe, A [Brigham ' Woman' s Hospital, Boston, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); University of Lyon, Lyon (France); Makrigiorgos, G; Berbeco, R [Brigham ' Woman' s Hospital, Boston, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Ngwa, W [University Massachusetts Lowell, Lowell, MA (United States); Brigham ' Woman' s Hospital, Boston, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States)

    2014-06-15

    Purpose: This study investigates, for the first time, the dose enhancement to lung tumors due to cisplatin nanoparticles (CNPs) and carboplatin nanoparticles (CBNPs) administered via inhalation route (IR) during external beam radiotherapy. Methods: Using Monte Carlo generated 6 MV energy fluence spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumor due to radiation-induced photoelectrons from CNPs administered via IR in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung tumor via IV. Meanwhile recent experimental studies indicate that 3.5–14.6 times higher concentrations of CNPs can reach the lung tumors by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the dose with and without CNPs was calculated for field size of 10 cm × 10 cm (sweeping gap), for a range of tumor depths and tumor sizes. Similar calculations were done for CBNPs. Results: For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of 1.19–1.30 were obtained for CNPs at 3–10 cm depth, respectively, in comparison to 1.06–1.09 for IV. For CBNPs, DEF values of 1.26–1.41 were obtained in comparison to 1.07–1.12 for IV. For IR with 14.6 times higher concentrations, higher DEF values were obtained e.g. 1.81–2.27 for CNPs. DEF increased with increasing field size or decreasing tumor size. Conclusions: Our preliminary results indicate that major dose enhancement to lung tumors can be achieved using CNPs/CBNPs administered via IR, in contrast to IV administration during external beam radiotherapy. These findings highlight a potential new approach for radiation boosting to lung tumors using CNPs/CBNPs administered via IR. This would, especially, be applicable during concomitant chemoradiotherapy, potentially allowing for dose enhancement while

  13. Effects of Dissolved Oxygen Concentration and Iron Addition on Immediate-early Gene Expression of Magnetospirillum gryphiswaldense MSR-1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Anyaogu, Diana Chinyere; Kasama, Takeshi

    2017-01-01

    iron addition for all the genes studied, except for MgFnr (oxygen sensor gene) and fur (ferric uptake regulator family gene), and which in some cases was oxygen-dependent. In particular, expression of sodB1 (superoxide dismutase gene) and feoB1 (ferrous transport protein B1 gene) were markedly reduced...... in cultures at 0.5% O2 compared to those at higher oxygen tensions. Moreover, expression of katG (catalase-peroxidase gene) and feoB2 (ferrous transport protein B2 gene) was reduced markedly by iron addition, regardless of oxygen conditions. The data provides a greater understanding of molecular response...

  14. concentration

    Directory of Open Access Journals (Sweden)

    Seth F. Oppenheimer

    1999-01-01

    Full Text Available We consider a model for biochemical oxygen demand (BOD in a semi-infinite river where the BOD is prescribed by a time varying function at the left endpoint. That is, we study the problem with a time varying boundary loading. We obtain the well-posedness for the model when the boundary loading is smooth in time. We also obtain various qualitative results such as ordering, positivity, and boundedness. Of greatest interest, we show that a periodic loading function admits a unique asymptotically attracting periodic solution. For non-smooth loading functions, we obtain weak solutions. Finally, for certain special cases, we show how to obtain explicit solutions in the form of infinite series.

  15. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Science.gov (United States)

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2017-01-01

    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  16. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2017-07-01

    In this paper, several extreme learning machine (ELM) models, including standard extreme learning machine with sigmoid activation function (S-ELM), extreme learning machine with radial basis activation function (R-ELM), online sequential extreme learning machine (OS-ELM), and optimally pruned extreme learning machine (OP-ELM), are newly applied for predicting dissolved oxygen concentration with and without water quality variables as predictors. Firstly, using data from eight United States Geological Survey (USGS) stations located in different rivers basins, USA, the S-ELM, R-ELM, OS-ELM, and OP-ELM were compared against the measured dissolved oxygen (DO) using four water quality variables, water temperature, specific conductance, turbidity, and pH, as predictors. For each station, we used data measured at an hourly time step for a period of 4 years. The dataset was divided into a training set (70%) and a validation set (30%). We selected several combinations of the water quality variables as inputs for each ELM model and six different scenarios were compared. Secondly, an attempt was made to predict DO concentration without water quality variables. To achieve this goal, we used the year numbers, 2008, 2009, etc., month numbers from (1) to (12), day numbers from (1) to (31) and hour numbers from (00:00) to (24:00) as predictors. Thirdly, the best ELM models were trained using validation dataset and tested with the training dataset. The performances of the four ELM models were evaluated using four statistical indices: the coefficient of correlation (R), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE). Results obtained from the eight stations indicated that: (i) the best results were obtained by the S-ELM, R-ELM, OS-ELM, and OP-ELM models having four water quality variables as predictors; (ii) out of eight stations, the OP-ELM performed better than the other three ELM models at seven stations while the R

  17. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  18. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.

    Science.gov (United States)

    Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J

    2011-12-15

    Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30°C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25°C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25°C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under

  19. Optimal concentration and time window for proliferation and differentiation of neural stem cells from embryonic cerebral cortex:5% oxygen preconditioning for 72 hours

    Institute of Scientific and Technical Information of China (English)

    Li-li Yuan; Ying-jun Guan; Deng-dian Ma; Hong-mei Du

    2015-01-01

    Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygenin vitro. MTT assay, neurosphere number, and immunolfuorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell prolif-eration and neuronal differentiation. Our ifndings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.

  20. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO) for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure...

  1. Response of export production and dissolved oxygen concentrations in oxygen minimum zones to pCO2 and temperature stabilization scenarios in the biogeochemical model HAMOCC 2.0

    Science.gov (United States)

    Beaty, Teresa; Heinze, Christoph; Hughlett, Taylor; Winguth, Arne M. E.

    2017-02-01

    Dissolved oxygen (DO) concentration in the ocean is an important component of marine biogeochemical cycles and will be greatly altered as climate change persists. In this study a global oceanic carbon cycle model (HAMOCC 2.0) is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing. Atmospheric pCO2 is increased at a rate of 1 % annually and the model is stabilized at 2 ×, 4 ×, 6 ×, and 8 × preindustrial pCO2 levels. With an increase in CO2 radiative forcing, the OMZ in the Pacific Ocean is controlled largely by changes in particulate organic carbon (POC) export, resulting in increased remineralization and thus expanding the OMZs within the tropical Pacific Ocean. A potential decline in primary producers in the future as a result of environmental stress due to ocean warming and acidification could lead to a substantial reduction in POC export production, vertical POC flux, and thus increased DO concentration particularly in the Pacific Ocean at a depth of 600-800 m. In contrast, the vertical expansion of the OMZs within the Atlantic is linked to increases POC flux as well as changes in oxygen solubility with increasing seawater temperature. Changes in total organic carbon and increase sea surface temperature (SST) also lead to the formation of a new OMZ in the western subtropical Pacific Ocean. The development of the new OMZ results in dissolved oxygen concentration of ≤ 50 µmol kg-1 throughout the equatorial Pacific Ocean at 4 times preindustrial pCO2. Total ocean volume with dissolved oxygen concentrations of ≤ 50 µmol kg-1 increases by 2.4, 5.0, and 10.5 % for the 2 ×, 4 ×, and 8 × CO2 simulations, respectively.

  2. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6.

    Science.gov (United States)

    Yang, Xinping; Wang, Shimei; Zhou, Lixiang

    2012-01-01

    Pseudomonas stutzeri D6, selectively isolated from activated sludge was used to study NO(2)(-) and NH(4)(+) production from denitrification processes. Changes in carbon type, C/N ratio and oxygen concentration significantly influenced the magnitude of NO(2)(-) and NH(4)(+) accumulation through denitrification. D6 showed a preference for citrate and acetate, which led to the largest quantity of nitrate reduced and which were exhausted most rapidly, with minimal intermediate products accumulation. It is found that at higher initial organic carbon concentration or for directly metabolic carbon type more complete denitrification could be obtained as a result of increase of the oxygen consumption rate by substrate stimulation. The higher the oxygen concentration in the culture was, the higher the intermediate products concentration became. The experiment showed that NO(2)(-) and NH(4)(+) production was only slightly influenced by nitrate concentration. Biological nitrogen removal systems should be optimized to promote complete denitrification to minimize NO(2)(-) and NH(4)(+) accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Antioxidant effect of hyaluronan on polymorphonuclear leukocyte-derived reactive oxygen species is dependent on its molecular weight and concentration and mainly involves the extracellular space

    Directory of Open Access Journals (Sweden)

    Rafał Krasiński

    2009-05-01

    Full Text Available Introduction: Hyaluronan (HA, a component of the extracellular matrix, may regulate immune cell functions through its interactions with cellular receptors. Besides its effect on cytokine and chemokine production, its antioxidant properties have been described. However, the mechanisms of this are not fully elucidated. The aim of this study was to evaluate the relationship between HA concentration and molecular weight and its antioxidant properties towards human neutrophils. Also assessed was whether the antioxidant effect of HA is connected with a reduction in intracellular oxygen potential, which could indicate its direct effect on neutrophil respiratory burst.Materials/Methods: The relationship between HA’s antioxidant properties and its concentration and molecular weight was assessed by the luminol-enhanced chemiluminescence method (CL. To evaluate the effect of HA on intracellular oxygen potential selectively, the dihydrorhodamine 123 (DHR123 flow cytometric method was used.Results: Reduction of both HA molecular weight and its concentration decreased its antioxidant properties in the CL method. A selective effect of HA on intracellular oxygen potential measured by the DHR123 method was not shown.Conclusions: The antioxidant properties of HA are related to both its molecular weight and its concentration. The lack of an antioxidant effect of HA in the DHR123 test compared with a significant reduction in CL values at the same HA concentration suggests that HA acts mainly as a chemical ROI scavenger in the extracellular space.

  4. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO(2-x)/Cu toward Enhanced Activity for Preferential CO Oxidation.

    Science.gov (United States)

    Chen, Shaoqing; Li, Liping; Hu, Wanbiao; Huang, Xinsong; Li, Qi; Xu, Yangsen; Zuo, Ying; Li, Guangshe

    2015-10-21

    Catalysts are urgently needed to remove the residual CO in hydrogen feeds through selective oxidation for large-scale applications of hydrogen proton exchange membrane fuel cells. We herein propose a new methodology that anchors high concentration oxygen vacancies at interface by designing a CeO2-x/Cu hybrid catalyst with enhanced preferential CO oxidation activity. This hybrid catalyst, with more than 6.1% oxygen vacancies fixed at the favorable interfacial sites, displays nearly 100% CO conversion efficiency in H2-rich streams over a broad temperature window from 120 to 210 °C, strikingly 5-fold wider than that of conventional CeO2/Cu (i.e., CeO2 supported on Cu) catalyst. Moreover, the catalyst exhibits a highest cycling stability ever reported, showing no deterioration after five cycling tests, and a super long-time stability beyond 100 h in the simulated operation environment that involves CO2 and H2O. On the basis of an arsenal of characterization techniques, we clearly show that the anchored oxygen vacancies are generated as a consequence of electron donation from metal copper atoms to CeO2 acceptor and the subsequent reverse spillover of oxygen induced by electron transfer in well controlled nanoheterojunction. The anchored oxygen vacancies play a bridging role in electron capture or transfer and drive molecule oxygen into active oxygen species to interact with the CO molecules adsorbed at interfaces, thus leading to an excellent preferential CO oxidation performance. This study opens a window to design a vast number of high-performance metal-oxide hybrid catalysts via the concept of anchoring oxygen vacancies at interfaces.

  5. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  6. Arsenic response of AtPCS1- and CePCS-expressing plants - effects of external As(V) concentration on As-accumulation pattern and NPT metabolism.

    Science.gov (United States)

    Wojas, Sylwia; Clemens, Stephan; Skłodowska, Aleksandra; Maria Antosiewicz, Danuta

    2010-02-15

    Phytochelatins (PCs) are small, cysteine-rich peptides, known to play a major role in detoxification of both cadmium and arsenic. The aim of this study was to determine whether overexpression of either of two PC synthase (PCS) genes, AtPCS1 and CePCS in Nicotiana tabacum (previously shown to cause decrease and increase, respectively, of cadmium tolerance of tobacco - Wojas et al., 2008) also contributes to such contrasting phenotypes with respect to arsenic (As) tolerance and accumulation, and how observed responses relate to non-protein thiol (NPT) metabolism. The expression of both genes resulted in an increase of As-tolerance, with CePCS plants most tolerant. We showed for the first time that the response of PCS overexpressing plants to As qualitatively depends on the external As(V) concentration. At the less toxic 50muM As(V), AtPCS1 and CePCS transformants accumulated more As in roots and leaves than WT. An increase in PC production and the level of PC2 species was detected in leaves of AtPCS1 and CePCS plants, which might explain their enhanced As-accumulation and tolerance. In contrast, at the highly toxic 200muM As(V), several disturbances in thiol metabolism of PCS overexpressing plants were found, surprisingly, including decrease of PC levels both in roots and leaves of transgenic plants relative to WT. The increase in As-tolerance and accumulation due to AtPCS1 and CePCS overexpression, observed at the As(V) concentrations similar to those found in As-contaminated soils, makes these genes promising candidates for plant engineering for phytoremediation.

  7. Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Mason, R.P.; Jayachandran, S.; Vudamala, K.; Armoury, K.; Sarkar, Arindam; Chakraborty, S.; Bardhan, P.; Naik, R.

    in controlling the distribution and speciation of Hg in the sediments. This study suggests that increased concentrations of inert Corg (with C/N > 11) increased Hg-Corg complexation and decreased the net methylation rate of Hg...

  8. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Directory of Open Access Journals (Sweden)

    Aura Silva

    2014-01-01

    Full Text Available Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES or lactated Ringer’s (LR on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N=6 or LR (GRL; N=6. Bleeding caused a decrease of more than 50% in mean arterial pressure (P<0.01 and a decrease in cerebral oximetry (P=0.039, bispectral index, and electroencephalogram total power (P=0.04 and P<0.01, resp., while propofol plasma concentrations increased (P<0.01. Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P=0.03 and the cerebral oxygenation (P=0.008 decreased in the GLR and were significantly lower than in GHES (P=0.02. Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations.

  9. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Science.gov (United States)

    Venâncio, Carlos; Souza, Almir P.; Ferreira, Luísa Maria; Branco, Paula Sério; de Pinho, Paula Guedes; Amorim, Pedro; Ferreira, David A.

    2014-01-01

    Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES) or lactated Ringer's (LR) on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N = 6) or LR (GRL; N = 6). Bleeding caused a decrease of more than 50% in mean arterial pressure (P < 0.01) and a decrease in cerebral oximetry (P = 0.039), bispectral index, and electroencephalogram total power (P = 0.04 and P < 0.01, resp.), while propofol plasma concentrations increased (P < 0.01). Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P = 0.03) and the cerebral oxygenation (P = 0.008) decreased in the GLR and were significantly lower than in GHES (P = 0.02). Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations. PMID:24971192

  10. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas.

