WorldWideScience

Sample records for external optical cavity

  1. Optical complexity in external cavity semiconductor laser

    Science.gov (United States)

    Rondoni, Lamberto; Ariffin, M. R. K.; Varatharajoo, Renuganth; Mukherjee, Sayan; Palit, Sanjay K.; Banerjee, Santo

    2017-03-01

    In this article, the window based complexity and output modulation of a time delayed chaotic semiconductor laser (SL) model has been investigated. The window based optical complexity (OC), is measured by introducing the recurrence sample entropy (SampEn). The analysis has been done without and in the presence of external noise. The significant changes in the dynamics can be observed under induced noise with weak strength. It has also been found that there is a strong positive correlation between the output power and the complexity of the system with various sets of parameters. The laser intensity, as well as the OC can be increased with the incremental noise strength and the associated system parameters. Thus, optical complexity quantifies the system dynamics and its instabilities, since is strongly correlated with the laser outputs. This analysis can be applied to measure the laser instabilities and modulation of output power.

  2. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Frougier, J., E-mail: julien.frougier@thalesgroup.com; Jaffrès, H.; Deranlot, C.; George, J.-M. [Unité Mixte de Physique CNRS-Thales and Université Paris Sud 11, 1 av. Fresnel, 91767 Palaiseau (France); Baili, G.; Dolfi, D. [Thales Research and Technology, 1 av. Fresnel, 91767 Palaiseau (France); Alouini, M. [Institut de Physique de Rennes, 263 Avenue Général Leclerc, 35042 Rennes (France); Sagnes, I. [Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Garnache, A. [Institut d' électronique du Sud CNRS UMR5214, Université Montpellier 2 Place Eugene Bataillon, 34095 Montpellier (France)

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  3. External-cavity diode lasers with different devices and collimating optics.

    Science.gov (United States)

    Kane, D M; Willis, A P

    1995-07-20

    Comparative operating characteristics of external-cavity diode lasers (ECDL's) with either a channel substrate planar device or a multi-quantum-well (MQW) device are presented. These include the output beam profile, which is significantly altered depending on the collimating lens used (either multielement or graded index), power versus injection-current characteristics, and the optical frequency and the rf spectra. The coherence lengths of the different laser diode-collimating-lens combinations in the ECDL are measured, and a new method for calculating the coupling coefficient and the coupled values of the internal quantum efficiency and the internal lumped loss is demonstrated for the MQW device.

  4. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  5. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    -signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain......The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...... copression in the lasing mode. An integral equation for the electrical field is derived from the frequency domain model and used for time domain simulations of large-signal behavior....

  6. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    Science.gov (United States)

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.

  7. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Orchard, J. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom)

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  8. Wideband digitally tunable lasers based on fiber Bragg grating external cavity array and 1×N optical switch

    Institute of Scientific and Technical Information of China (English)

    Haiwen Cai(蔡海文); Jianxin Geng(耿建新); Zuoren Dong(董作人); Gaoting Chen(陈高庭); Zujie Fang(方祖捷)

    2003-01-01

    A novel wideband digitally tunable laser based on fiber Bragg grating external cavities and 1 × N optical switch provides 5 ms fast tuning time with output power more than 1 dBm over whole C-band that is only limited by the laser emission bandwidth. Less than 50 pm wavelength drift over -10 to 55℃ temperature range make that the wavelength locker and monitor are not necessary in this tunable laser.

  9. Optical Fiber Link with 1E-19 frequency stability using a Planar-Waveguide External Cavity Laser Diode

    CERN Document Server

    Clivati, Cecilia; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-01-01

    We compare the performances of a compact planar-waveguide external cavity laser (ECL) and a traditional fiber laser (FL) frequency locked to a Fabry-P\\'erot cavity and demonstrate the possibility to use such ECL in an optical link for ultra stable frequency dissemination. A relative stability of the ECL of 1E-14 is obtained and an optical link of 100 km based on fiber spools has been realized, that reaches 2E-19 relative stability, limited by the system noise floor. The performances of ECL and FL are shown to be comparable. Thus, ECLs could be a better choice than FLs in longer optical links with amplification and regenerating stations, thanks to their cost-effectiveness, robustness and small size.

  10. Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL)

    Science.gov (United States)

    2010-12-01

    efficiency. With the 20% reflecli vity FBG, the laser ex hibi ts a threshold of 0.9 A and reaches a CW peak power of 0.37 W aI 4 A. The peak effic ...twice the photon energy . The SCOWECL is expected to find applications in free space coherent optical communications and in microwave photollic...Dai , " High effic ient and narrow linewidlh fiber laser based on fiber grat ing Fabry- Perot cavity," Frolltiers of Oploeieclrollics il/ Chinll, vol

  11. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  12. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key.

    Science.gov (United States)

    Zhao, Qingchun; Wang, Yuncai; Wang, Anbang

    2009-06-20

    An external-cavity laser (ECL) operating in a chaotic state is usually used in a chaotic optical secure communication system and its feedback length (FL) is often regarded as an additional key. Our analyses show that an eavesdropper's (Eve) laser can synchronize with a transmitter (Alice) without any knowledge of the FL by simply increasing the injection strength. A sequence of a 1 Gbit/s nonreturn-to-zero message encoded by the FL as the key is successfully eavesdropped. The reason for the synchronization deviation between Alice's and Eve's lasers is given. Our results indicate that the FL as a key cannot enhance the security of chaotic optical communication using long-ECLs.

  13. External cavity based single mode Fabry-Pérot laser diode and its application towards all-optical digital circuits

    Science.gov (United States)

    Nakarmi, Bikash; Zhang, Xuping; Won, Yong Hyub

    2012-11-01

    We have proposed a novel approach of realizing all-optical logic gates and combinational circuit using external cavity based single mode Fabry-Pérot laser diodes (SMFP-LDs). Different techniques and critical parameters for injection locking the any one of the modes of SMFP-LDs are discussed. Taking consideration of wavelength detuning and input injected power, we have proposed and demonstrated multi-input injection locking, supporting beam injection locking with the conventional injection locking which are used for demonstrating different logic gates (NAND, AND, XNOR, XOR, NOT, NOR) and digital circuits (Half adder and Comparator). Since we have used SMFP-LDs, there is no requirement of additional probe beam and associated components as required by other optical technologies making the realization simple in configuration, cost effective and power efficient. Clear output waveforms, eye diagrams, risingfalling times and BER are presented to verify the proposed method. All-optical logic units and digital circuit are demonstrated at the data rate of 10 Gbps with the waveform of NRZ signal waveform and measured eye diagram and BER of the PRBS of 231-1 signal. The maximum power penalty among all demonstrated units is below 1.4 dB at the BER of 10-9.

  14. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  15. The Complex Way to Laser Diode Spectra: Example of an External Cavity Laser With Strong Optical Feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    2005-01-01

    An external cavity laser with strong grating-filtered feedback to an antireflection-coated facet is studied with a time-domain integral equation for the electric field, which reproduces the modes of the oscillation condition as steady-state solutions. For each mode, the stability and spectral...

  16. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  17. Plasmonic external cavity laser refractometric sensor.

    Science.gov (United States)

    Zhang, Meng; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-08-25

    Combining the high sensitivity properties of surface plasmon resonance refractive index sensing with a tunable external cavity laser, we demonstrate a plasmonic external cavity laser (ECL) for high resolution refractometric sensing. The plasmonic ECL utilizes a plasmonic crystal with extraordinary optical transmission (EOT) as the wavelength-selective element, and achieves single mode lasing at the transmission peak of the EOT resonance. The plasmonic ECL refractometric sensor maintains the high sensitivity of a plasmonic crystal sensor, while simultaneously providing a narrow spectral linewidth through lasing emission, resulting in a record high figure of merit for refractometric sensing with an active or passive optical resonator. We demonstrate single-mode and continuous-wave operation of the electrically-pumped laser system, and show the ability to measure refractive index changes with a 3σ detection limit of 1.79 × 10(-6) RIU. The demonstrated approach is a promising path towards label-free optical biosensing with enhanced signal-to-noise ratios for challenging applications in small molecule drug discovery and pathogen sensing.

  18. Porous photonic crystal external cavity laser biosensor

    Science.gov (United States)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  19. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  20. Implementation of electro-optic amplitude modulator in the external cavity of semiconductor laser for generation of periodic sates and chaos control

    Directory of Open Access Journals (Sweden)

    Kh Mabhouti

    2016-12-01

    Full Text Available In this paper, by placing the electro optical modulator (EOM into the external cavity of the semiconductor laser (SL and amplitude modulation of the optical feedback, the dynamical variation of the output intensity  of the laser has been studied. This is analyzed numerically via bifurcation and time series diagrams with respect to the applied amplitude modulation index, and modulation voltage frequency of the EOM. It has been shown that, by modulating the amplitude of the optical feedback beam, various changes in the types of the dynamics of  can be observed, and various periodic states can be generated. This makes it possible to receive the desired dynamics without any variations in the main parameters of the SL. Also, in present study, a method of chaos control in the SL has been presented based on EOM in the external cavity. The obtained results confirm that based on this method the chaotic dynamics can be controlled single-periodic dynamics

  1. Low frequency fluctuation with two external cavity reflectors

    Institute of Scientific and Technical Information of China (English)

    王春林; 伍剑; 林金桐

    2003-01-01

    The dynamics of a semiconductor laser with two optical feedbacks is studied in this paper. A new set of nonlinear rate equations that can describe external cavity semiconductor lasers with any amount of two optical feedbacks is proposed. It is found that when the laser is biased above the threshold and subjected to one feedback, the other feedback can induce low-frequency fluctuations.

  2. Control of chaos in an external-cavity multi-quantum-well laser subjected to dual-wedges and optical dual-feedback

    Institute of Scientific and Technical Information of China (English)

    YAN SenLin

    2009-01-01

    A multi-parameter chaos-control method used to control chaos in an external cavity multi-quantum-well (MQW) laser via the dual-wedges and external delayed optical dual-feedback is presented. The physical model of the laser dynamic is established under the conditions of the dual-wedges and dual-feedback light control. The frequency detuning and stable ranges of the control system are theoretically demon-strated. The optical-length of the feedback light may be adjusted by shifting horizontally or sliding the dual-wedges relatively in the external optical road, which will alter the delaying time and feedback in-tensity of the dual-feedback light. Accordingly, the multi-parameter chaos-control of the optical dual-feedback may be achieved physically. The numerical simulations approve that the chaotic laser may be controlled into a stable state, a single-periodic state and multi-periodic states, and the con-trolled periodic pulse power may be increased.

  3. Dynamics of 1.55 μm Wavelength Single-Mode Vertical-Cavity Surface-Emitting Laser Output under External Optical Injection

    Directory of Open Access Journals (Sweden)

    Kyong Hon Kim

    2012-01-01

    Full Text Available We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM vertical-cavity surface-emitting lasers (VCSELs induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS, and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.

  4. Intensity Tuning in Single Mode Microchip Nd:YAG Laser with External Cavity

    Institute of Scientific and Technical Information of China (English)

    TAN Yi-Dong; ZHANG Shu-Lian

    2006-01-01

    We investigate the characteristics of intensity tuning in a single mode microchip Nd:YAG laser with an external cavity. The undulation of laser intensity in a period of λ/2 change of the internal cavity length is observed.Two different optical feedback cases are performed. One is an external cavity reflector perfectly aligned and the other is an external cavity reflector tilted. However, the fluctuation frequency of laser intensity in a period of λ/2 change of the internal cavity length in these two cases is found to be determined by the ratio of external cavity length to internal cavity length. Meanwhile, for the tilted external cavity, the fluctuation frequency is also related to multiple feedbacks in the tilted external cavity.

  5. Silicon reflectors for external cavity lasers based on ring resonators

    Science.gov (United States)

    Wang, Chao; Li, Xia; Jin, Hao; Yu, Hui; Yang, Jianyi; Jiang, Xiaoqing

    2017-01-01

    We propose and experimentally investigate types of silicon ring reflectors on Silicon-On-Insulator (SOI) platform. These reflectors are used for realizing the silicon hybrid external cavity lasers. A suspended edge coupler is used to connect the reflective semiconductor optical amplifier (RSOA) chip and the reflectors. The properties of the reflectors and the hybrid external cavity lasers with these reflectors are illustrated. The experimental results show that all of those reflectors have a high reflectivity and the highest reflectivity can up to be 95%. The lowest insertion loss can be as low as 0.4 dB. The output power of the hybrid external cavity lasers with these reflectors can reach mW magnitude and the highest output power is 6.1 mW. Over 30 dB side mode suppression ratio is obtained.

  6. Vibration insensitive optical ring cavity

    Institute of Scientific and Technical Information of China (English)

    Miao Jin; Jiang Yan-Yi; Fang Su; Bi Zhi-Yi; Ma Long-Sheng

    2009-01-01

    The mounting configuration of an optical ring cavity is optimized for vibration insensitivity by finite element analysis. A minimum response to vertical accelerations is found by simulations made for different supporting positions.

  7. External cavity diode laser around 657 nm

    Institute of Scientific and Technical Information of China (English)

    Desheng Lǖ (吕德胜); Kaikai Huang (黄凯凯); Fengzhi Wang (王凤芝); DonghaiYang (杨东海)

    2003-01-01

    Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the LittmanMetcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.

  8. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    Science.gov (United States)

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  9. A compact chaotic laser device with a two-dimensional external cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Sunada, Satoshi, E-mail: sunada@se.kanazawa-u.ac.jp; Adachi, Masaaki [Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Fukushima, Takehiro [Department of Information and Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Shinohara, Susumu; Arai, Kenichi [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Harayama, Takahisa [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Mechanical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-06-16

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  10. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  11. Tunable external cavity laser employing uncooled superluminescent diode.

    Science.gov (United States)

    Oh, Su Hwan; Kim, Ki Soo; Ju, Jung Jin; Kim, Min-Su; Yoon, Ki-Hong; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2009-06-08

    We have fabricated a tunable external cavity laser (T-ECL) based on a superluminescent diode and a polymeric waveguide Bragg reflector, providing a cost-effective solution for wavelength division multiplexing-passive optical network (WDM-PON) systems. The wavelength of the T-ECL is tuned through 100 GHz-spacing 16 channels by the thermo-optic tuning of the refractive index of the polymer waveguide at a low input power of 70 mW. The maximum output power and the slope efficiency of the uncooled diode at 20 (75) degrees C are 8.83 (3.80) mW and 0.107 (0.061) W/A, respectively. The T-ECL operated successfully in the direct modulation for 1.25 Gbit/s transmissions over 20 km.

  12. Continuous optical discharge in a laser cavity

    Science.gov (United States)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  13. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

    NARCIS (Netherlands)

    Oldenbeuving, R. M.; Klein, E. J.; Offerhaus, H. L.; Lee, C. J.; Song, H.; Boller, K. J.

    2013-01-01

    We report on the spectral properties of a diode laser with a tunable external cavity mirror, realized as an integrated optics waveguide circuit. Even though the external cavity is short compared to that of other narrow bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is

  14. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  15. External-cavity solid-state organic lasers: Design rules and application perspectives (Conference Presentation)

    Science.gov (United States)

    Chénais, Sébastien; Gallinelli, Thomas; Mhibik, Oussama; Blanchard, Cédric; Forget, Sébastien

    2016-09-01

    Among various laser architectures currently used to make lasers out of organic materials (distributed feedback lasers or organic vertical cavity surface-emitting lasers, ....), vertical EXTERNAL cavities have several distinctive features that enable making lasers with a high brightness, resulting from a combination of high efficiency and good beam quality, and also offer a superior flexibility to monitor the laser spectrum. In this talk I will highlight a few recent results on external-cavity organic lasers and reveal their potential through the example of a single mode organic laser device with an ultranarrow linewidth (art). From the material point of view, I will also show how ink-jet printing can be successfully used in vertical external-cavity organic lasers to make thick and optical-quality films that have the potential to be easily produced with a high throughput.

  16. Cavity-enhanced absorption for optical refrigeration

    CERN Document Server

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  17. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  18. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...... as compared to preparation protocols based on coherent unitary dynamics...

  19. Triangular and honeycomb lattices of cold atoms in optical cavities

    Science.gov (United States)

    Safaei, Shabnam; Miniatura, Christian; Grémaud, Benoît.

    2015-10-01

    We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons, the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice and the honeycomb lattice with equally populated sites. We have also studied how to drive atoms from one lattice structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.

  20. Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity

    Institute of Scientific and Technical Information of China (English)

    Tan Yi-Dong; Zhang Shu-Lian; Liu Wei-Xin; Mao Wei

    2007-01-01

    Intensity modulation induced by the asymmetric external cavity in single-mode microchip Nd:YAG lasers is presented. Two kinds of experimental results are discussed based on multiple feedback effects. In one case, the intensity modulation curve is a normal sine wave, whose fringe frequency is four times higher than that of a conventional optical feedback system, caused by multiple feedback effects. In the other case, the intensity modulation curve is the overlapping of the above quadruple-frequency signal and conventional optical feedback signal, which is determined by the additional phase difference induced by the asymmetric external cavity. The theoretical analyses are in good agreement with the experimental results. The quadruple-frequency modulation of the laser output intensity can greatly increase the resolution of displacement measurement of an optical feedback system.

  1. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  2. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  3. High efficiency SHG of orbital angular momentum light in an external cavity

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Traditional methods for generating orbital angular momentum (OAM) light include holographic diffraction gratings, vortex phase plate and spatial light modulator. In this article, we report a new method for high efficient OAM light generation. By pumping an external cavity contains a quasi phase matching nonlinear crystal with a fundamental OAM carrying light and properly aligning the cavity, mode matching between the pump light and the cavitys higher order Laguerre-Gaussian (LG) mode is achieved, conversion efficiency up to 10.3 percentage have been obtained. We have demonstrated that the cavity can stably operate at its higher order LG mode just as Gaussian mode for the first time. The SHG light possesses a doubled OAM value with respect to the pump light. The parameters that affect the beam quality and conversion efficiency are discussed in detail. Our work opens a brand new field in laser optics, and makes the first step toward high efficiency OAM light processing.

  4. Variation of Lasing Wavelength of Fiber Grating Semiconductor Laser with Temperature for Different External Cavity Lengths

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For different external cavity lengths, lasing wavelength variation of fiber grating external cavity semiconductor laser (FGECSL) with ambient temperature has been investigated theoretically, and the theoretical results are in agreement with reported experimental observations.

  5. Optical re-injection in cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  6. Optical re-injection in cavity-enhanced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  7. Power-efficient III-V/silicon external cavity DBR lasers.

    Science.gov (United States)

    Zilkie, A J; Seddighian, P; Bijlani, B J; Qian, W; Lee, D C; Fathololoumi, S; Fong, J; Shafiiha, R; Feng, D; Luff, B J; Zheng, X; Cunningham, J E; Krishnamoorthy, A V; Asghari, M

    2012-10-08

    We report the design and characterization of external-cavity DBR lasers built with a III-V-semiconductor reflective-SOA with spot-size converter edge-coupled to SOI waveguides containing Bragg grating mirrors. The un-cooled lasers have wall-plug-efficiencies of up to 9.5% at powers of 6 mW. The lasers are suitable for making power efficient, hybrid WDM transmitters in a CMOS-compatible SOI optical platform.

  8. Transformation optics for cavity array metamaterials.

    Science.gov (United States)

    Quach, James Q; Su, Chun-Hsu; Greentree, Andrew D

    2013-03-11

    Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs' constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

  9. Dynamical tunneling in optical cavities

    CERN Document Server

    Hackenbroich, G; Hackenbroich, Gregor; Noeckel, Jens U.

    1998-01-01

    The lifetime of whispering gallery modes in a dielectric cavity with a metallic inclusion is shown to fluctuate by orders of magnitude when size and location of the inclusion are varied. We ascribe these fluctuations to tunneling transitions between resonances quantized in different regions of phase space. This interpretation is confirmed by a comparison of the classical phase space structure with the Husimi distribution of the resonant modes. A model Hamiltonian is introduced that describes the phenomenon and shows that it can be expected in a more general class of systems.

  10. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  11. External cavity beam combining of 21 semiconductor lasers using SPGD.

    Science.gov (United States)

    Montoya, Juan; Augst, Steven J; Creedon, Kevin; Kansky, Jan; Fan, Tso Yee; Sanchez-Rubio, Antonio

    2012-04-10

    Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with an upper limit of 90% efficiency in the particular configuration of the experiment. Our beam combining system utilizes a stochastic parallel gradient descent (SPGD) algorithm for active phase control. This work demonstrates that active beam combining is not subject to the scaling limits imposed on passive-phasing systems.

  12. External cavity diode laser with very-low frequency drift

    Science.gov (United States)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi

    2016-03-01

    An external cavity diode laser with significant mechanical robustness was installed in a housing that was sealed from outside for eliminating variations in the refractive index of air. Using the feedback signal for a frequency lock, it was found that the variation in the laser frequency under free running was suppressed to 275 MHz over one month and depended on the room temperature. Moreover, the upper limit of the linear frequency drift rate was evaluated as intrinsically 40 Hz/s. The frequency lock is expected to be sustainable for more than 110 days with temperature-controlled housing.

  13. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.

    Science.gov (United States)

    Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc

    2016-04-01

    This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging.

  14. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  15. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  16. All-solid-state ultraviolet laser based on frequency doubling in an external ring cavity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An all-solid-state ultraviolet laser based on frequency doubling in an external ring cavity with low input pump power is reported. Both second harmonic generation (SHG) and fourth harmonic generation (FHG) occurred in an external threemirrors ring cavity. The need for impedance matching of this cavity to the input radiation was eliminated and the cavity adaptation was simplified, because the mirrors were not highly reflecting at 1064 nm and the cavity resonates only at 532 nm. Experiment results demonstrate that the conversion efficiency of this external cavity is higher than that of the singlepass condition.

  17. Facet Reflection Coefficient of Phase-locked Diode Laser Array in an External Cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C0). Considering the fact that|C0/S| should be larger than unity if the external cavity is effective,and|C1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.

  18. Making of a nonlinear optical cavity

    CERN Document Server

    Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F

    2016-01-01

    In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.

  19. Optical cavity resonator in an expanding universe

    Science.gov (United States)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  20. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    Science.gov (United States)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2016-10-01

    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  1. A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range

    Science.gov (United States)

    Wei, Heng; Jin, Peng; Luo, Shuai; Ji, Hai-Ming; Yang, Tao; Li, Xin-Kun; Wu, Jian; An, Qi; Wu, Yan-Hua; Chen, Hong-Mei; Wang, Fei-Fei; Wu, Ju; Wang, Zhan-Guo

    2013-09-01

    The optical performance of a grating-coupled external cavity laser based on InAs/InP quantum dots is investigated. Continuous tuning from 1391 nm to 1468 nm is realized at an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.

  2. Hybrid ion chains inside an optical cavity

    Science.gov (United States)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  3. Optical cavity resonator in an expanding universe

    CERN Document Server

    Kopeikin, Sergei

    2014-01-01

    We study evolution of frequency of a standing electromagnetic (EM) wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. One builds a local coordinate system in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate. Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to decide whether atomic clocks ticks at the same rate as the clocks based on EM modes of a cavity. To resolve the ambiguity we analyzed the cavity rigidity and the oscillation of its EM modes in an expanding universe by employing the Maxwell equations. We found out that both the size of the cavity and the EM frequency experience an adiabatic drift in conformal coordinates as the universe expands. We set up the oscillation equation f...

  4. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Long; TAO Tian-Jiong; CHENG Bing; WU Bin; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2011-01-01

    @@ A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry.The setup involves alldigital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs.The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  5. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Science.gov (United States)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  6. Cavity cooling of an optically levitated nanoparticle

    CERN Document Server

    Kiesel, Nikolai; Delic, Uros; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The ability to trap and to manipulate individual atoms is at the heart of current implementations of quantum simulations, quantum computing, and long-distance quantum communication. Controlling the motion of larger particles opens up yet new avenues for quantum science, both for the study of fundamental quantum phenomena in the context of matter wave interference, and for new sensing and transduction applications in the context of quantum optomechanics. Specifically, it has been suggested that cavity cooling of a single nanoparticle in high vacuum allows for the generation of quantum states of motion in a room-temperature environment as well as for unprecedented force sensitivity. Here, we take the first steps into this regime. We demonstrate cavity cooling of an optically levitated nanoparticle consisting of approximately 10e9 atoms. The particle is trapped at modest vacuum levels of a few millibar in the standing-wave field of an optical cavity and is cooled through coherent scattering into the modes of the...

  7. Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.

    Science.gov (United States)

    Jiang, Leyong; Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang

    2015-11-30

    We investigate theoretically the optical bistability from a Fabry-Perot cavity with graphene in the terahertz (THz) frequency. It is demonstrated that the optical bistablility in this cavity can be realized due to the electric field enhancement and the giant third-order nonlinear conductivity of graphene. The optical bistable behavior is strongly dependent on the transmission amplitude of the mirror and the position of the graphene in the cavity. It is especially important that the hysterical behaviors of the transmitted light rely on the optical conductivity of graphene, making the Fabry-Perot cavity to be a good candidate for dynamic tunable optical bistable device in the THz frequencies, owing to the possibility of high tunability of graphene conductivity by means of external electrostatic or magnetostatic field.

  8. Optical Material Characterization Using Microdisk Cavities

    Science.gov (United States)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  9. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  10. High finesse external cavity VCSELs: from very low noise lasers to dual frequency lasers

    Science.gov (United States)

    Baili, Ghaya; Alouini, Medhi; Morvan, Loic; Bretenaker, Fabien; Sagnes, Isabelle; Garnache, Arnaud; Dolfi, Daniel

    2011-01-01

    Low noise-level optical sources are required for numerous applications such as microwave photonics, fiber-optic sensing and time/frequency references distribution. In this paper, we demonstrate how inserting a SC active medium into a centimetric high-Q external cavity is a simple way to obtain a shot-noise-limited laser source over a very wide frequency bandwidth. This approach ensures, with a compact design, a sufficiently long photon lifetime to reach the oscillation-relaxation- free class-A regime. This concept has been illustrated by inserting a 1/2-VCSEL in an external cavity including an etalon filter. A -156dB/Hz relative intensity noise level is obtained over the 100 MHz to 18 GHz bandwidth of interest. This is several orders of magnitude better than the noise, previously observed in VCSELs, belonging to the class-B regime. The optimization, in terms of noise, is shown to be a trade-off between the cavity length and the laser mode filtering. The transition between the class-B and class-A dynamical behaviors is directly observed by continuously controlling the photon lifetime is a sub-millimetric to a centimetric cavity length. It's proven that the transition occurs progressively, without any discontinuity. Based on the same laser architecture, tunable dual-frequency oscillation is demonstrated by reducing the polarized eigenstates overlap in the gain medium. The class-A dynamics of such a laser, free of relaxation oscillations, enables to suppress the electrical phase noise in excess, usually observed in the vicinity of the beat note. An original technique for jitter reduction in mode-locked VECSELs is also investigated. Such lasers are needed for photonic analog to digital converters.

