WorldWideScience

Sample records for external ionic strength

  1. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  2. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  3. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  4. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  5. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  6. Holographic sensors for the determination of ionic strength

    International Nuclear Information System (INIS)

    Marshall, Alexander J.; Young, Duncan S.; Kabilan, Satyamoorthy; Hussain, Abid; Blyth, Jeff; Lowe, Christopher R.

    2004-01-01

    Holographic sensors for monitoring ionic strength have been fabricated from charged sulphonate and quaternary ammonium monomers, incorporated into thin, polymeric hydrogel films which were transformed into volume holograms. The diffraction wavelength or reflected colour of the holograms was used to characterise their swelling or de-swelling behaviour as a function of ionic strength in various media. The effects of co-monomer structure, buffer composition, ion composition, pH and temperature were evaluated, whilst the reversibility and reproducibility of the sensor was also assessed. An acrylamide-based hologram containing equal molar amounts of negatively and positively charged monomers was shown to be able to quantify ionic strength independent of the identity of the ionic species present in the test solution. The sensor was fully reversible, free of hysteresis and exhibited little response to pH between 3 and 9 and temperature within the range 20-45 deg. C. The system was successfully used to quantify the ionic strength of milk solutions, which contain a complex mixture of ions and biological components

  7. Holographic sensors for the determination of ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Alexander J. [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom)]. E-mail: ajm205@cam.ac.uk; Young, Duncan S. [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Kabilan, Satyamoorthy [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Hussain, Abid [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Blyth, Jeff [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Lowe, Christopher R. [Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom)]. E-mail: crl1@biotech.cam.ac.uk

    2004-11-29

    Holographic sensors for monitoring ionic strength have been fabricated from charged sulphonate and quaternary ammonium monomers, incorporated into thin, polymeric hydrogel films which were transformed into volume holograms. The diffraction wavelength or reflected colour of the holograms was used to characterise their swelling or de-swelling behaviour as a function of ionic strength in various media. The effects of co-monomer structure, buffer composition, ion composition, pH and temperature were evaluated, whilst the reversibility and reproducibility of the sensor was also assessed. An acrylamide-based hologram containing equal molar amounts of negatively and positively charged monomers was shown to be able to quantify ionic strength independent of the identity of the ionic species present in the test solution. The sensor was fully reversible, free of hysteresis and exhibited little response to pH between 3 and 9 and temperature within the range 20-45 deg. C. The system was successfully used to quantify the ionic strength of milk solutions, which contain a complex mixture of ions and biological components.

  8. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  9. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  10. Complexation of vanadium (v) with alanine in different ionic strength

    International Nuclear Information System (INIS)

    Garib, F.; Zare, K.; Fekri, H

    2002-01-01

    The formation constants of species formed in the system H ++ alanine and VO 2 + alanine have be determined in aqueous solution for 1.0 3 NaCIO 4 ,using a combination of pramiracetam and spectrophotometric techniques. The compositions of the formed complexes and their stability constants were determined ny curve fitting method and it was shown that di oxovanadium(V) forms two mononuclear 1:1 and 1:2 species with alanine of the type VO 2 L and VO 2 L 2 The protonation constant of the amino group of alanine has been determined using a computer program which employ a least-squares method. The defence of the protonation of alanine and the stability constant of the species on ionic strength are described by a Debby-huckel type equation

  11. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin

    NARCIS (Netherlands)

    Arnaudov, L.N.; Vries, de R.J.

    2006-01-01

    We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine -lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied.

  12. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.)

    International Nuclear Information System (INIS)

    Alstad, Nina E.W.; Kjelsberg, Birgitte M.; Voellestad, L. Asbjoern; Lydersen, Espen; Poleo, Antonio B.S.

    2005-01-01

    The toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.) exposed to three different degrees of Al polymerisation was compared in water with increased ionic strength (mean 7.31 x 10 -4 M) after additions of the base cations Ca 2+ , Mg 2+ , Na + or K + , and in water with no such addition (mean ionic strength 5.58 x 10 -4 M). Only a very slight ameliorating effect of increased ionic strength was observed, while the degree of Al polymerisation was of major importance in fish mortality. In addition, it was observed that smaller fish survived the Al exposures for a longer time than larger fish. We hypothesise that this is because larger fish are more susceptible to hypoxia than smaller fish. - Ionic strength has a slight ameliorating effect on Al toxicity in brown trout

  13. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    OpenAIRE

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2009-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion o...

  14. Ionic Strength Is a Barrier to the Habitability of Mars.

    Science.gov (United States)

    Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S

    2016-06-01

    The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.