    Science.gov (United States)

    Nghiem, Long D; Manassa, Patrick; Dawson, Marcia; Fitzgerald, Shona K

    2014-12-01

    This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed.

  11. Modelling the mitigation of hydrogen deflagrations in a nuclear waste silo ullage by depleting the oxygen concentration with nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Holborn, P.G., E-mail: holborpg@lsbu.ac.uk; Battersby, P.; Ingram, J.M.; Averill, A.F.; Nolan, P.F.

    2013-10-15

    Highlights: • Examine the effect of reduced O{sub 2} on H{sub 2} burning velocity. • Model the effect of reduced oxygen level on overpressure for a transient H{sub 2} release. • Low O{sub 2} levels significantly reduce H{sub 2} burning velocity and explosion overpressure. -- Abstract: It is expected that significant transient releases of hydrogen could occur during the decommissioning of a nuclear waste storage plant that would result in a transient flammable atmosphere. Interest has been expressed in the use of nitrogen dilution in a vented silo ullage space in order to reduce the oxygen level and thereby mitigate the overpressure rise should a hydrogen–air deflagration occur. In the work presented here the data characterising the influence of oxygen depletion via nitrogen dilution upon the burning velocity of hydrogen–air mixtures have been obtained using the COSILAB code (and also compared with experimental test data). These data have then been used with the FLACS-HYDROGEN CFD-tool to try to predict the potential explosion overpressure reduction that might be achieved using oxygen depletion (via nitrogen dilution), for a transient hydrogen bubble sudden gaseous release (SGR) scenario occurring in a silo ullage type geometry. The simulation results suggest that using nitrogen dilution to deplete the oxygen levels to 12.5% or 9.9% would produce only a relatively modest reduction in the predicted peak overpressure. However, with an oxygen depletion level of 7%, the rate of pressure rise is more substantially slowed and the predicted maximum pressure rise is significantly reduced.

  12. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro.

    Science.gov (United States)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-08-08

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  13. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  14. Research and Design of Monitoring Alarm System for Mine Oxygen Concentration%矿井低氧监测报警系统的研究与设计

    Institute of Scientific and Technical Information of China (English)

    钟文峰

    2013-01-01

    In order to prevent the mine suffocation incidents from happening again, the design of monitoring alarm system for mine oxygen concentration based on microcontroller automotive anti-suffocation. With PIC16 microcontroller as the main control center, the system is capable of real-time monitoring of the concentration of oxygen in mine, and with Zigbee wireless sensor networks technology the monitoring datas to be sent to PIC16 for treatment and to be dynamic displaied on the LED digital tube connected PIC16. When the oxygen concentration is too low, the system automatically starts the alarm device. Through the contrast experiment with oxygen concentration detector, this system can accurately monitoring the oxygen concentration inside the mine, and be able to realize the alarm function. If the mine is to be installed the system, to avoid potential safety problems due to the lack of oxygen in mine.%为了防止矿井窒息事故的发生,设计了一种基于单片机的矿井低氧监测报警系统。该系统以PIC16单片机为主控中心,系统能够实时监测矿井内氧气浓度,并将监测到的数据通过Zigbee无线传感网技术传送到PIC16进行处理,再由连接在PIC16上的LED数码管动态显示氧气浓度。当氧气含量过低时,系统自动启动报警。通过与氧气浓度探测仪对比实验,该系统能够较准确地监测出矿井内氧气浓度,能够实现报警功能。矿井内安装此系统,可随时测量井下氧气浓度,避免矿工因氧气不足带来的安全隐患。

  15. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    Science.gov (United States)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  16. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    OpenAIRE

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had...

  17. Impact of minimum daily dissolved oxygen concentration on production performance of hybrid female channel catfish x male blue catfish

    Science.gov (United States)

    Hybrid Catfish (female Channel Catfish Ictalurus punctatus X male Blue Catfish I. furcatus) were reared during two years as single-batch crops under two different dissolved oxygen (DO) regimes each year; a high-DO (control) treatment in which the minimum daily DO was maintained above 3.8 ppm during ...

  18. Production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Science.gov (United States)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...

  19. Dissolved oxygen

    National Research Council Canada - National Science Library

    1981-01-01

    Dissolved oxygen concentrations in the waters of Botany Bay and Georges and Cooks Rivers vary mainly as a result of tidal water movements, algal and macrophytic growth and decay, and effects of storms...

  20. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    Science.gov (United States)

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  1. Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes.

    Science.gov (United States)

    George, S M; Richardson, L C; Pol, I E; Peck, M W

    1998-05-01

    The measured heat resistance of cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes was up to eightfold greater when they were grown, heated and recovered anaerobically rather than aerobically. Measured heat resistance was highest when anaerobic gas mixtures were used (time at 59 degrees C for a 6-decimal (6-D) reduction of E. coli O157:H7, 19-24 min); moderate when low concentrations of oxygen (0.5-1%) were included (time for a 6-D reduction, 5-17 min); and lowest when higher concentrations of oxygen (2-40%) were used (time for a 6-D reduction, 3 min). This effect was principally attributed to the recovery conditions, and a greater effect was noted at lower heating temperatures. The use of reduced oxygen concentration (gas mixture or a vacuum, might therefore increase the risk of these pathogens surviving heat treatments applied to food. It is also possible that foods that are packed in air but with a low redox potential might allow the survival of heated cells, and thus the anticipated level of safety might not be achieved.

  2. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor

    Institute of Scientific and Technical Information of China (English)

    Yiming Su; Yalei Zhang; Xuefei Zhou; Ming Jiang

    2013-01-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor.During the operating period,it was observed that low nitrate concentrations affected sludge volume index significantly.Unlike the existing hypothesis,the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions.When nitrate concentration was below 4 mg/L,low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments.When filamentous bacteria riched in nitrate reached the anoxic zone,where they were exposed to high levels of carbon but limited nitrate,they underwent denitrification.However,when nonfilamentous bacteria were exposed to similar conditions,denitrification was restrained due to their intrinsic nitrate limitation.Hence,in order to avoid filamentous bulking,the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L,or alternatively,the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO-3-N/g SS.

  3. Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods

    Science.gov (United States)

    Tan, Chun Hui; Tan, Sin Tee; Lee, Hock Beng; Yap, Chi Chin; Yahaya, Muhammad

    2016-11-01

    Band gap energy and surface defect on the nanostructure play an important role especially in determining the performance and properties of the optical based gas sensor. In this report, ZnO nanorods (ZNRs) with various growth concentrations were successfully synthesized using a facile wet chemical approach. The gas sensing performance of the ZNRs samples with different concentrations were tested toward the highly hazardous carbon monoxide (CO) gas at a concentration of 10 ppm operated at room temperature. It was found that the 40 mM ZNRs sample exhibited the highest response coupled with the shortest response time (123.3 ± 1.3 s) and recovery time (7.7 ± 0.3 s). The high response and accelerated sensing reaction were attributed to the band gap narrowing of the 40 mM ZNRs induced by the increase in oxygen vacancy related defect states, and it is directly proportional to the CO gas sensing activity. These defects acted as the oxygen trap sites which will promote the oxygen adsorption on the surface of ZNRs and enhanced its gas sensing capability. The ZNRs reported herein which exhibits a high sensitivity, fast and reversible response with rapid recovery have great potential to be used in toxic gas sensing applications at room temperature.

  4. Mixed Convection Blowoff Limits as a Function of Oxygen Concentration and Upward Forced Stretch Rate for Burning Pmma Rods of Various Sizes

    Science.gov (United States)

    Marcum, Jeremy W.; Ferkul, Paul V.; Olson, Sandra L.

    2017-01-01

    Normal gravity flame blowoff limits in an axisymmetric pmma rod geometry in upward axial stagnation flow are compared with microgravity Burning and Suppression of Solids II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (pmma) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18 by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity upward flame spread test method which extrapolates the linear blowoff boundary to the zero stretch limit to resolve microgravity flammability limits, something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  5. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    Science.gov (United States)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  6. Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique

    Science.gov (United States)

    Seeger, Thomas; Jonuscheit, Joachim; Schenk, Martin; Leipertz, Alfred

    2003-12-01

    Using combined 'smeared' vibrational coherent anti-Stokes Raman spectroscopy (VCARS) and dual-broadband rotational CARS (DBB-RCARS) simultaneous measurements of temperature and relative concentrations of O 2/N 2 and CH 4/N 2 have been conducted in a fuel-rich ( φ=10), laminar, partially premixed CH 4/air-flame. The equivalence ratio was calculated from the relative concentration data determined. Using a dye laser which has been tuned to the Q-branch transitions of methane both VCARS and DBB-CARS signals were generated and detected simultaneously by a conventional DBB-RCARS-setup and a planar BOXCARS phase-matching scheme. In contrast to previous approaches, an important advantage of this technique is that no modification of the experimental setup is necessary which would increase the complexity of the system. Due to its molecular symmetry, methane can only be observed by VCARS. The DBB-RCARS approach was used to probe nitrogen and oxygen. In this way the measured signal is separated into two parts. The relative intensity of the 'smeared' VCARS signal determines the relative concentration of methane and the residual DBB-RCARS signal is evaluated by a conventional contour fit to obtain the temperature and the relative concentration of oxygen. Radial temperature and concentration profiles are measured at different downstream positions in the flame. A comparison of the obtained temperatures with previous results from spontaneous Raman scattering and filtered Rayleigh scattering indicates good agreement.

  7. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2016-10-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  8. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2017-03-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  9. Inhaled nitric oxide and high concentrations of oxygen in pediatrics patients with congenital cardiopathy and pulmonary hypertension: report of five cases

    Directory of Open Access Journals (Sweden)

    Werther Brunow de Carvalho

    Full Text Available Five patients with ages ranging from 6 months to 3 years were analyzed. All received inhaled nitric oxide (NO - 20 parts per million (ppm and oxygen (0(2 - at a concentration of 90-95% by means of an oxygen hood. Mean Pulmonary Artery Pressure (MPAP, Mean Aortic Pressure (MAoP, Pulmonary Vascular Resistance (PVR and Systemic Vascular Resistance (SVR were measured and the calculation of their relationship to pulmonary/systemic flow (Qp/Qs was performed by the catheterization' of the femoral artery vein. Three patients presented reduction in PVR and increase in Qp/Qs. There were no systemic alterations or any side effect from using NO.

  10. Activity of type i methanotrophs dominates under high methane concentration: Methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun Feng; Reinsch, Sabine; Ambus, Per

    2017-01-01

    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorg......Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy...... in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH4 oxidation. Given the structural heterogeneity of crusts, CH4 oxidation activity likely varies spatially as constrained by the combined effects of CH4, O2, and inorganic N availability...

  11. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration

    DEFF Research Database (Denmark)

    Hansen, M.C.; Palmer, R.J.; Udsen, C.

    2001-01-01

    Use of green fluorescent protein (GFP) as a molecular reporter is restricted by several environmental factors, such as its requirement for oxygen in the development of the fluorophore, and its poor fluorescence at low pH. There are conflicting data on these limitations, however, and systematic...... biofilm of this organism. Production of lactic acid and the subsequent acidification in batch cultures of S. gordonii DL1 led to a decrease in fluorescence intensity. However, severe pH reduction was prevented when the bacterium was grown as a biofilm in a flowcell, and a homogeneous distribution...

  12. Effect of Dissolved Oxygen, Temperature, Initial Cell Count, and Sugar Concentration on the Viability of Saccharomyces cerevisiae in Rapid Fermentations1

    Science.gov (United States)

    Nagodawithana, Tilak W.; Castellano, Carmine; Steinkraus, Keith H.

    1974-01-01

    By using 7 × 108 cells of Saccharomyces cerevisiae per ml with which 25° Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 × 107 to 7.8 × 108 cells per ml. At the lowest level of inoculum, 1.1 × 107 cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar. PMID:4607742

  13. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D.; Pack, Andreas

    2016-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  14. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies

    CSIR Research Space (South Africa)

    Motaung, DE

    2015-01-01

    Full Text Available O ) and zinc vacancies(VZn) are the main defects and that their relative concentration decreases within creasing particlesizes, resulting in decreased ferromagnet- ism (FM). Moreover, the sensing performance decreased with an increase in nanostructures...

  15. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  16. Water Temperature, Specific Conductance, pH, and Dissolved-Oxygen Concentrations in the Lower White River and the Puyallup River Estuary, Washington, August-October 2002

    Science.gov (United States)

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1oC (degrees Celsius) at river mile 4.9 and 19.6oC at river mile 1.8 exceeded the water-quality standard of 18oC at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River. Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  17. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    Science.gov (United States)

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  18. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    DEFF Research Database (Denmark)

    Holtappels, Moritz; Glud, Ronnie N.; Doris, Daphne

    2013-01-01

    -print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations...

  19. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones

    DEFF Research Database (Denmark)

    Larsen, Morten; Lehner, Philipp; Borisov, Sergey M.

    2016-01-01

    Conventional sensors for the quantification of O2 availability in aquatic environments typically have limits of detection (LOD) of  > 1 μmol L−1 and do not have sufficient resolution to reliably measure concentrations in strongly O2 depleted environments. We present a novel trace optical sensor b...

  20. Oxygenic Photosynthesis As A Protection Mechanism For Cyanobacteria Against Iron-Encrustation In Environments With High Fe2+ Concentrations

    Directory of Open Access Journals (Sweden)

    Danny eIonescu

    2014-09-01

    Full Text Available If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH. Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+ rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 µM vs. 26 µM in the Äspö Hard Rock Laboratory, Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichement cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 µM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations.

  1. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    Science.gov (United States)

    Mcclure, Donald J.

    1988-01-01

    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  2. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH3-N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DO<0.5mg/L led to the highest dehydrogenase activity. According to the different purposes, the optimal treatment time was different. The most pigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  4. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry.

    Science.gov (United States)

    Ehlenfeldt, M K; Prior, R L

    2001-05-01

    Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.

  5. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    Science.gov (United States)

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  6. Thermospheric atomic oxygen concentrations from WINDII O+(2P→2D) 732 nm emission: Comparisons with the NRLMSISE-00 and C-IAM models and with GUVI observations

    Science.gov (United States)

    Shepherd, Gordon G.; Cho, Young-Min; Fomichev, Victor I.; Martynenko, Oleg V.

    2016-09-01

    Thermospheric atomic oxygen concentrations have been retrieved from observations by the Wind Imaging Interferometer (WINDII) O+(2P→2D) 732 and 733 nm emissions and are compared with results obtained by the Global Ultraviolet Imager (GUVI). Although the observations compared were taken ten years apart, the periods were selected on the basis of solar activity, using the Canadian Ionosphere and Atmosphere Model (C-IAM) to bridge the time gap. Results from all of these were compared with those from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter (NRLMSISE-00) model. Comparisons were made on the basis of F10.7 solar flux, day of year, local time, season, latitude and longitude. The WINDII local time variations showed enhanced values for the Northern spring season. Latitude and longitude plots showed smooth variations for NRLMSISE-00 and large variations for both WINDII and GUVI observations; in particular a depression in atomic oxygen concentration around 40 °S latitude and 100 °E longitude that is tentatively identified with a longitudinal wave 1 that does not propagate in local time but has an annual variation. The averaged values showed the WINDII values to be 0.75 that of NRLMSISE-00 compared with 0.80 for GUVI. Thus the WINDII values agreed with those of GUVI to within 6%, although taken 10 years apart.