  11. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    CERN Document Server

    Shambat, Gary; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena

    2011-01-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This new design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for novel research on fiber-coupled cavity devices.

  12. High power external cavity laser diode arrays for the generation of hyperpolarized noble gases

    Science.gov (United States)

    Blasche, Gregory Paul

    Hyperpolarized noble gas magnetic resonance imaging promises to be a useful medical diagnostic tool due to its ability to image airways and brain function. A current limitation to widespread use is the time needed to generate gas quantities large enough for clinical patient imaging. Here I investigate line-narrowing of laser diode arrays in order to optimize the generation of hyperpolarized noble gases. Hyperpolarized noble gases are nuclear spin-½ isotopes that are polarized externally to have a large excess population of metastable spin up nuclei. When inhaled and imaged, they provide a novel tool for scientific studies and medical diagnosis in the human body. The gases are generated through a spin-exchange process via the spin-conserving hyperfine interaction of noble gas nuclei and optically pumped alkali metals. The net amount of polarized gas is limited by the optical power which is absorbed by the alkali metals as this is the first stage in the spin-exchange process. Laser diode arrays are typically used because they have a high available power for relatively low cost. Unfortunately, they are optically inefficient due to the factor of twenty larger inherent linewidth relative to the pressure broadened absorption linewidth of the alkali metal. In order to increase the efficiency of the system, I have designed and built an external cavity around the laser diode array consisting of a diffraction grating which acts as a wavelength dependent mirror tuned to the alkali metal rubidium absorption frequency. This causes the laser to operate solely at the desired wavelength, reducing the linewidth. External cavities have long been used for single element laser diodes. I extend this technique to laser diode arrays by imaging the diodes onto the grating using a set of imaging lenses forming individual cavities. I discuss the limitations on the power and linewidth achievable due to the optics of the cavity, as well as limitations caused by non-uniform heating effects

  13. An all-optical buffer based on temporal cavity solitons operating at 10 Gb/s

    CERN Document Server

    Jang, Jae K; Schröder, Jochen; Eggleton, Benjamin J; Murdoch, Stuart G; Coen, Stéphane

    2016-01-01

    We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop. Experimentally, we are able to demonstrate the storage of 4536 bits of data, written all-optically into the fiber ring at 10 Gb/s, for 1 minute.

  14. Tunable high-power blue external cavity semiconductor laser

    Science.gov (United States)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  15. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

    CERN Document Server

    Oldenbeuving, R M; Offerhaus, H L; Lee, C J; Song, H; Boller, K -J

    2012-01-01

    We report on the spectral properties of a diode laser with a tunable external cavity in integrated optics. Even though the external cavity is short compared to other small-bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio (SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565 nm).

  16. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  17. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  18. Convective Heat Transfer Between the Wall Surface of a Cavity and the External Main Stream

    Science.gov (United States)

    Yoshiwara, Masahiro; Katto, Yoshiro; Yokoyama, Masanori

    An experimental study has been made under the following conditions for convective heat transfer between the wall surface of a cavity of which both width and depth are 25 mm and the external main stream; the range of Reynolds numbers is from 104 to 105, and the ratio of tripping wire diameter to cavity width is 0.08. The oncoming boundary layer to a cavity is turbulent by the tripping wire with the existing study. Convective heat transfer between a cavity wall surface and the external main stream is treated by the following two phenomena; one is the heat transfer which is related to the temperature difference between the wall surface and the fluid in the cavity, and the other the heat transfer which is related to the temperature difference between the fluid in a cavity and the external mainstream. Experimental data obtained for the foregoing conditions is almost coincide with the existing dimensionless correlations of two of the authors.

  19. Exact Description of Decoherence in Optical Cavities

    CERN Document Server

    Romero, K M F

    2002-01-01

    The exact reduced dynamics for the independent oscillator model in the RWA approximation at zero and finite temperatures is derived. It is shown that the information about the interaction and the environment is encapsulated into three time dependent coefficients of the master equation, one of which vanishes in the zero temperature case. In currently used optical cavities all the information about the field dynamics is contained into {\\it two} (or three) experimentally accesible and physically meaningful real functions of time. From the phenomenological point of view it suffices then to carefully measure two ({\\it three}) adequate observables in order to map the evolution of any initial condition, as shown with several examples: (generalized) coherent states, Fock states, Schr\\"odinger cat states, and squeezed states.

  20. Localized Turing patterns in nonlinear optical cavities

    Science.gov (United States)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  1. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  2. Unconditional preparation of entanglement between atoms in cascaded optical cavities.

    Science.gov (United States)

    Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-10-24

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high-finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity-QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity-QED parameters and with nonideal coupling.

  3. Cavity solitons and localized patterns in a finite-size optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  4. Cavity solitons and localized patterns in a finite-size optical cavity

    Science.gov (United States)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  5. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  6. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  7. Optically thin hybrid cavity for terahertz photo-conductive detectors

    Science.gov (United States)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  8. A Step Tunable External Cavity Semiconductor Laser for WDM Network Deployment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We put forward a kind of tunable external cavity semiconductor laser with feedback on both chip facets. It outputs the single-frequency laser with high side-mode suppression ratio and the frequency could be step tuned.

  9. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.; Kriesel, Jason M.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  10. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  11. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity

    Science.gov (United States)

    Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao

    2017-04-01

    Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm‑2 · sr‑1.

  12. Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array.

    Science.gov (United States)

    Lin, Shiyun; Zheng, Xuezhe; Yao, Jin; Djordjevic, Stevan S; Cunningham, John E; Lee, Jin-Hyoung; Shubin, Ivan; Luo, Ying; Bovington, Jock; Lee, Daniel Y; Thacker, Hiren D; Raj, Kannan; Krishnamoorthy, Ashok V

    2016-09-19

    We demonstrate a surface-normal coupled tunable hybrid silicon laser array for the first time using passively-aligned, high-accuracy flip chip bonding. A 2x6 III-V reflective semiconductor optical amplifier (RSOA) array with integrated total internal reflection mirrors is bonded to a CMOS SOI chip with grating couplers and silicon ring reflectors to form a tunable hybrid external-cavity laser array. Waveguide-coupled wall plug efficiency (wcWPE) of 2% and output power of 3 mW has been achieved for all 12 lasers. We further improved the performance by reducing the thickness of metal/dielectric stacks and achieved 10mW output power and 5% wcWPE with the same integration techniques. This non-invasive, one-step back end of the line (BEOL) integration approach provides a promising solution to high density laser sources for future large-scale photonic integrated circuits.

  13. Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies.

    Science.gov (United States)

    Knight, S; Schöche, S; Darakchieva, V; Kühne, P; Carlin, J-F; Grandjean, N; Herzinger, C M; Schubert, M; Hofmann, T

    2015-06-15

    The effect of a tunable, externally coupled Fabry-Perot cavity to resonantly enhance the optical Hall effect signatures at terahertz frequencies produced by a traditional Drude-like two-dimensional electron gas is shown and discussed in this Letter. As a result, the detection of optical Hall effect signatures at conveniently obtainable magnetic fields, for example, by neodymium permanent magnets, is demonstrated. An AlInN/GaN-based high-electron mobility transistor structure grown on a sapphire substrate is used for the experiment. The optical Hall effect signatures and their dispersions, which are governed by the frequency and the reflectance minima and maxima of the externally coupled Fabry-Perot cavity, are presented and discussed. Tuning the externally coupled Fabry-Perot cavity strongly modifies the optical Hall effect signatures, which provides a new degree of freedom for optical Hall effect experiments in addition to frequency, angle of incidence, and magnetic field direction and strength.

  14. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity

    CERN Document Server

    Stapfner, Sebastian; Hunger, David; Paulitschke, Philipp; Reichel, Jakob; Karrai, Khaled; Weig, Eva M; 10.1117/12.705901

    2011-01-01

    The coupling of mechanical oscillators with light has seen a recent surge of interest, as recent reviews report.[1, 2] This coupling is enhanced when confining light in an optical cavity where the mechanical oscillator is integrated as back- mirror or movable wall. At the nano-scale, the optomechanical coupling increases further thanks to a smaller optomechanical interaction volume and reduced mass of the mechanical oscillator. In view of realizing such cavity nano- optomechanics experiments, a scheme was proposed where a sub-wavelength sized nanomechanical oscillator is coupled to a high finesse optical microcavity.[3] Here we present such an experiment involving a single nanomechanical rod precisely positioned into the confined mode of a miniature Fabry-P\\'erot cavity.[4] We describe the employed stabilized cavity set-up and related finesse measurements. We proceed characterizing the nanorod vibration properties using ultrasonic piezo-actuation methods. Using the optical cavity as a transducer of nanomechan...

  15. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  16. Intracavity frequency-doubled green vertical external cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    Yanrong Song; Peng Zhang; Xinping Zhang; Boxia Yan; Yi Zhou; Yong Bi; Zhigang Zhang

    2008-01-01

    @@ An intracavity frequency-doubled vertical external cavity surface emitting laser (VECSEL) with green light is demonstrated. The fundamental frequency laser cavity consists of a distributed Bragg reflector (DBR) of the gain chip and an external mirror. A 12-mW frequency-doubled output has been reached at 540 nm with a nonlinear crystal LBO when the fundamental frequency output is 44 mW at 1080 nm. The frequency doubling efficiency is about 30%.

  17. Cascaded optical transparency in multimode-cavity optomechanical systems.

    Science.gov (United States)

    Fan, Linran; Fong, King Y; Poot, Menno; Tang, Hong X

    2015-01-14

    Electromagnetically induced transparency has great theoretical and experimental importance in many areas of physics, such as atomic physics, quantum optics and, more recent, cavity optomechanics. Optical delay is the most prominent feature of electromagnetically induced transparency, and in cavity optomechanics, the optical delay is limited by the mechanical dissipation rate of sideband-resolved mechanical modes. Here we demonstrate a cascaded optical transparency scheme by leveraging the parametric phonon-phonon coupling in a multimode optomechanical system, where a low damping mechanical mode in the unresolved-sideband regime is made to couple to an intermediate, high-frequency mechanical mode in the resolved-sideband regime of an optical cavity. Extended optical delay and higher transmission as well as optical advancing are demonstrated. These results provide a route to realize ultra-long optical delay, indicating a significant step towards integrated classical and quantum information storage devices.

  18. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

    CERN Document Server

    Samutpraphoot, Polnop; Lin, Qian; Gangloff, Dorian; Bylinskii, Alexei; Braverman, Boris; Kawasaki, Akio; Raab, Christoph; Kaenders, Wilhelm; Vuletić, Vladan

    2014-01-01

    We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve a suppression in frequency noise spectral density of 20 dB measured at frequencies around 1 MHz, corresponding to the narrowing of the intrinsic Lorentzian linewidth from 200 kHz to 2 kHz. The system is suitable for experiments requiring a tunable ultraviolet laser with narrow linewidth and low high-frequency noise, such as precision spectroscopy, optical clocks, and quantum information science experiments.

  19. Feedback-free optical cavity with self-resonating mechanism

    CERN Document Server

    Uesugi, Y; Honda, Y; Kosuge, A; Omori, T; Takahashi, T; Urakawa, J; Washio, M

    2015-01-01

    We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The finesse of the cavity was measured to be $465,000 \\pm 3,000$, and the laser power stored in the cavity was $2.52 \\pm 0.13$ kW, which is about 187,000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of $1.7 \\%$, and we confirmed continuous cavity operation for more than two hours. This result relaxes the technical requirement of stabilizing of the optical resonant cavity and expands possibilities for various applications such as laser-Compton scattering.

  20. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    Science.gov (United States)

    Czarske, Jürgen; Möbius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  1. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    Science.gov (United States)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  2. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    CSIR Research Space (South Africa)

    Long, CS

    2008-03-01

    Full Text Available This paper describes the development of a deformable mirror to be used in conjunction with diffractive optical elements inside a laser cavity. A prototype piezoelectric unimorph adaptive mirror was developed to correct for time dependent phase...

  3. A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies

    Science.gov (United States)

    Cui, Guoqiang; Hannigan, J. M.; Loeckenhoff, R.; Matinaga, F. M.; Raymer, M. G.; Bhongale, S.; Holland, M.; Mosor, S.; Chatterjee, S.; Gibbs, H. M.; Khitrova, G.

    2006-03-01

    We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50 µm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD. The half-monolithic design gives more spatial and spectral tuning abilities, relatively to fully monolithic structures. This unique micro-cavity design will potentially enable us to both reach the cavity quantum electrodynamics (QED) strong coupling regime and realize the deterministic generation of single photons on demand.

  4. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2013-01-01

    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  5. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  6. Stochastic electrodynamics simulations for collective atom response in optical cavities

    Science.gov (United States)

    Lee, Mark D.; Jenkins, Stewart D.; Bronstein, Yael; Ruostekoski, Janne

    2017-08-01

    We study the collective optical response of an atomic ensemble confined within a single-mode optical cavity by stochastic electrodynamics simulations that include the effects of atomic position correlations, internal level structure, and spatial variations in cavity coupling strength and atom density. In the limit of low light intensity, the simulations exactly reproduce the full quantum field-theoretical description for cold stationary atoms and at higher light intensities we introduce semiclassical approximations to atomic saturation that we compare with the exact solution in the case of two atoms. We find that collective subradiant modes of the atoms, with very narrow linewidths, can be coupled to the cavity field by spatial variation of the atomic transition frequency and resolved at low intensities, and show that they can be specifically driven by tailored transverse pumping beams. We show that the cavity optical response, in particular both the subradiant mode profile and the resonance shift of the cavity mode, can be used as a diagnostic tool for the position correlations of the atoms and hence the atomic quantum many-body phase. The quantum effects are found to be most prominent close to the narrow subradiant mode resonances at high light intensities. Although an optical cavity can generally strongly enhance quantum fluctuations via light confinement, we show that the semiclassical approximation to the stochastic electrodynamics model provides at least a qualitative agreement with the exact optical response outside the subradiant mode resonances even in the presence of significant saturation of the atoms.

  7. Optical scatter of quantum noise filter cavity optics

    CERN Document Server

    Vander-Hyde, Daniel; Smith, Joshua R

    2014-01-01

    We report on measurements of light scattering from two two-inch super-polished fused silica substrates before and after applying (ATFilms) ion-beam sputtered highly-reflective dielectric coatings. We used an imaging scatterometer, that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam, to measure the Bidirectional Reflectance Distribution Function (BRDF) and estimate the total integrated scatter for both samples, before and after coating. We find application of these highly reflective coatings leads to an increase of the integrated scatter of the primary surface by more than 50 %. In addition, the BRDF function of the coated optics takes on a pattern of maxima and zeroes versus azimuthal angle that is qualitatively consistent with bulk scattering from the coating layers. These results are part of a broader study to understand optical loss in quantum noise filter cavities...

  8. Extracavity and external cavity second-harmonic generation in a periodically poled silica fibre

    Science.gov (United States)

    Dontsova, E. I.; Kablukov, S. I.; Lobach, I. A.; Dostovalov, A. V.; Babin, S. A.; Gladyshev, A. V.; Dianov, E. M.; Corbary, C.; Ibsen, M.; Kazansky, P. G.

    2016-11-01

    We have studied second-harmonic generation (SHG) of a cw single-frequency ytterbium-doped fibre laser, using a periodically poled silica fibre as a nonlinear medium for frequency conversion. All-fibre external cavity SHG has been investigated for the first time. A twofold increase in second-harmonic power in a fibre ring cavity has been demonstrated and possibilities of further optimising the fibre scheme have been analysed.

  9. A Monolithic Filter Cavity for Experiments in Quantum Optics

    CERN Document Server

    Palittapongarnpim, Pantita; Lvovsky, A I

    2012-01-01

    By applying a high-reflectivity dielectric coating on both sides of a commercial plano-convex lens, we produce a stable monolithic Fabry-Perot cavity suitable for use as a narrow band filter in quantum optics experiments. The resonant frequency is selected by means of thermal expansion. Owing to the long term mechanical stability, no optical locking techniques are required. We characterize the cavity performance as an optical filter, obtaining a 45 dB suppression of unwanted modes while maintaining a transmission of 60%.

  10. Fluidic vortices generated from optical vortices in a microdroplet cavity

    CERN Document Server

    Bar-David, Daniel; Martin, Leoplodo L; Carmon, Tal

    2016-01-01

    We harness the momentum of light resonating inside a micro-droplet cavity, to experimentally generate micro-flows within the envelope of the drop. We 3D map these optically induced flows by using fluorescent nanoparticles; which reveals circular micro-streams. The flows are parametrically studied and, as expected, exhibit an increase of rotation speed with optical power. The flow is non-circular only when we intentionally break the axial symmetry of the droplet. Besides the fundamental interest in light-flow interactions including in opto-fluidic cavities, the optically controlled flows can serve in bringing analytes into the maximum-power region of the microcavity.

  11. Design and optimization of microbolometer multilayer optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Awad, E.; Al-Khalli, N.; Debbar, N. [Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Abdel-Rahman, M., E-mail: mabdelrahman@ksu.edu.sa [Prince Sultan Advanced Technologies Research Institute (PSATRI), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Alduraibi, M. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); National Center for Applied Physics, King Abdulaziz City for Science and Technology, KACST, P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2015-03-30

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V{sub 2}O{sub 5}) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V{sub 2}O{sub 5} layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  12. Ultra-Stable Rubidium-Stabilized External-Cavity Diode Laser Based on the Modulation Transfer Spectroscopy Technique

    Institute of Scientific and Technical Information of China (English)

    QI Xiang-Hui; CHEN Wen-Lan; YI Lin; ZHOU Da-Wei; ZHOU Tong; XIAO Qin; DUAN Jun; ZHOU Xiao-Ji; CHEN Xu-Zong

    2009-01-01

    @@ We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the 87Rb D2 lines at 780 hm. The Doppler-free dispersion-like modulation transfer signal is obtained with high signal-to-noise-ratio. The instability of the laser frequency is measured by beating with an optical frequency comb which is phase-locked to an ultra-stable oven controlled crystal oscillator. The Allan deviation is 3.9×10-13 at 1s averaging time and 9.8×10-14 at 90s averaging time.

  13. Optomechanical damping of a nanomembrane inside an optical ring cavity

    CERN Document Server

    Yilmaz, Arzu; Wolf, Philip; Schmidt, Dag; Eisele, Max; Zimmermann, Claus; Slama, Sebastian

    2016-01-01

    We experimentally and theoretically investigate mechanical nanooscillators coupled to the light in an optical ring resonator made of dielectric mirrors. We identify an optomechanical damping mechanism that is fundamentally different to the well known cooling in standing wave cavities. While, in a standing wave cavity the mechanical oscillation shifts the resonance frequency of the cavity in a ring resonator the frequency does not change. Instead the position of the nodes is shifted with the mechanical excursion. We derive the damping rates and test the results experimentally with a silicon-nitride nanomembrane. It turns out that scattering from small imperfections of the dielectric mirror coatings has to be taken into account to explain the value of the measured damping rate. We extend our theoretical model and regard a second reflector in the cavity that captures the effects of mirror back scattering. This model can be used to also describe the situation of two membranes that both interact with the cavity fi...

  14. Transmission Spectrum of an Optical Cavity Containing N Atoms

    CERN Document Server

    Leslie, S; Brown, K R; Stamper-Kurn, D M; Whaley, K B; Leslie, Sabrina; Shenvi, Neil; Brown, Kenneth R.; Stamper-Kurn, Dan M.

    2003-01-01

    The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms is presented. We take spatial and motional effects into account and show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary number of atoms, N. We also show that these results have important ramifications in limiting our ability to determine the number of atoms in the cavity.

  15. Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A.; Mabuchi, Hideo

    2013-11-01

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  16. Detecting magnetically guided atoms with an optical cavity.

    Science.gov (United States)

    Haase, Albrecht; Hessmo, Björn; Schmiedmayer, Jörg

    2006-01-15

    We show that a low-finesse cavity can be efficient for detecting neutral atoms. The low finesse can be compensated for by decreasing the mode waist of the cavity. We have used a near-concentric resonator with a beam waist of 12 microm and a finesse of only 1100 to detect magnetically guided Rb atoms with a detection sensitivity of 0.1 atom in the mode volume. For future experiments on single-atom detection and cavity QED applications, it should be beneficial to use miniaturized optical resonators integrated on atom chips.

  17. Detecting magnetically guided atoms with an optical cavity

    OpenAIRE

    Haase, Albrecht; Hessmo, Björn; Schmiedmayer, Jörg

    2005-01-01

    We show that a low finesse cavity can be efficient for detecting neutral atoms. The low finesse can be compensated for by decreasing the mode waist of the cavity. We have used a near concentric resonator with a beam waist of 12$\\mu$m and a finesse of only 1100 to detect magnetically guided Rb atoms with a detection sensitivity of 0.1 atom in the mode volume. For future experiments on single atom detection and cavity QED applications, it should be very beneficial to use miniaturized optical re...

  18. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  19. Clinical observation of external dacryocystorhinostomy without packing anastomosis cavity

    Directory of Open Access Journals (Sweden)

    Li-Dan Liu

    2014-10-01

    Full Text Available AIM: To find an efficient and simple surgical procedure of the external dacryocystorhinostomy(EXT- DCRin the treatment of chronic dacryocystitis.METHODS: A total of 270 cases were performed in this retrospective study. A comparison of clinical effects and hemorrhage complications between the experimental group, in which 189 eyes of 167 patients that underwent traditional EXT-DCR without packing, and the control group, in which 121 eyes of 103 patients that underwent traditional EXT-DCR with Vaseline gauze were performed. The postoperative follow-up ranged from 6 to 36mo(the mean follow-up was 15±3.6mo.RESULTS: There were no significant differences in the curative rates between the two groups(97.9% vs 97.5%, P>0.05. But the incidence rate of moderate or severe postoperative nasal bleeding was lower in the experimental group(15.9%, 30 eyesthan the control group(31.4%, 38 eyesand PCONLUSION: The traditional EXT-DCR without packingis an effective procedure and is more effective in reducing moderate or severe postoperative bleeding when the intraoperative anastomose and the postoperative drainage are well done and the intraoperative bleeding is well controlled.

  20. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    OpenAIRE

    Simon A. Gebrewold; Romain Bonjour; Sophie Barbet; Anaelle Maho; Romain Brenot; Philippe Chanclou; Marco Brunero; Lucia Marazzi; Paola Parolari; Angelina Totovic; Dejan Gvozdic; David Hillerkuss; Christian Hafner; Juerg Leuthold

    2015-01-01

    Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs) are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs) based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE) spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-...

  1. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    . The resultant photo-induced rigidity is large and a mode temperature cooled from room temperature down to 4 K is realized with 50 μW of light and a cavity finesse of just 10. Thermal stress due to non-radiative relaxation of the electron–hole pairs is the primary cause of the cooling. We also analyse...... an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors.......-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour...

  2. A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies

    OpenAIRE

    Cui, Guoqiang; Hannigan, J. M.; Loeckenhoff, R.; Matinaga, F. M.; Raymer, M. G.; Bhongale, S.; Holland, M.; Mosor, S.; Chatterjee, S.; Gibbs, H. M.; Khitrova, G.

    2006-01-01

    We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature $50\\mathrm{\\mu m}$. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and the cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a d...

  3. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  4. Performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Skovgaard, P.M.W.; Mørk, Jesper;

    2002-01-01

    We have experimentally investigated the performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers. We have measured the magnitude of trailing pulses when varying the chip length and studied the pulse quality when changing the driving conditions...

  5. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam ...

  6. Momentum Transfer of an Atom Moving in an Optical Cavity

    Institute of Scientific and Technical Information of China (English)

    张敬涛; 徐至展

    2001-01-01

    When an atom moves in an optical cavity, the total momentum of the atom does not remain constant. We study a two-level atom moving slowly in an optical cavity, and give the time dependence of its mean momentum. It is found that when the initial momentum of the atom is larger than that of the photon, the mean momentum oscillates around a value less than the initial value. But, if the initial momentum is less than the momentum of the photon, the mean momentum of the atom is greater than its initial value in most cases.

  7. Porous silicon optical cavity as an immunosensor platform

    Science.gov (United States)

    Lv, Xiao-Yi; Mo, Jia-Qing; Tu, Yi-Xian; Zhong, Fu-Ru; Jiang, Tao; Jia, Zhen-Hong; Li, Jiang-Wei; Zhang, Fu-Chun

    2010-07-01

    A novel porous silicon based optical Fabry-Perot cavity structure is prepared as a label-free immunosensor platform for detecting antigen-antibody. The lagurus zona pelluciad 3 (LZP3) and the specificity of the polyclonal anti-LZP3 antibodies are employed in our laboratory as the target and the probe, respectively. Firstly, the antibodies are immobilized to the porous silicon optical cavity using silanization and glutaraldehyde (GA) chemistry. And then, after the antigen-antibody reaction, it is monitored that the red shift of the reflection spectrum of the immunosensor increases with the antigen concentration. This research also plays a potential role for the extensive applications in immunoassay.

  8. Photon momentum and optical forces in cavities

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani

    2016-01-01

    forces in cavity structures in the cases of dynamical and steady-state fields. In the description of the single-photon transmission process, we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles....... When describing the steady-state nonequilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical...

  9. Optical cavity integrated surface ion trap for enhanced light collection

    Science.gov (United States)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  10. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  11. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  12. Performance optimization of an external enhancement resonator for optical second-harmonic generation

    Science.gov (United States)

    Jurdik, E.; Hohlfeld, J.; van Etteger, A. F.; Toonen, A. J.; Meerts, W. L.; van Kempen, H.; Rasing, Th.

    2002-07-01

    We study the factors that ultimately limit the performance of an external enhancement resonator for optical second-harmonic generation (SHG). To describe the resonant SHG process we introduce a theoretical model that accounts for the intensity-dependent cavity loss that is due to harmonic generation and that also includes a realistic assumption about the shape and the frequency width of the laser mode. With the help of this model we optimized the performance of a doubling cavity based on a lithium triborate (LBO) crystal. This cavity was used for frequency doubling the output of a single-frequency titanium-doped sapphire laser at 850 nm. We were able to push the total second-harmonic conversion efficiency to 53% (a 1.54-W pump resulted in 820 mW of second-harmonic light), which to our knowledge is the best result ever reported for a LBO-based doubling cavity. , Laser-focused atomic deposition.

  13. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... separated. This device was fabricated and characterized by colleagues within the group, and it was shown to perform very well in terms of cross-talk between the signal and pump. Theoretical investigations as well as practical design proposals have resulted from a study of waveguide-cavity structures...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...