  15. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    International Nuclear Information System (INIS)

    Botasini, Santiago; Méndez, Eduardo

    2013-01-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10–20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV–Vis–NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  16. Ionic strength independence of charge distributions in solvation of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, J. J. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Sosnick, T. R. [Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Freed, K. F. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States)

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  17. Ionic strength independence of charge distributions in solvation of biomolecules

    International Nuclear Information System (INIS)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-01-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other

  18. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Botasini, Santiago; Mendez, Eduardo, E-mail: emendez@fcien.edu.uy [Instituto de Quimica Biologica, Universidad de la Republica, Laboratorio de Biomateriales (Uruguay)

    2013-04-15

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  19. External stimulation strength controls actin response dynamics in Dictyostelium cells

    Science.gov (United States)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Zykov, Vladimir; Bodenschatz, Eberhard; Beta, Carsten

    2015-03-01

    Self-sustained oscillation and the resonance frequency of the cytoskeletal actin polymerization/depolymerization have recently been observed in Dictyostelium, a model system for studying chemotaxis. Here we report that the resonance frequency is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and depolymerization time at different levels of external stimulation. We found that polymerization time is independent of external stimuli but the depolymerization time is prolonged as the stimulation increases. These observations can be successfully reproduced in the frame work of our time delayed differential equation model.

  20. The impact of water content and ionic diffusion on the uniaxial compressive strength of shale

    Directory of Open Access Journals (Sweden)

    Talal AL-Bazali

    2013-12-01

    Finally, the impact of ionic diffusion on the compressive strength of shale was carried out in the absence of both chemical osmosis and capillary forces. Results show that the invasion of sodium and calcium ions into shale reduced its compressive strength considerably while the invasion of potassium ions enhanced its compressive strength.

  1. Ionic Strength Differentially Affects the Bioavailability of Neutral and Negatively Charged Inorganic Hg Complexes.

    Science.gov (United States)

    Stenzler, Benjamin; Hinz, Aaron; Ruuskanen, Matti; Poulain, Alexandre J

    2017-09-05

    Mercury (Hg) bioavailability to bacteria in marine systems is the first step toward its bioamplification in food webs. These systems exhibit high salinity and ionic strength that will both alter Hg speciation and properties of the bacteria cell walls. The role of Hg speciation on Hg bioavailability in marine systems has not been teased apart from that of ionic strength on cell wall properties, however. We developed and optimized a whole-cell Hg bioreporter capable of functioning under aerobic and anaerobic conditions and exhibiting no physiological limitations of signal production to changes in ionic strength. We show that ionic strength controls the bioavailability of Hg species, regardless of their charge, possibly by altering properties of the bacterial cell wall. The unexpected anaerobic bioavailability of negatively charged halocomplexes may help explain Hg methylation in marine systems such as the oxygen-deficient zone in the oceanic water column, sea ice or polar snow.

  2. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  3. Sodium-calcium ion exchange on clay minerals at moderate to high ionic strengths

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1979-12-01

    Sodium-calcium ion exchange on several clay minerals was studied at ionic strengths ranging from 0.01 to above 1.0. The minerals studied included attapulgite, illite, kaolin, and several montmorillonites. Distribution coefficients of calcium and sodium were obtained for the minerals over a wide range of solution conditions at pH five and equilibrium constants were calculated. The distribution coefficient of calcium, D/sub Ca/, was studied as a function of time, solution pH, loading, sodium concentration, and ionic strength fraction of sodium in constant ionic strength solutions. The distribution coefficient of sodium, D/sub Na/, was also studied as a function of time, loading, and sodium ionic strength fraction in constant total ionic strength solutions. Values of equilibrium constants calculated from distribution coefficients for solutions of constant ionic strength scattered bwteen 2 and 10 kg/kg for the montmorillonites and attapulgite while equilibrium constants for illite ranged from 5 to 10 kg/kg. No equilibrium constants for kaolin were calculated since distribution coefficients of sodium on this clay were too small to be measured. It was found that equilibrium constants at trace sodium loading were generally lower than those for higher sodium loadings by an order of magnitude or more due to the sensitivity of sodium distribution coefficients to the concentration of sodium in the clay at low loadings. Theoretical and experimental treatments of ion exclusion were included

  4. Effect of ionic strength on barium transport in porous media

    Science.gov (United States)

    Ye, Zi; Prigiobbe, Valentina

    2018-02-01

    Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface. However, the transport behaviour of Ra2+ through a reactive porous medium under conditions typical of a brine, i.e., high salinity, is not well understood, yet. Here, a study on the transport behaviour of barium (Ba2+, congener of radium) through a porous medium containing a common mineral such as goethite (FeO(OH)) is presented. Batch and column flood tests were carried out at conditions resembling the produced brine, i.e., large values of ionic strength (I), namely, 1 to 3 mol/kg. The measurements were described with the triple layer surface complexation model coupled with the Pitzer activity coefficient method and a reactive transport model, in the case of the transport tests. The experimental results show that the adsorption of Ba2+ onto FeO(OH) increases with pH but decreases with I and it becomes negligible at the brine conditions. Moreover, even if isotherms show adsorption at large I, at the same conditions during transport, Ba2+ travels without retardation through the FeO(OH) porous medium. The triple layer model agrees very well with all batch data but it does not describe well the transport tests in all cases. In particular, the model cannot match the pH measurements at large I values. This suggests that the chemical reactions at the solid-liquid interface do not capture the mechanism of Ba2+ adsorption onto FeO(OH) at large salinity. Finally, this study suggests that barium, and potentially its congeners, namely, radium

  5. Effect of deoxycholate conjugation on stability of pDNA/polyamidoamine-diethylentriamine (PAM-DET) polyplex against ionic strength.