  7. Determination of negative oxygen ions concentration in Lanshan County%蓝山县空气负氧离子浓度测定

    Institute of Scientific and Technical Information of China (English)

    扶巧梅; 李沅山; 何斌; 舒巍; 刘彩红

    2015-01-01

    选择蓝山县有代表性的地段作为取样点,采用 DLY —3F 型森林大气测量仪测定样点的空气负离子浓度。测定结果表明,蓝山空气质量超 CI 评价标准,水域周边空气负离子含量最高,整体空气清洁,利于休闲和生态旅游开发。%Selected the representative area of Lanshan County as sample points,,and determined negative oxygen ions concentration of sample point used by the DLY — 3F forest atmosphere measuring instrument.The results show that air quality of Lanshan County was exceed the standard of CI,and the negative oxygen ions concentration of water area was the highest.The air of Lanshan county was cleanness,and it could benefit leisure and eco-tourism development.

  8. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda;

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood....

  9. 不同供氧流量对新生儿头罩吸氧的吸入氧浓度和动脉血二氧化碳分压的影响%Oxygen concentration analyzer combines with blood gas analysis to lead the choice of oxygen flow with oxygen hood for the newborn

    Institute of Scientific and Technical Information of China (English)

    宋才好; 何燕

    2012-01-01

    目的 检测新生儿头罩吸氧时不同供氧流量下患儿血液中二氧化碳分压(PaCO2)与吸入氧浓度(FIO2)的变化关系,分析得出新生儿安全头罩用氧的规律.方法 调节氧气流量,测定在不同流量下新生儿头罩内FIO2.结果 氧气流量在3 L/min以下时,3组FIO2均小于35%,中小号头罩组有CO2潴留;氧流量在3~5 L/min时,中小号头罩组FIO2为35%左右,大号头罩组FIO2接近30%,小号头罩组有CO2潴留;氧流量在5~7 L/min时,中小头罩组FIO2为40%~50%,大号头罩组FIO2接近40%,3组均无CO2潴留;氧流量大于7 L/min时,3组FIO2均在50%以上,无CO2潴留.结论 纯氧下,选择流量在3~5 L/min,选择大中号头罩吸氧相对安全.对于没有空氧混合仪及氧浓度检测设备的基层医院进行氧气治疗有一定指导作用.%Objective By monitoring the relationship of change between pressure of carbon dioxide ( Paco2 ) and inspired oxygen concentration ( Fio2 ) when the newborn oxygen hood with different flow of oxygen, to analyze and obtain laws of newborn s safe oxygen hood. Methods The oxygen flow rate was adjusted, Fio, and Paco, in the hood under different oxygen flow were measured. Results When oxygen flow was under 3L/MIN, Fio2 of the all three groups was less than 35% , and medium and small hood groups had CO2 retention; when oxygen flow was between 3 -5L/MIN, the Fio2 of medium and small hood groups was around 35% and Fio2 of large hood group was close to 30% , and small group hood had CO2 retention; when oxygen flow was between 5 - 7L/MIN, the Fio, of medium and small hood groups was 40 -50% while the large hood group was close to 40% , and three groups had no CO2 retention; when oxygen flow was greater than 7L/MIN, the Fio2 of three groups was above 50% , without CO2 retention. Conclusion When pure oxygen is used, the oxygen flow is between 3 - 5L/ MIN, selection of the large and medium oxygen hood is relatively safe. It plays a guiding role for primary

  10. Oxygen measurements to improve singlet oxygen dosimetry

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) involves interactions between the three main components of light fluence, photosensitizer concentration, and oxygenation. Currently, singlet oxygen explicit dosimetry (SOED) has focused on the first two of these components. The macroscopic model to calculate reacted singlet oxygen has previously involved a fixed initial ground state oxygen concentration. A phosphorescence-based oxygen probe was used to measure ground state oxygen concentration throughout treatments for mice bearing radioactively induced fibroscarcoma tumors. Photofrin-, BPD-, and HPPH-mediated PDT was performed on mice. Model-calculated oxygen and measured oxygen was compared to evaluate the macroscopic model as well as the photochemical parameters involved. Oxygen measurements at various depths were compared to calculated values. Furthermore, we explored the use of noninvasive diffuse correlation spectroscopy (DCS) to measure tumor blood flow changes in response to PDT to improve the model calculation of reacted singlet oxygen. Mice were monitored after treatment to see the effect of oxygenation on long-term recurrence-free survival as well as the efficacy of using reacted singlet oxygen as a predictive measure of outcome. Measurement of oxygenation during treatment helps to improve SOED as well as confirm the photochemical parameters involved in the macroscopic model. Use of DCS in predicting oxygenation changes was also investigated.

  11. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    Science.gov (United States)

    Holtappels, Moritz; Glud, Ronnie N.; Donis, Daphne; Liu, Bo; Hume, Andrew; WenzhöFer, Frank; Kuypers, Marcel M. M.

    2013-03-01

    correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2 concentrations was examined using the theory of shear flow dispersion. A theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5-10 μM O2 h-1 result in transient EC-fluxes of 6-12 mmol O2 m-2 d-1, which is comparable to the O2 uptake of shelf sediments. Second, the case of transient velocities was examined with a 2D k-ɛ turbulence model demonstrating that the vertical flux can be biased by 30-100% for several hours during changing current velocities from 2 to 10 cm s-1. Results are compared to field measurements and possible ways to analyze and correct EC-flux estimates are discussed.

  12. Humidity and Inspired Oxygen Concentration During High-Flow Nasal Cannula Therapy in Neonatal and Infant Lung Models.

    Science.gov (United States)

    Chikata, Yusuke; Ohnishi, Saki; Nishimura, Masaji

    2017-05-01

    High-flow nasal cannula therapy (HFNC) for neonate/infants can deliver up to 10 L/min of heated and humidified gas, and FIO2 can be adjusted to between 0.21 and 1.0. With adults, humidification and actual FIO2 are known to vary according to inspiratory and HFNC gas flow, tidal volume (VT), and ambient temperature. There have been few studies focused on humidification and FIO2 in HFNC settings for neonates/infants, so we performed a bench study to investigate the influence of gas flow, ambient temperature, and respiratory parameters on humidification and actual FIO2 in a neonate/infant simulation. HFNC gas flow was set at 3, 5, and 7 L/min, and FIO2 was set at 0.3, 0.5, and 0.7. Spontaneous breathing was simulated using a 2-bellows-in-a-box model of a neonate lung. Tests were conducted with VT settings of 20, 30, and 40 mL and breathing frequencies of 20 and 30 breaths/min. Inspiratory time was 0.8 s with decelerating flow waveform. The HFNC tube was placed in an incubator, which was either set at 37°C or turned off. Absolute humidity (AH) and actual FIO2 were measured for 1 min using a hygrometer and an oxygen analyzer, and data for the final 3 breaths were extracted. At all settings, when the incubator was turned on, AH was greater than when it was turned off (P incubator was turned off, as gas flow increased, AH increased (P < .001); however, VT did not affect AH (P = .16). As gas flow increased, actual FIO2 more closely corresponded to set FIO2 . When gas flow was 3 L/min, measured FIO2 decreased proportionally more at each FIO2 setting increment (P < .001). AH was affected by ambient temperature and HFNC gas flow. Actual FIO2 depended on VT when gas flow was 3 L/min. Copyright © 2017 by Daedalus Enterprises.

  13. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co{sup 2+} doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, B. [Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Choudhury, A., E-mail: ajc@tezu.ernet.i [Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Maidul Islam, A.K.M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Alagarsamy, P. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2011-03-15

    Co doped TiO{sub 2} nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co{sub 3}O{sub 4}, which is the oxidation result of metallic Co or cobalt clusters present on the host TiO{sub 2}. - Research highlights: > Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. > On air annealing the sample loses ferromagnetism giving rise to paramagnetism. > Saturation magnetization decreases at higher doping concentration. > Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  14. Atmospheric Oxygen Concentrations for the Past 350 Myr Modeled from the δ13C of C3 Land Plants

    Science.gov (United States)

    Nordt, L.; Breecker, D.

    2016-12-01

    Numerous studies have focused on the systematic collection of long-term d13C records from marine sediments, but no such isotopic compilation exists for C3 land plants. Consequently, we gathered a meta-data base of 8003 plant-derived δ13C values (ISOORG) from various carbon sources binned into 5 myr time steps. The results of this investigation were reported in a recent publication showing that most δ13C sources co-vary with ten CIEs during the last 400 myr. For this paper we culled ISOORG to produce ISOORG16-H that contains 7025 plant-derived δ13C values from paleo-moist environments to reflect secular controls on the δ13C of C3 plants. We then constructed atmospheric pO2 curves for the past 350 myr using prior experimental work showing a direct relationship between the ∆13C of C3 plants and pO2 concentration. Periods of hyperoxia (25-30% pO2) were identified from 300-250, 225-190, and 110-105 myr, and intervals of hypoxia (10-15% pO2) from 350-345, 245-230, and 185-115 myr. During the last 150 myr, pO2 stabilized at 17-24% except for a notable positive excursion from 110-105 myr. Hyperoxia, apparently from widespread carbon burial, supports the notion of insect gigantism during the Late Paleozoic. Hypoxia during the early Triassic correlates with the coal gap following the collapse of Paleozoic ecosystems. Rising pO2 in the late Triassic seems to reflect renewed carbon burial from reorganization of Mesozoic ecosystems. The middle Mesozoic is characterized by low pO2 during an intense greenhouse interval, with ambient conditions ensuing thereafter possibly linked to carbon burial from the radiation of angiosperms. pO2 concentrations >14% suggest wildfires persisted through the study interval except possibly at 160 and 140 myr. Intervals of low pO2 concentration were likely accompanied by lower atmospheric pressure and higher temperatures, particularly from 245-230 myr and 180-120 myr. Our O2 reconstructions conform with GEOCARBSULF, but not with proxy

  15. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabamäe, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration ( 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates.

  16. Performance of Multiple Risk Assessment Tools to Predict Mortality for Adult Respiratory Distress Syndrome with Extracorporeal Membrane Oxygenation Therapy: An External Validation Study Based on Chinese Single-center Data

    Institute of Scientific and Technical Information of China (English)

    Lei Huang; Tong Li; Lei Xu; Xiao-Min Hu; Da-Wei Duan; Zhi-Bo Li; Xin-Jing Gao

    2016-01-01

    Background:There has been no external validation of survival prediction models for severe adult respiratory distress syndrome (ARDS) with extracorporeal membrane oxygenation (ECMO) therapy in China.The aim of study was to compare the performance of multiple models recently developed for patients with ARDS undergoing ECMO based on Chinese single-center data.Methods:A retrospective case study was performed,including twenty-three severe ARDS patients who received ECMO from January 2009 to July 2015.The PRESERVE (Predicting death for severe ARDS on VV-ECMO),ECMOnet,Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score,a center-specific model developed for inter-hospital transfers receiving ECMO,and the classical risk-prediction scores of Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ and Sequential Organ Failure Assessment (SOFA) were calculated.In-hospital and six-month mortality were regarded as the endpoints and model performance was evaluated by comparing the area under the receiver operating characteristic curve (AUC).Results:The RESP and APACHE Ⅱ scores showed excellent discriminate performance in predicting survival with AUC of 0.835 (95% confidence interval [CI],0.659-1.010,P =0.007) and 0.762 (95% CI,0.558-0.965,P =0.035),respectively.The optimal cutoff values were risk class 3.5 for RESP and 35.5 for APACHE Ⅱ score,and both showed 70.0% sensitivity and 84.6% specificity.The excellent performance of these models was also evident for the pneumonia etiological subgroup,for which the SOFA score was also shown to be predictive,with an AUC of 0.790 (95% CI,0.571-1.009,P =0.038).However,the ECMOnet and the score developed for externally retrieved ECMO patients failed to demonstrate significant discriminate power for the overall cohort.The PRESERVE model was unable to be evaluated fully since only one patient died six months postdischarge.Conclusions:The RESP,APCHAE Ⅱ,and SOFA scorings systems show good

  17. Measuring a 10,000-fold enhancement of singlet molecular oxygen (1O2*) concentration on illuminated ice relative to the corresponding liquid solution

    Science.gov (United States)

    Bower, Jonathan P.; Anastasio, Cort

    2013-08-01

    Much attention has focused on the highly reactive hydroxyl radical in the oxidation of trace organic compounds on snow and ice (and subsequent release of volatile organics to the atmospheric boundary layer) but other oxidants are likely also important in this processing. Here we examine the ice chemistry of singlet molecular oxygen (1O2*), which can be significant in atmospheric water drops but has not been examined in ice or snow. To examine 1O2* on ice we illuminate laboratory ices containing Rose Bengal (RB) as the source of 1O2*, furfuryl alcohol (FFA) as the probe, and Na2SO4 to control the total solute concentration. We find that the 1O2*-mediated loss of FFA (and, thus, the 1O2* concentration) is up to 11,000 times greater on ice than in the equivalent liquid sample at the same photon flux. We attribute this large increase in the 1O2* steady-state concentration to the freeze-concentration of solutes into liquid-like regions (LLRs) in/on ice: compared to the initial solution, in the LLRs of ice the sources for 1O2* are highly concentrated, while the concentration of the dominant sink for 1O2* (i.e., water) remains largely unchanged. Similar to results expected in liquid solution, rates of FFA loss in ice depend on both the initial sensitizer concentration and temperature, providing evidence that these reactions occur in LLRs. However, we find that the enhancement in 1O2* concentrations on ice does not follow predictions from freezing-point depression, likely because experiments were conducted below the eutectic temperature for sodium sulfate, where all of the salt should have precipitated. We also explore a method for separating 1O2* and rad OH contributions to FFA oxidation in laboratory ices and show its application to two natural snow samples. We find that 1O2* concentrations in these snows are approximately 100 times higher than observed in polluted, mid-latitude fog waters, showing that the enhancement of 1O2* on ice is environmentally relevant and that

  18. Chloride concentrations and stable isotopes of hydrogen and oxygen in surface water and groundwater in and near Fish Creek, Teton County, Wyoming, 2005-06

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.

    2010-01-01

    Fish Creek, an approximately 25-kilometer long tributary to the Snake River, is located in Teton County in western Wyoming near the town of Wilson. The U.S. Geological Survey, in cooperation with the Teton Conservation District, conducted a study to determine the interaction of local surface water and groundwater in and near Fish Creek. In conjunction with the surface water and groundwater interaction study, samples were collected for analysis of chloride and stable isotopes of hydrogen and oxygen in water. Chloride concentrations ranged from 2.9 to 26.4 milligrams per liter (mg/L) near Teton Village, 1.2 to 4.9 mg/L near Resor's Bridge, and 1.8 to 5.0 mg/L near Wilson. Stable isotope data for hydrogen and oxygen in water samples collected in and near the three cross sections on Fish Creek are shown in relation to the Global Meteoric Water Line and the Local Meteoric Water Line.