  14. Cavity-enhanced optical frequency combspectroscopy

    DEFF Research Database (Denmark)

    Balslev-Clausen, David Morten; Thorpe, M. J.; Kirchner, M. S.;

    2008-01-01

    Broad-bandwidth, high-spectral-resolution optical detection of human breath has identified multiple important biomarkers correlated with specific diseases and metabolic processes. This optical-frequency-comb-based breath analysis system comes with excellent performance in all criteria: high detec...... and unique molecular fingerprints exist for many biomarkers. We present a series of breath measurements including stable isotope ratios of CO2, breath concentrations of CO, and the presence of trace concentrations of NH3 in high concentrations of H2O. Udgivelsesdato: 02.05...

  15. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    Science.gov (United States)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  16. Cavity-enhanced optical detection of carbon nanotube Brownian motion

    CERN Document Server

    Stapfner, S; Hunger, D; Weig, E M; Reichel, J; Favero, I

    2012-01-01

    Optical cavities with small mode volume are well-suited to detect the vibration of sub-wavelength sized objects. Here we employ a fiber-based, high-finesse optical microcavity to detect the Brownian motion of a freely suspended carbon nanotube at room temperature under vacuum. The optical detection resolves deflections of the oscillating tube down to 50pm/Hz^1/2. A full vibrational spectrum of the carbon nanotube is obtained and confirmed by characterization of the same device in a scanning electron microscope. Our work successfully extends the principles of high-sensitivity optomechanical detection to molecular scale nanomechanical systems.

  17. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  18. Controllable optical bistability of Bose-Einstein condensate in an optical cavity with a Kerr medium

    Institute of Scientific and Technical Information of China (English)

    Zheng Qiang; Li Sheng-Chang; Zhang Xiao-Ping; You Tai-Jie; Fu Li-Bin

    2012-01-01

    We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with a Kerr medium.We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons.In particular,we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.

  19. Spectrally narrowed external-cavity high-power stack of laser diode arrays.

    Science.gov (United States)

    Zhu, H; Ruset, I C; Hersman, F W

    2005-06-01

    We describe an effective external cavity for narrowing the spectral linewidth of a multiarray stack of laser diode arrays. For a commercially available 279-W free-running five-array laser diode array operating at 60 A, we narrow the spectral linewidth to 0.40 nm at FWHM with 115 W of cw power output. This technique leads to the possibility of higher-efficiency, lower-cost production of hyperpolarized noble gases for magnetic resonance imaging.

  20. Actively controlled tuning of an external cavity diode laser by polarization spectroscopy.

    Science.gov (United States)

    Führer, Thorsten; Stang, Denise; Walther, Thomas

    2009-03-30

    We report on an universal method to achieve and sustain a large mode-hop free tuning range of an external cavity diode laser. By locking one of the resonators using a closed loop control based on polarization spectroscopy while tuning the laser we achieved mode-hop free tuning of up to 130 GHz with a non AR-coated, off-the-shelf laser diode.

  1. Chaotic ray dynamics in an optical cavity with a beam splitter

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We investigate the ray dynamics in an optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. Using Hamiltonian optics, we show that such a simple device presents a surprisingly rich chaotic ray dynamics.

  2. An elementary quantum network of single atoms in optical cavities.

    Science.gov (United States)

    Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard

    2012-04-11

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.

  3. An Elementary Quantum Network of Single Atoms in Optical Cavities

    CERN Document Server

    Ritter, Stephan; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Jörg; Rempe, Gerhard

    2012-01-01

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applicati...

  4. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  5. Efficient Scheme for the Generation of Atomic Schroedinger Cat States in an Optical Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHENGShi-Biao; LINLi-Hua; JIANGYun-Kun

    2003-01-01

    An efficient scheme is proposed for the generation of atomic Schroedinger cat states in an optical cavity. In the scheme N three-level atoms are loaded in the optical cavity. Raman coupling of two ground states is achieved via a laser tield and the cavity mode. The cavity mode is always in the vacuum state and the atoms have no probability of being populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and spontaneous emission.

  6. Efficient Scheme for the Generation of Atomic Schrodinger Cat States in an Optical Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao; LIN Li-Hua; JIANG Yun-Kun

    2003-01-01

    An efficient scheme is proposed for the generation of atomic Schrodinger cat states in an optical cavity. Inthe scheme N three-level atoms are loaded in the optical cavity. Raman coupling of two ground states is achieved via alaser field and the cavity mode. The cavity mode is always in the vacuum state and the atoms have no probability ofbeing populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and spontaneous emission.

  7. Chaotically spiking attractors in suspended mirror optical cavities

    CERN Document Server

    Marino, Francesco

    2010-01-01

    A high-finesse suspended mirror Fabry-Perot cavity is experimentally studied in a regime where radiation pressure and photothermal effect are both relevant. The competition between these phenomena, operating at different time scales, produces unobserved dynamical scenarios where an initial Hopf instability is followed by the birth of small-amplitude chaotic attractors which erratically but deterministically trigger optical spikes. The observed dynamical regimes are well reproduced by a detailed physical model of the system.

  8. Ultrafast Optics: Vector Cavity Laser - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  9. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  10. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  11. Probing biological light-harvesting phenomena by optical cavities

    CERN Document Server

    Caruso, Filippo; Solano, Enrique; Huelga, Susana F; Aspuru-Guzik, Alán; Plenio, Martin B

    2011-01-01

    We propose a driven optical cavity quantum electrodynamics (QED) set up aimed at directly probing energy transport dynamics in photosynthetic biomolecules. We show that detailed information concerning energy transfer paths and delocalization of exciton states can be inferred (and exciton energies estimated) from the statistical properties of the emitted photons. This approach provides us with a novel spectroscopic tool for the interrogation of biological systems in terms of quantum optical phenomena which have been usually studied for atomic or solid-state systems, e.g. trapped atoms and semiconductor quantum dots.

  12. A birefringent cavity He-Ne laser and optical feedback

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2004-01-01

    Strong modes competition makes only one of o-light and e-light oscillate in a birefringent dual-frequency laser when the angle between the crystalline axis and the laser beam is nearly zero. When the oscillated mode is in a different part of the gain curve, the detected intensity curves of o-light and e-light are quite different in the existence of optical feedback. The curves are divided into five cases. Three cases of the experimental results can be used for direction discrimination. The polarization characteristics of the birefringent cavity He-Ne laser are also discussed without optical feedback.

  13. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    Science.gov (United States)

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  14. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail: zauggc@phys.ethz.ch; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  15. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Science.gov (United States)

    Zaugg, C. A.; Gronenborn, S.; Moench, H.; Mangold, M.; Miller, M.; Weichmann, U.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U.

    2014-03-01

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively.

  16. 1.38 W tunable high-power narrow-linewidth external-cavity tapered amplifier at 670 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.;

    2010-01-01

    A diffraction-limited narrow-linewidth diode laser system based on a tapered amplifier in external cavity is demonstrated. 1.38 W output power is obtained. The laser system is tunable from 659 to 675 nm.......A diffraction-limited narrow-linewidth diode laser system based on a tapered amplifier in external cavity is demonstrated. 1.38 W output power is obtained. The laser system is tunable from 659 to 675 nm....

  17. EIT-control of single-atom motion in an optical cavity

    CERN Document Server

    Kampschulte, Tobias; Manz, Sebastian; Martinez-Dorantes, Miguel; Reimann, René; Yoon, Seokchan; Meschede, Dieter; Bienert, Marc; Morigi, Giovanna

    2012-01-01

    We demonstrate cooling of the motion of a single atom confined by a dipole trap inside a high-finesse optical resonator. Cooling of the vibrational motion results from EIT-like interference in an atomic \\Lambda-type configuration, where one transition is strongly coupled to the cavity mode and the other is driven by an external control laser. Good qualitative agreement with the theoretical predictions is found for the explored parameter ranges. The role of the cavity in the cooling dynamics is confirmed by means of a direct comparison with EIT-cooling performed in the dipole trap in free space. These results set the basis to the realization of an efficient photonic interface based on single atoms.

  18. 10-Gb/s direct modulation of polymer-based tunable external cavity lasers.

    Science.gov (United States)

    Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C

    2012-08-27

    We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).

  19. Laser absorption spectroscopy based on a broadband external cavity quantum cascade laser

    Science.gov (United States)

    Sun, Juan; Liu, Ningwu; Deng, Hao; Ding, Junya; Sun, Jiancha; Zhang, Lei; Li, Jingsong

    2017-02-01

    A tunable diode laser absorption spectroscopy (TDLAS) system based on a broad band external cavity quantum cascade laser (ECQCL) near 7.78 μm was used to study volatile organic compounds (VOCs) measurements. Instead of using a standard infrared mercury cadmium telluride (MCT) detector, a quartz crystal tuning fork (QCTF) as a light detector was successfully used for laser signal detection. Fast Fourier transform (FFT) was used to extract vibration intensity information of QCTF. Primary results indicate that the new developed system has a good reproducibility, and a good agreement was obtained by comparing with data taken from standard spectroscopic database.

  20. Frequency stabilization in FBG external cavity semiconductor laser based on acetylene absorption method

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-quan; Su Feng-yan; Kang Li-li

    2008-01-01

    A frequency-stabilized 1.53 μm FBG external-cavity semiconductor laser by using acetylene absorption is presented and its basic principles are introduced. Graded refractive index fiber and pigtailed fiber are used in the absorption air chamber to enhance the coupling stability. The impact of the background power is eliminated by using the third-harmonic modelocking technique. A lock-in amplifier is utilized to ensure that the output laser wavelength is locked at the C2H2 absorption line of 1530.37 nm. The frequency stability reaches 10-8 within 24 h.

  1. Standoff Hyperspectral Imaging of Explosives Residues Using Broadly Tunable External Cavity Quantum Cascade Laser Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Phillips, Mark C.

    2010-05-01

    We describe experimental results on the detection of explosives residues using active hyperspectral imaging by illumination of the target surface using an external cavity quantum cascade laser (ECQCL) and imaging using a room temperature microbolometer camera. The active hyperspectral imaging technique forms an image hypercube by recording one image for each tuning step of the ECQCL. The resulting hyperspectral image contains the full absorption spectrum produced by the illumination laser at each pixel in the image which can then be used to identify the explosive type and relative quantity using spectral identification approaches developed initially in the remote sensing community.

  2. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d...

  3. Strain Sensor Using Optical Fiber Unsymmetrical F-P Cavity and the Characteristic Analysis

    Institute of Scientific and Technical Information of China (English)

    BI Weihong

    2000-01-01

    An intrinsic Fabry-Perot cavity consisted of different reflective mirrors is used in fiber-optical sensors for measuring the strain. The character of the unsymmetrical fiber-optical Fabry-Perot cavity and fiber-optic longitudinal stress-strain effect is analysed. The general theory and measurement method of strain are presented. A low fineness Fabry-Perot cavity is used to improve the linearity of optical fiber strain sensors. The result of experiment agrees well with the theory.

  4. Ray and wave chaos in asymmetric resonant optical cavities

    CERN Document Server

    Nöckel, J U; Noeckel, Jens U.

    1998-01-01

    Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects charac...

  5. Effect of External Radiation Filed on the Properties of the Atoms and Cavity Field in the Tavis-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    王忠纯

    2004-01-01

    @@ We study the properties of the atoms and cavity field in the Tavis-Cummings Model where the two atoms interact each other and also are driven by an external classical field.We consider the special case that the cavity is initially in a coherent state.After work out the atomic inversion, the average photons number and the Mandel parameter in the driven Tavis-Cummings Model, we do numerical analysis of them, and pay special attention to the dynamical behavior of the atoms and the cavity field modified by the external field.

  6. Optical cavity back action on an AFM microlever

    CERN Document Server

    Jourdan, Guillaume; Chevrier, Joël

    2008-01-01

    Two back action processes generated by an optical cavity based detection device can deeply transform the dynamical behavior of an AFM microlever: the photothermal force or the radiation pressure. Whereas noise damping or amplifying depends only on the detuning inside the cavity for radiation pressure back action, we present experimental results carried out under vacuum and at room temperature on the photothermal back action process which appears to be much more complex. We show for the first time that it can simultaneously act on two vibration modes in opposite direction: noise on one mode is amplified whereas it is damped on another mode. Modelisation of this effect leads us to conclude that indeed it is specific to photothermal back action and cannot be observed in case of radiation pressure back action.

  7. Metal-optic cavity for a high efficiency sub-fF germanium photodiode on a silicon waveguide.

    Science.gov (United States)

    Going, Ryan; Kim, Myung-Ki; Wu, Ming C

    2013-09-23

    We propose two designs of nanoscale sub-fF germanium photodiodes which are efficiently integrated with silicon waveguides. The metal-optic cavities are simulated with the finite difference time domain method and optimized using critical coupling concepts. One design is for a metal semiconductor metal photodiode with <200 aF capacitance, 39% external quantum efficiency, and 0.588 (λ/n)³ cavity volume at 1.5 µm wavelength. The second design is for a vertical p-i-n photodiode with <100 aF capacitance, 51% external quantum efficiency, and 0.804 (λ/n)³ cavity volume. Both designs make use of CMOS compatible materials germanium and aluminum metal for potential future monolithic integration with silicon photonics.

  8. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, Chinmay; Rodriguez, Alejandro W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Lin, Zin [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02139 (United States)

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading to a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.

  9. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟

    2003-01-01

    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  10. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  11. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    Science.gov (United States)

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  12. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  13. Experimental demonstration of illusion optics with ``external cloaking'' effects

    Science.gov (United States)

    Li, Chao; Liu, Xiao; Liu, Guochang; Li, Fang; Fang, Guangyou

    2011-08-01

    A metamaterial "illusion optics" with "complementary medium" and "restoring medium" is designed by using inductor-capacitor (L-C) network medium. The unprecedented effects of "external cloaking" and "transforming one object to appear as another" are demonstrated experimentally. We also demonstrate that the non-resonant nature of the L-C network decreases the sensitivity of the "external cloaking" effect to the variation of the frequency and results in an acceptable bandwidth of the whole device.

  14. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  15. All-optical cavity-based simulator of noise-assisted transport

    CERN Document Server

    Viciani, Silvia; Bellini, Marco; Caruso, Filippo

    2015-01-01

    Recent theoretical and experimental efforts have shown the remarkable and counter-intuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to simulate the performance of transport networks for different conditions of interference, dephasing and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e. a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of transport phenomena, and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

  16. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range

    Science.gov (United States)

    Jiménez, A.; Milde, T.; Staacke, N.; Aßmann, C.; Carpintero, G.; Sacher, J.

    2017-07-01

    Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 μm water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

  17. Ultracompact optical circulator based on a uniformly magnetic magnetophotonic annular Bragg cavity

    CERN Document Server

    Śmigaj, Wojciech; Romero-Vivas, Javier; Guenneau, Sébastien; Dagens, Béatrice; Gralak, Boris; Vanwolleghem, Mathias

    2011-01-01

    We have developed a theoretical framework that allows an efficient design of integrated optical circulators based on non-reciprocal magneto-optical cavities. Using this approach we have analysed different possible layouts for nonreciprocal resonant cavities. This investigation has allowed us to propose a new class of miniaturized integrated optical circulators that achieve simultaneously strong optical circulation while maintaining reasonable technological feasibility. Their layout is based on a radial Bragg cavity formed by arranging centrosymmetric annular magneto-optic rings. The circulator ports are standard rib waveguides, butt-coupled to the ring cavity by possibly cutting the outer cavity rings. Using a coupled mode description of the complete cavity/waveguide-port system, it is shown that it is indispensable to take possible direct port-to-port coupling into account for a proper optimization of the device. Including these optimization parameters in finite element simulations has led us to propose a st...

  18. Coherent beam combination of broad-area laser diode array using off-axis external cavity with double feedback

    Institute of Scientific and Technical Information of China (English)

    Zhouping Su; Zhicheng Ji; Lizhi Que; Zhuowei Zhu

    2012-01-01

    In this letter,we demonstrate coherent beam combination of laser diode array using the external Talbot cavity with double feedback.The double feedback elements consist of grating and high-reflection plane mirror.Compared with single high-reflection plane mirror feedback,the external Talbot cavity with double feedback reduce the number of interference strips in the far-field pattern and narrow spectral line-width of the laser diode array.The results indicate that the application of the external Talbot cavity with double feedback produces a clear far-field interference pattern.In addition,line-width is reduced to 0.15 nm full-width at half-maximum (FWHM).

  19. Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Bueckers, Christina; Kuehn, Eckhard; Schlichenmaier, Christoph; Koch, Stephan W. [Department of Physics and Material Sciences Center, Philipps-University Marburg (Germany); Imhof, Sebastian; Thraenhardt, Angela [Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz (Germany); Hader, Joerg; Moloney, Jerome V. [Nonlinear Control Strategies, Inc., Tucson, AZ (United States); College of Optical Sciences, University of Arizona, Tucson, AZ (United States); Rubel, Oleg [Thunder Bay Regional Research Institute, Thunder Bay, ON (Canada); Department of Physics, Lakehead University, Thunder Bay, ON (Canada); Zhang, Wei [Centre for Biophotonics, SIPBS, University of Strathclyde, Glasgow, Scotland (United Kingdom); Ackemann, Thorsten [SUPA and Department of Physics, University of Strathclyde, Glasgow, Scotland (United Kingdom)

    2010-04-15

    This article gives an overview of the microscopic theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum-well systems are presented. Detailed theory-experiment comparisons are shown and it is analyzed how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical-external-cavity surface-emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre-computed microscopic scattering and dephasing rates. Prominent deviations from quasi-equilibrium carrier distributions are obtained under strong in-well pumping conditions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Fluctuations in the intensity of a single-frequency injection laser with an external dispersion cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bogatov, A.P.; Eliseev, P.G.; Kobildzhanov, O.A.; Madgazin, V.R.; Okhotnikov, O.G.

    1986-12-01

    Studies of the intensity fluctuations of a single-frequency injection laser have revealed that they are caused by beats between the coherent field and superluminescent spontaneous radiation. A drop in the fluctuation level with an increase in the laser output power in the region of developed laser generation is observed experimentally as well as a relative shift in the frequencies of the superluminescent modes of the external cavity; this shift is a function of lasing power. This behavior is explained by a mechanism of nonlinear interaction of fields in the active region of the laser diode. With significant laser output power (about 6 mW), the fluctuation level exceeds the shot noise level by no more than 4 dB. 12 references.

  1. Littrow-type external-cavity blue laser for holographic data storage

    Science.gov (United States)

    Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu

    2007-06-01

    An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.

  2. Long-term frequency stabilization system for external cavity diode laser based on mode boundary detection.

    Science.gov (United States)

    Xu, Zhouxiang; Huang, Kaikai; Jiang, Yunfeng; Lu, Xuanhui

    2011-12-01

    We have realized a long-term frequency stabilization system for external cavity diode laser (ECDL) based on mode boundary detection method. In this system, the saturated absorption spectroscopy was used. The current and the grating of the ECDL were controlled by a computer-based feedback control system. By checking if there are mode boundaries in the spectrum, the control system determined how to adjust current to avoid mode hopping. This procedure was executed periodically to ensure the long-term stabilization of ECDL in the absence of mode hops. This diode laser system with non-antireflection coating had operated in the condition of long-term mode-hop-free stabilization for almost 400 h, which is a significant improvement of ECDL frequency stabilization system.

  3. External cavity-quantum cascade laser (EC-QCL) spectroscopy for protein analysis in bovine milk.

    Science.gov (United States)

    Kuligowski, Julia; Schwaighofer, Andreas; Alcaráz, Mirta Raquel; Quintás, Guillermo; Mayer, Helmut; Vento, Máximo; Lendl, Bernhard

    2017-04-22

    The analytical determination of bovine milk proteins is important in food and non-food industrial applications and yet, rather labour-intensive wet-chemical, low-throughput methods have been employed since decades. This work proposes the use of external cavity-quantum cascade laser (EC-QCL) spectroscopy for the simultaneous quantification of the most abundant bovine milk proteins and the total protein content based on the chemical information contained in mid-infrared (IR) spectral features of the amide I band. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. Protein concentrations in commercial bovine milk samples were calculated after chemometric compensation of the matrix contribution employing science-based calibration (SBC) without sample pre-processing. The use of EC-QCL spectroscopy together with advanced multivariate data analysis allowed the determination of casein, α-lactalbumin, β-lactoglobulin and total protein content within several minutes.

  4. Active mode locking of quantum cascade lasers operating in external ring cavity

    CERN Document Server

    Revin, D G; Wang, Y; Cockburn, J W; Belyanin, A

    2015-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode locked operation remains a challenge despite dedicated effort. Here we report the first demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents of a standard commercial laser chip.

  5. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser

    Science.gov (United States)

    Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong

    2016-12-01

    We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.

  6. Asymmetric Fabry-Pérot interferometric cavity for fiber optical sensors

    Institute of Scientific and Technical Information of China (English)

    Shaoji Jiang; Youcheng Liang; Xi Zhu; Hezhou Wang

    2006-01-01

    Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.

  7. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2001-03-15

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report.

  8. Silicon resonant cavity enhanced photodetector arrays for optical interconnects

    Science.gov (United States)

    Emsley, Matthew Kent

    High bandwidth short distance communications standards are being developed based on parallel optical interconnect fiber arrays to meet the needs of increasing data rates of inter-chip communication in modern computer architecture. To ensure that this standard becomes an attractive option for computer systems, low cost components must be implemented on both the transmitting and receiving end of the fibers. To meet this low cost requirement silicon based receiver circuits are the most viable option, however, manufacturing high speed, high efficiency silicon photodetectors presents a technical challenge. Resonant cavity enhanced photodetectors have been shown to provide the required bandwidth-efficiency product but have remained a challenge to reproduce through commercially available fabrication techniques. In this work, commercially reproducible silicon wafers with a high reflectance buried distributed Bragg reflector (DBR) have been designed and fabricated. The substrates consist of a two-period, 90% reflecting, DBR fabricated using a double silicon-on-insulator (SOI) process. Resonant-cavity-enhanced (RCE) Si photodetectors have been fabricated with 40% quantum efficiency at 860 nm, a FWHM of 25 ps, and a 3dB bandwidth in excess of 10 GHz. Si RCE 12 x 1 photodetector arrays have been fabricated and packaged with silicon based amplifiers to demonstrate the feasibility of a low cost monolithic silicon photoreceiver array.

  9. Quantum atomic lithography via cross-cavity optical Stern-Gerlach setup

    Science.gov (United States)

    Máximo, C. E.; Batalhão, T. B.; Bachelard, R.; de Moraes Neto, G. D.; de Ponte, M. A.; Moussa, M. H. Y.

    2014-10-01

    We present a fully quantum scheme to perform 2D atomic lithography based on a cross-cavity optical Stern-Gerlach setup: an array of two mutually orthogonal cavities crossed by an atomic beam perpendicular to their optical axes, which is made to interact with two identical modes. After deriving an analytical solution for the atomic momentum distribution, we introduce a protocol allowing us to control the atomic deflection by manipulating the amplitudes and phases of the cavity field states.

  10. Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-01-01

    Full Text Available A theoretical analytical method for optical properties of cavity absorber was proposed in this paper and the optical design software TracePro was used to analyze the optical properties of triangular cavity absorber. It was found that the optimal optical properties could be achieved with appropriate aperture width, depth-to-width ratio, and offset distance from focus of triangular cavity absorber. Based on the results of orthogonal experiment, the optimized triangular cavity absorber was designed. Results showed that the standard deviation of irradiance and optical efficiency of optimized designed cavity absorber were 30528 W/m2 and 89.23%, respectively. Therefore, this study could offer some valuable references for designing the parabolic trough solar concentrator in the future.

  11. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    Science.gov (United States)

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  12. Silicon resonant-cavity-enhanced photodetector arrays for optical interconnects

    Science.gov (United States)

    Emsley, Matthew K.; Dosunmu, Olufemi I.; Muller, Paul; Unlu, M. Selim; Leblebici, Yusuf

    2003-08-01

    High bandwidth short distance communications standards are being developed based on parallel optical interconnect fiber arrays to meet the needs of increasing data rates of inter-chip communication in modern computer architecture. To ensure that this standard becomes an attractive option for computer systems, low cost components must be implemented on both the transmitting and receiving end of the fibers. To meet this low cost requirement silicon based receiver circuits are the most viable option, however, manufacturing high speed, high efficiency silicon photodetectors presents a technical challenge. Resonant cavity enhanced (RCE) Si photodetectors have been shown to provide the required bandwidth-efficiency product and we have recently developed a method to reproduce them through commercially available fabrication techniques. In this work, commercially reproducible silicon wafers with a 90% reflectance buried distributed Bragg reflector (DBR) are used to create Si-RCE photodetector arrays for optical interconnects. The Si-RCE photodetectors have 40% quantum efficiency at 860 nm, a FWHM of 25 ps, and a 3dB bandwidth in excess of 10 GHz. We also demonstrate Si-RCE 12×1 photodetector arrays that have been fabricated and packaged with silicon based amplifiers to demonstrate the feasibility of a low cost monolithic silicon photoreceiver array.

  13. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  14. Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2009-01-10

    The absorption spectra and wavelength modulation spectroscopy (WMS) of NO(2) using a tunable, external cavity CW quantum cascade laser operating at room temperature in the region of 1625 to 1645 cm(-1) are reported. The external cavity quantum cascade laser enabled us to record continuous absorption spectra of low concentrations of NO(2) over a broad range (approximately 16 cm(-1)), demonstrating the potential for simultaneously recording the complex spectra of multiple species. This capability allows the identification of a particular species of interest with high sensitivity and selectivity. The measured spectra are in excellent agreement with the spectra from the high-resolution transmission molecular absorption database [J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005)]. We also conduct WMS for the first time using an external cavity quantum cascade laser, a technique that enhances the sensitivity of detection. By employing WMS, we could detect low-intensity absorption lines, which are not visible in the simple absorption spectra, and demonstrate a minimum detection limit at the 100 ppb level with a short-path absorption cell. Details of the tunable, external cavity quantum cascade laser system and its performance are discussed.

  15. Rapid and Sensitive Quantification of Isotopic Mixtures Using a Rapidly-Swept External Cavity Quantum Cascade Laser

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-05-23

    A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D2O and HDO at an update rate of 40 Hz (25 ms measurement time). The chemical mixtures were generated by evaporating D2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H2O to produce HDO. Fluctuations in the ratio of D2O and HDO on timescales of < 1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise equivalent concentrations (1σ) (NEC) of 147.0 ppbv and 151.6 ppbv in a 25 ms measurement time are estimated for D2O and HDO respectively with a 127 m optical path. These NECs are reduced to 23.0 and 24.0 ppbv with a 1 s averaging time for D2O and HDO respectively. NECs < 200 ppbv are also estimated for N2O, F134A, CH4, Acetone, and SO2 for a 25 ms measurement time. Based on the NECs obtained for D2O and HDO, the isotopic precision for measurement of the [D2O]/[HDO] concentration ratio was studied. An isotopic precision of 33‰ and 5‰ was calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.