    Science.gov (United States)

    Jeong, Yunseong; Jin, Geun-Woo; Choi, Eunjung; Jung, Ji Hyuk; Park, Jong-Sang

    2011-11-28

    Polyplexes formed from cationic polymer/pDNA have been known to be vulnerable to external ionic strength. To improve polyplex stability against ionic strength, we attempted the chemical conjugation of the hydrophobic deoxycholate (DC) moiety to the polyamidoamine-diethylenetriamine (PAM-DET) dendrimer. Dynamic light scattering studies showed that the tolerance of the resulting PAM-DET-DC against ionic strength is higher than that of PAM-DET. In addition, we confirmed that the stability of polyplex has a strong relationship with the degree of conjugation of the DC moiety to the PAM-DET dendrimer and the charge ratio of PAM-DET-DC. Furthermore, the transfection efficiency of the PAM-DET-DC polyplex is higher than that of PAM-DET but its cytotoxicity remains the same. Therefore, the chemical conjugation of DC is a safe and effective method for increasing the stability of supramolecules formed from electrostatic interaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    Science.gov (United States)

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2010-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365

  7. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    International Nuclear Information System (INIS)

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2017-01-01

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO 2 -FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10 −2  M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  8. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.)

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, Nina E.W. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Kjelsberg, Birgitte M. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Voellestad, L. Asbjoern [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Lydersen, Espen [Norwegian Institute for Water Research, P.O. Box 173 Kjelsaas, N-0411 Oslo (Norway); Poleo, Antonio B.S. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway)]. E-mail: toni.poleo@bio.uio.no

    2005-01-01

    The toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.) exposed to three different degrees of Al polymerisation was compared in water with increased ionic strength (mean 7.31 x 10{sup -4} M) after additions of the base cations Ca{sup 2+}, Mg{sup 2+}, Na{sup +} or K{sup +}, and in water with no such addition (mean ionic strength 5.58 x 10{sup -4} M). Only a very slight ameliorating effect of increased ionic strength was observed, while the degree of Al polymerisation was of major importance in fish mortality. In addition, it was observed that smaller fish survived the Al exposures for a longer time than larger fish. We hypothesise that this is because larger fish are more susceptible to hypoxia than smaller fish. - Ionic strength has a slight ameliorating effect on Al toxicity in brown trout.

  9. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Prédélus, Dieuseul; Lassabatere, Laurent, E-mail: laurent.lassabatere@entpe.fr [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France); Louis, Cédric; Gehan, Hélène [Nano-H S.A.S., 2 place de l’Europe, Bâtiment A, Parc d’activité VALAD (France); Brichart, Thomas [Université Lyon 1-CNRS, Institut Lumière Matière, UMR 5306 CNRS (France); Winiarski, Thierry; Angulo-Jaramillo, Rafael [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France)

    2017-03-15

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO{sub 2}-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10{sup −2} M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  10. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  11. Plutonium (IV) complexation by nitrate in acid solutions of ionic strengths from 2 to 19 molal

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.; Cisneros, M.A.; Smith, C.A.

    1997-01-01

    Titrations of Pu(IV) with HNO 3 in a series of aqueous HClO 4 solutions ranging in ionic strength from 2 to 19 molal were followed using absorption spectrophotometry. The Pu 5f-5f spectra in the visible and near IR range change with complex formation. At each ionic strength, a series of spectra were obtained by varying nitrate concentration. Each series was deconvoluted into spectra f Pu 4+ (aq), Pu(NO 3 ) 3+ and Pu(NO 3 ) 2 2+ complexes, and simultaneously their formation constants were determined. When corrected for the incomplete dissociation of nitric acid, the ionic strength dependence of each formation constant can be described by two parameters, β 0 and Δ var-epsilon using the formulae of specific ion interaction theory. The difficulties with extending this analysis to higher nitrate coordination numbers are discussed

  12. Ionic strength dependence of stability constants, complexation of Molybdenum(V I) with EDTA

    International Nuclear Information System (INIS)

    Zare, K.; Majlesi, K.; Teimoori, F.

    2002-01-01

    The stability constant of Mo (Vi) complexes with EDTA in aqueous solution has been determined by various authors using different techniques, but according to literature, no work has been reported on ionic strength dependence of these complexes. The present work describes the complexation of Mo (Vi) with EDTA in an ionic strength range of 0.1 to 1.0 moldm - 3 s odium perchlorate at 25 d ig C . The complexation of molybdenum (Vi) with EDTA was investigated in aqueous solution ranging in ph from 5 to 7 using UV spectrophotometric techniques. The composition of the complex was determined by the continuous variations method. It was shown that molybdenum (Vi) forms a 2:1 complex with EDTA of the type (MoO 3 ) 2 L - 4 a t ph =5.5 The parameters that define the dependence on ionic strength were analyzed with the aim of obtaining further information regarding to their variation as a function of the charges involved in the complex reaction. Moreover, a Debye-Huckel type equation makes it possible to estimate a stability constant at a fixed ionic strength when its value is known at another ionic media in the range of 0.1 3 . Therefore the evaluation may make a significant contribution solving many analytical and speciation problems

  13. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    Science.gov (United States)

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  14. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST.