  19. A kinetic model for describing effect of the external surface concentration of TiO2 on the reactivity of egg-shell activated carbon supported TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The porous support supported TiO2 is considered to be the promising photocatalyst due to the fact that it is easily recovered from water and has high capacity to mineralize pollutants. Obviously, the expected structure of this kind of photocatalyst is egg-shell, that is, TiO2 is mainly on the external surface of the porous support. The reactivity of the supported photocatalyst strongly depends on the concentration of TiO2 on the external surface of the porous support. In this study, a kinetic model was developed to describe the effect of the external surface concentration of TiO2 (CESC) on the reactivity of egg-shell activated carbon (AC) supported TiO2 photocatalysts. It was found that the obtained model precisely described the effect of CESC, on the reactivity of TiO2/AC photocatalysts. This study can be used to deeply understand the performance of TiO2/AC catalysts and to provide valuable information on designing efficient supported TiO2 photocatalysts.

  20. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jun [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Miao, Lingzhan, E-mail: mlz1988@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Chao, E-mail: hhuhjy973@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-07-15

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O{sub 2} respiration activities of aerobic wastewater biofilms were investigated using an O{sub 2} microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O{sub 2} respiration within 2 h. The spatial distributions of net specific O{sub 2} respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O{sub 2} respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs.

  1. Activity of Type I Methanotrophs Dominates under High Methane Concentration: Methanotrophic Activity in Slurry Surface Crusts as Influenced by Methane, Oxygen, and Inorganic Nitrogen.

    Science.gov (United States)

    Duan, Yun-Feng; Reinsch, Sabine; Ambus, Per; Elsgaard, Lars; Petersen, Søren O

    2017-07-01

    Livestock slurry is a major source of atmospheric methane (CH), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH emissions. This study examined conditions for CH oxidation by in situ measurements of oxygen (O) and nitrous oxide (NO), as a proxy for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O, CH, and inorganic N on CH oxidation, using CH to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm, confining the potential for aerobic CH oxidation to a shallow layer. Nitrous oxide accumulated within or below the zone of O depletion. With 10 ppmv CH there was no O limitation on CH oxidation at O concentrations as low as 2%, whereas CH oxidation at 10 ppmv CH was reduced at ≤5% O. As hypothesized, CH oxidation was in general inhibited by inorganic N, especially NO, and there was an interaction between N inhibition and O limitation at 10 ppmv CH, as indicated by consistently stronger inhibition of CH oxidation by NH and NO at 3% compared with 20% O. Recovery of C in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH oxidation. Given the structural heterogeneity of crusts, CH oxidation activity likely varies spatially as constrained by the combined effects of CH, O, and inorganic N availability in microsites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations.

    Science.gov (United States)

    Turner, Jennifer; Quek, Lake-Ee; Titmarsh, Drew; Krömer, Jens O; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  3. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.

    Science.gov (United States)

    Polinkovsky, Mark; Gutierrez, Edgar; Levchenko, Andre; Groisman, Alex

    2009-04-21

    We describe the design, operation, and applications of two microfluidic devices that generate series of concentrations of oxygen, [O(2)], by on-chip gas mixing. Both devices are made of polydimethylsiloxane (PDMS) and have two layers of channels, the flow layer and the gas layer. By using in-situ measurements of [O(2)] with an oxygen-sensitive fluorescent dye, we show that gas diffusion through PDMS leads to equilibration of [O(2)] in an aqueous solution in the flow layer with [O(2)] in a gas injected into the gas layer on a time scale of approximately 1 sec. Injection of carbon dioxide into the gas layer causes the pH in the flow layer to drop within approximately 0.5 sec. Gas-mixing channel networks of both devices generate series of 9 gas mixtures with different [O(2)] from two gases fed to the inlets, thus creating regions with 9 different [O(2)] in the flow layer. The first device generates nitrogen-oxygen mixtures with [O(2)] varying linearly between 0 and 100%. The second device generates nitrogen-air mixtures with [O(2)] varying exponentially between 0 and 20.9%. The flow layers of the devices are designed for culturing bacteria in semi-permeable microchambers, and the second device is used to measure growth curves of E. coli colonies at 9 different [O(2)] in a single experiment. The cell division rates at [O(2)] of 0, 0.2, and 0.5% are found to be significantly different, further validating the capacity of the device to set [O(2)] in the flow layer with high precision and resolution. The degree of control of [O(2)] achieved in the devices and the robustness with respect to oxygen consumption due to respiration would be difficult to match in a traditional large-scale culture. The proposed devices and technology can be used in research on bacteria and yeast under microaerobic conditions and on mammalian cells under hypoxia.

  4. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  5. Microfluidic fabrication of polymersomes enclosing an active Belousov-Zhabotinsky (BZ) reaction: Effect on their stability of solute concentrations in the external media.

    Science.gov (United States)

    Hu, Yuandu; Pérez-Mercader, Juan

    2016-10-01

    Core/shell double emulsions were fabricated using glasscapillary based microfluidic techniques. Poly(butadiene) 46-bpoly(ethylene oxide)30 in mixture with cyclo-hexane/chloroform were contained as the shell part of droplets, whose core part was the full 1,4-cyclohexadiene based Belousov-Zhabotinsky reaction solution of unknown osmolality. The droplets were collected in solutions of both low and relatively high concentrations of salt. This resulted in the respective increase or decrease of the core part diameter. In both cases, after an incubation period, the droplets eventually evolved into polymer vesicles. In solutions with low concentration of salt, the droplets evolved into polymer vesicles after the evaporation of the vola-tile solvent contained in the shell part. Due to the dewetting of the shell and core parts,droplets in solutions of relatively high salt concentration evolved into polymer vesicles only after three days of incubation. The dewetted shell part displayed crescent-moon-shapes with different curvatures. The final diameter of the vesicles differed from the diameter of the initial core droplets. We demonstrate that vesicles with unknown osmolality core parts are formed in both solutions of very low or relatively high concentration of salt; furthermore, we also demonstrate that they follow different formation pathways. In the appropriate conditions, the vesicles experienced a form of "collapsing" behavior due to the activity of the entrapped chemical reaction.

  6. Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration.

    Science.gov (United States)

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Miao, Jun Ying; Yin, De Ling; Zhang, Shang Li

    2006-02-01

    Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.

  7. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Siddiqui, Maqsood A; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Ahamed, Maqusood

    2015-02-01

    Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health. © 2013 Wiley Periodicals, Inc.

  8. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  9. Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China

    Science.gov (United States)

    Wang, Jingzhi; Xu, Hongmei; Guinot, Benjamin; Li, Lijuan; Ho, Steven Sai Hang; Liu, Suixin; Li, Xiaoping; Cao, Junji

    2017-08-01

    Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs (OPAHs), and nitro-PAHs (NPAHs) associated with PM2.5 particles were monitored in a middle-school classroom from 8 to 22 March 2012 in Xi'an, China. The total PAHs ranged from 49.6 to 140.0 ng/m3 in outdoors and 50.3 to 111.6 ng/m3 in indoors, while OPAHs and NPAHs showed averages of 19.1 and 16.4 ng/m3, 0.1039 and 0.0785 ng/m3 for outdoor and indoor air, respectively. Strong correlations were found between indoor (I) and outdoor (O), and the I/O ratios were coal combustion, and motor vehicle emissions were the main sources for PAHs (which accounted for 30%, 27.4% and 26%, respectively, by PMF), but, secondary particle formation was important for the OPAHs and NPAHs. Inhalation cancer risks associated with outdoor and indoor particles were 6.05 × 10- 5 and 5.44 × 10- 5, respectively, and so higher than the cancer risk guideline of 10- 6. Although the cancer risk of NPAHs is negligible for its lower concentrations, their potential for direct mutagenic effects should not be ignored.

  10. Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches.

    Science.gov (United States)

    Ramos, Yuddy; St-Onge, Benoît; Blanchet, Jean-Pierre; Smargiassi, Audrey

    2016-06-01

    Air pollution is a major environmental and health problem, especially in urban agglomerations. Estimating personal exposure to fine particulate matter (PM2.5) remains a great challenge because it requires numerous point measurements to explain the daily spatial variation in pollutant levels. Furthermore, meteorological variables have considerable effects on the dispersion and distribution of pollutants, which also depends on spatio-temporal emission patterns. In this study we developed a hybrid interpolation technique that combined the inverse distance-weighted (IDW) method with Kriging with external drift (KED), and applied it to daily PM2.5 levels observed at 10 monitoring stations. This provided us with downscaled high-resolution maps of PM2.5 for the Island of Montreal. For the KED interpolation, we used spatio-temporal daily meteorological estimates and spatial covariates as land use and vegetation density. Different KED and IDW daily estimation models for the year 2010 were developed for each of the six synoptic weather classes. These clusters were developed using principal component analysis and unsupervised hierarchical classification. The results of the interpolation models were assessed with a leave-one-station-out cross-validation. The performance of the hybrid model was better than that of the KED or the IDW alone for all six synoptic weather classes (the daily estimate for R(2) was 0.66-0.93 and for root mean square error (RMSE) 2.54-1.89 μg/m(3)).

  11. Effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs on the production of reactive oxygen species by activated rat neutrophils

    Directory of Open Access Journals (Sweden)

    Paino I.M.M.

    2005-01-01

    Full Text Available The release of reactive oxygen specie (ROS by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM, indomethacin (12 µM, naproxen (160 µM, piroxicam (13 µM, and tenoxicam (30 µM were incubated at 37ºC in PBS (10 mM, pH 7.4, for 30 min with rat neutrophils (1 x 10(6 cells/ml stimulated by phorbol-12-myristate-13-acetate (100 nM. The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6. For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6. Using the myeloperoxidase (MPO/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%, indomethacin (97 ± 2, 100 ± 1%, naproxen (56 ± 8, 76 ± 3%, piroxicam (77 ± 5, 99 ± 1%, and tenoxicam (90 ± 2, 100 ± 1%, respectively (N = 3. These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.

  12. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    concentrations while the area of OH* emission is larger than the area of Band A and Band B emissions at higher O2 concentrations, for a given ambient temperature. Moreover, the mixture stoichiometry was analyzed using a reformulated definition of excess air ratio for diluted combustion, and this shows that more mixing is required to achieve complete combustion for low ambient oxygen concentration conditions where longer and wider flames are observed. This observation is also verified by the flame length estimated from the NL images. © 2013 Copyright Taylor and Francis Group, LLC.

  13. O mínimo de oxigênio na costa leste do Brasil entre 7-22ºS The minimum oxygen concentration in easthern Brasilian coast between 7-22ºS

    Directory of Open Access Journals (Sweden)

    Argeo Magliocca

    1978-01-01

    Full Text Available In the South Atlantic nearly the Brazilian coast, at low latitudes, the layer of minimum oxygen concentration shows distinct values between the Equatorial region (7ºS and the region limited by latitudes of 18-22ºS. In the vicinity of the Equator the minimum concentration is remarkably clear (2,0 ml/l at 7ºS and at 22ºS the minima values raise up to 4.0-4.5 ml/l. The minimum oxygen layer follows the isopynics surfaces (σt = 26.8-27.2 in depths of 300-400 m (7ºS and 600-800 m (22ºS . The oxygen concentration in this area results from a biochemical and physical processes, due to the presence of poor water Brazil Current southward and the rich one Intermediate Antartic water flowing northward.

  14. Oxygen sensing and signaling.

    Science.gov (United States)

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  15. 竖向集中荷载作用下体外预应力混凝土连续梁解析解%Vertical Concentrated Load Externally Prestressed Concrete Continuous Beam Analytical Solution

    Institute of Scientific and Technical Information of China (English)

    钟春玲; 叶增; 张云龙

    2012-01-01

    In the prestressed concrete bridge reinforcement, the application of the external prestressed gradually widely. This paper mainly based on differential equation deduced the external prestressed continuous beam in the vertical concentrated load dint method, the analytical solution of the equation. Using this theory calculation in the vertical deflection under concentrated load along the beam long distribution curve and Ansys numerical analysis re- suits are compared, and both have good consistency, it is shown that the result is reasonable and credible. Contrast the result indicates that the analytical solution and can get in the normal service condition the deflection of the con- crete beams, for the future analysis of the external prestressed carbon fiber reinforced the continuous girder provides the foundation.%在预应力混凝土桥梁加固中,体外预应力的应用逐渐广泛.本文主要基于微分方程,推导了体外预应力连续梁在竖向集中荷载作用下力法方程的解析解.利用该理论,计算了在竖向集中荷载作用下的挠度沿梁长的分布曲线,并与Ansys数值分析结果进行了对比,二者具有较好的一致性,说明该计算结果是合理的,可信的.对比结果表明,采用该解析解并能够得到在正常使用状态下混凝土梁的变形情况,为今后分析碳纤维加固体外预应力连续梁提供了基础.

  16. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... Operating conditions were maintained constant but the adipate and dissolved oxygen concentrations (DOC) were varied separately in a range from I to 37.5 g l(-1) and from 2% to 125% air saturation (%AS), respectively. The total beta-lactams specific productivity, r(p) (total) was not significantly changed...

  17. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    Science.gov (United States)

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R (2)), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R (2), and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  18. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence

    Science.gov (United States)

    Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,

    2015-01-01

    Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.

  19. Effects of tocainide and lidocaine on the transmembrane action potentials as related to external potassium and calcium concentrations in guinea-pig papillary muscles.

    Science.gov (United States)

    Oshita, S; Sada, H; Kojima, M; Ban, T

    1980-10-01

    Effects of lidocaine and tocainide on transmembrane potentials were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution containing either 5.4, 2.7, 10.0 or 8.1 mmol/l potassium concentration, [K]0. The last solution applied contained either 1.8 (normal [Ca]0) or 7.2 mmol/l [Ca]0 (high [Ca]0. The concentrations of lidocaine and tocainide used were 18.5, 36.9 and 73.9 mumol/l and 43.7, 87.5 and 174.9 mumol/l in 5.4 mmol/l [K]0 solution and 36.9 and 87.5 mumol/l in the other solutions, respectively. At the driving rate of 1 Hz in 5.4 mmol/l "K]0 solution, both drugs produced dose-dependently a reduction of maximum rate of rise of action potential (Vmax), together with a prolongation of the relative refractory period. Vmax decreased progressively as the driving rate was increased from 1 Hz (for lidocaine) and from 0.25 Hz (for tocainide) to 5 Hz. This action was accentuated dose-dependently. A slow component (time constant tau = 232 ms for lidocaine, 281--303 ms for tocainide) and slower component (tau = 2.1--3.8 s for tocainide) of the recovery (reactivation) of Vmax were observed in premature responses at 0.25 Hz and in the first response after interruption of the basic driving rate at 1 Hz. All these effects were accentuated with rising [K]0 and attenuated in the high [Ca]0 solution. Both drugs abbreviated the action potential duration at 50% (APD50) and 90% (APD90) levels at 5.4, 8.1 and 10.0 mmol/l [K]0 but not at 2.7 mmol/l [K]0 nor a high [Ca]0 at 1 Hz. These [K]0-dependent effects of lidocaine on Vmax were successfully simulated by the model proposed by Hondeghem and Katzung (1977), with a slight change in parameter values. The mode of interaction of lidocaine with sodium channels in the open, closed and rested states was deduced from these results.