  16. Monolithic integration of MQW wavelength tunable DBR lasers with external cavity electroabsorption modulators by selective-area MOCVD

    Science.gov (United States)

    Lammert, Robert M.; Smith, Gary M.; Hughes, J. S.; Osowski, Mark L.; Jones, A. M.; Coleman, James J.

    1997-01-01

    The design and operation of multiple-quantum well (MQW) wavelength tunable distributed Bragg reflector (DBR) lasers with nonabsorbing gratings and monolithically integrated external cavity electroabsorption modulators fabricated by selective-area metal-organic chemical vapor deposition (MOCVD) are presented. Uncoated devices exhibit cw threshold currents as low as 10.5 mA with slope efficiencies of 0.21 W/A from the laser facet and 0.06 W/A from the modulator facet. After the application of facet coatings, slope efficiencies from the modulator facet increase to 0.14 W/A. Wavelength tuning of 7 nm is obtained by injection current heating of the DBR section. These devices exhibit extinction ratios of 18 dB from the modulator facet at a low modulator bias of 1 V, when measured with a broad-area detector. When coupled to a singlemode fiber, these devices exhibit high extinction ratios of 40 dB at a modulator bias of 1.25 V. Photo-generated current versus optical power plots indicate that the extinction ratios are not limited by carrier build- up in the modulator quantum wells.

  17. Novel laser machining of optical fibers for long cavities with low birefringence

    CERN Document Server

    Takahashi, Hiroki; Orucevic, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2015-01-01

    We present a novel method of machining optical fiber surfaces with a CO${}_2$ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths ($\\le$ 200 $\\mu$m). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for us...

  18. Duality relation between nonspherical mirror optical cavities and its application to gravitational-wave detectors.

    Science.gov (United States)

    Agresti, Juri; Chen, Yanbei; D'Ambrosio, Erika; Savov, Pavlin

    2012-09-01

    In this paper, we analytically prove a unique duality relation between the eigenspectra of paraxial optical cavities with nonspherical mirrors: a one-to-one mapping between eigenmodes and eigenvalues of cavities deviating from flat mirrors by h(r) and cavities deviating from concentric mirrors by -h(r), where h need not be a small perturbation. We then illustrate its application to optical cavities, proposed for advanced interferometric gravitational-wave detectors, where the mirrors are designed to support beams with rather flat intensity profiles over the mirror surfaces. This unique mapping might be very useful in future studies of alternative optical designs for advanced gravitational wave interferometers or experiments employing optical cavities with nonstandard mirrors.

  19. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  20. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi;

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  1. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee

    2016-04-01

    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  2. A low-temperature external cavity diode laser for broad wavelength tuning

    Science.gov (United States)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  3. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.;

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...... is observed for high pump powers. For four different resonator setups, it was experimentally found that a threshold parameter could be defined as the ratio between the focal intensity in the crystal and the single-pass conversion efficiency. The value of this threshold for the onset of strong thermal...... dephasing was found to be 1.41×10^10 W^2 m^-2 in our 30-mm long PPKTP sample. This threshold parameter marks the onset of thermally induced instability that leads to a degradation of the SHG conversion efficiency. Above the threshold the shape of the resonance peaks of the resonator changed from symmetrical...

  4. External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2011-02-01

    Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

  5. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  6. A low-temperature external cavity diode laser for broad wavelength tuning

    CERN Document Server

    Tobias, William G; Hutzler, Nicholas R; Ni, Kang-Kuen

    2016-01-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64{\\deg}C, more than 85{\\deg}C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation was achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers ...

  7. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor; Laser de fibra optica compuesto por dos cavidades acopladas: aplicacion como sensor de fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), A.P. 51 y 216, 72000 Puebla (Mexico); May A, M. [Universidad Autonoma del Carmen (UNACAR) Av. 56 No. 4 por Av. Concordia, Campeche (Mexico); Shlyagin, M.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada (CICESE), 22860 Ensenada, Baja California (Mexico)]. e-mail: ravsa100@hotmail.com

    2004-07-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  8. Cavities

    Science.gov (United States)

    ... may pass these bacteria to a child through kissing, sampling the child's food, or sharing eating utensils. ... pass decay-causing bacteria to their children through kissing or sharing eating utensils. Symptoms of Cavities Whether ...

  9. Tunable continuous-wave dual-wavelength laser by external-cavity superluminescent diode with a volume Bragg grating and a diffraction grating

    Science.gov (United States)

    Zheng, Yujin; Kurita, Takashi; Sekine, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2016-10-01

    We demonstrate the tunable continuous-wave dual-wavelength laser based on a double external-cavity superluminescent diode (SLD). The double external cavity consisted of a volume Bragg grating (VBG) and a diffraction grating bracketing the SLD's two facets. The VBG was used as an output coupler to enable the external-cavity SLD to achieve a stable wavelength. A narrow bandwidth of 0.25 nm was achieved in single-wavelength operation. The diffraction grating served as an end mirror to create another tunable wavelength external cavity for the SLD. A wavelength tuning range of 23 nm was achieved. The laser output of the double external-cavity SLD had a tunable spectral separation with dual-wavelengths from +6.42 to -16.94 nm. An output power of up to 37.7 mW was achieved with a frequency difference of 7.1 THz.

  10. Application of optical controlling methods for plants under external influence

    Science.gov (United States)

    Timchenko, E. V.; Taskina, L. A.

    2012-10-01

    The experimental study results of spectral characteristic change of different types of plants influenced by external factors (synthetic superficially active substances, salts of heavy metals and nitrate fertilizers) are presented. Differential optical factor was used as the monitored optical parameter that characterizes the chlorophyll concentration change. The differential backscatter method which has high test-sensitivity and provides with the most complete information on the plant condition was the main optical monitoring method. For understanding the mechanisms of external factor accumulation and influence on plants the confocal fluorescent microscopy method providing contrast micrographs of high resolution was used for microscopic analysis in the study. It was revealed that synthetic superficially active substances and heavy metal presence lead to quasilinear decrease of differential backscatter factor with time. It was shown that the presence of salts of heavy metals in a water solution leads to chlorophyll "binding" which is microscopically shown as their «adhesion» near the cell membranes. On the contrary, the presence of synthetic superficially active substances maintains the uniformity of chlorophyll distribution in a cell, but its concentration falls with increasing the concentration in a major emission. The latter depends on the fact that synthetic superficially active substances solubilize the cell membrane proteins, increasing its penetrability. It causes pigment release ("washing away") from a plant, thereby leading to differential optical factor change. It was shown that nitrate fertilizer presence leads to increase of differential backscatter factor with time which is microscopically connected to increase in chlorophyll concentration.

  11. Highly efficient single-longitudinal-mode {beta}-BaB{sub 2}O{sub 4} optical parametric oscillator with a new cavity design

    Energy Technology Data Exchange (ETDEWEB)

    Boon-Engering, J.M. [Nederlands Centrum voor Laser Research b.v., Postbus 2662, 7500 CR Enschede (Netherlands)]|[Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Gloster, L.A.W. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); van der Veer, W.E. [Nederlands Centrum voor Laser Research b.v., Postbus 2662, 7500 CR Enschede (Netherlands)]|[Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); McKinnie, I.T. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)]|[Department of Physics, University of Otago, P.O. Box 56, Dunedin (New Zealand); King, T.A. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Hogervorst, W. [Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    1995-10-15

    A new coupled-cavity design for single-longitudinal-mode operation of an optical parametric oscillator (OPO) is presented. The OPO is based on a {beta}-BaB{sub 2}O{sub 4} crystal and is pumped by the third harmonic of a Nd:YAG laser. With this design, we achieved single-longitudinal-mode operation of the OPO with a decrease in the threshold and an increase in external efficiency compared with those of a conventional grazing-incidence OPO. A mathematical model that describes the mode spacings for this cavity is given. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  12. Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying-Qiao; Zhang Shou; Yeon Kyu-Hwang; Yu Seong-Cho

    2011-01-01

    Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres,schemes on the generation of several two-qubit logic gates are discussed under the conditions of △ =δ -2v cos πk/2 (》) g/2 and (v~ g).Discussion and analysis of the fidelity,gate time and experimental setups show that our schemes are feasible with current optical cavity,atomic trap and optical fibre techniques.Moreover,the atom-cavityfibre coupling can be used to generate an N-qubit nonlocal entanglement and transfer quantum information among N distant atoms by arranging N atom-cavity assemblages in a line and connecting each two adjacent cavities with two optical fibres.

  13. Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    Wu Jian; Lü Xue-Qin; Jin Peng; Meng Xian-Quan; Wang Zhan-Guo

    2011-01-01

    A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.

  14. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    Science.gov (United States)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  15. Observation of nonlinear thermal optical dynamics in a chalcogenide nanobeam cavity

    CERN Document Server

    Sun, Yue; Choi, Duk-Yong; Sukhorukov, Andrey A

    2016-01-01

    We present a theoretical and experimental analysis of nonlinear thermo-optic effects in suspended chalcogenide glass nanobeam cavities. We measure the power dependent resonance peaks and characterise the dynamic nonlinear thermo-optic response of the cavity under modulated light input. Several distinct nonlinear characteristics are identified, including a modified spectral response containing periodic fringes, a critical wavelength jump and saturated time delay for modulation frequency faster than the thermal characteristic time. We reveal that the coupling to a parasitic Fabry-Perot cavity enables isolated thermal equilibrium states resulting in the discontinuous thermo-optic critical point.

  16. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications

    CERN Document Server

    Shambat, Gary; Khurana, Aman; Provine, J; Sarmiento, Tomas; Cheng, Kai; Cheng, Zhen; Harris, James; Daldrup-Link, Heike; Gambhir, Sanjiv Sam; Vuckovic, Jelena

    2012-01-01

    We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combination of convective fluid forces and optically-induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.

  17. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    Science.gov (United States)

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  18. Design verification of large time constant thermal shields for optical reference cavities.

    Science.gov (United States)

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  19. Comparative numerical studies of ion traps with integrated optical cavities

    CERN Document Server

    Podoliak, Nina; Keller, Matthias; Horak, Peter

    2016-01-01

    We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.

  20. Investigations of a Coherently Driven Semiconductor Optical Cavity QED System

    Science.gov (United States)

    2008-09-30

    wavelength range of interest, the wavelength blueshift be- tween room and low temperature is 17 nm. 2 PL measure- ments through the fiber taper are...from the cryostat and blueshifted through a digital etching process 50 and the steps are repeated. 1. Room temperature cavity mode spectroscopy Room...small cavity mode blueshift of 0.8 nm per cycle, and does not degrade the cavity Q for the devices studied Q=105 and the number of etch cycles in

  1. Composite resonator vertical cavity laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  2. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-07-01

    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  3. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity.

    Science.gov (United States)

    Montina, A; Bortolozzo, U; Residori, S; Arecchi, F T

    2009-10-23

    A unidirectional optical oscillator is built by using a liquid crystal light valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents complex spatiotemporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field.

  4. Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity.

    Science.gov (United States)

    Majumdar, Arka; Kaer, Per; Bajcsy, Michal; Kim, Erik D; Lagoudakis, Konstantinos G; Rundquist, Armand; Vučković, Jelena

    2013-07-12

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond the GHz range.

  5. Effective optical path length for tandem diffuse cubic cavities as gas absorption cell

    Science.gov (United States)

    Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.

    2014-12-01

    Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.

  6. Investigation of Synthetic Jets Efficiency to Control Cavity Flotation with Subsonic External Flow by High-Resolution RANS / ILES Method

    Directory of Open Access Journals (Sweden)

    D. A. Lyubimov

    2015-01-01

    Full Text Available Cavities often found in airplanes: a niche for the landing gear, various weapons, etc. Reducing fluctuations of pressure and temperature in the cavity is a relevant practical problem. The article presents simulation results of external subsonic flow around the cavity (M = 0.85, T = 300K. . Calculations were performed using the high-resolution RANS/ILES (Reynolds Averaged Navier-Stokes - RANS, Implicit Large Eddy Simulation - ILES method. To control flow the authors propose to use synthetic jets. Synthetic jets are produced by periodic ejection and suction of fluid from a slot induced by the movement of a diaphragm (generator of synthetic jets inside a cavity. They are compact and efficient and do not require a special working body and the ways for its supply. Instead of calculating the flow in the synthetic jet generator was used the modified boundary condition on the wall where the output slots was positioned. Under consideration there were two variants of slots for synthetic jets output: in front of the cavity and inside the cavity on the front wall. The frequency and amplitude values of the synthetic jet specified a mode of each jet. For a jet inside the cavity two modes have been reviewed, namely: 100 Hz and 50m/s, 200Hz and 50m/s. For jet in front of the cavity three modes have been reviewed, specifically: 20Hz and 20m/s, 100Hz and 50m/s, 200Hz and 50m/s. Analysis of calculation results showed that for all modes under examination, the synthetic jets reduced fluctuation of static pressure and temperature on the bottom and back walls of the cavity. The mode with parameters 200Hz, 50 m/s and synthetic jet located in front of the cavity was the most efficient. Furthermore, we compared the results of calculations for two-and three-dimensional cavities, which have the same length and depth. Research has shown that the simplified quasi-two-dimensional calculations cannot be used to evaluate the pressure and temperature fluctuations. This is due to

  7. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    Science.gov (United States)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  8. Proposed Coupling of an Electron Spin in a Semiconductor Quantum Dot to a Nanosize Optical Cavity

    DEFF Research Database (Denmark)

    Majumdar, Arka; Nielsen, Per Kær; Bajcsy, Michal

    2013-01-01

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in...

  9. Demonstration of a rapidly-swept external cavity quantum cascade laser for atmospheric sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.

    2016-07-01

    The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100 cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical

  10. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  11. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    Science.gov (United States)

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-07

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  12. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  13. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    CERN Document Server

    Dutta, Sourav

    2016-01-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  14. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity

    CERN Document Server

    Klinner, J; Lindholdt, M; Nagorny, B; Hemmerich, Andreas; Klinner, Julian; Lindholdt, Malik; Nagorny, Boris

    2005-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detunedby about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  15. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    Science.gov (United States)

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  16. Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity.

    Science.gov (United States)

    Yang, Zhong-Jian; Wang, Qu-Quan; Lin, Hai-Qing

    2012-09-07

    We investigate the cooperative effects of two optical dipole antennas that are coupled to a finite Au nanowire acting as plasmonic Fabry-Pérot (F-P) cavity. The coherent coupling between one single antenna and the F-P cavity can result in Fano resonance, and the coupling strength is antenna position dependent. For two antennas coupled to the F-P cavity, constructive or destructive interference between antennas could be achieved by adjusting their positions along the F-P cavity. Consequently, the Fano resonance will become stronger or weaker correspondingly.

  17. Optical control of resonant light transmission for an atom-cavity system

    CERN Document Server

    Sharma, Arijit; Sawant, Rahul V; Sheikholeslami, G; Budker, D; Rangwala, S A

    2015-01-01

    We demonstrate the manipulation of transmitted light through an optical Fabry-Perot cavity, built around a spectroscopy cell containing enriched rubidium vapor. Light resonant with the $^{87}$Rb D$_{2}$ ($F=2/F=1$) $\\leftrightarrow F'$ manifold, is controlled by transverse intersection of the cavity mode by another resonant light beam. The cavity transmission can be suppressed or enhanced depending on the coupling of atomic states due to the intersecting beams. The extreme manifestation of cavity mode control is the precipitious destruction (negative logic switching) or buildup (positive logic switching) of the transmitted light intensity, on intersection of the transverse control beam with the cavity mode. Both the steady state and transient response are experimentally investigated. The mechanism behind the change in cavity transmission is discussed in brief.

  18. The influence of an external cavity on the emission spectrum of a mercury germicidal lamp

    Science.gov (United States)

    Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.

    2016-09-01

    The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.

  19. A theoretical performance study of an external cavity fiber Fabry-Perot interferometer for displacement measurement

    Science.gov (United States)

    Arumugam, Kumar

    The objective of this research is to explore a mathematical model developed by Wilkinson and Pratt for the external cavity fiber-based Fabry-Perot interferometer (EFPI) and to create a Michelson interferometer setup to validate a frequency modulation component of this model. A laser diode with nominal wavelength 635 nm is modulated by oscillating the diode current of maximum amplitude 22.62 mA to create correspondingly varying wavelength. Experiments are included to evaluate a rotating vector representation of the modulation harmonics in the signal received at the photodetector as of a cube corner translated by a piezo-electric actuator is displaced. Wavelength modulation as a function of diode current, the coherence length of the laser, and characteristics of the modulation harmonics are evaluated. A real time DAQ system and two lock-in amplifiers are utilized for detecting three side-band harmonics of the signal. For short range displacements this interferometer setup is monitored using a capacitance displacement sensor. The capacitance displacement measurement differed from the Michelson interferometer by 160 nm. The piezoelectric stage actuated with a 15 V Ramp signal produced 2.54 mum displacement of the cube corner. The setup is tested with Ramp signals of 75 V to 1.5 V and with the Ramp periods of 1 to 20 seconds to find the resolution of the interferometer, modulation of the wavelength sensitivity and the coherence length of the laser as 10.53 nm, 1.786 nm·A-1 and >1 m respectively. The best quadrature signal achieved corresponded to modulating the laser at amplitude of 18.86 mA at 1 kHz frequency with a path length difference of 6.35 mm. The amplitude comparison of side-band harmonics with Bessel function curves is consistent with a modulation amplitude of 1.28 rad corresponding to amplitude ratios of 0.5 (second and first) , 0.15 (third and second) and 0.06 (third and first) in the first through third Bessel function values.

  20. Feasibility of a feedback control of atomic self-organization in an optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D. A., E-mail: ivanov-den@yandex.ru; Ivanova, T. Yu. [St. Petersburg State University (Russian Federation)

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  1. A method for cleaning optical precision surface of laser gyro cavity

    Science.gov (United States)

    Cui, Ying; Jiao, Ling Yan; Lin, Na Na; Zhang, Dong

    2016-10-01

    Laser gyro is the only one non-electromechanical high-precision inertial sensitive instruments in aircraft inertial guidance systems. Ultra high vacuum acquisition is a key segment during the manufacturing process of laser gyro. The surface cleanliness and integrity have decisive influence on the sealing performance of ultra-high vacuum. A cleaning technology for the optical surface of laser gyro cavity was found by experiment. Meanwhile, the analysis of the adsorption mechanism of contaminant on the laser gyro cavity surface and overview of common optical element cleaning technology were given. The result showed that the new cleaning technology improved the cleanliness of the cavity optical surface without any damage and provided a reliable solution for chronic leak of high precision laser gyro cavity.

  2. Nano-scale optical actuation based on two-dimensional heterostructure photonic crystal cavities

    Science.gov (United States)

    Lin, Tong; Zhou, Guangya; Chau, Fook Siong; Tian, Feng; Deng, Jie

    2015-03-01

    Nowadays, nano-electro-mechanical systems (NEMS) actuators using electrostatic forces are facing the bottleneck of the electromagnetic interference which greatly degrades their performances. On the contrary, the hybrid circuits driven by optical gradient forces which are immune to the electromagnetic interference show prominent advantages in communication, quantum computation, and other application systems. In this paper we propose an optical actuator utilizing the optical gradient force generated by a hetero-structure photonic crystal cavity. This type of cavity has a longitudinal air-slot and characteristics of ultrahigh quality factor (Q) and ultra-small mode volume (V) which is capable of producing a much larger force compared with the waveguide-based structures. Due to the symmetry property, attractive optical gradient force is generated. Additionally, the optomechanical coefficient (gom) of this cavity is two orders of magnitude larger than that of the coupled nanobeam photonic crystal cavities. The 2D hetero-structure cavity, comb drives, folded beam suspensions and the displacement sensor compose the whole device. The cavity serves as the optical actuator whilst the butt-coupled waveguide acts as the displacement sensor which is theoretically proved to be insensitive to the temperature variations. As known, the thermo-optic effect prevails especially in the cavity-based structures. The butt-coupled waveguide can be used to decouple the thermal effect and the optoemchanical effect (OM) with the aid of comb drives. The results demonstrate that the proposed optical gradient force actuator show great potential in the future of all-optical reconfigurable circuits.

  3. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  4. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  5. Study of an electrodynamic system consisting of a laser cavity and an external weakly reflecting element

    Science.gov (United States)

    Shatrov, A. D.; Dubrov, M. N.; Aleksandrov, D. V.

    2016-12-01

    The behaviour of the electromagnetic field in a three-mirror laser cavity is described using the method of integral equations. The results of numerical calculations and experimental studies for particular examples implementing the considered configuration are presented. The conditions for optimal tuning of a laser interferometer-deformograph with a three-mirror cavity are determined. The contribution of the reflected and scattered light and arising additional seismic noises to the resulting error of laser gravitational wave detectors is studied.

  6. Length measurement in absolute scale via low-dispersion optical cavity

    Science.gov (United States)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  7. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...

  8. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector.

    Science.gov (United States)

    Zaugg, C A; Sun, Z; Wittwer, V J; Popa, D; Milana, S; Kulmala, T S; Sundaram, R S; Mangold, M; Sieber, O D; Golling, M; Lee, Y; Ahn, J H; Ferrari, A C; Keller, U

    2013-12-16

    We report a versatile way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between a single layer graphene (SLG) and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to ∼0. We use this to mode-lock a vertical-external-cavity surface-emitting laser (VECSEL) from 935 to 981 nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors or dielectric coatings on gain materials. Conversely, it can also be used to increase the absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

  9. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, R.; Marchenko, D.; Mandon, J.; Cristescu, S. M.; Harren, F. J. M., E-mail: F.Harren@science.ru.nl [Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Wulterkens, G. [TechnoCentrum, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen (Netherlands)

    2014-12-29

    We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.

  10. Active disturbance rejection control of temperature for ultrastable optical cavities.

    Science.gov (United States)

    Pizzocaro, Marco; Calonico, Davide; Calosso, Claudio; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Mura, Alberto

    2013-02-01

    This paper describes the application of a novel active disturbance rejection control (ADRC) to the stabilization of the temperature of two ultra-stable Fabry-Perot cavities. The cavities are 10 cm long and entirely made of ultralow- expansion glass. The control is based on a linear extended state observer that estimates and compensates the disturbance in the system in real time. The resulting control is inherently robust and easy to tune. A digital implementation of ADRC gives a temperature instability of 200 μK at one day of integration time.

  11. The properties of squeezed optical states created in lossy cavities

    CERN Document Server

    Seifoory, Hossein; Dignam, Marc M; Sipe, J E

    2016-01-01

    We investigate theoretically the properties of squeezed states generated using degenerate parametric down conversion in lossy cavities. We show that the Lindblad master equation, which governs the evolution of this system, has as its solution a squeezed thermal state with an effective temperature and squeezing parameter that depends on time. We derive analytical solutions for the time-evolution of quadrature noise, thermal photon number, squeezing parameter, and total photon number under different pumping regimes. We also find the steady state limits of the quadrature noises and discuss the $ g^{(2)} $ factor of the generated light inside the cavity in the steady state.

  12. Direct Bandgap Light Emission from Strained Ge Nanowires Coupled with High-Q Optical Cavities

    CERN Document Server

    Petykiewicz, Jan; Sukhdeo, David S; Gupta, Shashank; Buckley, Sonia; Piggott, Alexander Y; Vučković, Jelena; Saraswat, Krishna C

    2015-01-01

    A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium-based light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudo-heterostructure, and high-Q optical cavity. Our light emitting structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2,000. The emission wavelength is tuned over more than 400 nm with a single lithography step. We find increased optical gain in optical cavities formed with germanium under high (>2.3%) tensile strain. Through quantitative analysis of gain/loss mechanisms, we find that free carrier absorption from the hole bands dominates the gain, resulting in no net gain even from highly strained, n-type doped germanium.

  13. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Science.gov (United States)

    Du, Han; Zhang, Xingwang; Deng, Jie; Zhao, Yunshan; Chau, Fook Siong; Zhou, Guangya

    2016-04-01

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  14. Optical bistability enabled control of resonant light transmission for an atom-cavity system

    CERN Document Server

    Sawant, Rahul

    2015-01-01

    The control of light transmission through a Fabry-Perot cavity containing atoms is theoretically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the time dependent cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained in steady state limit. For an ensemble of atoms in the cavity mode, the response of the intra-cavity light intensity to the intersecting resonant beam is understood for stationary atoms (closed system) and non-static atoms (open system). The open system is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, with the thermal environment. The solutions to the model are used to qualitatively explain the observed steady state and transient behaviour of the light in the cavity mode, in Sharma et. al. [1]. ...

  15. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Directory of Open Access Journals (Sweden)

    Simon A. Gebrewold

    2015-12-01

    Full Text Available Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR, relative intensity noise (RIN, frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s.

  16. The Study on the Performance of the Wavelength Conversion Based on a Tunable External Cavity Semiconductor Laser

    Institute of Scientific and Technical Information of China (English)

    YE Yabin; ZHANG Hanyi; ZHENG Xiaoping

    2001-01-01

    In this paper, the performance of the wavelength conversion based on a tunable external cavity semiconductor laser (ECL) was studied. The static wavelength conversion was achieved in the tunable wavelength range of the ECL. The dynamic wavelength conversions of 155 Mb/s and 622 Mb/s nonreturn to zero (NRZ) signals were realized. The simulation of the ECL output characteristics using modified compound cavity rate equation shows that the higher bit rate wavelength conversion can be realized by increasing the relaxation oscillation frequency of the ECL. When the modulated bit rate is much lower than the relaxation oscillation frequency, under a fixed input signal power, there is an optimal bias current for the wavelength converter based on ECL.

  17. Achieving single-lobed far-field patterns of broad area laser diode with external cavity feedback

    Institute of Scientific and Technical Information of China (English)

    Jianhong Ge(葛剑虹); Jun Chen(陈军); Andreas Hermerschmidt; H.J.Eichler

    2003-01-01

    We demonstrate a technique for single transverse mode operation of high-power broad area laser diode(BAL). In the experiment, the HR mirror is used as an external cavity mirror and the grating is used as a wavelength selective component. By tiling the HR mirror and the grating, the number of transverse modes oscillating in the cavity can be limited and the spectral bandwidth of the laser diode can be reduced. A single-lobed near diffraction-limited laser beam with the beam divergence (FWHM) of 0.43°, the spectral line-width of 0.7 nm and the output power of 350 mW are obtained. With the feedback, the power density of the output laser beam is increased 6 times in comparison with the free running.