    Science.gov (United States)

    Augustsson, Jesper

    2016-08-01

    Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes

  15. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  16. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  17. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  18. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi

    2015-01-01

    Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength...

  19. Hydrolysis, formation and ionization constants at 250C, and at high temperature-high ionic strength

    International Nuclear Information System (INIS)

    Phillips, S.L.; Phillips, C.A.; Skeen, J.

    1985-02-01

    Thermochemical data for nuclear waste disposal are compiled. The resulting computerized database consists of critically evaluated data on Gibbs energy of formation, enthalpy of formation, entropy and heat capacity of selected substances for about 16 elements at 25 0 C and zero ionic strength. Elements covered are Am, As, Br, C, Cl, F, I, Mo, Np, N, O, P, Pu, Si, Sr, S, and U. Values of these thermodynamic properties were used to calculate equilibrium quotients for hydrolysis, complexation and ionization reactions up to 300 0 C and 3 ionic strength, for selected chemical reactions

  20. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.

    Science.gov (United States)

    Lawrence, Patrick G; Lapitsky, Yakov

    2015-02-03

    Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.

  1. Solubility and first hydrolysis constants of europium at different ionic strength and 303 K

    International Nuclear Information System (INIS)

    Ramirez-Garcia, J.J.; Jimenez-Reyes, M.; Lopez-Gonzalez, H.; Autonoma Metropolitana-Iztapalapa Univ., Mexico City; Solache-Rios, M.; Fernandez-Ramirez, E.; Centro Interamericano de Recursos del Agua, Toluca; Rojas-Hernandez, A.

    2003-01-01

    The solubility of europium at 0.02M, 0.1M and 0.7M NaClO 4 ionic strength solutions was determined by a radiometric method and pEu s -pC H diagrams were obtained. Hydrolysis constants were also determined at the same ionic strengths by pH titration and the values found were log *β 1 -7.68±0.11, -8.07±0.10 and -8.20±0.11. The log K sp values were -23.5±0.2, -22.7±0.2 and -21.9±0.2 for 0.02M, 0.1M and 0.7M NaClO 4 ionic strengths, respectively, at 303 K under CO 2 -free conditions and the extrapolated value at zero ionic strength was log K sp 0 = -24.15. The working pC H ranges for the calculation of the hydrolysis constants were selected from the pEu s -pC H diagrams in the region where precipitation of europium oxide or hydroxide was less than 20%. Europium removal from aqueous solutions with zeolites was explored. (author)

  2. Incorporating the effect of ionic strength in free energy calculations using explicit ions

    NARCIS (Netherlands)

    Donnini, S; Mark, AE; Juffer, AH; Villa, Alessandra

    2005-01-01

    The incorporation of explicit ions to mimic the effect of ionic strength or to neutralize the overall charge on a system in free energy calculations using molecular dynamics simulations is investigated. The difference in the free energy of hydration between two triosephosphate isomerase inhibitors

  3. Adsorption of Sr on kaolinite, illite and montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.J.; Langmuir, D. (Colorado School of Mines, Golden (USA). Dept. of Chemistry and Geochemistry)

    1991-01-01

    Experimental measurements of Sr adsorption onto kaolinite, illite and montmorillonite in up to 4.0 mol/kg NaCl solutions, were modelled with the surface ionization and complexation triple-layer (SIC) model (Davis et al.) to determine if model adjustments were required for high ionic strengths. Improved model fits to the adsorption data were obtained at high ionic strengths, reflecting a lowered sensitivity of the model. A general reduction in Sr adsorption with increasing ionic strength was caused by an increase in the outer layer surface charge, rather than by a drop in the number of available adsorption sites. Sensitivity analysis showed that the range of values of model constants yielding acceptable fits was as large as variations reported in the literature for these constants. The study demonstrates that adsorption will not retard Sr migration in brines, and that it is unnecessary to introduce a Pitzer ion interaction subroutine in the SIC model when considering adsorption at high ionic strengths. (orig.).

  4. Effect of pH and ionic strength on the bioadhesive properties of ...

    African Journals Online (AJOL)

    Prosopis gum (PG) extracted from Prosopis africana was investigated for bioadhesive properties as affected by pH and ionic strength. The bioadhesive properties were evaluated using the adhesion of gum dispersion-coated glass beads on the antrum region of the porcine gastrointestinal tract and Lecomte Du Nouy ...

  5. Adsorbed polymers in aqueous media. The relation between zeta-potential, layer thickness and ionic strength

    NARCIS (Netherlands)

    Cohen Stuart, M.A.; Mulder, J.W.