  20. Measurement of excited oxygen (O2:[sup 1][Delta]g) concentration by spontaneous emission. Hakko kyodo ni yoru reiki sanso ([sup 1][Delta]g) nodo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1993-11-25

    The concentration of excited oxygen ([sup 1][Delta]g), which was generated by microwave discharge in a pure oxygen flow, was measured from the intensity of spontaneous emission. The conversion factor to density was determined by spectroscopic analysis of the rotational structure and calibration of the emission intensity using a black-body furnace as light source. Consequently, a good agreement was found between the observed profiles and those calculated from spectroscopic data, and it was illustrated that the absolute concentration can be obtained by coupling band analysis and the calibration method. In addition, even when the concentration was low, it was shown that the excited oxygen concentration can be measured by considering the reflection at the cell wall. The excited oxygen concentration at the microwave discharge cavity was estimated to be around 1% under the pressure ranging from 0.5 torr to 2 torr. Furthermore, the comparison of the profiles calculated at different temperature provided that the band profile can be a good indicator of gas temperature when the signal-to-noise ratio is high. 9 refs., 10 figs., 2 tabs.

  1. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  2. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.El Golfo de Papagayo, costa Pacífica de Costa Rica, es una de las tres regiones de afloramiento estacional de Mesoamérica. Las características físicas y químicas del agua que aflora no habían sido estudiadas. Durante 29 horas en Abril 2009, se estudiaron la temperatura superficial del mar (TSM, la concentración de oxígeno disuelto, salinidad, pH y la presión parcial de CO2 (pCO2, en la Marina Papagayo, Bahía Culebra. Con base en las mediciones de pH y pCO2 se calculó el estado de saturación de la aragonita (Ω y otros parámetros del sistema de carbonatos como lo es el carbono orgánico disuelto (COD y la alcalinidad total (AT. Los resultados indican que el arrastre por convecci

  3. Vertical modeling of the nitrogen cycle in the eastern tropical South Pacific oxygen deficient zone using high-resolution concentration and isotope measurements

    Science.gov (United States)

    Peters, Brian D.; Babbin, Andrew R.; Lettmann, Karsten A.; Mordy, Calvin W.; Ulloa, Osvaldo; Ward, Bess B.; Casciotti, Karen L.

    2016-11-01

    Marine oxygen deficient zones (ODZs) have long been identified as sites of fixed nitrogen (N) loss. However, the mechanisms and rates of N loss have been debated, and traditional methods for measuring these rates are labor-intensive and may miss hot spots in spatially and temporally variable environments. Here we estimate rates of heterotrophic nitrate reduction, heterotrophic nitrite reduction (denitrification), nitrite oxidation, and anaerobic ammonium oxidation (anammox) at a coastal site in the eastern tropical South Pacific (ETSP) ODZ based on high-resolution concentration and natural abundance stable isotope measurements of nitrate (NO3-) and nitrite (NO2-). These measurements were used to estimate process rates using a two-step inverse modeling approach. The modeled rates were sensitive to assumed isotope effects for NO3- reduction and NO2- oxidation. Nevertheless, we addressed two questions surrounding the fates of NO2- in the ODZ: (1) Is NO2- being primarily reduced to N2 or oxidized to NO3- in the ODZ? and (2) what are the contributions of anammox and denitrification to NO2- removal? Depth-integrated rates from the model suggest that 72-88% of the NO2- produced in the ODZ was oxidized back to NO3-, while 12-28% of NO2- was reduced to N2. Furthermore, our model suggested that 36-74% of NO2- loss was due to anammox, with the remainder due to denitrification. These model results generally agreed with previously measured rates, though with a large range of uncertainty, and they provide a long-term integrated view that compliments incubation experiments to obtain a broader picture of N cycling in ODZs.

  4. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... to Pneumococcal Vaccine Additional Content Medical News External Otitis (Swimmer's Ear) By Bradley W. Kesser, MD, Associate ... the Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis External otitis ...

  5. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  6. Distribution of Negative Oxygen Ions Concentration and Assessment of Air Quality in Campus%校园空气负氧离子浓度分布与空气质量评价

    Institute of Scientific and Technical Information of China (English)

    叶宏萌; 郑茂钟; 姜嘉祺; 谢行冬

    2015-01-01

    Level of negative oxygen ions concentration reflects not only the air quality, but also directly affect the comfort and health.This paper studied distribution and evaluation of negative oxygen ions concentration in campus of Wuyi university.The re-sults showed that negative oxygen ions concentration was affected by human activity, altitude, the air flow, dynamic water and vege-tation distribution and other comprehensive factors in the different functional areas of the campus.Meanwhile, negative oxygen ions changes according to weather and diurnal variations.Ranges of negative oxygen ion concentration are as follows:heavy rain days>rain days>rain cloudy>clear;diurnal variation order:AM>evening>noon.In summary, the measurement results showed that the air quality levels achieved stability three or four, air was fresh and conducive to human health.%空气负氧离子浓度水平不仅反映了空气质量,还直接影响人们的舒适程度和健康状况。研究武夷学院空气负氧离子浓度含量发现,其受人类活动力度、海拔高度、空气流通状况、动态水体和植被分布等综合因素影响,并具有明显的气象变化和日变化特征。负氧离子浓度含量排序为:暴雨天>小雨天>雨后阴天>晴天;一日中上午>傍晚>中午。测量结果表明该校园整体空气质量等级达到四级或者三级,空气清新,有利于师生健康。

  7. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  8. Changes of oxygen status of hair cells for breast cancer presence.

    Science.gov (United States)

    Maryakhina, Valeriya S; Ovechkin, Maxim V

    2016-07-01

    The results of differences of wool oxygen status of healthy and cancer carrier mice with spontaneous cancer tumor are represented herein. The investigation was carried out by electronic microscopy and laser-flash photolysis. In the work, two types of breast tumors were researched. Small tumor (nearly 0.5 ÷ 1 cm) was detected by palpation and was well encapsulated. Large tumor was operated when tumor had been disintegrated. It is shown that wool of healthy mouse has dense structure; external layer with large scales is pronounced. At the time, wool of mice with cancer tumor is thinner; external and internal layers are destroyed. Length of scales is shorter. There is difference even when tumor diameter is small. Oxygen concentration increases for cancer present, and it is related to reactive oxygen species rising within external layer. Reactive oxygen species have most distribution in general oxygen concentration in external cell layer. At the time, its increase in internal layer is insignificant. The obtained results can be used to improve optical techniques of biomedical diagnostics of cancer diseases.

  9. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C[sub 6]0 are used, and it succeeds in the measurement. Kotai hyomen no sanso nodo, C[sub 60] mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C[sub 6]0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition's reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn't need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  10. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C{sub 6}0 are used, and it succeeds in the measurement; Kotai hyomen no sanso nodo, C{sub 60} mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C{sub 6}0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition`s reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn`t need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  11. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  12. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... from 15 to 7%AS, r(p) (total) increased to 25 mumol g DW-1 h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity....

  13. Analytical determination of Chemical Oxygen Demand in samples considered to be difficult to analyse: solid substrates and liquid samples with high suspended solid concentrations

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    Chemical oxygen demand (COD) is a critical analytical parameter in the field of waste and wastewater treatment processes, and more specifically in anaerobic digestion processes. However, little is known about the COD measurement quality of anaerobic digestion samples. Taking into account the lack...

  14. Kinetic bottlenecks to respiratory exchange rates in the deep-sea – Part 1: Oxygen

    Directory of Open Access Journals (Sweden)

    A. F. Hofmann

    2013-07-01

    Full Text Available Ocean warming is now reducing dissolved oxygen concentrations, which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration threshold with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to provide the oxygen supply to the external surface of a respiratory membrane. This general oceanic oxygen supply potential is modulated by further properties such as the diffusive boundary layer thickness to define an upper limit to oxygen supply rates. While the true maximal oxygen uptake rate of any organism is limited by gas transport either across the respiratory interface of the organism itself or across the diffusive boundary layer around an organism, controlled by physico-chemical oceanic properties, it can never be larger than the latter. Here, we define and calculate quantities that describe this upper limit to oxygen uptake posed by physico-chemical properties around an organism and show examples of their oceanic profiles.

  15. Analytical determination of Chemical Oxygen Demand in samples considered to be difficult to analyse: solid substrates and liquid samples with high suspended solid concentrations

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    Chemical oxygen demand (COD) is a critical analytical parameter in the field of waste and wastewater treatment processes, and more specifically in anaerobic digestion processes. However, little is known about the COD measurement quality of anaerobic digestion samples. Taking into account the lack...... PTs related with COD determination have been organised, and the results reported have been compared; showing the importance of continuous participation in proficiency testing (PT) schemes in order to improve the results obtained....

  16. Solid state oxygen sensor

    Science.gov (United States)

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  17. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  18. Oxygen transfer in a pressurized airlift bioreactor.

    Science.gov (United States)

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control.

  19. Biological effects of short-term, high-concentration exposure to methyl isocyanate. IV. Influence on the oxygen-binding properties of guinea pig blood.

    OpenAIRE

    Maginniss, L A; Szewczak, J M; Troup, C M

    1987-01-01

    Whole blood oxygen equilibrium curves (O2 ECs), blood buffer lines, and several hematologic properties were determined for adult guinea pigs exposed to 700 ppm methyl isocyanate (MIC) for 15 min. MIC inhalation effected a significant reduction of blood O2 affinity; the half-saturation pressure (P50) at 38 degrees C increased from the control (untreated) level of 22.8 +/- 0.1 mm Hg to values ranging from 28.5 to 43.7 mm Hg for experimental animals. MIC exposure had no apparent influence on O2 ...

  20. Cathodic protection beneath thick external coating on flexible pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Festy, Dominique; Choqueuse, Dominique; Leflour, Denise; Lepage, Vincent [Ifremer - Centre de Brest, BP 70 29280 Plouzane (France); Condat, Carol Taravel; Desamais, Nicolas [Technip- FLEXIFRANCE - PED/PEC - Rue Jean Hure, 76580 Le Trait (France); Tribollet, Bernard [UPR 15 du CNRS, Laboratoire LISE, 4 Place Jussieu, 75252 Paris Cedex (France)

    2004-07-01

    Flexible offshore pipelines possess an external polymer sheath to protect the structure against seawater. In case of an accidental damage of the outer sheath, the annulus of the flexible pipe is flooded with seawater. Far from the damage, corrosion and/or corrosion fatigue of armour steel wires in the annulus occur in a strictly deaerated environment; this has been studied for a few years. At the damage location, the steel wires are in direct contact with renewed seawater. In order to protect them against corrosion, a cathodic protection is applied using sacrificial anodes located at the end fittings. The goal of this work is to evaluate the extent of the cathodic protection as well as the electrolyte oxygen concentration beneath the coating around the damage, to know whether or not there is a non protected area with enough oxygen where corrosion and corrosion fatigue can occur. The experimental work was performed with a model cell (2000 x 200 mm{sup 2}), composed of a mild steel plate and a PMMA coat (transparent poly-methyl-methacrylate). The thickness of the gap between the steel plate and the PMMA coat was 0.5 mm. The potential and current density were monitored all along the cell (70 sensors). The oxygen concentration was also recorded. The experiments were performed with natural sea water, and cathodic protection was applied in a reservoir at one extremity of the cell. Another reservoir at the other cell extremity enabled carbon dioxide bubbling to simulate pipeline annular conditions. PROCOR software was used to simulate potential and current density within the gap and a mathematical model was developed to model oxygen concentration evolution. Both model and experimental results show that the extent of the cathodic protection is much greater than that of oxygen. Oxygen depletion is very quick within the gap when seawater fills it and the oxygen concentration is close to zero a few milli-metres from the gap opening. On the other hand, the cathodic protection

  1. Escherichia coli Absorbing External-DNA Under Condition of Lower Ca2+ Concentration%大肠杆菌在低Ca2+条件下对外源DNA的摄取

    Institute of Scientific and Technical Information of China (English)

    李文化; 谢志雄; 郭培懿; 陈向东; 沈萍

    2001-01-01

    含一定浓度Ca2+的LB培养基,接种大肠杆菌HB101,37 ℃振荡培养至OD600为0.5左右,培养前或培养后加入pBR322质粒,4 ℃放置一段时间后经氨苄青霉素筛选和质粒检测发现,大肠杆菌不经过高Ca2+下的冰浴处理和热激活等过程就能够直接摄取外源DNA;通过对转化子质粒拷贝数和氨苄青霉素抗性测定发现,这种转化方式进入菌体内的质粒DNA同样能够进行有效的复制和表达,与传统的人工转化结果无本质区别;在一定范围内,大肠杆菌的转化频率与环境中的Ca2+浓度成正相关,并且这种准自然条件下的转化需要一定的时间.实验结果对揭示大肠杆菌可能具有自然遗传转化的能力以及正确评估基因工程微生物的安全性具有重要意义.%Escherichia coli was inoculated in Luria Bertani (LB) medium containing lower CaCl2 concentration at 37 ℃ to approximate OD600 0.5.Plasmid pBR322 was added befor or after incubation.The transformants in the culture were screened from LB plates containing ampicillin(1×10-4 g /mL) after deposited at 4 ℃ for a certain time. The result indicated that E.coli could take in external-DNA under the conditions of resemble to the nature and the DNA absorbed can replicate and express regularly. Moreover, the transformation frequency was related to Ca2+ concentration and a proper time was required for accomplishing natural genetic transformation. The result is significant in understanding natural genetic transformation of E.coli and assessing the risk of the application of genetically engineed microorganism. (GEMs)

  2. Using oxygen at home

    Science.gov (United States)

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  3. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yury M. Lages

    2015-12-01

    Full Text Available Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs derived from pluripotent stem cells grown in 3% oxygen (v/v were compared with NPCs cultured in 21% (v/v oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS. NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.

  4. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  5. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  6. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  7. Oxygen supply and consumption in soilless culture: evaluation of an oxygen simulation model for cucumber

    NARCIS (Netherlands)

    Baas, R.; Wever, G.; Koolen, A.J.; Tariku, E.; Stol, K.J.

    2001-01-01

    A soil oxygen simulation model (OXSI) was tested and evaluated for evaluating growing media with respect to aeration. In the model, local oxygen concentrations are calculated from coefficients of diffusion and consumption (respiration), assuming equilibrium conditions. Apparent oxygen diffusion coef

  8. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Science.gov (United States)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  9. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  10. Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoulès mine waters (Southern France).