  18. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    CERN Document Server

    Tetsumoto, Tomohiro

    2014-01-01

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 6.0x10^4 and an effective mode volume Vmode of 0.66{\\lambda}^3 when the gap between two cavities is 34 nm. We found that this Q/V_mode value is five times higher than can be obtained with a single nanocavity design. The mechanical Q (Q_m) is determined by thermo-elastic damping and is 2.0x10^6 in a vacuum at room temperature. The opto-mechanical coupling rate g_OM is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  19. In situ characterization of an optically thick atom-filled cavity

    Science.gov (United States)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  20. In Situ Characterisation of an Optically Thick Atom-Filled Cavity

    CERN Document Server

    Munns, J H D; Ledingham, P M; Walmsley, I A; Nunn, J; Saunders, D J

    2015-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside and optical cavity is important for design and operation of quantum light matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimised theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapour in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground state populations, total number density and the magnitudes of both homogeneous and inhomogeneous broadening.

  1. Electromagnetically induced transparency with Rydberg atoms inside a high-finesse optical cavity

    Science.gov (United States)

    Sheng, Jiteng; Kumar, Santosh; Sedlacek, Jonathon; Chao, Yuanxi; Fan, Haoquan; Shaffer, James

    2016-05-01

    We present experimental work on the observation of Rydberg electromagnetically induced transparency (EIT) inside a high-finesse optical cavity. We show that a cold atomic cloud with controllable number of atoms can be transported into the cavity by using a focus-tunable lens. Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configuration. A three-peak structure in the cavity transmission can be observed when Rydberg EIT atoms are generated inside the cavity. The two side peaks are caused by ``bright state polaritons'', while the central peak corresponds to a ``dark-state polariton'' The cavity Rydberg EIT system can be useful for single photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states amongst many other applications. This work is supported by AFOSR.

  2. New limit on Lorentz violation using a double-pass optical ring cavity.

    Science.gov (United States)

    Michimura, Yuta; Matsumoto, Nobuyuki; Ohmae, Noriaki; Kokuyama, Wataru; Aso, Yoichi; Ando, Masaki; Tsubono, Kimio

    2013-05-17

    A search for Lorentz violation in electrodynamics was performed by measuring the resonant frequency difference between two counterpropagating directions of an optical ring cavity. Our cavity contains a dielectric element, which makes our cavity sensitive to the violation. The laser frequency is stabilized to the counterclockwise resonance of the cavity, and the transmitted light is reflected back into the cavity for resonant frequency comparison with the clockwise resonance. This double-pass configuration enables a null experiment and gives high common mode rejection of environmental disturbances. We found no evidence for odd-parity anisotropy at the level of δc/c ≲ 10(-14). Within the framework of the standard model extension, our result put more than 5 times better limits on three odd-parity parameters κ(o+)(JK) and a 12 times better limit on the scalar parameter κ(tr) compared with the previous best limits.

  3. Electro-optical cavity-dumped Ce:Nd:YAG laser for aesthetic medicine

    Science.gov (United States)

    Lv, Yuandong; Liu, Jiaqi; Hao, Lijun

    2012-11-01

    An electro-optical cavity-dumped 20 Hz Ce:Nd:YAG laser with an optimized thermal-insensitive concavo-convex cavity for aesthetic medicine was demonstrated. The pulse width remained constant at 6.0 ns. The maximum output energy and peak power were 120 mJ and 20 MW, respectively. The average output energy was very stable. The fluctuations of average output energy within 6 cycles and 10 min were 0.89% and 7.9%, respectively.

  4. Dynamics of a movable micro-mirror in a nonlinear optical cavity

    CERN Document Server

    Kumar, Tarun; ManMohan,

    2009-01-01

    We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a $\\chi^{(3)}$ medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that NMS could be used as a tool to observe the photon blockade effect. We also found that the backaction cooling of the movable mirror is reduced in the presence of the Kerr medium.

  5. Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an application field for MOEMS based scanning gratings

    Science.gov (United States)

    Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim

    2014-03-01

    In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic anal­ysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.

  6. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  7. Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption

    Institute of Scientific and Technical Information of China (English)

    HAN Shun-Li; CHENG Bing; ZHANG Jing-Fang; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2009-01-01

    A simple method to realize both stabilization and shift of the frequency in an external cavity diode laser (ECDL) is reported.Due to the Zeeman effect,the saturated absorption spectrum of Rb atoms in a magnetic field is shifted.This shift can be used to detune the frequency of the ECDL,which is locked to the saturated absorption spectrum.The frequency shift amount can be controlled by changing the magnetic field for a specific polarization state of the laser beam.The advantages of this tunable frequency lock include low laser power requirement,without additional power loss,cheapness,and so on.

  8. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    胡发杰; 金鹏; 吴艳华; 王飞飞; 魏恒; 王占国

    2015-01-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

  9. Quantum Nondemolition Measurement and Preparation of Fock States with Electromagnetically Induced Transparency in an Optical Cavity

    CERN Document Server

    Lin, G W; Huang, T; Lin, X M; Wang, Z Y; Gong, S Q

    2012-01-01

    We propose a technique for quantum nondemolition (QND) measurement and preparation of fock states by dynamics of electromagnetically induced transparency (EIT). An atomic medium trapped in an optical cavity is driven by two continuous-wave classical fields under steady-state EIT. The weak coherent fields are sequently injected into the cavity. During the process of photons passing through the cavity, a measurement on the changes of absorption loss of the probe field will be used for QND measurement of the small photon number, and thus create photon fock states, in particular single-photon states, in a heralded way.

  10. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    Science.gov (United States)

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  11. Two-photon phase gate with linear optical elements and atom-cavity system

    Science.gov (United States)

    Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min

    2016-09-01

    We propose a protocol for implementing π phase gate of two photons with linear optical elements and an atom-cavity system. The evolution of the atom-cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

  12. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    Science.gov (United States)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  13. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.

    Science.gov (United States)

    Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya

    2016-11-28

    Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable

  14. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  15. Effect of an external radiation field on the properties of the atoms and cavity field in the two-atom Tavis-Cummings model

    Institute of Scientific and Technical Information of China (English)

    王忠纯; 王琪; 张永生; 郭光灿

    2005-01-01

    We study the properties of atoms and cavity field in the two-atom Tavis-Cummings model where the two atoms interact with each other and are also driven by an external classical field. We consider the special case that the cavity is initially in a coherent state. The atomic inversion, the average photons number and the Mandel parameter in the driven Tavis-Cummings model are given and analysed numerically. We pay special attention to the dynamical behaviour of the atoms and the cavity field modified by the external field.

  16. Properties of Optical Resonant Modes in Ⅲ-Nitride Semiconductor Micro-Cone Cavities

    Institute of Scientific and Technical Information of China (English)

    DAI Lun; ZHANG Bei; LIN Jing-Yu; JIANG Hong-Xing

    2001-01-01

    Arrays of Ⅲ-nitride semiconductor micro-cone cavities with a base diameter of 3.3μm were fabricated by ion beam etching. The micro-cones consisted of 58 nm thick multiple quantum wells of ln0.22Ga0.78N/In0.06Ga0.94N as well as a 1.5μm thick epilayer of GaN. Optical resonant modes from a single micro-cone could be clearly observed in the photoluminescence spectra at temperatures up to 200K under a pumping power density two orders of magnitude lower than that for the Ⅲ-nitride semiconductor micro-disk or micro-ring cavity. Using a novel optical ray tracing method, we have figured out four main types of optical resonant cavities inside the three-dimensional micro-cone, including two Fabry-Perot (F-P) mode types as well as two Whispering Gallery mode types. The three corresponding mode spacings among the four agree perfectly with the experimental results. The advantages of this new class of micro-cavity over the other micro-cavities are discussed. These findings are expected to have an impact on the design of the ultraviolet/blue micro-cavity laser diodes.

  17. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  18. Optomechanical Entanglement Between an Ion and an Optical Cavity Field

    Science.gov (United States)

    Bhattacherjee, Aranya B.

    2016-04-01

    I study an optomechanical system in which the mechanical motion of a single trapped ion is coupled to a cavity field for the realization of a strongly quantum correlated two-mode system. I show that for large pump intensities the steady state photon number exhibits bistable behaviour. I further analyze the occurrence of normal mode splitting (NMS) due to mixing of the fluctuations of the cavity field and the fluctuations of the ion motion which indicates a coherent energy exchange. I also find that in the parameter regime where NMS exists, the steady state of the system shows continuous variable entanglement. Such a two-mode optomechanical system can be used for the realization of continuous variable quantum information interfaces and networks.

  19. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Chang, Soon Heung; Choi, Tae Hoon; Kim, Hyun Sop; Yang, Soo Hyung; Kim, Soo Hyung; Kim, Seung Hop; An Hyung Taek; Jeong, Yong Hoon; Huh, Gyun Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-03-15

    Cooling methodologies for the molten corium resulted from the severe accident of the nuclear power plant is suggested as one of most important items for the safety of the NPP. In this regard, considerable experimental and analytical works have been devoted. In the 1st phase of this project, present status related to the external reactor vessel cooling for the retention of the corium in the reactor vessel and corium at the reactor cavity have been investigated and preliminary studies have been accomplished for the detail evaluation of the each cooling methodology. The preliminary studies include the analysis and detail investigation of the possible phenomena, investigation of the heat transfer correlations and preliminary evaluation of the external reactor vessel cooling using the developed computer code.

  20. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    Science.gov (United States)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  1. Optical-bistability-enabled control of resonant light transmission for an atom-cavity system

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S. A.

    2016-02-01

    The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.

  2. Novel laser machining of optical fibers for long cavities with low birefringence.

    Science.gov (United States)

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  3. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    Science.gov (United States)

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  4. Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity

    CERN Document Server

    Westergaard, Philip G; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2014-01-01

    As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow atomic transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity transmission significantly while leaving the phase signature relatively unaffected. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple sys...

  5. Computing the laser beam path in optical cavities: a geometric Newton's method based approach

    CERN Document Server

    Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro

    2015-01-01

    In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...

  6. A Transfer Matrix-Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; LUO Bin; PAN Wei; XIONG Jie

    2005-01-01

    @@ Based on the transfer matrix method, we present a new one-dimensional steady-state model of vertical-cavity semiconductor optical amplifiers (VCSOAs), in which the longitudinal carrier concentration distribution in the active region and the discontinuity of the refractive index inside the cavity is taken into consideration. The model is theoretically proven to be a reliable one for describing the standing wave effect in a periodic gain structure.By using this model, some optical amplification characteristics of VCSOAs are investigated.

  7. Far-off-resonant coupling between a semiconductor quantum dot and an optical cavity

    DEFF Research Database (Denmark)

    Lund, Anders Mølbjerg; Settnes, Mikkel; Nielsen, Per Kær

    2014-01-01

    We present an investigation of the far-off-resonant coupling between a semiconductor quantum dot and a cavity. We show that the enhanced coupling observed in experiments is explained by Coulomb interactions with wetting layer carriers. © 2014 Optical Society of America.......We present an investigation of the far-off-resonant coupling between a semiconductor quantum dot and a cavity. We show that the enhanced coupling observed in experiments is explained by Coulomb interactions with wetting layer carriers. © 2014 Optical Society of America....

  8. Tuning range and output power optimization of an external-cavity GaN diode laser at 455  nm.

    Science.gov (United States)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-03-20

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can be used as a guide for selecting gratings for external-cavity diode lasers for different requirements.

  9. Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED

    Science.gov (United States)

    Barclay, Paul Edward

    2007-10-01

    The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-photon coupling effects can be observed at a single quanta level. Crucially, the chip based nature of nanophotonics provides a scalable platform from which to study these effects. This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics, including device design, optical coupling, fabrication and testing, modeling, and integration with more complex systems. We present a fiber taper coupling technique that allows efficient power transfer from an optical fiber into a photonic crystal waveguide. Greater than 97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical channel is then connected to a high-Q (> 40,000), ultra-small mode volume (V 44% of the photons input to a fiber. This permits the observation of optical bistability in silicon for sub-mW input powers at telecommunication wavelengths. To port this technology to cavity QED experiments at near-visible wavelengths, we also study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances with Q > 3 million and V device with an atom chip, creating an "atom-cavity chip" which can magnetically trap laser cooled atoms above the microcavity. Calculations of the microcavity single atom sensitivity as a function of Q/V are presented and compared with numerical simulations. Taking into account non-idealities, these cavities should allow detection of single laser cooled cesium atoms.

  10. Magnetic microtraps for cavity QED, Bose-Einstein condensates, and atom optics

    Science.gov (United States)

    Lev, Benjamin L.

    The system comprised of an atom strongly coupled to photons, known as cavity quantum electrodynamics (QED), provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum-limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create a sufficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have recently integrated an optical fiber Fabry-Perot cavity with such a device. The microwires allow the on-chip collection and laser cooling of neutral atoms, and allow the magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Magnetically trapped intracavity atoms have been detected with this cavity QED system. A similar experiment employing microdisks and photonic bandgap cavities is nearing completion. With these more exotic cavities, a robust and scalable atom-cavity chip system will deeply probe the strong coupling regime of cavity QED with magnetically trapped atoms. Atom chips have found great success in producing and manipulating Bose-Einstein condensates and in creating novel atom optical elements. An on-chip BEC has been attained in a miniaturized system incorporating an atom chip designed for atom interferometry and for studies of Josephson effects of a BEC in a double-well potential. Using similar microfabrication techniques, we created and demonstrated a specular magnetic atom mirror formed from a standard computer hard drive. This device, in conjunction with micron-sized charged circular pads, can produce a 1-D ring trap which may prove useful for studying Tonks gases in a ring geometry and for

  11. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities

    Science.gov (United States)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2016-03-01

    Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.

  12. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  13. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    Directory of Open Access Journals (Sweden)

    Hisao Yanagi

    2016-08-01

    Full Text Available Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P. Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  14. Proposal for a telecom quantum repeater with single atoms in optical cavities

    Science.gov (United States)

    Uphoff, Manuel; Brekenfeld, Manuel; Niemietz, Dominik; Ritter, Stephan; Rempe, Gerhard

    2016-05-01

    Quantum repeaters hold the promise to enable long-distance quantum communication via entanglement generation over arbitrary distances. Single atoms in optical cavities have been shown to be ideally suited for the experimental realization of many tasks in quantum communication. To utilize these systems for a quantum repeater, it would be desirable to operate them at telecom wavelengths. We propose to use a cascaded scheme employing transitions at telecom wavelengths between excited states of alkali atoms for entanglement generation between a single photon at telecom wavelength and a single atom at the crossing point of two cavity modes. A cavity-assisted quantum gate can be used for entanglement swapping. We estimate the performance of these systems using numerical simulations based on experimental parameters obtained for CO2 laser-machined fiber cavities in our laboratory. Finally, we show that a quantum repeater employing the aforementioned scheme and current technology could outperform corresponding schemes based on direct transmission.

  15. External and Internal Reconnection in Two Filament-Carrying Magnetic Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions. one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI). both of which are on the Solar and Heliospheric Observatory. (SOHO). For the earlier event we also use soft X-ray telescope (SXT). hard X-ray telescope (HXT). and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite. and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory. (CGRO). Both events occur in quadrupolar magnetic regions. and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases. the cavity and filament first rise slowly at approx. 10 km/s prior to eruption and then accelerate to approx. 100 km/s during the eruption. although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx. 10(exp14) - 1 0(exp 15) and approx. l0(exp 15) - l0(exp 16) g. respectively. We consider whether two specific magnetic reconnection-based models for eruption onset. the "tether cutting" and the "breakout" models. are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins. which is consistent with tether- cutting-model predictions. Substantial hard X-ray. however. do not occur until after fast eruption is underway. and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption. and this is consistent with breakout predictions. In both eruptions. the state of the overlying loops at the time of onset of the fast

  16. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of

  17. Trapping of a microsphere pendulum through cavity-enhanced optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuqiang; Chormaic, Sile Nic [Physics Department, University College Cork, Cork (Ireland); M Ward, Jonathan [Photonics Centre, Tyndall National Institute, Prospect Row, Cork (Ireland); Minogin, Vladimir G, E-mail: yuqiang.wu@tyndall.i [Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region (Russian Federation)

    2010-09-01

    Optical forces resulting from evanescently coupled microcavities can produce remarkable mechanical effects on micro- and nanoscale systems. Excitation of the symmetric and antisymmetric modes of the interacting whispering gallery modes (WGM) leads to significant attractive and repulsive forces. Here, we propose a method to spatially trap a microspherical resonator pendulum via the optical forces produced by two simultaneously excited WGMs of a photonic molecule, comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 5 eV deep and 10 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems. Frequency splitting of a co-resonant mode from two similar-sized microspheres was observed experimentally and the mechanical characteristics of a microsphere pendulum were also studied.

  18. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    crystal 16 and an optical field. The obtained coherence times are in the millisecond range and indicate that Coulomb crystals positioned inside optical cavities are promising for realizing a variety of quantum-information devices, including quantum repeaters 12 and quantum memories for light 17, 18......Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...

  19. Non-destructive monitoring of Bloch oscillations in an optical cavity

    CERN Document Server

    Keßler, H; Venkatesh, B P; Georges, Ch; Hemmerich, A

    2016-01-01

    Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly impro...

  20. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

    Science.gov (United States)

    Cai-yun, Zhang; Hu, Li; Gui-xia, Pan; Zong-qiang, Sheng

    2016-07-01

    A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power. Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.

  1. Negative and positive hysteresis in double-cavity optical bistability in three-level atom

    CERN Document Server

    Babu, H Aswath

    2010-01-01

    We present novel hysteretic behaviour of a three-level ladder atomic system exhibiting double-cavity optical bistability in the mean-field limit. The two fields coupling the atomic system experience feedback via two independent, unidirectional, single mode ring cavities and exhibit cooperative phenomena, simultaneously. The system displays a range of rich dynamical features varying from normal switching to self pulsing and a period-doubling route to chaos for both the fields. We focus our attention to a new hump like feature in the bistable curve arising purely due to cavity induced inversion, which eventually leads to negative hysteresis in the bistable response. This is probably the only all-optical bistable system that exhibits positive as well as negative bistable hysteresis in different input field intensity regimes. For both the fields, the switching times, the associated critical slowing down, the self-pulsing characteristics, and the chaotic behaviour can be controlled to a fair degree, moreover, all ...

  2. Optically controlled spin-glasses generated using multi-qubit cavity systems

    CERN Document Server

    Lee, C F; Lee, Chiu Fan; Johnson, Neil F.

    2004-01-01

    Recent advances in nanofabrication and optical control imply that multi-qubit-cavity systems can now be engineered with pre-designed couplings. Here we propose optical realizations of spin-glass systems which exploit these new nanoscale technologies. By contrast with traditional realizations using magnetic solids, phase transition phenomena can now arise in both the matter and radiation subsystems. Moreover the phase transitions are tunable simply by varying the matter-radiation coupling strength.

  3. Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity.

    Science.gov (United States)

    Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong

    2010-07-19

    We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

  4. Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1996-02-01

    Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.

  5. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  6. Lable-free Enzyme Sensing with a Si3N4 Grated Waveguide Optical Cavity

    NARCIS (Netherlands)

    Pham, S.V.; Dijkstra, M.; Hollink, A.J.F.; Kauppinen, L.J.; Ridder, de R.M.; Hoekstra, H.J.W.M.

    2011-01-01

    We report the label-free, sensitive detection of PepN enzyme using a Si3N4 grated waveguide optical cavity covered with an immobilized, selective (antibody) receptor layer. The receptor-enzyme reaction was monitored in real-time.

  7. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide

    Science.gov (United States)

    Debnath, Kapil; Welna, Karl; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G.; O'Faolain, Liam

    2013-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  8. Highly efficient optical filter based on vertically coupled Photonic crystal cavity and bus waveguide

    CERN Document Server

    Debnath, Kapil; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G; O'Faolain, Liam

    2012-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  9. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does no...

  10. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    Science.gov (United States)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  11. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    Science.gov (United States)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  12. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  13. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  14. Highly-efficient, diffraction-limited laser emission from a Vertical External Cavity Surface-emitting Organic Laser

    CERN Document Server

    Rabbani-Haghighi, Hadi; Chenais, Sebastien; Siove, Alain

    2010-01-01

    We report on a solid-state laser structure being the organic counterpart of the Vertical External-Cavity Surface-Emitting Laser (VECSEL) design. The gain medium is a poly (methyl methacrylate) film doped with Rhodamine 640, spin-casted onto the High-Reflectivity mirror of a plano-concave resonator. Upon pumping by 7-ns pulses at 532 nm, a diffraction-limited beam (M^2=1) was obtained, with a conversion efficiency of 43%; higher peak powers (2kW) could be attained when resorting to shorter (0.5 ns) pump pulses. The spectrum was controlled by the thickness of the active layer playing the role of an intracavity etalon; tunability is demonstrated over up to 20 nm.

  15. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Science.gov (United States)

    Hu, Fa-Jie; Jin, Peng; Wu, Yan-Hua; Wang, Fei-Fei; Wei, Heng; Wang, Zhan-Guo

    2015-10-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied. Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

  16. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 - 1.1 um

    CERN Document Server

    Shin, Dong K; Khakimov, Roman I; Ross, Jacob A; Dedman, Colin J; Hodgman, Sean S; Baldwin, Kenneth G H; Truscott, Andrew G

    2016-01-01

    We have developed and characterised a stable, narrow linewidth external-cavity laser (ECL) tunable over 100 nm around 1080 nm, using a single-angled-facet gain chip. We propose the ECL as a low-cost, high-performance alternative to fibre and diode lasers in this wavelength range and demonstrate its capability through the spectroscopy of metastable helium. Within the coarse tuning range, the wavelength can be continuously tuned over 30 pm (7.8 GHz) without mode-hopping and modulated with bandwidths up to 3 kHz (piezo) and 37(3) kHz (current). The spectral linewidth of the free-running ECL was measured to be 22(2) kHz (Gaussian) and 4.2(3) kHz (Lorentzian) over 22.5 ms, while a long-term frequency stability better than 40(20) kHz over 11 hours was observed when locked to an atomic reference.

  17. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  18. Atmospheric ammonia measurements in Houston, TX using an external cavity-quantum cascade laser-based sensor

    Science.gov (United States)

    Gong, L.; Lewicki, R.; Griffin, R. J.; Flynn, J. H.; Lefer, B. L.; Tittel, F. K.

    2010-12-01

    Ammonia (NH3) plays a significant role in atmospheric chemistry. It has many anthropogenic (e.g., agricultural crops and mineral fertilizers) and natural sources (e.g., animals, oceans, and vegetation) in the environment. In certain areas, industrial and motor vehicle activities also can contribute to increases in atmospheric NH3 levels. From a perspective of environmental concern, NH3 is a precursor of particulate matter (PM) because it can lead to production of ammonium salts (e.g., (NH4)2SO4 and NH4NO3) through chemical reactions with sulfuric and nitric acid. As a result, the abundance of NH3 in the atmosphere has a great impact on aerosol nucleation and composition. Despite this, NH3 is not regulated. It is crucial, however, to improve our understanding of the dynamics of NH3 in an industrial and urban area such as Greater Houston where atmospheric NH3 data are limited. In this study, a 10.4 µm external cavity quantum cascade laser (EC-QCL)-based sensor was developed and utilized. To monitor atmospheric NH3 at trace gas concentration levels, an amplitude modulated photo-acoustic spectroscopy (AM-PAS) technique was employed. The minimum detection limit obtained from the sensor is ~1.5 ppb for a 5-second data acquisition time. After averaging data over 300 seconds a sub-ppb NH3 concentration level can be achieved. The NH3 sensor has been deployed on the roof of a ~60-meter-high building (North Moody Tower) located on the University of Houston campus since November 2009. Several episodes of high NH3 concentrations were observed. For example, the sensor recorded a significant and lasting increase in NH3 concentrations (~21 ppb) on August 14, 2010, when a major accident occurred during the same time period on the Gulf Freeway (I-45) in Houston only 2 miles from the sampling site. The elevated concentration levels are assumed to be associated with NH3 generation from a chemical fire resulting from the collision involving two 18-wheelers, one carrying fertilizer

  19. Robust entanglement between a movable mirror and a cavity field system with an optical parametric amplifier

    Science.gov (United States)

    Mi, Xianwu; Bai, Jiangxiang; Ke-hui, Song

    2013-06-01

    Robust entanglement created between an optical cavity field mode and a macroscopic vibrating mirror with an optical parametric amplifier is shown. Increasing the gain of the optical parametric amplifier makes the line of the logarithmic negativity E N move to the range of the larger detuning and higher temperature. Such optomechanical entanglement can be generated even at room temperature with current experimental parameters. Compared with other proposals, we have considered the one-to-one correspondence between the detuning and the input power, which is reasonable with the fact that the mean shift of the cavity frequency is determined by the radiation pressure which is related to the input power. Such consideration may be valuable to current experiments.

  20. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2005-01-01

    The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only (┴)-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 nm, and the sensor can discriminate the target's moving direction easily.

  1. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ∼89  kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate -factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  2. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    Science.gov (United States)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  3. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm. The device has an active region of CHNHPbBr embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  4. Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    CERN Document Server

    Wuttke, C; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-01-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.

  5. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    Science.gov (United States)

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.

  6. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Albert, Magnus; Marler, Joan

    2009-01-01

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions...... in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation...

  7. Realization of white light cavity for ulra-short optical signal storage and Processing

    CERN Document Server

    Soysal, Ahmet; Pavlov, Alexander

    2014-01-01

    We have demonstrated that chirped Bragg gratings can compensate for a chromatic dispersion by reflecting different wavelengths at different location along the axis of the gratings. In this paper, we make use of such a dispersion-compensating property to create a white light cavity (WLC) effect that cancels the round trip phase shift due to propagation as the optical frequency is tuned. A pair of LCBGs is used to make the cavity. To fulfill WLC condition, the dispersion profile of the LCBGs is tailored by adjusting parameters such as chirping rate, modulation depth and the length of the grating region. Numerical simulation shows WLC bandwidth is ~10GHz.

  8. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration

    Science.gov (United States)

    Bayrakli, Ismail

    2017-01-01

    Double-mode operation and fast piezo fine tuning properties of a gain chip on a thermoelectric cooler in an external cavity are investigated. A widely course double-mode tuning range of 120 nm for the spectral range between 1470 and 1590 nm is achieved by rotating the diffraction gratings forming a double Littrow-type configuration. A fast piezo fine tuning range over 7cm-1 (1.5 nm, 210 GHz) in a single-mode operation is obtained by scanning the external cavity length with scan rates up to 0.5 kHz.