    1985-01-01

    Streaming potentials for glass capillaries with and without adsorbed poly(vinyl pyrrolidone) were used to determine the thickness of the adsorbed polymer layer. It was found that the thickness determined in this way is a strong function of the ionic strength of the solution. The results are compared

  6. Thermodynamics for proton binding of phytate in KNO3(aq) at different temperatures and ionic strengths

    International Nuclear Information System (INIS)

    Bretti, Clemente; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2013-01-01

    Highlights: • Protonation data were modeled in a wide range of temperatures and ionic strengths. • Protonation values decrease with increasing ionic strength and temperature. • In KNO 3 proton binding process is slightly exothermic, but less than in NaCl. • The major contribution for the proton association is entropic in nature. • Results are in agreement with previous findings for KCl and NaCl. - Abstract: Potentiometric measurements were performed in KNO 3(aq) , to determine the apparent protonation constants of phytate at different temperatures (278.15 ≤ T (K) ≤ 323.15) and ionic strengths (0.25 ≤ I (mol) dm −3 ≤ 3.0) values. In general, the protonation constants decrease with increasing both temperature and ionic strength. The data reported were critically compared with previous results obtained in KCl and the values are in a good agreement, considering the experimental errors and slight differences between the activity coefficients of the various species in KCl and KNO 3 . Experimental data were then modeled as a function of temperature and ionic strength using, with comparable results, two approaches: the extended Debye–Hückel equation and the specific ion interaction theory (SIT). The single specific ion interaction coefficients, ε, were also determined. The corresponding values are higher than those in Na + media. The protonation constants were also analyzed considering a simplified weak interaction model using an empirical equation that contains an additional term which takes into account the formation of weak complexes. The results obtained for the modeling of the protonation constants are in agreement with the literature findings. Thermodynamic protonation parameters were also obtained at different temperatures and ionic strengths. The proton association process is slightly exothermic and the enthalpic contribution is less negative than that in NaCl solution. As observed in other cases for phytate anion, the major contribution for

  7. A computer program for external modes in complex ionic crystals (the rigid molecular-ion model)

    International Nuclear Information System (INIS)

    Chaplot, S.L.

    1978-01-01

    A computer program DISPR has been developed to calculate the external mode phonon dispersion relation in the harmonic approximation for complex ionic crystals using the rigid molecular ion model. A description of the program, the flow diagram and the required input information are given. A sample calculation for α-KNO 3 is presented. The program can handle any type of crystal lattice with any number of atoms and molecules per unit cell with suitable changes in dimension statements. (M.G.B.)

  8. Influence of ionic strength on the viscosities and water loss of bentonite suspensions containing polymers

    Directory of Open Access Journals (Sweden)

    Luciana Viana Amorim

    2007-03-01

    Full Text Available A study was made of the influence of ionic strength (S on the apparent (AV and plastic (PV viscosities and water loss (WL of sodium bentonite suspension with polymers. Na-bentonite was dispersed in water (4.86% w/w of different ionic strengths (S = 0.0, 0.015, 0.030 and 0.045 M followed by the addition of polymer. Three polymer samples were studied, i.e., low viscosity carboxymethyl cellulose (CMC BV, polyanionic cellulose (PAC, and partially hydrolyzed polyacrylamide (HPAM. The results indicated that the presence of salts and increased salinity greatly influence the apparent and plastic viscosities and water loss of bentonite suspensions with polymer.

  9. Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths

    International Nuclear Information System (INIS)

    Atun, G.; Bascetin, E.

    2003-01-01

    The sorption behaviour of Ba 2+ in three different clay minerals from various regions of Turkey has been investigated by means of a tracer technique using 133 Ba in batch experiments. Sorption of Ba 2+ on montmorillonite, kaolinite and illite has been studied in mixed solutions of BaCl 2 and NaCl at ionic strengths ranging from 1 x 10 -3 M to 1 x 10 -1 M. The L-shape exchange isotherms for Ba 2+ -Na + systems are well defined by a Langmuir type equation. The exchange capacity of Ba 2+ ions for all three clay minerals increased with decreasing ionic strength. The adsorption data were fitted to a Freundlich isotherm and empirical Freundlich parameters enabled to the generation of a site distribution function. The selectivity coefficients were nearly constant at low Ba loading and decreased as loading increased. This behavior was an indication of an ion exchange process between Ba 2+ and Na + ions

  10. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    DEFF Research Database (Denmark)

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...... specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can...