    Science.gov (United States)

    Resongles, Eléonore; Casiot, Corinne; Elbaz-Poulichet, Françoise; Freydier, Rémi; Bruneel, Odile; Piot, Christine; Delpoux, Sophie; Volant, Aurélie; Desoeuvre, Angélique

    2013-08-01

    The speciation and behaviour of antimony were investigated in surface waters downstream from the abandoned Pb-Zn Carnoulès mine (Gard, France). These waters exhibit a permanent gradient of oxygen concentration and pH, ranging from acid suboxic in Reigous Creek at the outlet of sulfide tailings impoundment, to near neutral oxygenated at downstream sites along the rivers Amous and Gardon. The concentration of total dissolved (Sb attenuation. Speciation analysis carried out during three surveys indicated that Sb(III) represented up to 70% of the total dissolved Sb concentration at the source of Reigous Creek, while Sb(V) represented less than 50%. Field characterization showed that Sb(III) and Sb(V) species were attenuated through dilution and were also removed from the dissolved phase during downstream transport. Speciation analysis in suspended particulate matter extracts gave a distribution of particulate Sb into 70 to 100% of Sb(III) and less than 30% of Sb(V). The removal of Sb(III) and Sb(V) species from the dissolved phase was concordant with the oversaturation of Reigous Creek water relative to Sb(III)- and Sb(V)-oxides and Sb(III)- and Sb(V)-Fe oxides. Sb(III) was more efficiently removed than Sb(V) or As(III) and it was no more detectable in the dissolved phase at downstream sites in the rivers Amous and Gardon. Conversely, the concentration of Sb(V) in the rivers Amous and Gardon still denoted contamination arising from the Carnoulès mine. The range of log Kd values, from 2.4 L kg(-1) to 4.9 L kg(-1), indicated that Sb was mainly transported in the dissolved phase downstream the Reigous Creek input. Altogether, these results give a better understanding of the fate of Sb downstream from sulfide-rich mining wastes.

  11. [Apneic oxygenation].

    Science.gov (United States)

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used.

  12. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)(y)MnO3 +/-delta

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2000-01-01

    Two precise algorithms are devised for the calculation of defect concentrations in A-site acceptor doped ABO(3) perovskites. The two models contain nine species including cation vacancies on the A- and B-site. The small polaron model is based on three redox levels of the B-ion. A large polaron mo......(-2) arm. (C) 2000 Elsevier Science B.V. All rights reserved....

  13. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    Science.gov (United States)

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  14. The impact of external donor support through the U.S. President's Emergency Plan for AIDS Relief on the cost of red cell concentrate in Namibia, 2004-2011

    NARCIS (Netherlands)

    Pitman, John P.; Bocking, Adele; Wilkinson, Robert; Postma, Maarten J.; Basavaraju, Sridhar V.; von Finckenstein, Bjorn; Mataranyika, Mary; Marfin, Anthony A.; Lowrance, David W.; Smit Sibinga, Cornelis

    2015-01-01

    BACKGROUND: External assistance can rapidly strengthen health programmes in developing countries, but such funding can also create sustainability challenges. From 2004-2011, the U.S. President's Emergency Plan for AIDS Relief (PEPFAR) provided more than $8 million to the Blood Transfusion Service of

  15. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    Science.gov (United States)

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oxygen Therapy

    OpenAIRE

    2000-01-01

    LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood ox...

  17. Crescimento de alevinos de jundiá, Rhamdia quelen (Pisces, Pimelodidae, em diferentes concentrações de oxigênio dissolvido = Growth of silver catfish Rhamdia quelen (Pisces, Pimelodidae fingerlings in different dissolved oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Giancarlo Maffezzolli

    2006-01-01

    Full Text Available O objetivo deste estudo foi avaliar o crescimento de alevinos de jundiá, Rhamdia quelen, em 5 concentrações de oxigênio dissolvido: 1,3 (T1, 2,4 (T2, 3,7 (T3, 5,4 (T4 e 7,5 mg O2/L (T5. O estudo utilizou o modelo experimental inteiramente ao acaso com 3 repetições e foi conduzido por 25 dias. Os alevinos foram distribuídos em tanques circulares de fibra de vidro de 150 L mantidos na escuridão e dotados de aeração mecânica, filtro biológico e renovação de água, nadensidade de 34 indivíduos/tanque. A sobrevivência foi menor nos extremos testados (T1 e T5. Maior crescimento em peso e em comprimento e melhor conversão alimentar foram obtidos com o aumento da concentração de oxigênio dissolvido. Os alevinos de jundiá apresentaram incremento em peso, mesmo na menor concentração de oxigênio dissolvido (T1, e T4 produziu os melhores efeitos sobre o desenvolvimento.This study's aim was evaluate the growth of silver catfish (Rhamdia quelen fingerlings on five dissolved oxygen concentrations: 1,3 (T1, 2,4 (T2, 3,7 (T3, 5,4 (T4 and 7,5 mg O2/L (T5. A completely random design experiment with three repetitions was used and the experiment was carried out during 25 days. Fingerlings were distributed in circular, 150-L fiberglass tanks kept in darkness, endowed with mechanic and biological filters and water renewal, at a stocking density of 34 individuals/tank. Survival was lower at the extreme tested levels (T1 and T5. Better growth in weight, length and food conversion were found at increasing oxygen concentrations. Even at the lowest oxygen concentration (T1 fingerlings showed growth increase. The best effects on silver catfish fingerlings development was observed at T4.

  18. Design of Oxygen Concentration Detection Based on WiFi and Cloud Intelligent%基于WiFi的云智能血氧仪设计研究∗

    Institute of Scientific and Technical Information of China (English)

    翟永前; 奚吉; 赵力

    2015-01-01

    Combined with the latest developments in communications technology,this paper presented a detection system of oxygen concentration based on WiFi and intelligent cloud. The system utilizes cloud computing to fulfill fuzzy neural, and network to achieve the ant colony optimization algorithm,which not only reduces the complexity of the perceived end hardware and software design,and effectively improves the oxygen detection accuracy,real-time tracking and more condu-cive to long-term maintenance of health data oxygen. Experimental Results shows the design is safe and reliable,consist-ent with the development of intelligent health care,so it has good application and promotional value.%结合通信技术最新发展,本文通过引入云智能,提出了一种基于WiFi的云智能血氧浓度检测系统。该系统利用云计算实现了模糊神经网络的蚁群优化算法,不仅降低了感知端的软硬件设计的复杂度,而且有效提高了血氧检测精度,更有利于血氧健康数据的实时跟踪和长期维护。实验结果表明,本文提出的设计安全可靠,符合智能医疗的发展方向,因此具有较好的应用及推广价值。

  19. Seven-day mortality can be predicted in medical patients by blood pressure, age, respiratory rate, loss of independence, and peripheral oxygen saturation (the PARIS score: a prospective cohort study with external validation.

    Directory of Open Access Journals (Sweden)

    Mikkel Brabrand

    Full Text Available Most existing risk stratification systems predicting mortality in emergency departments or admission units are complex in clinical use or have not been validated to a level where use is considered appropriate. We aimed to develop and validate a simple system that predicts seven-day mortality of acutely admitted medical patients using routinely collected variables obtained within the first minutes after arrival.This observational prospective cohort study used three independent cohorts at the medical admission units at a regional teaching hospital and a tertiary university hospital and included all adult (≥ 15 years patients. Multivariable logistic regression analysis was used to identify the clinical variables that best predicted the endpoint. From this, we developed a simplified model that can be calculated without specialized tools or loss of predictive ability. The outcome was defined as seven-day all-cause mortality. 76 patients (2.5% met the endpoint in the development cohort, 57 (2.0% in the first validation cohort, and 111 (4.3% in the second. Systolic blood Pressure, Age, Respiratory rate, loss of Independence, and peripheral oxygen Saturation were associated with the endpoint (full model. Based on this, we developed a simple score (range 0-5, ie, the PARIS score, by dichotomizing the variables. The ability to identify patients at increased risk (discriminatory power and calibration was excellent for all three cohorts using both models. For patients with a PARIS score ≥ 3, sensitivity was 62.5-74.0%, specificity 85.9-91.1%, positive predictive value 11.2-17.5%, and negative predictive value 98.3-99.3%. Patients with a score ≤ 1 had a low mortality (≤ 1%; with 2, intermediate mortality (2-5%; and ≥ 3, high mortality (≥ 10%.Seven-day mortality can be predicted upon admission with high sensitivity and specificity and excellent negative predictive values.

  20. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    Science.gov (United States)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  1. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  2. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area].

    Science.gov (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning

    2015-10-01

    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning

  3. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  4. 循环流化床高浓度富氧燃烧试验研究%Experimental Study on Oxy-fuel Combustion With High Oxygen Concentration in a Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    谭力; 李诗媛; 李伟; 寿恩广; 吕清刚

    2014-01-01

    In order to investigate the effects of combustion temperature and atmosphere on the combustion stability, CO2 concentration and gaseous pollutants emissions in flue gas, in a 0.1 MW circulating fluidized bed (CFB) oxy-fuel combustion facility, oxy-combustion experiments with Datong coal were carried out at O2/CO2 and O2/ recycled flue gas (RFG) atmosphere with high oxygen concentration. The test results show that when the oxygen concentration of the primary air ranges from 49.6%to 55.2%and that of the secondary air is in the range from 45.3%to 51.7%, the CFB oxy-fuel combustion facility maintains stably at O2/RFG atmosphere. In flue gas, CO2 concentration can reach above 90%, SO2 concentration is 87 to 197 mg/MJ, N2O concentration is 48 to 78 mg/MJ, and NO concentration is only 19 to 44 mg/MJ. Compared with the result of O2/CO2 combustion, the concentration of CO and SO2 increases to a certain degree, while N2O concentration decreases obviously, and NO concentration basically remains the same.%#在0.1 MW循环流化床富氧燃烧试验系统上,进行了大同烟煤在O2/再循环烟气(RFG)和O2/CO2配气下的高浓度富氧燃烧试验,研究燃烧温度和气氛对燃烧稳定性、烟气中CO2浓度和气体污染物排放的影响。研究结果表明,O2/RFG气氛下,在一次风氧气浓度为49.6%~55.2%、二次风氧气浓度为45.3%~51.7%范围内,循环流化床能够稳定运行,烟气中CO2浓度达到90%以上,SO2浓度为87~197 mg/MJ,N2O浓度为48~78 mg/MJ,NO仅为19~44 mg/MJ。与O2/CO2配气燃烧相比,O2/RFG燃烧时除NO浓度基本不变外,CO与SO2浓度均有一定程度的增加,而N2O浓度则明显降低。

  5. Appreciating Oxygen

    Science.gov (United States)

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  6. Medidas da concentração de oxigênio dissolvido na superfície da água Measurements of dissolved oxygen concentration at water surface

    Directory of Open Access Journals (Sweden)

    Johannes Gerson Janzen

    2008-09-01

    Full Text Available A transferência de gases através da interface ar-água é um processo importante para ciclos climáticos de grande escala e para sistemas ambientais menores como rios, lagos, córregos e estações de tratamento de esgoto. Para avançar no entendimento dos princípios básicos envolvidos no fenômeno é necessária a utilização de técnicas e aparatos experimentais adequados. Neste estudo, foram realizadas medidas de concentração através da utilização de micro sonda de oxigênio, em tanque de grade oscilante. A dimensão do elemento sensor da micro sonda é da ordem de alguns micra. Os resultados demonstram a possibilidade de medir, sob condições turbulentas controladas similares às encontradas no ambiente, as flutuações de concentração de oxigênio no interior da camada limite existente imediatamente abaixo da interface ar-água.Gas transfer across the air-water interface is an important process for large-scale climate cycles as well as smaller environmental systems such as rivers, lakes, streams, and wastewater treatment basins. To improve the understanding of the basic principles involved in this phenomenon it is necessary to use suitable apparatus and experimental techniques. In this study, a microprobe has been used for measurements of oxygen concentration in an oscillating-grid tank. The microprobe has tip dimensions of the order of a few microns. The results demonstrate that it is feasible to measure, under controlled turbulence conditions that are representative for environmental situations, the fluctuating oxygen concentrations that take place in a boundary layer below the air-water interface.

  7. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...... methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen...

  8. Dipolar fluids under external perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Sabine H L [Stranski-Laboratorium fuer Physikalische und Theoretische Chemie Sekretariat TC7, Technische Universitaet Berlin, Strasse des 17. Juni 124, D-10623 Berlin (Germany)

    2005-04-20

    We discuss recent developments and present new findings on the structural and phase properties of dipolar model fluids influenced by various external perturbations. We concentrate on systems of spherical particles with permanent (point) dipole moments. Starting from what is known about the three-dimensional systems, particular emphasis is given to dipolar fluids in different confining situations involving both simple and complex (disordered) pore geometries. Further topics concern the effect of quenched positional disorder, the influence of external (electric or magnetic) fields, and the fluid-fluid phase behaviour of various dipolar mixtures. It is demonstrated that due to the translational-orientational coupling and due to the long range of dipolar interactions even simple perturbations such as hard walls can have a profound impact on the systems. (topical review)

  9. Oxygen detection using evanescent fields

    Science.gov (United States)

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  10. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    Science.gov (United States)

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  11. Oxygen Therapy

    Science.gov (United States)

    ... oxygen at very high altitudes (like in the mountains or in an airplane) even if you do ... Med Vol 171. P1-P2, 2005 ATS Patient Education Series © 2016 American Thoracic Society www. thoracic. org ...

  12. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  13. Effects of dissolved oxygen concentration and flow velocity on corrosion of carbon steel in tap water; Suidosuichu ni okeru tansoko fushoku ni oyobosu yoson sanso nodo to ryusoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M.; Ouchi, M. [Miura Institute of Research and Development, Ehime (Japan); Fujii, T.; Shiraishi, H.; Kawahito, A. [Miura Co. Ltd., Ehime (Japan)

    1998-05-15

    Discussions were given on the effects of dissolved oxygen (DO) concentration and flow velocity on temporary corrosion of carbon steel in tap water by using a membrane-type deaerator which uses a hollow fiber membrane for air separation. In deaerated air with DO at 0.5 mg per liter, active corrosion took place, in which corrosion rate increases with flow velocity in a range from 0.5 to 2.0 m/s. The corrosion rate in a carbon steel in deaerated air with flow velocity of 0.5 m/s and DO of 0.5 mg per liter decreased to 1/4 to 1/5 of that in non-deaerated water, showing effectiveness in preventing corrosion and red water in pipings in buildings. The corrosion prevention effect is more excellent especially in low flow velocity regions, meaning it being suitable for corrosion prevention in building pipings for water supply which is low in flow velocity and often subjected to stagnation. It was found that, even at about the same flow velocity, the deaerated water is on the safer side than the non-deaerated water. With waters having DO of 2.0 and 4.0 mg per liter, the corrosion rate decreased when flow velocity is higher than 1 m/s, with appearance of passivation trend. There is a relation with high reproducibility between the corrosion rate in the carbon steel and oxygen supply amount, whereas the curve showed a maximum value. This maximum value is thought a transition point from active state corrosion to passive state corrosion. 9 refs., 6 figs., 2 tabs.

  14. Continuous home oxygen therapy.

    Science.gov (United States)

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    Science.gov (United States)

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  16. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  17. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  18. MALIGNANT EXTERNAL OTITIS

    OpenAIRE

    Massoud Moghaddam

    1993-01-01

    Two case reports of malignant external otitis in the elderly diabetics and their complications and management with regard to our experience at Amir Alam Hospital, Department of ENT will be discussed here.

  19. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke;

    2014-01-01

    RATIONALE, AIMS AND OBJECTIVES: The quality of the current literature on external validity varies considerably. An improved checklist with validated items on external validity would aid decision-makers in judging similarities among circumstances when transferring evidence from a study setting...... to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...