  9. PT-symmetric quantum oscillator in an optical cavity

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    The quantum harmonic oscillator with parity-time ($\\mathcal{PT}$) symmetry, obtained from the ordinary (Hermitian) quantum harmonic oscillator by an imaginary displacement of the spatial coordinate, provides an important and exactly-solvable model to investigate non-Hermitian extension of the Ehrenfest theorem. Here it is shown that transverse light dynamics in an optical resonator with off-axis longitudinal pumping can emulate a $\\mathcal{PT}$-symmetric quantum harmonic oscillator, providing an experimentally accessible system to investigate non-Hermitian coherent state propagation.

  10. Theory modeling and experimental research of external-cavity frequency doubling technology of short pulse laser

    Science.gov (United States)

    Duan, Cun-li; Zhang, Su-juan; He, Jiang-long

    2011-06-01

    Q-switched Short pulse laser has been widely applied in many fields, such as optical ranging, remote sensing, communications, nonlinear optics and spectroscopy etc. Q-switched Nd3+: YAG laser, with its high thermal conductivity and resistance to damage threshold, longer energy levels were generally used especially. Second harmonics generation was usually obtained through optical nonlinear effects in crystal. To the frequency doubling technology, poor conversion efficiency and multi-output frequency are the main problems. Researchers focus more on phase and group velocity matching induced by nonlinear effects, but pays less attention on theoretical modeling and numerical calculation of factors affecting frequency doubling of pulsed laser. In this article, nonlinear effects of double frequency crystals in Q-switched Nd3+: YAG laser was first analyzed in theory, then we deduced the relation expressions between factors affecting the efficiency of frequency doubling( thickness of frequency doubling crystal, cross section area of incident beam, power of the fundamental field, phase matching of incidence light)and double frequency efficiency. Secondly, taken KTP Crystal for example; numerical results and theirs' corresponding curves on these relation expressions was calculated and drawn with MATLAB software. These findings can be used for processing the specific requests of frequency doubling crystal. Finally, Theory modeling and numerical calculation were tested in experiment. The experiment results are in good agreement with those obtained in theory.

  11. Production cavity and central optics for a light shining through a wall experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hodajerdi, Reza

    2015-02-15

    The unexplained nature of dark matter and dark energy is a prominent reason for investigating physics beyond the standard model of particle physics (SM). Some extensions of the SM propose weakly interacting slim particles (WISPs). In an attempt to prove the existence of these particles, Light shining through the wall (LSW) experiments explore a very weak coupling between WISPs and photons (and viceversa). LSW experiments employ high-power lasers that provide a well defined flux of photons for the WISP-Photon conversion. The ALPS-I experiment at DESY in Hamburg was the first successful experiment with a high finesse optical resonator to enhance the laser power in a strong magnetic field in order to increase the photon to WISP conversion probability. The ALPS-II experimental concept adds a second optical cavity to also increase the reconversion probability. Both cavities are separated by a wall, amplify light at 1064 nm and share a common optical axis. Operating these two cavities inside 20 straightened HERA superconducting dipole magnets and using a transition edge sensor (TES) as a single photon detector will make the ALPS-II experiment almost three orders of magnitude more sensitive than its predecessor. Since photons, originating from reconverted WISPs in the regeneration cavity (RC) have 1064 nm wavelengths, the RC has to be locked to the production cavity (PC) with light of a different wavelength. Therefore frequency doubled PCs light will be used to lock the RC. This 532 nm light shall not arrive at the TES to prevent background noise. To achieve this, an optical attenuation system for wavelengths different from 1064 nm is required. In my thesis, the required attenuation was estimated and an optical setup was proposed and constructed and tested. It attenuates green photons by a factor of of 10{sup -18} and transmits 85% of the infrared photons. Furthermore the high finesse production cavity of ALPS-IIa was set up and characterized during this thesis. The PC

  12. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  13. Optical surface properties and their RF limitations of European XFEL cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-Ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor specific surface properties which allow to perform a quality control and assurance during the production. In addition, a strong negative correlation of ρ=-0.93 with a significance of 6σ of the integrated grain boundary area ΣA versus the maximal achievable accelerating field E{sub acc,max} has been found.

  14. Quantum phases and dynamics of bosonic atoms trapped in a single-mode optical cavity

    Science.gov (United States)

    Sundar, Bhuvanesh; Mueller, Erich

    2016-05-01

    Motivated by experiments performed by R. Landig et al. (arXiv:1511.00007), we theoretically explore the behavior of bosonic atoms trapped in a single-mode cavity in the presence of a two-dimensional optical lattice. As explained by arXiv:1511.00007, Rayleigh scattering of light from the lattice-inducing beams into the cavity produces infinite-range cavity-mediated interactions between the atoms, leading to competition between superfluid, supersolid, Mott insulating and charge density wave phases. We calculate the phase diagram for a uniform trap using a variation of the Gutzwiller Ansatz. We also calculate the spatial distribution of the different phases in the gas in the presence of a harmonic trap. We explore hysteretic behavior when parameters of the system are changed.

  15. Lattice-supersolid phase of strongly correlated bosons in an optical cavity

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-05-01

    We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field, pumped by a laser beam in the transverse direction. Assuming a weak classical optical lattice added in the cavity direction, we model this system by a generalized Bose-Hubbard model, which is solved by means of bosonic dynamical mean-field theory. The complete phase diagram is established, which contains two novel self-organized quantum phases, lattice supersolid and checkerboard solid, in addition to conventional phases such as superfluid and Mott insulator. At finite but low temperature, thermal fluctuations are found to enhance the buildup of the self-organized phases. We demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid and checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a harmonic trap, we discuss coexistence of these self-organized phases, as relevant to experiments.

  16. Analysis of timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2006-01-01

    processes, self-phase modulation, and spontaneous emission noise. Fluctuations of the mode-locked pulses are characterized from the fully distributed model using direct integration of noise-skirts in the phase-noise spectrum and the soliton perturbations introduced by Haus. We implement the model in order...... to investigate the performance of a MQW buried heterostructure laser. Results from numerical simulations show that the optimum driving conditions for achieving the shortest pulses with minimum timing jitter occur for large reverse bias in the absorber section at an optimum optical bandwidth limited by Gordon...

  17. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    Science.gov (United States)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  18. Monitoring the Evaporation of Fluids from Fiber-Optic Micro-Cell Cavities

    Directory of Open Access Journals (Sweden)

    Borut Preloznik

    2013-11-01

    Full Text Available Fiber-optic sensors provide remote access, are readily embedded within structures, and can operate in harsh environments. Nevertheless, fiber-optic sensing of liquids has been largely restricted to measurements of refractive index and absorption spectroscopy. The temporal dynamics of fluid evaporation have potential applications in monitoring the quality of water, identification of fuel dilutions, mobile point-of-care diagnostics, climatography and more. In this work, the fiber-optic monitoring of fluids evaporation is proposed and demonstrated. Sub-nano-liter volumes of a liquid are applied to inline fiber-optic micro-cavities. As the liquid evaporates, light is refracted out of the cavity at the receding index boundary between the fluid and the ambient surroundings. A sharp transient attenuation in the transmission of light through the cavity, by as much as 50 dB and on a sub-second time scale, is observed. Numerical models for the transmission dynamics in terms of ray-tracing and wavefront propagation are provided. Experiments show that the temporal transmission profile can distinguish between different liquids.

  19. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    Science.gov (United States)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  20. Improved Optical Magnetometer Based on Electromagnetically Induced Transparency in a Ring-Cavity Setup

    Science.gov (United States)

    Bardhan, Bhaskar Roy; Kim, Moochan; Dowling, Jonathan

    2012-06-01

    We propose and simulate a ring-gyro optical magnetometer based on polarization rotation of an optical field in an electromagnetically induced transparency (EIT) system. By properly choosing the polarization orientations of the optical field and the transition energy levels, the transparency conditions for the polarization components are derived for the EIT system inserted into the ring-cavity setup as a cell. As the optical field passes through the cell, the fluctuations of the Rabi frequency as well as the density inside the cell, due to the fluctuations in the laser field, give rise to the dephasing of the polarization vector. We show that using the setup it is possible to achieve very sensitive measurement of the magnetic field. Besides, by making several round trips of the photons, the dephasing effects can be removed by some suitable dynamical decoupling schemes implemented with additional waveplates in the setup. This enables us to obtain long interrogation length for the EIT based optical magnetometer.

  1. Optical feedback characteristics in a helium neon laser with a birefringent internal cavity

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian; Xu Ting; Wan Xin-Jun; Liu Gang

    2007-01-01

    The output characteristics of optical feedback in a helium-neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.

  2. Nonlinear all-optical switch based on a white-light cavity

    Science.gov (United States)

    Li, Na; Xu, Jingping; Song, Ge; Zhu, Chengjie; Xie, Shuangyuan; Yang, Yaping; Zubairy, M. Suhail; Zhu, Shi-Yao

    2016-04-01

    It is well known that there is a bottleneck for nonlinear all-optical switching, namely, the switching power and the switching time cannot be lowered simultaneously. A lower switching power requires a resonator with a high quality (Q ) factor, but leads to a longer switching time. We propose to overcome this bottleneck by replacing the nonlinear cavity in such an all-optical switch by a white-light cavity. This can be done by doping three-level atoms in the ring resonator and applying incoherent pump and coherent driving fields on it. The white-light cavity possesses broadband resonance in a linear region. Therefore, for the incident pulse, a broad range of frequency components can take part in the nonlinear process, and so it requires lower power to achieve switching compared to the conventional ring resonator. On the other hand, the refractive index of a white-light cavity has negative dispersion, leading to a fast group velocity. This results in a shorter time to build up the resonant response, yielding a short switching time.

  3. Optical surface properties and their RF limitations of European XFEL cavities

    Science.gov (United States)

    Wenskat, Marc

    2017-10-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-ray Free Electron Laser and the International Linear Collider HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot ’optical bench for automated cavity inspection with high resolution on short timescales’ OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor-specific surface properties which allow the performance of quality control and assurance during production. In addition, a strong negative correlation of ρ =-0.93 with a significance of 6 σ of the integrated grain boundary area \\sum {A} versus the maximal achievable accelerating field {{E}}{acc,\\max } has been found.

  4. Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity

    Science.gov (United States)

    Sheng, Jiteng; Chao, Yuanxi; Kumar, Santosh; Fan, Haoquan; Sedlacek, Jonathon; Shaffer, James P.

    2017-09-01

    We present an experimental study of cavity-assisted Rydberg-atom electromagnetically induced transparency (EIT) using a high-finesse optical cavity (F ˜28 000 ). Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configuration. A three-peak structure of the cavity transmission spectrum is observed when Rydberg EIT is generated inside the cavity. The two symmetrically spaced side peaks are caused by bright-state polaritons, while the central peak corresponds to a dark-state polariton. Anticrossing phenomena and the effects of mirror adsorbate electric fields are studied under different experimental conditions. We determine a lower bound on the coherence time for the system of 7.26 ±0.06 μ s , most likely limited by laser dephasing. The cavity-Rydberg EIT system can be useful for single-photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states among many other applications.

  5. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    Science.gov (United States)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  6. Optical cavity characterization of the Tor Vergata Fabry-Pérot interferometer

    Science.gov (United States)

    Giovannelli, Luca; Berrilli, Francesco; Del Moro, Dario; Greco, Vincenzo; Piazzesi, Roberto; Sordini, Andrea; Stangalini, Marco

    2014-08-01

    We report the first optical and control performances of the Tor Vergata Fabry-Ṕerot interferometer prototype designed and realized in the framework of the ADvanced Astronomy for HELIophysics (ADAHELI) solar mission project. The characterization of the the coated surfaces of the two plates defining the optical cavity has been carried out with a Zygo interferometer able to measure the microroughness and global curvature of the cavity. The peak-to-valley errors are compliant with the manufacturer specifications and correspond to λ/70 and λ/80 @632.8 nm respectively. In addition, we present a first estimate of the interferometer spectral stability in stable open-air condition. A spectral uncertainty equal to 0.95 pm is found as the typical RMS over one hour of the passband central wavelength position.

  7. Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method

    Science.gov (United States)

    Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.

    2017-06-01

    A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the

  8. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our knowle...

  9. Intensity- and phase-noise correlations in a dual-frequency vertical-external-cavity surface-emitting laser operating at telecom wavelength

    Science.gov (United States)

    De, Syamsundar; Baili, Ghaya; Bouchoule, Sophie; Alouini, Mehdi; Bretenaker, Fabien

    2015-05-01

    The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency beat note generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multimode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.

  10. Measurement of air-refractive-index fluctuation from frequency change using a phase modulation homodyne interferometer and an external cavity laser diode

    Science.gov (United States)

    Ishige, Masashi; Aketagawa, Masato; Banh Quoc, Tuan; Hoshino, Yuta

    2009-08-01

    We present a method for air-refractive-index (nair) fluctuation measurement using a laser interferometer. The method is based on a combination of a phase modulation homodyne interferometer (PMHI), an external cavity laser diode (ECLD) and an ultralow thermal expansion material (ULTEM). The PMHI utilizes a Michelson interferometer which is constructed on the ULTEM plate under the condition of an air temperature fluctuation of less than 10 mK, so that the optical path change or the air-refractive-index fluctuation (Δnair) caused by the thermal disturbance can be neglected. Meanwhile, the ECLD is controlled by adjusting its frequency to track some of the dark fringes of the interferometer, so that Δnair can be derived from the ECLD frequency change. The uncertainty of the Δnair measurement in the experiment is of 10-8 order. However, it will be possible to decrease the uncertainty to 10-9 or less if the signal-to-noise ratio (SNR) of the control system is improved.

  11. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  12. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    benefits from the stable ringdown baseline stability of this pulsed UV -CRDS system that offers a laser beam in a wide wavelength range from visible to...measure wavelength-dependent single particle extinction for different types of particles and in different wavelength regions ( Visible - UV ). We found: (1...SECURITY CLASSIFICATION OF: We report a new single-aerosol particle scope using an optical trapping-cavity ringdown spectroscopy (OT-CRDS) technique

  13. Optical parametric oscillators in isotropic photonic crystals and cavities: 3D time domain analysis

    OpenAIRE

    Conti, Claudio; Di Falco, Andrea; Assanto, Gaetano

    2004-01-01

    We investigate optical parametric oscillations through four-wave mixing in resonant cavities and photonic crystals. The theoretical analysis underlines the relevant features of the phenomenon and the role of the density of states. Using fully vectorial 3D time-domain simulations, including both dispersion and nonlinear polarization, for the first time we address this process in a face centered cubic lattice and in a photonic crystal slab. The results lead the way to the development of novel p...

  14. Excitations of optically driven atomic condensate in a cavity: theory of photodetection measurements

    OpenAIRE

    Müstecaplıoğlu, Özgür E.; Öztop, Barış; Bordyuh, Mykola; Türeci, Hakan E.

    2011-01-01

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 212.175.32.130 This content was downloaded on 22/04/2014 at 11:58 Please note that terms and conditions apply. Excitations of optically driven atomic condensate in a cavity: theory of photodetection measurements View the table of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About Contact us My IOPsc...

  15. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    CERN Document Server

    Li, Huanan; Shapiro, Boris

    2016-01-01

    There exists an analogy between Maxwell equations in a rotating frame and Schr\\"odinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  16. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  17. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  18. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity.

    Science.gov (United States)

    Saeed, A; Panaro, S; Zaccaria, R Proietti; Raja, W; Liberale, C; Dipalo, M; Messina, G C; Wang, H; De Angelis, F; Toma, A

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

  19. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  20. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  1. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  2. Exponential Attractor for Coupled Ginzburg-Landau Equations Describing Bose-Einstein Condensates and Nonlinear Optical Waveguides and Cavities

    Directory of Open Access Journals (Sweden)

    Gui Mu

    2013-01-01

    Full Text Available The existence of the exponential attractors for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities with periodic initial boundary is obtained by showing Lipschitz continuity and the squeezing property.

  3. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  4. Optical gain from vertical Ge-on-Si resonant-cavity light emitting diodes with dual active regions

    Science.gov (United States)

    Lin, Guangyang; Wang, Jiaqi; Huang, Zhiwei; Mao, Yichen; Li, Cheng; Huang, Wei; Chen, Songyan; Lai, Hongkai; Huang, Shihao

    2017-09-01

    Vertical resonant-cavity light emitting diodes with dual active regions consisting of highly n-doped Ge/GeSi multiple quantum wells (MQWs) and a Ge epilayer are proposed to improve the light emitting efficiency. The MQWs are designed to optically pump the underlying Ge epilayer under electric injection. Abundant excess carriers can be optically pumped into the Γ valley of the Ge epilayer apart from electric pumping. With the combination of a vertical cavity, the efficiency of the optical-pumping process was effectively improved due to the elongation of the optical length in the cavity. With the unique feature, optical gain from the Ge epilayer is observed between 1625 and 1700 nm at injection current densities of >1.528 kA/cm2. The demonstration of optical gain from the Ge epilayer indicates that this strategy can be generally useful for Si-based light sources with indirect band materials.

  5. Sensitive Raman gas analysis using a 500 mW external cavity diode laser at 410 nm

    Science.gov (United States)

    Li, Bin; Luo, Shiwen; Yu, Anlan; Gao, Jun; Sun, Pengfei; Wang, Xinbing; Zuo, Duluo

    2017-09-01

    Sensitive Raman gas analysis based on a home-made high power 410 nm Littrow-arranged external cavity diode laser (ECDL) and a parabolic sample cell is presented. Using a commercially available violet laser diode and a reflective holographic grating, the ECDL achieves a maximum output power of 505 mW with line-width about 50 pm. Spontaneous Raman scattering of ambient air is acquired with this ECDL, in which an imaging Raman spectrometer is applied. Strong Raman signals of O2, N2 and H2O are observed with 1 s exposure time; a limit of detection (LOD) of CO2 about 210 ppm is achieved with an exposure time of 100 s and a 3.5-fold enhancement to the signal level is also demonstrated compared with a 532 nm green laser with the same exciting power. The results show that violet diode laser can be an attractive excitation source for Raman gas analysis.

  6. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  7. Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity

    Science.gov (United States)

    Zheng, Ya-Mei; Hu, Chang-Sheng; Yang, Zhen-Biao; Wu, Huai-Zhi

    2016-10-01

    We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system’s nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012).

  8. Measurement of epithelial thickness within the oral cavity using optical coherence tomography (OCT)

    Science.gov (United States)

    Prestin, S.; Betz, C.; Kraft, M.

    2010-02-01

    Optical coherence tomography (OCT) is a promising method in the early diagnosis of oral cavity cancer. The objective of the present study is to determine normal values of epithelial thickness in the oral cavity, as no such data are to be found in the literature. In healthy test persons, epithelial thickness of the oral mucosa was determined with the help of OCT separately for each side at nine different locations. Special attention was directed to those sites having the highest incidence for the development of dysplasias and carcinomas. Depending on the location within the oral cavity, the epithelium demonstrated a varying thickness. The highest values were found in the region of the tongue and the cheek, whereas the floor of the mouth showed the thinnest epithelium. Our data serve as reference values for detecting oral malignancy and determining the approximate grade of dysplasia. In this circumstance, a differentiated view of the different regions is important due to the variation in thickness of the epithelium within the normal oral cavity.

  9. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    Science.gov (United States)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  10. Stabilization of class-B broad-area lasers emission by external optical injection

    CERN Document Server

    Pakhomov, A V

    2016-01-01

    We theoretically examine the effect of external optical injection on the spatio-temporal dynamics of class-B broad-area lasers. We demonstrate that optical injection can efficiently stabilize the intrinsic transverse instabilities in such lasers associated with both the boundaries of the pumping area and with the bulk nonlinearities of the active medium. Stabilizing action of optical injection is shown to be closely related to the suppression of inherent relaxation oscillations behavior.

  11. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter

    2014-12-09

    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  12. Nonlinear optical effects and Hong-Ou-Mandel interference in cavity quantum electrodynamics

    Science.gov (United States)

    Mirza, Imran M.; van Enk, Steven J.

    Pure quantum interference among single photons is one of the key ingredients to perform linear optics quantum computation (LOQC). The Hong-Ou-Mandel interference (HOMI) [C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, (18), 2044-2046 (1987)] i.e. complete destructive interference between two identical and indistinguishable photons simultaneously entering input ports of a 50/50 beam splitter, is a well-known example in this context. In this talk, I'll present our theoretical study of HOMI in a coupled Jaynes-Cummings array. In particular and by applying quantum jump/trajectory formalism, I'll focus on how partial quantum interference between two photons survive both non-linearities produced by two-level emitter and spectral filtering due to optical cavities in our coupled cavity array setup [Imran M. Mirza and Steven J. van Enk, Opt. Comm. 343, 172-177 (2015)]. Along with LOQC, this work is crucial from the perspective of exploiting coupled cavity arrays to store single photons reliably (without altering their temporal and spectral traits) [Imran M. Mirza, Steven J. van Enk and Jeff Kimble, JOSA B, 10, 2640-2649, (2013)].

  13. Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity

    Science.gov (United States)

    Boddeda, R.; Usmani, I.; Bimbard, E.; Grankin, A.; Ourjoumtsev, A.; Brion, E.; Grangier, P.

    2016-04-01

    We experimentally characterize the optical nonlinear response of a cold atomic medium placed inside an optical cavity, and excited to Rydberg states. The excitation to S and D Rydberg levels is carried out via a two-photon transition in an electromagnetically induced transparency configuration, with a weak (red) probe beam on the lower transition, and a strong (blue) coupling beam on the upper transition. The observed optical nonlinearities induced by S states for the probe beam can be explained using a semi-classical model with van der Waals’ interactions. For the D states, it appears necessary to take into account a dynamical decay of Rydberg excitations into a long-lived dark state. We show that the measured nonlinearities can be explained by using a Rydberg bubble model with a dynamical decay.

  14. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  15. Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity

    CERN Document Server

    Boddeda, Rajiv; Bimbard, Erwan; Grankin, Andrey; Ourjoumtsev, Alexei; Brion, Etienne; Grangier, Philippe

    2015-01-01

    We experimentally characterize the optical nonlinear response of a cold atomic medium placed inside an optical cavity, and excited to Rydberg states. The excitation to S and D Rydberg levels is carried out via a two-photon transition in an EIT (electromagnetically induced transparency) configuration, with a weak (red) probe beam on the lower transition, and a strong (blue) coupling beam on the upper transition. The observed optical nonlinearities induced by S states for the probe beam can be explained using a semi-classical model with van der Waals' interactions. For the D states, it appears necessary to take into account a dynamical decay of Rydberg excitations into a long-lived dark state. We show that the measured nonlinearities can be explained by using a Rydberg bubble model with a dynamical decay.

  16. Highly nonlinear optical regime in graphene-assisted cavities: lasing threshold bares graphene nonlinearity

    CERN Document Server

    Ciattoni, Alessandro

    2014-01-01

    Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...

  17. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  18. Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities

    CERN Document Server

    Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-01-01

    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  19. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    Science.gov (United States)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  20. Signal line shapes of Fourier transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs

    CERN Document Server

    Johansson, Alexandra C; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2016-01-01

    We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to the molecular line width, {\\Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{\\Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.

  1. Direct generation of optical frequency combs in χ(2 nonlinear cavities

    Directory of Open Access Journals (Sweden)

    Mosca Simona

    2016-06-01

    Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  2. Gain chip design, power scaling and intra-cavity frequency doubling with LBO of optically pumped red-emitting AlGaInP-VECSELs

    Science.gov (United States)

    Kahle, Hermann; Mateo, Cherry M. N.; Brauch, Uwe; Bek, Roman; Schwarzbäck, Thomas; Jetter, Michael; Graf, Thomas; Michler, Peter

    2016-03-01

    The wide range of applications in biophotonics, television or projectors, spectroscopy and lithography made the optically-pumped semiconductor (OPS) vertical external cavity surface-emitting lasers (VECSELs) an important category of power scalable lasers. The possibility of bandgap engineering, inserting frequency selective and converting elements into the open laser cavity and laser emission in the fundamental Gaussian mode leads to ongoing growth of the area of applications for tuneable laser sources. We present an AlGaInP-VECSEL system with a multi quantum well structure consisting of compressively strained GaInP quantum wells in an AlxGa1-xInP separate confinement heterostructure with an emission wavelength around 665 nm. The VECSEL chip with its n-λ cavity is pumped by a 532nm Nd:YAG laser under an angle to the normal incidence of 50°. In comparison, a gain chip design for high absorption values at pump wavelengths around 640nm with the use of quantum dot layers as active material is also presented. Frequency doubling is now realized with an antireflection coated lithium borate crystal, while a birefringent filter, placed inside the laser cavity under Brewster's angle, is used for frequency tuning. Further, power-scaling methods like in-well pumping as well as embedding the active region of a VECSEL between two transparent ic heaspreaders are under investigation.

  3. Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback

    Science.gov (United States)

    Lin, Hong; Khurram, Aliza; Hong, Yanhua

    2016-10-01

    Time delay (TD) signatures are studied experimentally in orthogonal polarizations and in individual transverse modes respectively in a VCSEL operating with three transverse modes. Different types of concealment of the TD signatures are observed when the polarization of feedback is rotated through large angles. Effects of feedback strength and external cavity length on the TD signatures are investigated. Weak feedback leads to better concealment of the TD signatures in the dominant polarization. When the round-trip time difference between the two external cavities is close to a half of the relaxation oscillation period, the TD signatures are minimized.

  4. Optical switching of cross intensity correlation in cavity electromagnetically induced transparency

    Science.gov (United States)

    Rao, Shi; Hu, Xiangming; Xu, Jun; Li, Lingchao

    2017-03-01

    We present optical switching of cross intensity correlation in the context of cavity electromagnetically induced transparency configuration. For symmetrical parameters, the cross intensity correlation switches from negative to positive as the atom–pump detunings change symmetrically from one case to the other. In terms of the dressed atomic states and the Bogoliubov modes we analyze the atom–photon interaction mechanism for the switching behavior, and present a numerical verification. As a by-product, we show noise squeezing of the sum or difference intensity in a limited region of parameters.

  5. Theoretical study on modulating group velocity of light in photonic crystal coupled cavity optical waveguide

    Institute of Scientific and Technical Information of China (English)

    LU Ying; HUANG Xiao-hui; FU Xiang-yong; CHU Dan-ping; Jian-quan

    2012-01-01

    We present a novel mechanism,which is formed by periodically changing the radii of dielectric rods in the middle row of a photonic crystal,to control and stop light.Using the Bloch theory and coupled-mode theory,the dispersion characteristic of such a photonic crystal coupled cavity optical waveguide is obtained.We also theoretically demonstrate that the group velocity of a light pulse in this system can be modulated by dynamically changing the refractive index or radii of the selected dielectric rods,and the light stopping can be achieved.