  11. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  12. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  13. Interaction of radionickel with diatomite as a function of pH, ionic strength and temperature

    International Nuclear Information System (INIS)

    Xue Wang

    2013-01-01

    Sequestration of Ni(II) on diatomite as a function of reaction time, pH, ionic strength, foreign ions and temperature were investigated by batch sorption technique. The results indicated that the sorption of Ni(II) on diatomite was quickly in the first contact time of 2 h and then slowly with increasing contact time. The interaction of Ni(II) with diatomite was strongly pH- and ionic strength-dependent at low pH values (i.e., which was dominated by ion exchange or outer-sphere surface complexation), while the pH-dependent and ionic strength-independent sorption at high pH suggested that inner-sphere or multinuclear surface complexation was the main sorption mechanism. With increasing temperature, the sorption of Ni(II) on diatomite increased and the experimental data were well fitted by Langmuir model. The sorption samples at pH 6.8 and 10.0 were also characterized by XPS spectroscopy, and the results suggested that Si atoms also participated in Ni(II) sorption on diatomite. The results are important to evaluate the physicochemical behavior of Ni(II) and other similar radionuclides and heavy metal ions in the environment. (author)

  14. Carbonate adsorption onto goethite as a function of pH and ionic strength

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Albinsson, Y.

    1991-01-01

    The adsorption of carbonate onto geothite was studied as a function of both pH and ionic strength (NaClO 4 electrolyte) using 14 C tracer. The pH ranged from 2.5 to 11.6. The ionic strength was controlled by varying the NaClO 4 concentration and ranged from 0.01 to 0.1 molar. The results indicate that carbonate is adsorbed on goethite as primarily an inner-sphere complex at pH values above the point of zero charge. This is inferred from the lack of dependence on ionic strength in the adsorption of carbonate. Below the point of zero charge carbonate is adsorbed by an additional outer-sphere mechanism. An adsorption isotherm was measured at pH 7.0 with an electrolyte concentration of 0.01M. Deconvolution of the isotherm proved that at least two sorption mechanisms exist. These mechanisms lead to large distribution coefficients at low pH. Thereby making the complete removal and exclusion of carbonate from an aqueous goethite system difficult, for the purpose of characterizing a ''clean'' goethite surface

  15. Effect of high ionic strength on the extraction of uranium(VI ions

    Directory of Open Access Journals (Sweden)

    M.K. Nazal

    2014-01-01

    Full Text Available Preparation and characterization of didodecylphosphoric acid (HDDPA as an extractant in toluene was carried. Mass spectroscopy showed that the monomer peak at 457.4 amu [M–Na+] is double that of the dimer at 891.9 amu [M–M–Na+] and the monomer molecules concentration dominate the dimer molecules in toluene. HDDPA was used as an extractant for the extraction of U(VI ion from perchlorate and nitrate media that have ionic strength (1.00, 3.00, 5.00, 7.00 M. The effect of HDDPA concentration, pcH, ionic strength of supporting electrolytes, and temperature in the range 15–45 °C on the extraction process have been studied. The stoichiometry of the extraction of U(VI ion, the free energy change (ΔG, the enthalpy change (ΔH, the entropy change (ΔS, and Kex at different ionic strength have been calculated. The formula of the complexes, which were formed has been established to be UO2(X(R2(HR2 at pcH equal 2.00 and UO2(X(R2(HR2 and UO2(X(R2 at pcH = 1.00, where (X isClO4- orNO3- and (HR2 is didodecylphosphoric acid monomer, (R2 is the deprotonated didodecylphosphoric acid, where R is the dodecyl group.

  16. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    Science.gov (United States)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  17. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking.

    Science.gov (United States)

    Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-03-29

    Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption

  18. Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard

    2003-12-01

    We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.

  19. Ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum with reference to ionic transport.

    Science.gov (United States)

    Jarial, M S; Wilkins, J H

    2003-10-01

    The ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum, has been examined using conventional transmission electron microscopy to elucidate its role in ionic transport. Four cell types are identified in the gill filament and primary gill bar epithelium. These are granular, ciliated, Leydig and basal cells. A fifth cell type, the flat mitochondria-rich cell is only found in the gill bar epithelium. The predominant granular cells display microvilli at their surface and their cytoplasm contains abundant mitochondria, rough endoplasmic reticulum, Golgi complexes, vesicles and PAS+ secretory granules that are extruded at the surface, which along with secretions from the Leydig cells form a mucous coat. The granular cells are joined apically by junctional complexes consisting of zonulae occludens, zonulae adherens and desmosomes. The lateral membranes of granular cells enclose large intercellular spaces that are closed at the apical ends but remain open at the basal ends adjoining capillaries. In AgNO3-treated axolotl, the gills become darkly stained, the silver grains penetrate apical membranes and appear in the cytoplasm, accumulating near the lateral membranes and also enter the intercellular spaces. These findings are consistent with the dual role of the gill epithelium in mucus production and active ionic transport.