  20. A Low-Power Medical Oxygen Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  1. A Compact Medical Oxygen Generator for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. Commercial medical oxygen generators are pressure...

  2. Migration with fiscal externalities.

    Science.gov (United States)

    Hercowitz, Z; Pines, D

    1991-11-01

    "This paper analyses the distribution of a country's population among regions when migration involves fiscal externalities. The main question addressed is whether a decentralized decision making [by] regional governments can produce an optimal population distribution...or a centralized intervention is indispensable, as argued before in the literature.... It turns out that, while with costless mobility the fiscal externality is fully internalized by voluntary interregional transfers, with costly mobility, centrally coordinated transfers still remain indispensable for achieving the socially optimal allocation."

  3. Sen cycles and externalities

    OpenAIRE

    Piggins, Ashley; Salerno, Gillian

    2016-01-01

    It has long been understood that externalities of some kind are responsible for Sen’s (1970) theorem on the impossibility of a Paretian liberal. However, Saari and Petron (2006) show that for any social preference cycle generated by combining the weak Pareto principle and individual decisiveness, every decisive individual must suffer at least one strong negative externality. We show that this fundamental result only holds when individual preferences are strict. Building on their contribution,...

  4. The Measurement of Dissolved Oxygen

    Science.gov (United States)

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  5. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    Science.gov (United States)

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  6. 溶解氧浓度对连续流活性污泥工艺反硝化除磷的影响%Effects of dissolved oxygen concentration on denitrifying phosphorus removal in continuous-flow activated sludge process

    Institute of Scientific and Technical Information of China (English)

    王荣昌; 司书鹏; 郑翔; 杨殿海; 励建全; 赵建夫

    2011-01-01

    @@ 引言 随着水体富营养化问题的日渐突出,污水处理技术逐渐从单一去除有机物为目的的阶段进入既要去除有机物又要脱氮除磷的深度处理阶段[1].%Effects of dissolved oxygen (DO) concentration on removal performance of nitrogen and phosphorus were investigated in a pilot-scale anaerobic-anoxic-aerobic (A2/O) activated sludge process for treating municipal wastewater. During run operation, sludge recycling ratio and internal mixed liquid recirculation ratio were kept constant at 150% and 100%, respectively. The results showed that DO concentration played an important role in nutrient removal by A2/O process. Denitrifying phosphorus removal was observed when aerobic tank was kept at low DO (DO=1. 0-1.5 mg · L-1) conditions. The best performance of nutrient removal was achieved when DO concentration was kept at 0. 2 mg · L-1 in anoxic tank and 1.0 mg · L-1 in aerobic tank. Total nitrogen (TN) and total phosphorus (TP) removal was about 64.6% and 89.6%, respectively. TN and TP concentration in the effluent was (11.9± 5. 3)mg · L-1and (0. 17±0.09) mg· L-1 , respectively. TP removal in anoxic tank was about 48.2% of the total TP removal by the whole process. Denitrifying phosphorus removal became an important way of dephosphorization. Denitrifying phosphorus removal bacteria (DPB) accounted for 55.7% of the total phosphorus accumulating organisms (PAOs) based on the results of denitrifying phosphorus removal activity analysis. The analysis for particle diameter distributions showed that the particle diameter of activated sludge in aerobic tank was larger than those in anaerobic and anoxic tanks. Larger particle diameter resulted in the existence of anaerobic or anoxic microenvironments in the sludge particles in aerobic tank, which favored the survival and propagation of DPBs in the whole system. Therefore, the nutrient removal performance and cost-efficiency of conventional activated sludge processes can

  7. Saturn's Stratospheric Oxygen Compounds

    Science.gov (United States)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  8. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  9. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  10. Externality or sustainability economics?

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, Jeroen C.J.M. van den [ICREA, Barcelona (Spain); Department of Economics and Economic History and Institute for Environmental Science and Technology, Universitat Autonoma de Barcelona (Spain)

    2010-09-15

    In an effort to develop 'sustainability economics' Baumgaertner and Quaas (2010) neglect the central concept of environmental economics-'environmental externality'. This note proposes a possible connection between the concepts of environmental externality and sustainability. In addition, attention is asked for other aspects of 'sustainability economics', namely the distinction weak/strong sustainability, spatial sustainability and sustainable trade, distinctive sustainability policy, and the ideas of early 'sustainability economists'. I argue that both sustainability and externalities reflect a systems perspective and propose that effective sustainability solutions require that more attention is given to system feedbacks, notably other-regarding preferences and social interactions, and energy and environmental rebound. The case of climate change and policy is used to illustrate particular statements. As a conclusion, a list of 20 insights and suggestions for research is offered. (author)

  11. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  12. The natural history of oxygen.

    Science.gov (United States)

    Dole, M

    1965-09-01

    The nuclear reactions occurring in the cores of stars which are believed to produce the element oxygen are first described. Evidence for the absence of free oxygen in the early atmosphere of the earth is reviewed. Mechanisms of creation of atmospheric oxygen by photochemical processes are then discussed in detail. Uncertainty regarding the rate of diffusion of water vapor through the cold trap at 70 km altitude in calculating the rate of the photochemical production of oxygen is avoided by using data for the concentration of hydrogen atoms at 90 km obtained from the Meinel OH absorption bands. It is estimated that the present atmospheric oxygen content could have been produced five to ten times during the earth's history. It is shown that the isotopic composition of atmospheric oxygen is not that of photosynthetic oxygen. The fractionation of oxygen isotopes by organic respiration and oxidation occurs in a direction to enhance the O(18) content of the atmosphere and compensates for the O(18) dilution resulting from photosynthetic oxygen. Thus, an oxygen isotope cycle exists in nature.

  13. Effects of prostaglandin E1 (PGE1) on the positive inotropic response of heart muscle to elevation of external Ca++-concentration, to increased driving frequency, and to paired stimulation.

    Science.gov (United States)

    Hadházy, P

    1976-01-01

    Electrically driven left guinea pig atria were exposed to positive inotropic stimuli which are thought to be related to the turnover of calcium ions. For increasing contractibility, the following procedures were used: a) varying the concentration of CaCl2 in the bath fluid; b) stimulation at frequencies from 1.0 to 3.0 Hz; c) paired stimulation. Positive inotropic responses to the increase of the rate of stimulation and to paired stimulation were not affected by 0.1 microgram/ml tetrodotoxin (TTX). This excludes the adrenergic contribution to the positive inotropic effects observed. Actions of the positive inotropic stimuli were studied both in the absence and in the presence of 0.1--1.0--10.0--1000.0 ng/ml of PGE1-PGE1 in the highest concentration used increased contractile force. The inotropic stimulus-response curves were not affected by PGE1 at any concentration. This finding suggests there is no interaction between Ca ions and PGE1 in the contractile mechanism of the guinea pig heart muscle.

  14. Evaluation of {sup 222}Rn concentration of the internal and external environments of residences at Monte Alegre municipality, Para, Brazil; Avaliacao da concentracao do {sup 222}Rn nos ambientes internos e externos de residencias do municipio de Monte Alegre, PA

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Vicente de Paula

    1999-07-01

    The human being is constantly exposed to the natural radioactivity in the environment where he lives. This radioactivity comes mainly from materials present in the terrestrial crust that possess in their constitution chemical elements belonging to the radioactive families of uranium and thorium. The use of such materials for the construction of houses constitutes an important exposure form to the natural radiation, above all to the radioactive gas {sup 222}Rn, that it is exhaled from them. The Brazilian soil is composed, among other, of minerals that contain appreciable concentrations of these elements. The inhabitants of Monte Alegre town in Para, located at 2 deg 00' 24,9 'S ; 54 deg 04 ' 13,5 {sup W}, used in the construction of their houses stones obtained from an area 20 km distant of Monte Alegre, denominated Ingles de Souza, located at 01 deg 56' 4 0,1 S; 54 deg 12 149,7 W, where a small residential village, denominated National Agricultural Colony of Para (CANP), is located. The objective of this work was to evaluate the indoor concentration of {sup 222}Rn in the residences of Monte Alegre and CANP. Determinations of the {sup 238}U and {sup 226}Ra concentrations, measurements of the radon flux in samples of stones and soils of the two regions, as well as measurements to the gamma dose close of the soil and inside the residences, were also carried out. The average results of the radon concentration in the air of the investigated residences did not exceed the limits of 200 Bq. m{sup 3} (action level) and 600 Bq. m{sup 3} (intervention level) recommended by the International Commission on Radiological Protection (ICRP). The concentrations of natural radionuclides and the radon flux determined at the village showed values 17 times higher than those found at the urban area of Monte Alegre, while the average indoor gamma dose rate in the village residences was 0.86 mSv/a. (author)

  15. The generation of oxygen radicals after drinking of oxygenated water.

    Science.gov (United States)

    Schoenberg, M H; Hierl, T C; Zhao, J; Wohlgemuth, N; Nilsson, U A

    2002-03-28

    It has been speculated whether ingestion of oxygenated water can lead to an enhanced generation of oxygen radicals. The purpose of three prospective randomized blinded clinical studies was therefore to measure if, when and at which oxygen content in the water,drinking of oxygenated water induces the generation of radicals. Moreover in the fourth prospective,randomized, blinded study possible longterm effects of drinking oxygenated water were examined. Altogether 66 volunteers were drinking 300 ml oxygenated or tap water within 15 minutes. Before drinking, altogether 15 ml of blood from the antecubital vein was collected for determination of ascorbyl radicals with ESR, routine laboratory data (hemoglobin, erythrocytes, hematocrit, leukocytes, thrombocytes, uric acid) and the vitamins A,C,E by HPLC. After drinking the ascorbyl radical measurements were repeated from blood of the antecubital vein. In the longterm study ( fourth study) the volunteers had to undergo the same procedure, as described above, at day 1 and day 21. In the meantime they were drinking per day three times 300 ml either oxygenated water or tap water. All subjects exhibited normal vitamin levels in all three studies. Concommitantly in the fourth study there was no statistically relevant alteration of vitamin concentrations during the observation period of three weeks in the verum and placebo-group. 30 minutes after drinking oxygenated water the concentration of ascorbyl radicals increased significantly by median 42 % from median 48 to 65 nmol/l. This increase of ascorbyl radicals after 30 minutes was reproducible in all studies. The levels of ascorbyl radicals remained elevated for 60 minutes after drinking and returned to normal after 120 minutes. This increase was independent of the oxygen concentration in the water, beginning at 30 mg oxygen/l. Water containing 15 mg oxygen/l did not lead to an enhanced radical formation. Longterm consumption of oxygenated water attenuated the ascorbyl radical

  16. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    and bottom water very low concentration. The stations at the freshwater end showed relatively higher oxygen concentration than the stations at the sea-end. Plots of oxygen against salinity showed peaks at the extreme ends (freshwater and seawater). Another...

  17. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  18. Productivity Change and Externalities

    DEFF Research Database (Denmark)

    Kravtsova, Victoria

    2014-01-01

    firms and the economy as a whole. The approach used in the current research accounts for different internal as well as external factors that individual firms face and evaluates the effect on changes in productivity, technology as well as the efficiency of domestic firms. The empirical analysis focuses...... change in different types of firms and sectors of the economy...

  19. Multiple external root resorption.

    Science.gov (United States)

    Yusof, W Z; Ghazali, M N

    1989-04-01

    Presented is an unusual case of multiple external root resorption. Although the cause of this resorption was not determined, several possibilities are presented. Trauma from occlusion, periodontal and pulpal inflammation, and resorption of idiopathic origin are all discussed as possible causes.

  20. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  1. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summaris...

  2. Reversible Oxygenation of Oxygen Transport Proteins.

    Science.gov (United States)

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  3. The External Mind

    DEFF Research Database (Denmark)

    The External Mind: an Introduction by Riccardo Fusaroli, Claudio Paolucci pp. 3-31 The sign of the Hand: Symbolic Practices and the Extended Mind by Massimiliano Cappuccio, Michael Wheeler pp. 33-55 The Overextended Mind by Shaun Gallagher pp. 57-68 The "External Mind": Semiotics, Pragmatism......, Extended Mind and Distributed Cognition by Claudio Paolucci pp. 69-96 The Social Horizon of Embodied Language and Material Symbols by Riccardo Fusaroli pp. 97-123 Semiotics and Theories of Situated/Distributed Action and Cognition: a Dialogue and Many Intersections by Tommaso Granelli pp. 125-167 Building...... Action in Public Environments with Diverse Semiotic Resources by Charles Goodwin pp. 169-182 How Marking in Dance Constitutes Thinking with the Body by David Kirsh pp. 183-214 Ambiguous Coordination: Collaboration in Informal Science Education Research by Ivan Rosero, Robert Lecusay, Michael Cole pp. 215-240...

  4. External-Memory Multimaps

    CERN Document Server

    Angelino, Elaine; Mitzenmacher, Michael; Thaler, Justin

    2011-01-01

    Many data structures support dictionaries, also known as maps or associative arrays, which store and manage a set of key-value pairs. A \\emph{multimap} is generalization that allows multiple values to be associated with the same key. For example, the inverted file data structure that is used prevalently in the infrastructure supporting search engines is a type of multimap, where words are used as keys and document pointers are used as values. We study the multimap abstract data type and how it can be implemented efficiently online in external memory frameworks, with constant expected I/O performance. The key technique used to achieve our results is a combination of cuckoo hashing using buckets that hold multiple items with a multiqueue implementation to cope with varying numbers of values per key. Our external-memory results are for the standard two-level memory model.

  5. The external microenvironment of healing skin wounds.

    Science.gov (United States)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron C Y; Kiwanuka, Elizabeth; Singh, Mansher; Caterson, Edward J; Eriksson, Elof; Sørensen, Jens A

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment. © 2015 by the Wound Healing Society.

  6. Double wavelengths ratio in detection of the concentrations of reactive oxygen species%双波长比例法测定单细胞活性氧探析

    Institute of Scientific and Technical Information of China (English)

    赵成瑞; 崔香丽; 吴博威

    2011-01-01

    Objective To establish the double wavelengths ratio for detecting the concentrations of reactive oxygen species( ROS) in single cell. Methods ①Adult rat cardiomyocytes were isolated by enzymatic dissociation. Fluorescence signals of the single cell were recorded by the ion imaging system for finding Lhe two excitation wavelengths which made the biggest and the smallest fluorescence signal intensities. ②Cardiomyocytes were perfused with BPS4 to imitate the ischemia/reperfusion model. Some cardiomyocytes were reperfused with GSH. The intracellular ROS concentrations were measured. ,Results ①The values of the fluorescence intensity at 480 nm and 420 nm were the higgest and smallest . respectively. F480/F420 was used to represenl the intracellular ROS concentrations. ②At mimic ischemia and reperfusion stages,intracellular ROS fluorescence intensities ( F480/F420) increased progressively to ( 115. 27 ±4. 52) % and ( 1 16. 99 ± 3. 99 ) % of pre-ischemia respectively. When CSH was used in reperfusion , ROS fluorescence intensity decreased quickly to ( 101. 14 ±3. 20) % of pre-ischemia. Conclusion Double wavelengths ratio could be used to detect intracellular ROS.%目的 建立双波长比例法测定单细胞活性氧的方法. 方法 ①酶法急性分离成年大鼠心室肌细胞,用离子影像系统测定荧光信号,确定荧光强度值变化相反的两个激发光波长.②BPS-4装置灌流心肌细胞,模拟心肌缺血/再灌注模型及再灌注时应用还原型谷胱甘肽,用双波长比例法测定细胞内活性氧含量变化,验证此法. 结果 ①荧光强度值最大和最小的激发光波长分别是:480 nm和420 nm,以F480/F420的比值表示活性氧的含量.②心室肌细胞在模拟缺血期和恢复再灌注期的相对F480/F420分别为缺血前的(115.27±4.52)%和(116.99±3.99)%,在再灌注期给予GSH,则活性氧含量降为缺血前的(101.14±3.20)%. 结论 双波长比例法可用于测定细胞内活性氧.