  6. Influence of Atomic Motion on a Microlaser in an Optical Standing-Wave Cavity

    Institute of Scientific and Technical Information of China (English)

    张敬涛; 冯勋立; 张文琦; 徐至展

    2002-01-01

    We study the microlaser in an optical standing-wave cavity injected with two-level atoms. The results have shown the obvious infIuence of atomic centre-of-mass motion on the microlaser, such as the photon distribution, the linewidth and the frequency shift. It was found that when the momentum of atoms is comparable to that of photons, the influence of atomic motion is dominated and the number of photons in the microlaser can be greatly enhanced, owing to part of the atomic kinetic energy being transferred to the resonator. This work provides a comparison of the related studies on the atomic motion under special assumptions.

  7. Quantum Popov robust stability analysis of an optical cavity containing a saturated Kerr medium

    Science.gov (United States)

    Petersen, Ian R.

    2017-09-01

    This paper applies results of the robust stability of nonlinear quantum systems to a system consisting of an optical cavity containing a saturated Kerr medium. The system is characterised by a Hamiltonian operator that contains a non-quadratic term involving a quartic function of the annihilation and creation operators. A saturated version of the Kerr nonlinearity leads to a sector-bounded nonlinearity that enables a quantum small gain theorem to be applied to this system in order to analyse its stability. Also, a non-quadratic version of a quantum Popov stability criterion is presented and applied to analyse the stability of this system.

  8. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    Science.gov (United States)

    Li, Huanan; Kottos, Tsampikos; Shapiro, Boris

    2016-09-01

    There exists an analogy between Maxwell equations in a rotating frame and the Schrödinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  9. Chiral Symmetry Breaking in Micro-Ring Optical Cavity By Engineered Dissipation

    CERN Document Server

    Shu, Fang-Jie; Zou, Xu-Bo; Yang, Lan

    2016-01-01

    We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.

  10. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael;

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...... unaffected, severe impact is observed to the cladding layers and the waveguide. Consequently hardening of diode lasers for operation under external optical feedback must necessarily involve claddings and waveguide, into which the quantum well is embedded.......The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  11. Carrier suppression in quadruple frequency modulation by cascaded optical external modulators for millimeter-wave generation

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Wei Zhang; Xiaoming Liu

    2009-01-01

    The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2(n=1,2…),which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.

  12. Optomechanical coupling between two optical cavities: cooling of a micro-mirror and parametric normal mode splitting

    CERN Document Server

    Kumar, Tarun; ManMohan,

    2011-01-01

    We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optmechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.

  13. Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity

    CERN Document Server

    Dumeige, Yannick; Jacques, Vincent; Treussart, François; Roch, Jean-François; Debuisschert, Thierry; Acosta, Victor; Jarmola, Andrey; Jensen, Kasper; Kehayias, Pauli; Budker, Dmitry

    2013-01-01

    We propose to use an optical cavity to enhance the sensitivity of magnetometers relying on the detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using infrared optical absorption. The role of the cavity is to obtain a contrast in the absorption-detected magnetic resonance approaching unity at room temperature. We project an increase in the photon shot-noise limited sensitivity of two orders of magnitude in comparison with a single-pass approach. Optical losses can limit the enhancement to one order of magnitude which could still enable room temperature operation. Finally, the optical cavity also allows to use smaller pumping power when it is designed to be resonant at both the pump and the signal wavelength.

  14. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  15. (Almost-)blind locking algorithm for high finesse suspended optical cavities

    CERN Document Server

    Cella, Giancarlo

    2015-01-01

    Suspended resonant optical cavities are basic building blocks for several experimental devices. An important issue is the control strategy required to bring them in the resonant or slightly detuned configuration needed for their operation, the so-called \\textit{ locking} procedure. This can be obtained with a feedback strategy, but the error signal needed is tipically available only when the cavity is near the resonance with a precision of the order $\\Delta L\\simeq\\lambda_{\\ell}{\\cal F}^{-1}$, where ${\\cal F}$ is the cavity finesse and $\\lambda_{\\ell}$ is the laser's wavelength. When the mirrors are freely swinging the locking can be attempted only in the short time windows when this condition is verifyed. Tipically this means that the procedure must be repeated several times, and that large forces must be applied. In this paper we describe a different strategy, which tries to take advantage by the fact that the dynamics of the mirrors is known at least in an approximate way. We argue that the locking procedu...

  16. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction

    Science.gov (United States)

    Lee, Mark D.; Ruostekoski, Janne

    2014-08-01

    We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.

  17. Olfactory Neuroblastoma Treated by Endoscopic Surgery Followed by Combined External Beam Radiation and Gamma Knife for Optic Nerve and Chiasm Sparing: A Case Report

    Directory of Open Access Journals (Sweden)

    Hansi Z. Jiang

    2011-01-01

    Full Text Available We describe the multimodality treatment regimen of a 53-year-old man diagnosed with olfactory neuroblastoma (Kadish stage C in the right nasal cavity extending into the ethmoid sinus and across the cribriform plate. Endoscopic surgery for tumor resection was followed by a combination of external beam radiotherapy and stereotactic radiosurgery boost with concurrent chemotherapy. The novel combination of dual radiation therapies allowed for the preservation of the nearby optic structures while providing an adequate dosage to a sufficient volume of the afflicted tissue.

  18. Optically controllable dual-mode switching in single-mode Fabry-Pérot laser diode subject to one side-mode feedback and external single mode injection

    Science.gov (United States)

    Wu, Jian-Wei; Won, Yong Hyub

    2017-06-01

    In this paper, broadly tunable dual-mode lasing system is presented and demonstrated based on single-mode Fabry-Pérot laser diode subject to the feedback of one side mode amplified by an erbium-doped fiber amplifier in the external feedback cavity. The spacing between two resonance modes in output lasing spectrum is broadly tuned by introducing differently amplified side mode into the single-mode laser via the external cavity consisted of amplifier, filter, and polarization controller so that two difference frequencies of 1 THz and 0.6 THz are given to display the tunable behavior of dual-mode emission in this work. Therefore, under an external injection mode into the laser condition, the power dependent injection locking and optical bistability of generated dual-mode emission are discussed in detail. At different wavelength detunings, the emitted two resonance modes including the dominant and feedback modes are switched to on- or off-state by selecting proper high-low power level of the external injection mode. As a consequence, the maximum value of achieved dual-mode on-off ratio is as high as up to 45 dB.

  19. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  20. Cavity-aided magnetic-resonance microscopy of atoms in optical lattices

    CERN Document Server

    Purdy, Tom P; Brooks, Daniel W C; Botter, Thierry; Stamper-Kurn, Dan M

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful technique for investigating the microscopic properties and dynamics of physical systems. In this work we demonstrate state-sensitive MRI of ultracold atoms in an optical lattice. Single-shot spatial resolution is 120 nm, well below the lattice spacing, and number sensitivity is +/-2.4 for 150 atoms on a single site, well below Poissonian atom-number fluctuations. We achieve this by combining high-spatial-resolution control over the atomic spin using an atom chip, together with nearly quantum-limited spin measurement, obtained by dispersively coupling the atoms to light in a high-finesse optical cavity. The MRI is minimally disruptive of the atoms' internal state, preserving the magnetisation of the gas for subsequent experiments. Using this technique, we observe the nonequilibrium transport dynamics of the atoms among individual lattice sites. We see the atom cloud initially expand ballistically, followed by the onset of interaction-inhibited transport.

  1. Quantum-statistical property of optical diode based on cavity QED

    Science.gov (United States)

    Li, Haozhen; Xu, Jingping; Wang, Da-Wei; Xia, Xiuwen; Yang, Yaping; Zhu, Shiyao

    2017-07-01

    An optical diode made of an asymmetric cavity containing a two-level atom is investigated. We focus on the quantum-statistical property of the transmitted field with nonclassical light input. Both coherent and squeezed light inputs have been considered. The results show that the transmitted contrast of such optical diode is independent of the statistical properties of the incident light but is only sensitive to its intensity. On the other hand, the quantum-statistical property, i.e., the squeezing, of the transmitted field strongly depends on the statistical properties and directions of the incident light. For squeezed light input, the degree of the squeezing of the transmitted field can be remarkably enhanced. Moreover, the squeezing of the amplitude quadrature of the incident light can be transferred to the phase quadrature due to the coupling of the light and the atom.

  2. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    Science.gov (United States)

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-11-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

  3. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    Science.gov (United States)

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-01-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future. PMID:27786248

  4. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    Science.gov (United States)

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-10-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future.

  5. Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

    CERN Document Server

    Gretarsson, Andri M; Frolov, Valery; O'Reilly, Brian; Fritschel, Peter K

    2007-01-01

    We analyze the electromagnetic fields in a Pound-Drever-Hall locked, marginally unstable, Fabry-Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector that is located in Livingston, Louisiana. In the interferometer's normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO2 laser. During the study described here, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zer...

  6. External Electro-optic Sampling Utilizing an Asymmetric Fabry-Pérot Film of Poled Electro-optical Polymer

    Institute of Scientific and Technical Information of China (English)

    陈开鑫; 杨罕; 张大明; 张红波; 衣茂斌

    2001-01-01

    External electro-optic sampling has been first demonstrated using a poled electro-optical polymer asymmetricFabry-Pérot film, placed freely on the indium-tin oxide coplanar waveguide transmission line and used as anelectro-optic probe tip. Only one laser beam is required due to the fact that the asymmetric Fabry-Pérot film isutilized to convert the phase modulation to amplitude modulation. A 1.2 GHz microwave signal is sampled, andthe voltage sensitivity of about 2 m V/Hz is obtained. The results are promising for technical applications inhigh-speed electronic devices and monolithic microwave integrated circuits research.

  7. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  8. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    CERN Document Server

    Miyazono, Evan; Craiciu, Ioana; Kindem, Jonathan M; Faraon, Andrei

    2016-01-01

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  9. Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes

    Institute of Scientific and Technical Information of China (English)

    Liao Zai-Yi; Yang Hua; Wang Wei

    2008-01-01

    This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.

  10. CLASSICAL AREAS OF PHENOMENOLOGY: Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes

    Science.gov (United States)

    Liao, Zai-Yi; Yang, Hua; Wang, Wei

    2008-07-01

    This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.

  11. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    Science.gov (United States)

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication. PMID:24401795

  12. Distribution of DVB-C Channels over an Externally Modulated Optical Link

    Science.gov (United States)

    Andrade, Paulo; Lima, Mário; Teixeira, António

    2012-03-01

    In this paper, we will study, via simulation, the transmission of DVB-C channels over an external modulated optical link using a Mach-Zehnder modulator (MZM). We will also observe the consequences of biasing the MZM near its transmission minimum point, which allows higher carrier to noise ratio at the transmitter, but increases second-order distortion at the receiver.

  13. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael;

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  14. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  15. Fundamentals of Cavity-Enhanced Polarimetry for Parity-Nonconserving Optical Rotation Measurements: Application to Xe, Hg and I

    CERN Document Server

    Bougas, L; von Klitzing, W; Rakitzis, T P

    2013-01-01

    We present the theoretical basis of a cavity-enhanced polarimetric scheme for the measurement of parity-nonconserving (PNC) optical rotation. We discuss the possibility of detecting PNC optical rotation in accessible transitions in metastable Xe and Hg, and ground state I. In particular, the physics of the PNC optical rotation is presented, and we explore the lineshape effects on the expected PNC optical rotation signals. Furthermore, we present an analysis of the eigenpolarizations of the cavity-enhanced polarimeter, which is necessary for understanding the measurement procedure and the ability of employing robust background subtraction procedures using two novel signal reversals. Using recent atomic structure theoretical calculations, we present simulations of the PNC optical rotation signals for all proposed transitions, assuming a range of experimentally feasible parameters. Finally, the possibility of performing sensitive measurements of the nuclear-spin-dependent PNC effects is investigated, for the odd...

  16. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    Science.gov (United States)

    Madani, A.; Bolaños Quiñones, V. A.; Ma, L. B.; Miao, S. D.; Jorgensen, M. R.; Schmidt, O. G.

    2016-04-01

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  17. In vivo optical virtual biopsy of human oral cavity with harmonic generation microscopy

    Science.gov (United States)

    Tsai, M.-R.; Chen, S.-Y.; Shieh, D.-B.; Lou, P.-J.; Sun, C.-K.

    2010-02-01

    Oral cancer ranked number four in both cancer incident and mortality in Taiwanese male population. Early disease diagnosis and staging is essential for its clinical success. However, most patients were diagnosed in their late disease stage as ideal prescreening procedures are yet to be developed especially when dealing with a large surface of precancerous lesions. Therefore, how to detect and confirm the diagnosis of these early stage lesions are of significant clinical value. Harmonic generation process naturally occurred in biological molecules and requires no energy deposition to the target molecule. Thus harmonic generation microscopy (HGM) could potentially serve as a noninvasive tool for screening of human oral mucosal diseases. The in vivo optical biopsy of human oral cavity with HGM could be achieved with high spatial resolution to resolve dynamic physiological process in the oral mucosal tissue with equal or superior quality but devoid of complicated physical biopsy procedures. The second harmonic generation (SHG) provide significant image contrast for biomolecules with repetitive structures such as the collagen fibers in the lamina propria and the mitotic spindles in dividing cells. The cell morphology in the epithelial layer, blood vessels and blood cells flow through the capillaries can be revealed by third harmonic generation (THG) signals. Tissue transparent technology was used to increase the optical penetration of the tissue. In conclusion, this report demonstrates the first in vivo optical virtual biopsy of human oral mucosa using HGM and revealed a promising future for its clinical application for noninvasive in vivo diseases diagnosis.

  18. Generating Entanglement between Atomic Spins with Low-Noise Probing of an Optical Cavity

    CERN Document Server

    Cox, Kevin C; Greve, Graham P; Thompson, James K

    2015-01-01

    Atomic projection noise limits the ultimate precision of all atomic sensors, including clocks, inertial sensors, magnetometers, etc. The independent quantum collapse of $N$ atoms into a definite state (for example spin up or down) leads to an uncertainty $\\Delta \\theta_{SQL}=1/\\sqrt{N}$ in the estimate of the quantum phase accumulated during a Ramsey sequence or its many generalizations. This phase uncertainty is referred to as the standard quantum limit. Creating quantum entanglement between the $N$ atoms can allow the atoms to partially cancel each other's quantum noise, leading to reduced noise in the phase estimate below the standard quantum limit. Recent experiments have demonstrated up to $10$~dB of phase noise reduction relative to the SQL by making collective spin measurements. This is achieved by trapping laser-cooled Rb atoms in an optical cavity and precisely measuring the shift of the cavity resonance frequency by an amount that depends on the number of atoms in spin up. Detecting the probe light ...

  19. Continuous 40\\,GW/cm$^2$ laser intensity in a near-concentric optical cavity

    CERN Document Server

    Schwartz, O; Haslinger, P; Glaeser, R M; Mueller, H

    2016-01-01

    Manipulating free-space electron wave functions with laser fields can bring about new electron-optical elements for transmission electron microscopy. In particular, a Zernike phase plate would enable high-contrast imaging of soft matter, leading to new opportunities in structural biology and materials science. A Zernike plate can be implemented using a tight, intense CW laser focus that shifts the phase of the electron wave by the ponderomotive potential. Here, we use a near-concentric cavity to focus 7.5\\,kW of circulating laser power at 1064\\,nm into a $7\\,\\mu$m waist, setting a record for CW laser intensity and establishing a pathway to ponderomotive phase contrast TEM.

  20. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity

    Science.gov (United States)

    Oliveira, A. N.; Moreira, L. S.; Sacramento, R. L.; Kosulic, L.; Brasil, V. B.; Wolff, W.; Cesar, C. L.

    2017-06-01

    We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.

  1. Higher order test of Lorentz invariance with an optical ring cavity

    CERN Document Server

    Michimura, Yuta; Mewes, Matthew; Matsumoto, Nobuyuki; Ohmae, Noriaki; Kokuyama, Wataru; Aso, Yoichi; Ando, Masaki

    2016-01-01

    We have developed an apparatus to search for the higher-order Lorentz violation in photons by measuring the resonant frequency difference between two counterpropagating directions of an asymmetric optical ring cavity. From the year-long data taken between 2012 and 2013, we found no evidence for the light speed anisotropy at the level of $\\delta c/c \\lesssim 10^{-15}$. Limits on the dipole components of the anisotropy are improved by more than an order of magnitude, and limits on the hexapole components are obtained for the first time. An overview of our apparatus and the data analysis in the framework of the spherical harmonics decomposition of anisotropy are presented. We also present the status of the recent upgrade of the apparatus.

  2. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity.

    Science.gov (United States)

    Oliveira, A N; Moreira, L S; Sacramento, R L; Kosulic, L; Brasil, V B; Wolff, W; Cesar, C L

    2017-06-01

    We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.

  3. Reply to "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' "

    Science.gov (United States)

    Kristensen, Philip Trøst; Ge, Rong-Chun; Hughes, Stephen

    2017-07-01

    We refute all claims of the "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' " by E. A. Muljarov and W. Langbein. Based entirely on information already contained in our original article [P. T. Kristensen, R.-C. Ge, and S. Hughes, Phys. Rev. A 92, 053810 (2015), 10.1103/PhysRevA.92.053810], we dismiss every point of criticism as being unsupported and point out how important parts of our argumentation appear to have been overlooked by the Comment authors. In addition, we provide additional calculations showing directly the connection between the normalizations by Sauvan et al. and Muljarov et al., which were not included in our original article.

  4. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    CERN Document Server

    Liu, Yu-Long; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2016-01-01

    We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $\\mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $\\tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($\\tau\\sim2$ $\\math...

  5. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    Science.gov (United States)

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis.

  6. Cavity Ring Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    Science.gov (United States)

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2016-06-30

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  7. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    Science.gov (United States)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  8. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz under the influence of external magnetic field using microwave cavity spectrometer

    Indian Academy of Sciences (India)

    Manoj Johri; Abhay Saxena; S Johri; S Saxena; D P Singh

    2011-04-01

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and the effects of applied magnetic field on transition temperatures are studied in the present work. The technique needs a small quantity (< 0.001 cm3) of the sample and provides fruitful information about the macroscopic structure of the liquid crystal.

  9. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  10. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  11. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    CERN Document Server

    Torres, Juan Mauricio; Seligman, Thomas H

    2010-01-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  12. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    Science.gov (United States)

    Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.

    2010-12-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  13. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  14. Wideband Analog Transmission System Based on the External Intensity Electro-Optic Modulator

    Directory of Open Access Journals (Sweden)

    Jiri Svarny

    2016-01-01

    Full Text Available The work deals with design and integration of an analog electro-optic transmission system suitable for some specialized tasks of diagnostics and measurements. The system is based on principle of external intensity modulation of fiber guided laser radiation. Besides wideband and almost lossless transmission the system tolerates extreme length of the transmitting medium and ensures ultimate galvanic barrier between the input and output.

  15. Thin cylindrical slot in an optical microdisk cavity for sensing biomaterials

    Science.gov (United States)

    Daraei, Ahmadreza; Daraei, Mohammad Esmaeil

    2017-04-01

    In this paper, we propose and investigate a thin cylindrical slot etched into a disk shape optical microcavity (MC) aiming for sensing biomaterials in a label-free style. Supporting whispering gallery modes (WGMs), with remarkably large quality factor to modal volume ratio (Q/Vm) of the optical MC structures that penetrate in the slot region, enables us to perform sensing. Three different geometries for the side walls of host microdisk cavities, including vertical, 60° wedged, and half-circular cross section, are selected for investigations. In each individual case, the radial position, width, and height of the thin cylindrical slot are varied. The electromagnetic (EM) field intensity distributions (mode mapping profiles) of the WGMs show funneling of the intensified fields into the slot area that possessing nearly the same high Q values. Tuning the slot position, width, and depth for a suitably chosen WGM, sensing could be optimized for different biomaterials. Sensitivity value as high as 75 nm/RIU is calculated for the half-circular side wall microdisk. The proposed WGM-based slotted microdisk, as a state-of-the-art device which can operate, such as lab-on-chip structure, would function as a sensitive biosensor, even down to the single biomolecule levels.

  16. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    Science.gov (United States)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  17. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    Science.gov (United States)

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  18. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    Science.gov (United States)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  19. Noise-immune cavity-enhanced optical frequency comb spectroscopy: A sensitive technique for high-resolution broadband molecular detection

    CERN Document Server

    Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2014-01-01

    Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS), and validate the model by comparing it to experimental CO2 spectra around 1575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long term stability of the system, a...

  20. 浅析元件参数对外腔半导体激光器输出谱宽影响%Influencing factors on spectral linewidth of external cavity diode laser

    Institute of Scientific and Technical Information of China (English)

    李元栋; 武永福; 胡猛; 孙瑞

    2014-01-01

    High power narrowed linewidth pump source is needed with diode pumped alkali laser developed. But the linewidth of the commercial diode laser is far exceed the absorption linewidth of the alkali atom. So the Littrow external cavity is used to narrowed the spectrum of high power diode laser array. The linewidth of high power diode laser array is directly affected by the parameters of elements in Littrow external cavity. In this paper, the model of external cavity diode laser was set up by using ray tracing method. By replacing cylindrical lens with sphere lens, the influence of micro-cylindrical lens array, beam shaping optics and grating were analysed. The resutls show that, to obtain narrower output laser linewidth, the focal length of micro-cylindrical lens array should be smaller, the grating grooves is denser, and the focal of spherical lens is larger. And the theoretical conclusions is demonstrated by experimental results.%半导体抽运碱金属蒸气激光器(DPAL)需大功率窄线宽泵浦源,但市售半导体激光器输出线宽远远大于碱金属原子吸收谱宽,难以实现有效泵浦,因此需采用Littrow外腔法压窄半导体激光器输出谱宽。 Littrow外腔系统中元件参数的选择直接影响大功率半导体激光器输出谱宽。为此文中沿入射光线方向构建外腔压窄模型,利用球面镜替代柱面镜,分析了微柱透镜阵列、光学系统和光栅元件对外腔输出谱宽的影响,模拟结果为微柱透镜阵列焦距越小、光栅刻线越密、球面镜焦距越大,外腔输出谱宽越窄,实验结果符合理论模型。

  1. Si3N4 Grated Waveguide Optical Cavity based Sensors for Bulk-index Concentration, Label-free Protein, and Mechano-Optical Gas Sensing

    NARCIS (Netherlands)

    Pham, S.V.; Dijkstra, M.; Hollink, A.J.F.; Ridder, de R.M.; Pollnau, M.; Hoekstra, H.J.W.M.

    2011-01-01

    A grated waveguide (GWG), which is a waveguide with a finite-length grated section, acts as an optical resonator, showing sharp fringes in the transmission spectrum near the stop-band edges of the grating. These oscillations are due to Fabry-Perot resonances of Bloch modes propagating in the cavity

  2. Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback.

    Science.gov (United States)

    Xiang, Shuiying; Pan, Wei; Yan, Lianshan; Luo, Bin; Zou, Xihua; Jiang, Ning; Yang, Lei

    2011-09-01

    The effects of unpredictability degree on the chaos synchronization properties of vertical-cavity surface-emitting lasers with variable-polarization optical feedback are investigated numerically. For variable-polarization optical injection, only low-unpredictability chaos can be well synchronized, while high-unpredictability chaos cannot be synchronized even with large injection strength. On the other hand, for the polarization-preserved optical injection, the synchronization quality is hardly affected by the unpredictability degree, and high-quality synchronization can be achieved for both low- and high-unpredictability chaos due to injection locking.

  3. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  4. Optical mode confinement in three-dimensional Al/SiO2 nano-cavities with hyperbolic dispersion

    Science.gov (United States)

    Bacco, Carla; Kelly, Priscilla; Kuznetsova, Lyuba

    2015-09-01

    Today's technological needs are demanding for faster and smaller optical components. Optical microcavities offer a high confinement of electromagnetic field in a small volume, with dimensions comparable to the wavelength of light, which provides a unique system for the enhancement of light-matter interactions on the nanoscale. However, further reducing the size of the optical cavity (from microcavity to nanocavity) is limited to the fundamental diffraction limit. In hyperbolic metamaterials, large wave vectors can be achieved. Therefore, optical cavities, created from hyperbolic metamaterials, allow the confinement of the electromagnetic field to an extremely small volume with dimensions significantly smaller than the wavelength of light. This paper presents the results of numerical study of the optical mode confinement in nanocavities with hyperbolic dispersion using nanolayered Al/SiO2 hyperbolic metamaterial with different Al fill fractions. The fundamental properties of the optical modes and resonance frequencies for the nanocavities are studied using the finite-elementmethod numerical technique. Numerical simulations show that the light can be well confined in a disk with radius up to λ/65. This paper will also focus on other variables such as Q-factor and Al fill fraction. Potential future applications for three-dimensional nanocavities with hyperbolic dispersion include: silicon photonics optical communications networks, ultrafast LEDs and biological nanoparticles sensing.

  5. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.

    Science.gov (United States)

    Sánchez-Azqueta, Ana; Martínez-Júlvez, Marta; Hervás, Manuel; Navarro, José A; Medina, Milagros

    2014-02-01

    Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRs. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Design of Optical Tunable CNOT (XOR) and XNOR Logic Gates Based on 2D-Photonic Crystal Cavity Using Electro-Optic Effect

    CERN Document Server

    Abbasian, Karim; Sadeghi, Parvin

    2016-01-01

    We have proposed optical tunable CNOT (XOR) and XNOR logic gates using two-dimensional photonic crystal (2DPhC) cavities. Where, air rods with square lattice array have been embedded in Ag-Polymer substrate with refractive index of 1.59. In this work, we have enhanced speed of logic gates by applying two input signals with a phase dif?ference at the same wavelength for 2DPhC cavities. Where, we have adjusted the phases of input and control signals equal with {\\pi}/3 and zero, respectively. The response time of the structure and quality factor of the cavities are in the range of femtosecond and 2000, respectively. Then, we have used electro-optic property of the substrate material to change the cavities resonance wavelengths. By this means, we could design the logic gates and demonstrate a tunable range of 23nm for their operation wavelength. The quality factor and the response times of cavities remain constant in the tunable range of wavelength, approximately. The evaluated least ON to OFF logic-level contras...