  20. SHOULDER EXTERNAL ROTATOR STRENGTH IN RESPONSE TO VARIOUS SITTING POSTURES: A CONTROLLED LABORATORY STUDY.

    Science.gov (United States)

    Pheasant, Steven; Haydt, Richard; Gottstein, Thomas; Grasso, Anthony; Lombard, Nicholas; Stone, Brandon

    2018-02-01

    The forward head rounded shoulder (FHRS) sitting posture has been associated with decreased shoulder complex muscle strength and function. Upon clinical observation, the adverse effects of the FHRS sitting posture on shoulder complex isometric muscle strength is also present when testing controls for scapular position. The purpose of the study was to assess the effect of various sitting postures on shoulder external rotator muscle isometric strength when the strength testing controls for scapular position. A cohort study, with subjects serving as their own controls. One hundred subjects ages 20-26 participated in the study. Each subject was placed in a neutral cervical sitting (NCS) posture which was maintained for five minutes after which the strength of the dominant shoulder external rotators was immediately tested with the glenohumeral joint in the neutral position using a Micro-FET3 Hand Held Muscle Testing Dynamometer (HHMTD). Each subject was returned to the NCS posture for subsequent external rotator strength testing after five minutes in a FHRS sitting posture, five additional minutes in the NCS posture and five minutes in a retracted cervical sitting (RCS) posture resulting in each subjects' external rotator strength being tested on four occasions. Subjects were randomized for order between the FHRS and RCS postures. Mean strength values for each condition were normalized to the mean strength value for the 1 st NCS condition for each subject. A statistically significant decline in shoulder external rotator strength following the FHRS sitting posture occurred compared to the appropriate postural conditions (pexternal rotator strength following five minutes in the FHRS sitting posture. The average percentage of strength decline in those with greater than a 10% reduction in external rotator strength was 19%. Sixty-four percent of the subjects experienced less than a 10% decline in shoulder external rotator strength in response to the FHRS sitting posture

  1. Hip abduction strength training in the clinical setting: with or without external loading?

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Bandholm, T; Petersen, Jesper

    2010-01-01

    only the weight of the leg as resistance, whereas training with external loading was performed with a relative load corresponding to 10 repetition maximum. Hip abduction strength was measured pre- and post-intervention. Isometric and eccentric hip abduction strength of the trained leg increased after......The side-lying hip abduction exercise is one of the most commonly used exercises in rehabilitation to increase hip abduction strength, and is often performed without external loading. The aim of this study was to compare the effect of 6 weeks of side-lying hip abduction training, with and without...... external loading, on hip abduction strength in healthy subjects. Thirty-one healthy, physically active men and women were included in a randomised controlled trial and allocated to side-lying hip abduction training, with or without external loading. Training without external loading was performed using...

  2. Reassessment of pH reference values with improved methodology for the evaluation of ionic strength

    International Nuclear Information System (INIS)

    Lito, M.J. Guiomar H.M.; Camoes, M. Filomena G.F.C.

    2005-01-01

    The conflict between pH as empirical number in routine control and the pH value regarded as conveying some information concerning the effective concentration or activity of hydrogen ions, a H , has caused much confusion. There are, however, reasons to conclude that the overwhelming amount of thermodynamic data is not sufficiently accurate--either due to ignorance of metrological concepts or due to insufficiently specified measurement processes of fundamental chemical quantities pH. The commonly used seven reference buffer solutions to which primary pH values have been conventional assigned, represent a selection out of a more extensive list, recommended by NBS (now NIST) in 1962. From then onwards conventions concerning the Debye-Hueckel model of electrolyte solutions and ionic strength have been revised and the pH(S) values reassessed in conformity but only for these seven reference buffer solutions. The others have, so far remained unchanged, locking harmonisation of the conventionally assigned pH(S) values. In this work, ionic strength is calculated through complete equations derived from the acidity constants. Concentrations of the various species involved in the conventional assignment of pH and their corresponding activity coefficients are therefore, more rigorously known. The process proves particularly useful for poliprotic acids with overlapping acidity constants, where the ratio is less than 10 3 . As a consequence, conventionally assigned pH values of reference buffer solutions are recalculated and corrections are introduced as appropriate

  3. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.

    Science.gov (United States)

    Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens

    2016-06-01

    Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states.

  4. Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.

    Science.gov (United States)

    Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P

    2009-01-01

    Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.

  5. pH and ion strength modulated ionic species loading in mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Yang, Meng; Li, Li; Xu, Jianguo

    2013-01-01

    Mesoporous silica nanoparticles (MSN) have emerged as appealing host materials to accommodate guest molecules for biomedical applications, and recently various methods have been developed to modulate the loading of guest molecules in the silica matrix. Herein, it was demonstrated that pH and ion strength showed great influence on the loading of charged species into the nanoparticles, taking MCM-41 as a host MSN model and methylviologen (MV 2+ ) and 1,5-naphthalene disulfonate (NDS 2− ) as typical charged ionic guest molecules. As the pH increased from 3.0 to 8.0, the loading amount of MV 2+ increased gradually, while on the contrary, it decreased gradually for NDS 2− , for the solution pH changed the electrostatic interaction between the silica matrix and the ionic guest molecules. Additionally, the adding of NaCl reduced the electrostatic interaction, which resulted in a decreasing of the electrostatic rejection and electrostatic accumulation for the molecules carrying the same and the opposite charge to the particle respectively. Thus, pH and ion strength can be employed as simple approaches to modulate the loading of charged molecules and permselectivity in MSN. This work has a definite guidance function for molecule loading, transport modulation, controlled release as well as sensors based on MSN. (paper)