  7. 冰温结合不同比例氧气气调对冷却肉的保鲜效果%Effect of modified atmosphere package with varying oxygen concentrations combined with controlled freezing-point storage on pork fresh-keeping

    Institute of Scientific and Technical Information of China (English)

    谢晶; 李建雄; 潘迎捷

    2009-01-01

    试验研究了在冰温基础上结合不同含氧比例气调对冷却猪肉保鲜的影响,试验设置冰温、冷藏(4℃)、真空包装+冰温、20%CO_2+80%O_2(高氧)+冰温、20%CO_2+20%O_2+60%N_2(低氧)+冰温、20%CO_2+80%N_2(无氧)+冰温6个试验组,测定菌落总数、挥发性盐基氮、汁液流失率、保水能力和色差.结果表明:冰温条件下高氧和低氧的菌落总数24 d还未超过冷却肉卫生标准,且两组之间无显著差异(P>0.05);在整个贮藏期内高氧气调和低氧气调可以维持冷却肉的色泽在一个小的范围内变化;高氧气调和低氧气调8 d后汁液流失率显著高于单纯冰温和无氧气调(P<0.05),高氧气调12 d后汁液流失率显著高于低氧气调(P<0.05),同时高氧气调8 d后持水能力显著大于低氧气调(P<0.05).在冰温条件下,80%O_2和20%O_2都能长时间维护冷却肉的色泽,均能较好抑制微生物的增殖,但在汁液流失率、保水能力方面各有优势.%Effect of modified atmosphere packaging with varying oxygen concentrations combined controlled freezing-point storage on pork fresh-keeping was studied. By determining physicochemical parameters such as total plate count, total volatile base nitrogen (TVB-N), drip loss, water holding capacity and color, the qualities of pork under controlled freezing-point storage, chill storage, vacuum package+controlled freezing-point storage, 20%CO_2+80%O_2 (high oxygen)+controlled freezing-point storage, 20%CO_2+20%O_2+60%N_2 (low oxygen)+controlled freezing-point storage and 20%CO_2+80%N_2(no oxygen)+controlled freezing-point storage were compared. It showed that total plate count under high oxygen and low oxygen did not exceed the hygiene standard of pork after twenty-four days, and there was no significant difference between them(P>0.05). High oxygen modified atmosphere package(MAP) and low oxygen MAP maintained the color better. The drip losses of high oxygen MAP and low oxygen MAP after eight

  8. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  9. Regularization by External Variables

    DEFF Research Database (Denmark)

    Bossolini, Elena; Edwards, R.; Glendinning, P. A.

    2016-01-01

    Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula...... of regularization, by external variables that shadow either the state or the switch of the original system. The shadow systems are derived from and inspired by various applications in electronic control, predator-prey preference, time delay, and genetic regulation....

  10. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  11. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    Science.gov (United States)

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  12. Design and Development of Electrochemical Oxygen Meter in Liquid Sodium

    Institute of Scientific and Technical Information of China (English)

    WANG; Mi; DONG; Jing-ya; MI; Zheng-feng; FU; Xiao-gang

    2015-01-01

    Dissolved oxygen concentration is of particular importance in characterizing sodium attack,so an accurate means of measuring and controlling oxygen is crucial.China Institute of Atomic Energy has been developing online oxygen meter for liquid sodium since last year.Oxygen meter can

  13. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  14. External loading does not change energy cost and mechanics of rollerski skating.

    Science.gov (United States)

    Millet, G; Perrey, S; Candau, R; Belli, A; Borrani, F; Rouillon, J D

    1998-08-01

    The purpose of this study was to examine the effects of external loading on the energy cost and mechanics of roller ski skating. A group of 13 highly skilled male cross-country skiers roller skied at 19.0 ( SD 0.1) km x h(-1) without additional load and with loads of 6% and 12% body mass (mb). Oxygen uptake (VO2), knee and ankle joint kinematics, roller-ski electromyogram (EMG) of the vastus lateralis and gastrocnemius lateralis muscles, and roller ski velocity were recorded during the last 40 s of each 4-min period of roller skiing. One-way repeated measures ANOVA revealed that the VO2 expressed relative to total mass (mtot), joint kinetics, eccentric-to-concentric ratio of the integrated EMG, velocity changes within a cycle, and cycle rate did not change significantly with load. The subsequent analysis of the effect of load on each resistance opposing motion suggested that the power to sustain changes in translational kinetic energy, potential energy, and overcoming rolling resistance increased proportionately with the load. The lack of a significant change in VO2/mtot with external loading was associated with a lack of marked change in external mechanical power relative to mtot. The existence of an EMG signal during the eccentric phase prior to the thrust (concentric phase), as well as the lack of significant delay between the two phases, showed that a stretch-shortening cycle (SSC) occurs in roller ski skating. Taken together, the present results would suggest that external loading up to 12% mb does not increase storage and release of elastic energy of lower limb muscles during SSC in roller ski skating.

  15. External Measures of Cognition

    Directory of Open Access Journals (Sweden)

    Osvaldo eCairo

    2011-10-01

    Full Text Available The human brain is undoubtedly the most impressive, complex and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind.

  16. PERFORMANCE OF A SEQUENTIAL MOVING BED BIOFILM REACTOR UNDER DIFFERENT DISSOLVED OXYGEN CONCENTRATIONS = DESEMPENHO DE UM REATOR SEQUENCIAL COM BIOFILME EM LEITO MÓVEL SOB DIFERENTES CONCENTRAÇÕES DE OXIGÊNIO

    Directory of Open Access Journals (Sweden)

    Rodrigo de Freitas Bueno

    2015-11-01

    Full Text Available The study evaluated the behavior of a mobile pilot containing plastic substrates system (carries for treatment of domestic sewage in different Dissolved oxygen (DO. For evaluation of the process were put into operation two reactors under equal conditions, differing only by the introduction in one of the support means (called SMBBR; that without the support medium, SBR. The study had two main steps, the first systems were operated in the range of 1.5-2.0 DO mgO2/L (typical value for such a procedure resulted in a COD removal exceeding 90%, nitrogen and total phosphorus exceeding 78% in both reactors. In Step II, the systems were operated with a DO concentration in the range of 0.3-0.8 mgO2/L, in order to evaluate the effect of lowering the DO concentration in the removal of organic material, and strengthening the process of denitrification. The results at this stage showed a COD removal and total nitrogen exceeding 90% and 83% total phosphorus. When comparing the results between steps, it can be said that the decrease in DO concentration did not affect the removal of organic matter and nutrients, and the fact improve the removal of total nitrogen the biggest gain this operating configuration is related to spending energy required for aeration system where you can get a reduction of 68% less than traditional processes. Further, during operation of the system SMBBR process was more stable than the SBR operable not is being adversely affected by the influent load variations. = O objetivo do estudo foi avaliar o comportamento de um sistema piloto contendo suportes plásticos móveis (carries para tratamento de esgoto sanitário em diferentes concentrações de oxigênio dissolvido (OD. Para avaliação do processo foram colocados em operação dois reatores sob condições iguais, diferindo apenas pela introdução em um deles do meio suporte (denominado SMBBR; aquele sem meio suporte, de SBR. O estudo teve duas etapas principais, na primeira os

  17. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular sta...... concentrations. The method was demonstrated on nitrifying biofilms growing on snail and mussel shells, showing clear effects of metabolic activity on oxygen concentrations. © 2014 Wiley Periodicals, Inc....

  18. Magnetic interaction in oxygenated alpha Fe-phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Ernő, E-mail: kuzmann@caesar.elte.hu; Homonnay, Zoltán; Horváth, Attila [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, 1512 Budapest (Hungary); Pechousek, Jiri; Cuda, Jan; Machala, Libor; Zoppellaro, Giorgio; Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science Palacky University, 17. Listopadu 1192/12, 771 46 Olomouc (Czech Republic); Yin, Houping; Wei, Yen [Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Klencsár, Zoltán [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117 (Hungary); Kubuki, Shiro [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Nath, Amar [Department of Chemistry, University of North Carolina, Asheville, NC 28804 (United States)

    2014-10-27

    Alpha iron phthalocyanines (α-FePc) oxygenated at low temperatures were investigated with the help of {sup 57}Fe Mössbauer spectroscopy, magnetization measurements (SQUID) and X-ray diffractometry (XRD). Mössbauer spectroscopy revealed that upon oxygenation of α-FePc, new species were formed which could be associated with Fe{sup III}Pc oxygen adducts. Unexpectedly, magnetically split spectrum of oxygenated α-FePc was observed below 20 K. In-field Mössbauer spectra in a 5 T external magnetic field at 5K and magnetization measurements indicate antiferromagnetic coupling in oxygenated α-FePc.

  19. Screen printed flexible radiofrequency identification tag for oxygen monitoring.

    Science.gov (United States)

    Martínez-Olmos, A; Fernández-Salmerón, J; Lopez-Ruiz, N; Rivadeneyra Torres, A; Capitan-Vallvey, L F; Palma, A J

    2013-11-19

    In this work, a radiofrequency identification (RFID) tag with an optical indicator for the measurement of gaseous oxygen is described. It consists of an O2 sensing membrane of PtOEP together with a full electronic system for RFID communication, all printed on a flexible substrate. The membrane is excited by an LED at 385 nm wavelength and the intensity of the luminescence generated is registered by means of a digital color detector. The output data corresponding to the red coordinate of the RGB color space is directly related to the concentration of O2, and it is sent to a microcontroller. The RFID tag is designed and implemented by screen printing on a flexible substrate for the wireless transmission of the measurement to a remote reader. It can operate in both active and passive mode, obtaining the power supply from the electromagnetic waves of the RFID reader or from a small battery, respectively. This system has been fully characterized and calibrated including temperature drifts, showing a high-resolution performance that allows measurement of very low values of oxygen content. Therefore this system is perfectly suitable for its use in modified atmosphere packaging where the oxygen concentration is reduced below 2%. As the reading of the O2 concentration inside the envelope is carried out with an external RFID reader using wireless communication, there is no need for perforations for probes or wires, so the packaging remains completely closed. With the presented device, a limit of detection of 40 ppm and a resolution as low as 0.1 ppm of O2 can be reached with a low power consumption of 3.55 mA.

  20. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  1. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  2. External fixators in haemophilia.

    Science.gov (United States)

    Lee, V; Srivastava, A; PalaniKumar, C; Daniel, A J; Mathews, V; Babu, N; Chandy, M; Sundararaj, G D

    2004-01-01

    External fixators (EF) are not commonly used for patients with haemophilia. We describe the use of EF (Ilizarov, AO- uni- and bi-planar fixators and Charnley clamp) in nine patients (mean age: 19.2 years; range: 9-37) with haemophilia for the following indications - arthrodesis of infected joints, treatment of open fractures and osteoclasis. EF required an average of nine skin punctures [range: 4-17 were maintained for a period of 15 weeks (range: 8-29.5), without regular factor replacement, till bone healing was adequate and were removed with a single dose of factor infusion]. The mean preoperative factor level achieved was 85% (range: 64-102%). Much lower levels were subsequently maintained till wound healing. The average total factor consumption was 430 IU kg(-1) (range: 240-870), administered over a period of 17 days (range: 9-44). There were no major complications related to EF except in a patient who developed inhibitors. In conclusion, EF can be used safely in haemophilic patients who do not have inhibitors and does not require prolonged factor replacement.

  3. Rational design of mass diffusion metamaterial concentrators based on coordinate transformations

    Science.gov (United States)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-08-01

    Recent advances in coordinate transformations of Fick's equation have paved the way for the design of metamaterial devices that can manipulate mass diffusion flux. The control of diffusion paths has a great potential for the design of novel catalytic and separation systems in chemical and biomolecular engineering. In order to explore these new applications, it is necessary to understand mass diffusion in coordinate transformation metamaterial devices. In this work, we present a comprehensive study on the impact of structure and material properties on the resultant physical properties of mass concentrator metamaterial shells. The concentration gradient at the core, the total mass flow rate towards the core, and the disturbance of the external concentration field are systematically examined in order to provide guidelines for the rational design and fabrication of metamaterial mass concentrators. A practical case is also presented where the concentration of oxygen diffusing in a polymeric system is studied.

  4. Skepticism, contextualism, externalism and modality

    National Research Council Canada - National Science Library

    Ron Wilburn

    2006-01-01

    .... However, because efforts to contextualize externalism via subjunctive conditional analysis court circularity, it is only on an internalistic interpretation that contextualist strategies can even be motivated...

  5. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    Science.gov (United States)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  6. Scheele's Priority for the Discovery of Oxygen

    Science.gov (United States)

    Cassebaum, H.; Schufle, J. A.

    1975-01-01

    Concludes that Carl Scheele first observed oxygen and clearly understood what he was observing in June 1771, when he heated manganese dioxide with concentrated sulfuric acid. This was more than three years before Lavoisier or Priestley (who is usually credited with the discovery of oxygen) made similar observations. (Author/MLH)

  7. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  8. Atmospheric oxygenation three billion years ago

    DEFF Research Database (Denmark)

    Crowe, Sean; Døssing, Lasse Nørbye; Beukes, Nicolas J.;

    2013-01-01

    It is widely assumedthat atmospheric oxygen concentrations remained persistently low (less than 1025 timespresent levels) for about the first 2 billion years of Earth’s history1. The first long-term oxygenation of the atmosphere is thought tohave taken place around2.3 billion years ago, during th...

  9. Atmospheric oxygenation three billion years ago

    DEFF Research Database (Denmark)

    Crowe, Sean; Døssing, Lasse Nørbye; Beukes, Nicolas J.

    2013-01-01

    It is widely assumedthat atmospheric oxygen concentrations remained persistently low (less than 1025 timespresent levels) for about the first 2 billion years of Earth’s history1. The first long-term oxygenation of the atmosphere is thought tohave taken place around2.3 billion years ago, during th...

  10. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  11. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summaris...... how the methodology has been applied so far in a previous Danish study. Finally, results of a case study are reported. Exposure factors have been calculated for various urban categories in the Greater Copenhagen Area...

  12. ExternE transport methodology for external cost evaluation of air pollution (DK)

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.; Berkowicz, R.; Brandt, J. [National Environmental Research Inst., Dept. of Atmospheric Environment (Denmark); Willumsen, E.; Kristensen, N.B. [COWI (Denmark)

    2004-07-01

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AiGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Inititally, a brief description of the ExternE Transport methodology is given and