  7. Evaluation of thermal expansion coefficient of Fabry-Perot cavity using an optical frequency comb

    Science.gov (United States)

    Oulehla, Jindřich; Šmíd, Radek; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Jedlička, Petr; Lazar, Josef; Číp, Ondřej

    2011-05-01

    In construction of highly mechanically stable measuring devices like AFM microscopes or nano-comparators the use of low expansion materials is very necessary. We can find Zerodur ceramics or ULE glasses used as a frame or basement of these devices. The expansion coefficient of such low-expansion materials is lower than 0.01 x 10-6 m•K-1. For example in case of a frame or basement 20 cm long it leads to a dilatation approximately 4 nm per 1 K. For calculation of the total uncertainty of the mentioned measuring devices the knowledge of the thermal expansion coefficient of the frame or basement is necessary. In this work we present a method, where small distance changes are transformed into rf-frequency signal. The frequency of this signal is detected by a counter which measures the value of the frequency with respect to an ultra-stable time-base. This method uses a Fabry-Perot cavity as a distance measuring tool. The spacer of the optical resonator is made from the investigated low-expansion material. It is placed into a vacuum chamber where the inside temperature is controlled. A selected mode of the femtosecond frequency of the femtosecond comb which represent the distance changes of the optical resonator. The frequency is measured by the rf-counter which is synchronized by a time-base signal from an atomic clock. The first results show the resolution of the method in the 0.1 nm order. Therefore the method has a potential in characterisation of materials in the nanoworld.

  8. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz

    Science.gov (United States)

    Keaveney, James; Hamlyn, William J.; Adams, Charles S.; Hughes, Ifan G.

    2016-09-01

    We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.

  9. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth $<400$ kHz and long-term stability of $<1$ MHz

    CERN Document Server

    Keaveney, James; Adams, Charles S; Hughes, Ifan G

    2016-01-01

    We report on the development of a diode laser system - the `Faraday laser' - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Farady filter. Our system has both short-term and long-term stability of less than 1~MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a `turn-key' solution for laser cooling experiments.

  10. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz.

    Science.gov (United States)

    Keaveney, James; Hamlyn, William J; Adams, Charles S; Hughes, Ifan G

    2016-09-01

    We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.

  11. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  12. Folded-Cavity Resonators as Key Elements for Optical Filtering and Low-Voltage Electroabsorption Modulation

    Science.gov (United States)

    Djordjev, Kostadin D.; Lin, Chao-Kun; Zhu, Jintian; Bour, David; Tan, Michael R.

    2006-09-01

    Folded-cavity (FC) resonators, which are based on shallow-etched ridge waveguides combined with four deeply etched turning mirrors, are designed and fabricated. The device consists of a resonant FC and a bus waveguide coupled to it through a directional coupler. Optical passive filters, based on this technology, exhibit quality factors in the excess of 5000, with a low insertion loss of 5 dB (including the input coupling loss to a fiber) and more than 15-dB extinction at resonance. When the filter is combined with an electroabsorption active region and is designed to operate in the overcoupled regime, a low-voltage/high-extinction-ratio resonant modulation becomes feasible. The resonant modulator exhibits a low insertion loss (greater than 22-dB extinction at resonance) and offers a low-voltage operation. A change in the applied voltage by 0.7 V (close to the critically coupled conditions) leads to a transmission change of more than 16 dB. Open eye diagrams at 12 Gb/s are presented. To decrease the insertion loss, multiple material bangaps are further monolithically integrated across the wafer by utilizing the quantum-well-intermixing techniques.

  13. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    Science.gov (United States)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  14. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    Science.gov (United States)

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  15. Stability analysis for bad cavity lasers with inhomogeneously broadened gain

    CERN Document Server

    Kazakov, Georgy A

    2016-01-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with external field leads to an inhomogeneous broadening of the atomic gain profile. This can bring the bad cavity laser to operate in unstable regimes characterized by complex temporal patterns of the field amplitude. We present a new and efficient method for the stability analysis of bad cavity lasers with inhomogeneously broadened gain. We apply this method to identify the steady-state solutions for the metrology-relevant case of spin-1/2 atoms interacting with an external magnetic field.

  16. Preliminary measurement results of biotinylated BSA detection of a low cost optical cavity based biosensor using differential detection

    Science.gov (United States)

    Cowles, Peter; Joy, Cody; Bujana, Antonio; Rho, DongGee; Kim, Seunghyun

    2016-03-01

    We report an optical cavity based biosensor using a novel differential detection method for point-of-care applications. Two laser diodes allow for multiplexing capability along with the ability to enhance the responsivity using differential detection. The laser wavelengths are chosen so that the optical intensities of two lasers change monotonically with opposite slopes upon the adsorption of desired biomarkers. The cavity width, PMMA thickness, and silver thickness have been optimized to achieve a large change in scaled differential value. We chose biotinylated BSA detection with Avidin as a receptor molecule to demonstrate the proposed design. Avidin is attached directly to the PMMA layer by physisorption. Then, biotinylated BSA is introduced to the sample and the intensities of the laser diodes are measured by a sCMOS camera. A change in the scaled differential value will correlate to the binding of biotinylated BSA. In this presentation, we will discuss simulation results, fabrication procedures, and preliminary measurement results.

  17. The Dicke model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity

    CERN Document Server

    Nagy, D; Szirmai, G; Domokos, P

    2009-01-01

    We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.

  18. L-band tunable external cavity laser based on 1.58 μm superluminescent diode integrated with spot-size converter.

    Science.gov (United States)

    Oh, Su Hwan; Yoon, Ki-Hong; Kim, Ki Soo; Kim, Jongbae; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-09-13

    We report a 1.58 μm superluminescent diode (SLD) with a spot-size converter (SSC) designed and fabricated as a light source for a tunable external cavity laser (T-ECL). The active section of the SLD is fabricated by using a planar buried heterostructure (PBH) for low-threshold current and high-output power operation at a low injection current. The SSC structure of the SLD is designed to possess a buried deep-ridge waveguide (BD-RWG) and show a beam of less divergence. The full-width at half maximum (FWHM) of the horizontal and vertical far-field patterns (FFPs), due to the beam of the less divergence, are 14° and 13°, respectively. We also confirm that an L-band T-ECL employing the SSC SLD operates well enough to prove the characteristics of high performance.

  19. Single-pass UV generation at 222.5 nm based on high-power GaN external cavity diode laser.

    Science.gov (United States)

    Ruhnke, N; Müller, A; Eppich, B; Güther, R; Maiwald, M; Sumpf, B; Erbert, G; Tränkle, G

    2015-05-01

    We demonstrate a compact system for single-pass frequency doubling of high-power GaN diode laser radiation. The deep UV laser light at 222.5 nm is generated in a β-BaB2O4 (BBO) crystal. A high-power GaN external cavity diode laser (ECDL) system in Littrow configuration with narrowband emission at 445 nm is used as pump source. At a pump power of 680 mW, a maximum UV power of 16 μW in continuous-wave operation at 222.5 nm is achieved. This concept enables a compact diode laser-based system emitting in the deep ultraviolet spectral range.

  20. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter;

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...... efficiency is obtained, the highest reported TEM00 power from any 946 nm Nd:YAG laser pumped by a single emitter diode laser pump source. A quantum efficiency of 0.85 has been estimated from experimental data using a simple quasi-three-level model. The reported value is in good agreement with published...... values, suggesting that the model is adequate. Improvement of the 946 nm laser due to the ECDL's narrow spectrum proves to be less significant when compared to its spatial quality, inferring a broad spectrum tapered diode laser pump source may be most practical. Experimental confirmation of such setup...

  1. Chaotic behaviour from smooth and non-smooth optical solitons under external perturbation

    Indian Academy of Sciences (India)

    LIUWEI ZHAO; JIULI YIN

    2016-08-01

    Smooth and non-smooth optical solitons in the nonlinearly dispersive Schrödinger equation are given by phase portraits. The Melnikov technique is used to detect conditions for chaotic motion of this deterministic system and to analyse conditions for the suppression of chaos. Our results show that the system is in a state of Melnikov chaos by external disturbances. After the implementation of the controlled system, the optical solitons can transmit in a stable station for a long time. Numerical simulation also shows that maximum interference frequency of the system enables the dynamic behaviour to be more complex. The effect of controller parameter on phase portraits as well as on the numerical simulations of bifurcation diagram and maximum Lyapunov exponents are also investigated.

  2. Auger Processes Mediating the Nonresonant Optical Emission from a Semiconductor Quantum Dot Embedded Inside an Optical Cavity

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Nielsen, Per Kær; Lund, Anders Mølbjerg;

    2013-01-01

    We show that Auger processes involving wetting layer transitions mediate emission from a cavity that is detuned from a quantum dot by even tens of meV. The wetting layer thus acts as a reservoir, which by Coulomb scattering can supply or absorb the energy difference between emitter and cavity. We...

  3. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy

    Science.gov (United States)

    Bayrakli, Ismail; Turkmen, Aysenur; Akman, Hatice; Sezer, M. Tugrul; Kutluhan, Suleyman

    2016-08-01

    An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.

  4. A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator

    CERN Document Server

    Zhang, Y; Zhao, W; Meng, S; Fan, S; Zhang, L; Guo, G; Zhang, S; Jiang, H

    2014-01-01

    We demonstrate a home-made optical frequency comb based on an erbium-doped-fiber femtosecond laser with a ring cavity. The repetition rate of the laser is about 209 MHz determined by optical length of the laser cavity. By controlling an intra-cavity electro-optic modulator and a Piezo-transducer, the repetition rate can be stabilized with megahertz bandwidth in a range of 3 kilohertz, enabling long-term repetition rate phase-locking. The in-loop frequency instability of the repetition rate, limited by measurement system, is 1.3E-13 at 1 second integration time and inversely proportional to integration time for short terms. Using a common path f-2f interferometer, the carrier envelope offset (CEO) frequency of the frequency comb is obtained with a signal-to-noise ratio of 40 dB for 3 megahertz resolution spectrum. Stabilized CEO frequency exhibits a deviation of 0.6 milihertz at 1 second integration time.

  5. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Science.gov (United States)

    Yang, Ming-Jay; Lin, Chun-Chi; Wu, Yu-Shu; Wang, Likarn; Na, Neil

    2017-03-01

    We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  6. UV laser with an acousto-optic intra-cavity control for GaN-sapphire cut

    Science.gov (United States)

    Gradoboev, Yury G.; Kazaryan, Mishik A.; Mokrushin, Yury M.; Shakin, Oleg V.

    2012-09-01

    A copper vapor laser is proposed as the basic component of the installation for processing of sapphire substrates with a GaN-coating. Laser radiation is transformed to UV range by optical frequency doubling. Powerful UV lasers are prospective tools for crystal cutting, photolithography and recording of the fiber Bragg gratings. The proposed approach is more promising in comparison with the use of excimer radiation because of instabilities of excimer laser generation and low coherence of its radiation, which makes difficult precise focusing and using interference pattern of UV radiation for exposing materials. UV laser based on second harmonic radiation of copper vapors laser has been designed. The UV laser system of high operation stability has been developed with output power 1 W at wavelengths 255.5 nm, 271.1 nm, 289.1 nm and coherence length radiation about 4 cm. The original intra-cavity acousto-optic control of output radiation is developed. It is allows adjusting frequency and on-off time ratio of output laser pulses with high accuracy. The stable heat regime was achieved for an active element of copper vapor laser̤ The laser system allows to select an optimum mode of ultra-violet radiation exposition for production of different optical elements. Intra-cavity acousto-optic cell was used for controlling of single pulse amplitude and number of pulses without any power supply tuning providing the stable operation of the laser system.

  7. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    Science.gov (United States)

    Liu, Yu-Long; Wu, Rebing; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2017-01-01

    We theoretically study a strongly driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar to those observed in PT -symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultralong group delay. The time delay τ can be optimized by regulating the optomechanical coupling strength through the control field, and it can be improved up to several orders of magnitude (τ ˜2 ms ) compared to that of conventional optomechanical systems (τ ˜1 μ s ). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a PT -symmetric-like optomechanical system.

  8. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation

    Science.gov (United States)

    2011-01-01

    Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained. PMID:21711630

  9. A multi-atom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fibre

    CERN Document Server

    Yin, Z; Yin, Zhang-qi; Li, Fu-li

    2007-01-01

    A system consisting of two single-mode cavities spatially separated and connected by an optical fibre and multi two-level atoms trapped in the cavities is considered. If the atoms resonantly and collectively interact with the local cavity fields but there is no direct interaction between the atoms, we show that an ideal quantum state transfer, and highly reliable quantum swap, entangling and controlled-Z gates can be deterministically realized between the distant cavities. We find that the operation of the state-transfer, and swap, entangling and controlled-Z gates can be greatly speeded up as number of the atoms in the cavities increases. We also notice that the effects of spontaneous emission of atoms and photon leakage out of cavity on the quantum processes can also be greatly diminished in the multi-atom case.

  10. Two-dimensional Infrared Spectroscopy of vibrational polaritons of molecules in an optical cavity

    CERN Document Server

    Saurabh, Prasoon

    2016-01-01

    Strong coupling of molecular vibrations to an infrared cavity mode affects their nature by creating dressed polariton states. We show how the single and double vibrational polariton manifolds may be controlled by varying the cavity coupling strength, and probed by a time domain 2DIR technique, Double Quantum Coherence (DQC). Applications are made to the amide-I ($CO$) and amide-II ($CN$) bond vibrations of $N-methylacetamide$ (NMA).

  11. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    Science.gov (United States)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  12. Quantum-Noise-Limited Sensitivity Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing a dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noise-limited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantum-noise-limited measurement precision, by temperature tuning a low-pressure vapor of non-interacting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  13. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  14. Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples.

    Science.gov (United States)

    Gomez, Anthony L; Renzi, Ronald F; Fruetel, Julia A; Bambha, Ray P

    2012-05-10

    An integrated fiber-optic sensor is described that uses incoherent broadband cavity enhanced absorption spectroscopy for sensitive detection of aqueous samples in nanoliter volumes. Absorption was measured in a 100 µm gap between the ends of two short segments of multimode graded-index fiber that were integrated into a capillary using a precision machined V-grooved fixture that allowed for passive fiber alignment. The other ends of the fibers were coated with dielectric mirrors to form a 9.5 cm optical resonator. Light from a fiber-coupled superluminescent diode was directly coupled into one end of the cavity, and transmission was measured using a fiber-coupled silicon photodiode. Dilute aqueous solutions of near infrared dye were used to determine the minimum detectable absorption change of 2.4×10(-4) under experimental conditions in which pressure fluctuations limited performance. We also determined that the absolute minimum detectable absorption change would be 1.6×10(-5) for conditions of constant pressure in which absorption measurement is limited by electronic and optical noise. Tolerance requirements for alignment are also presented.

  15. Optical bistability and multistability driven by external magnetic field in a dielectric slab doped with nanodiamond nitrogen vacancy centres

    Science.gov (United States)

    Nasehi, R.; Norouzi, F.

    2016-08-01

    The theoretical investigation of controlling the optical bistability (OB) and optical multistability (OM) in a dielectric medium doped with nanodiamond nitrogen vacancy centres under optical excitation are reported. The shape of the OB curve from dielectric slab can be tuned by changing the external magnetic field and polarization of the control beam. The effect of the intensity of the control laser field and the frequency detuning of probe laser field on the OB and OM behaviour are also discussed in this paper. The results obtained can be used for realizing an all-optical bistable switching or development of nanoelectronic devices.

  16. Performance of a quantum-dot external-cavity laser based on digital micro-mirror device%基于DMD的外腔量子点激光器性能研究

    Institute of Scientific and Technical Information of China (English)

    成若海; 王海龙; 龚谦; 严进一; 汪洋; 柳庆博; 曹春芳; 岳丽

    2013-01-01

    In order to obtain more complete test data of quantum-dot external-cavity lasers,the InAs/InP quantum-dot external-cavity lasers using digital micro-mirror device (DMD) are successfully built up and their spectrum characteristics and the tuning range are measured.We also measure its tuning range and the corresponding change in the mode based on DMD quantum external cavity laser dots.The spectrum characteristics of InAs/InP quantum-dot external-cavity laser based on the grating and the DMD are compared theoretically and experimentally,and the differences between the reflection spectrum and angular dispersion are obtained.And a new method based on DMD will be applied to the external-cavity quantum-dot lasers.%为了取得更加完善的外腔量子点激光器(QDL)测试数据,构建了基于数字微镜器件(DMD,digital micro-mirror device)的InAs/InP量子点外腔QDL.测量了其光谱特性以及调谐范围,得到了基于DMD的外腔QDL调谐范围和相应的模式变化.在理论和实验上与基于光栅的外腔QDL性能进行了比较,得到了在角色散和反射光谱中与光栅的区别,实现了将DMD应用于外腔QDL中而获得的一种新方法.

  17. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Marler, Joan; Albert, Magnus

    2010-01-01

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....

  18. Quantum-enhanced metrology with the single-mode coherent states of an optical cavity inside a quantum feedback loop

    Science.gov (United States)

    Clark, Lewis A.; Stokes, Adam; Beige, Almut

    2016-08-01

    In this paper, we use the nonlinear generator of dynamics of the individual quantum trajectories of an optical cavity inside an instantaneous quantum feedback loop to measure the phase shift between two pathways of light with a precision above the standard quantum limit. The feedback laser provides a reference frame and constantly increases the dependence of the state of the resonator on the unknown phase. Since our quantum metrology scheme can be implemented with current technology and does not require highly efficient single photon detectors, it should be of practical interest until highly entangled many-photon states become more readily available.

  19. Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub.

    Science.gov (United States)

    Kim, Kyung-Su; Mizuno, Yosuke; Nakamura, Kentaro

    2014-04-01

    A fiber-optic probe with dielectric multilayer films deposited on a small stub is studied for mega-hertz ultrasonic-wave detection in water. The small stub with a short Fabry-Perot cavity and distributed reflectors is attached on the fiber end. The structure is mechanically strong and withstands intense ultrasonic pressure. Ultrasonic waves at 1.56MHz are successfully detected in water with a good signal-to-noise ratio. The working principle and the characteristics are studied by comparing the ultrasonic sensitivity with that of a conventional piezoelectric hydrophone. The distance response and directional response are also investigated.

  20. Laser pulse amplification and dispersion compensation in an effectively extended optical cavity containing Bose-Einstein condensates

    OpenAIRE

    Sennaroğlu, Alphan; Müstecaplıoğlu, Özgür Esat; Tarhan, D.

    2013-01-01

    Laser pulse amplification and dispersion compensation in effectively extended optical cavity containing Bose-Einstein condensates D Tarhan1, A Sennaroglu2, ¨O E M¨ustecaplıo˘glu2 1Harran University, Department of Physics, 63300, S¸anlıurfa, Turkey 2Ko¸c University, Department of Physics, 34450, Sarıyer, Istanbul, Turkey E-mail: Abstract. We review and critically evaluate our proposal of a pulse amplification scheme based on two Bose-Einstein cond...

  1. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  2. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory......We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...

  3. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system

    CERN Document Server

    Dimer, F; Estienne, B; Parkins, A S

    2006-01-01

    The Dicke model consisting of an ensemble of two-state atoms interacting with a single quantized mode of the electromagnetic field exhibits a zero-temperature phase transition at a critical value of the dipole coupling strength. We propose a scheme based on multilevel atoms and cavity-mediated Raman transitions to realise an effective Dicke system operating in the phase transition regime. Output light from the cavity carries signatures of the critical behavior which is analyzed for the thermodynamic limit where the number of atoms is very large.

  4. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity

    Science.gov (United States)

    Lode, Axel U. J.; Bruder, Christoph

    2017-01-01

    The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.

  5. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  6. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    Science.gov (United States)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  7. Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals

    Directory of Open Access Journals (Sweden)

    Ralf Ostendorf

    2016-05-01

    Full Text Available External-cavity quantum cascade lasers (EC-QCL are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a broad gain spectrum and a resonantly driven micro-opto-electro-mechanical (MOEMS scanner with an integrated diffraction grating in Littrow configuration. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets, as well as on hazardous substances, such as explosives. Furthermore, different applications for the EC-QCL technology in spectroscopic sensing are presented. These include the fields of process analysis with on- or even inline capability and imaging backscattering spectroscopy for contactless identification of solid and liquid contaminations on surfaces. Recent progress in trace detection of explosives and related precursors in relevant environments as well as advances in food quality monitoring by discriminating fresh and mold contaminated peanuts based on their MIR backscattering spectrum is shown.

  8. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  9. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    CERN Document Server

    Rutkowski, Lucile

    2016-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique and we present the corresponding formalism for quantitative broadband spectroscopy. We achieve high sensitivity and broadband performance by acquiring spectra covering more than 2000 cm$^{-1}$ around 12600 cm$^{-1}$ (800 nm), resolving the 3$\

  10. Coherent all-optical switching in a bistable waveguide-cavity-waveguide system

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2011-01-01

    All optical switching based on non-linear material effects is a promising technique for use in future optical communication systems. Promising advances in the field has been achieved using optical microcavities in photonic crystals to increase the optical field strength and hence reduce...... the required power of the input field [1]. In this work we consider an alternative method of switching, in which the input power is kept constant and only the phase of the input field is varied....

  11. A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam

    Institute of Scientific and Technical Information of China (English)

    Cui Bi-Feng; Guo Wei-Ling; Du Xiao-Dong; Li Jian-Jun; Zou De-Shu; Shen Guang-Di

    2012-01-01

    A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes.For a laser with three active regions,a slope efficiency as high as 1.49 W/A,a vertical divergence angle of 17.4°,and a threshold current density of 271 A/cm2 are achieved.By optimizing the structural parameters,the beam quality is greatly improved,and the level of the COD power increases by more than two times compared with that of the conventional laser.

  12. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  13. Time-Delay Signature of Chaotic Vertical-Cavity Surface-Emitting Lasers with Polarization-Rotated Optical Feedback

    Institute of Scientific and Technical Information of China (English)

    XIANG Shui-Ying; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; JIANG Ning; WEN Kun-Hua

    2011-01-01

    To quantitatively evaluate the time-delay (TD) signatures of chaotic signals generated by vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated optical feedback (PROF), we propose four cases of resolution coefficients R based on correlation functions. The resolution coefficient characteristics for the x-polarization (XP) mode, y-polarization (YP) mode and the total output are considered. The dependences of R on the feedback strength and feedback delay are discussed and compared carefully. The two-dimensional maps of R show that the TD signatures for the single polarization mode (I.e., XP or YP mode) are much more difficult to retrieve than those for the total output in the entire parameter space. Thus, by using single polarization mode as a chaotic carrier, the TD signatures are extremely difficult to be identified, which contributes a lot in the security-enhanced VCSELs-based chaotic optical communication systems.

  14. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  15. Triple-resonant Brillouin light scattering in magneto-optical cavities

    CERN Document Server

    Haigh, J A; Ramsay, A J; Ferguson, A J

    2016-01-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance (FMR) frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wavevector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  16. Generation of more than 300 mW diffraction-limited light at 405 nm by second-harmonic generation of a tapered diode laser with external cavity feedback

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Holm, J.; Sumpf, B.;

    2007-01-01

    We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from fundame...... fundamental laser power to second harmonic power is 35 %, while it is 64 % from coupled fundamental power to extracted blue light. Thermal effects and gray tracking set an upper limit on the amount of generated blue light....

  17. Dynamic analysis of internal and external mental sweating by optical coherence tomography.

    Science.gov (United States)

    Ohmi, Masato; Tanigawa, Motomu; Yamada, Akihiro; Ueda, Yoshihiro; Haruna, Masamitsu

    2009-01-01

    Mental sweating is human sweating that is accelerated via the sympathetic nerve by application of mental or physical stress. In the neurosciences, there is keen interest in this type of sweating, because the amount of sweat in response to a stress applied to a volunteer directly reflects activity of the sympathetic nerve. It is therefore of particular value that optical coherence tomography (OCT) can provide clear in vivo imaging of the spiral lumen of an eccrin sweat gland in the epidermis with a spatial resolution around 10 mum. We demonstrate dynamic OCT of mental sweating of an eccrin sweat gland on a human fingertip, where the sweating dynamics can be tracked by time-sequential OCT images with a frame spacing of one second. An instantaneous amount of sweat stored in the spiral lumen is evaluated quantitatively in each OCT image, resulting in time variation measurements of excess sweat in response to mental or physical stress. In the dynamic OCT of mental sweating, as demonstrated here, we note for the first time internal sweating without ejection of excess sweat from the spiral lumen to the skin surface. Internal sweating has not been previously detected without the availability of our dynamic OCT technique. Until now, it has been commonly accepted that sweating is always accompanied with ejection of excess sweat to the skin surface. On the basis of our findings reported here, this type of sweating should now be referred to as external sweating. In this study, we demonstrate that internal sweating occurs more often in the case where mental stress is applied to a volunteer, and that it is more useful for evaluation of activity of the sympathetic nerve. The dynamic OCT for both external and internal sweating is demonstrated.

  18. Optical cavity for enhanced parametric four-wave mixing in rubidium

    CERN Document Server

    Brekke, E

    2016-01-01

    We demonstrate the implementation of a ring cavity to enhance the efficiency of parametric four-wave mixing in rubidium. Using an input coupler with 95% reflectance, a finesse of 19.6$\\pm$0.5 is achieved with a rubidium cell inside. This increases the circulating intensity by a factor of 5.6$\\pm$0.5, and through two-photon excitation on the $5s_{1/2}\\rightarrow5d_{5/2}$ transition with a single excitation laser, up to 1.9$\\pm$0.3 mW of power at 420 nm is generated, 50 times what was previously generated with this scheme. The dependence of the output on Rb density and input power has been explored, suggesting the process may be approaching saturation. The blue output of the cavity also shows greatly improved spatial quality, combining to make this a promising source of 420 nm light for future experiments.

  19. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry

    Science.gov (United States)

    Sun, Hui; Lei, Yaohua; Fan, Shuangli; Zhang, Qiaolin; Guo, Hong

    2017-01-01

    We propose a cavity QED system with two-photon Doppler-free configuration for weak magnetic field detection with high sensitivity at room temperature based on cavity electromagnetically induced transparency. Owing to the destructive interference induced by the control and driving fields, two transparency channels are opened. The Faraday rotation within two transparency channels can be used to detect weak magnetic field with high sensitivity at room temperature. The sensitivity with single photon and multiphoton probe inputs is analyzed. With single photon measurement, our numerical calculations demonstrate that the sensitivity with 3.8nT/√{Hz} and 6.4nT/√{Hz} could be achieved. When we measure the magnetic field with multiphoton input, the sensitivity can be improved to 7.7fT/√{Hz} and 25.6fT/√{Hz} under the realistic experimental conditions.

  20. Low loss optical waveguide crossing based on octagonal resonant cavity coupling

    Institute of Scientific and Technical Information of China (English)

    Mohd. Zahed M. Khan

    2009-01-01

    A waveguide crossing utilizing a high index contrast material system is presented. The structure is based on coupling with an octagonal resonant cavity inscrted at the waveguide junction. It also employs four identical square metal strips placed at the four comers of the waveguide crossing. The spectral response of the structure calculated using the method of line numerical technique, in general, shows a high power transmission in the forward arm with sufficiently low crosstalk and fraction of radiated power.