  6. Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Atun, G.; Bascetin, E. [Istanbul Univ., Dept. of Chemistry, Istanbul (Turkey)

    2003-07-01

    The sorption behaviour of Ba{sup 2+} in three different clay minerals from various regions of Turkey has been investigated by means of a tracer technique using {sup 133}Ba in batch experiments. Sorption of Ba{sup 2+} on montmorillonite, kaolinite and illite has been studied in mixed solutions of BaCl{sub 2} and NaCl at ionic strengths ranging from 1 x 10{sup -3}M to 1 x 10{sup -1}M. The L-shape exchange isotherms for Ba{sup 2+}-Na{sup +} systems are well defined by a Langmuir type equation. The exchange capacity of Ba{sup 2+} ions for all three clay minerals increased with decreasing ionic strength. The adsorption data were fitted to a Freundlich isotherm and empirical Freundlich parameters enabled to the generation of a site distribution function. The selectivity coefficients were nearly constant at low Ba loading and decreased as loading increased. This behavior was an indication of an ion exchange process between Ba{sup 2+} and Na{sup +} ions.

  7. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding

    International Nuclear Information System (INIS)

    Jones, Cecil L.; Dickson, TiReJe; Hayes, Ronald; Thomas, Lana

    2012-01-01

    Highlights: ► The pH dependence of entropy and enthalpy changes was determined for zinc phthalocyanine tetrasulfonic acid, ZnPcS 4 binding to human serum albumin, HSA. ► The ionic strength dependence of entropy and enthalpy changes was determined for ZnPcS 4 acid binding to HSA. ► The primary driving force governing the interaction between ZnPcS 4 and HSA over the range of pH and ionic strength was solution dynamics. ► The interplay between entropy and enthalpy changes was demonstrated. - Abstract: Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van’t Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  8. Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions

    International Nuclear Information System (INIS)

    Shinya Nagasaki; Riddoch, Justin; Goguen, Jared; Walker, Andrew; Tammy Tianxiao Yang

    2017-01-01

    The dependence of sorption distribution coefficient (K_d) of Np(IV) for illite, shale and MX-80 was investigated as a function of pH_c and ionic strength (I) under high ionic strength, reducing conditions. The overall trends of K_d on three solids were independent of pH_c at 5 ≤ pH_c ≤ 10 and I at 0.5 M ≤ I ≤ 6 M. The surface complexation constants of Np(IV) sorption on illite and MX-80 were estimated by the 2 SPNE SC/CE model. The sorption model well predicted the pH_c dependence of K_d, but could not completely describe the ionic strength dependence. (author)

  9. Compressive Strength Prediction of Square Concrete Columns Retrofitted with External Steel Collars

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi, P.

    2013-01-01

    Full Text Available Transverse confining stress in concrete members, commonly provided by transverse reinforcement, has been recognized to enhance strength and ductility. Nowadays, the confining method has been further developed to external confinement approach. This type of confinement can be used for retrofitting existing concrete columns. Many external confining techniques have been proven to be successful in retrofitting circular columns. However, for square or rectangular columns, providing effective confining stress by external retrofitting method is not a simple task due to high stress concentration at column’s corners. This paper proposes an analytical model to predict the peak strength of square concrete columns confined by external steel collars. Comparison with the experimental results showed that the model can predict the peak strength reasonably well. However, it should be noted that relatively larger amount of steel is needed to achieve comparable column strength enhancement when it is compared with those of conve tional internally-confined columns.

  10. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  11. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  12. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    International Nuclear Information System (INIS)

    Dommes, O A; Okatova, O V; Pavlov, G M

    2016-01-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10 -6 M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared. (paper)

  13. Determination of the first hydrolysis constant of Europium (III) in 3 M of ionic strength

    International Nuclear Information System (INIS)

    Ramirez B, M.E.

    1994-01-01

    The first hydrolysis constant of Eu 3+ has been determined at 303 K and 3 M (NaCl) ionic strength. A solvent extraction method was used, the extractant was dibenzoylmethane in benzene and di glycolate anion in the aqueous phase provided competitive complexation. The tracer solution was 152m1 Eu (III) in water. The radioactive solution of europium was obtained by neutron irradiation of europium nitrate solutions at pH 3.0, in a TRIGA Mark III nuclear reactor at a neutron flux of 1 x 10 13 cm -2 s -1 . The half life of the produced isotope, 152m1 Eu (9.3 h), was verified by means of a Ge H detector and no interfering radiations were observed in the spectra. (Author)

  14. Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Yama; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-15

    Power generation in Microbial fuel cells (MFCs) is a function of various physico-chemical as well as biological parameters. In this study, we have examined the effect of ionic strength, cation exchanger and inoculum age on power generation in a mediator MFC with methylene blue as electron mediator using Enterobacter cloacae IIT-BT08. The effect of ionic strength was studied using NaCl in the anode chamber of a two chambered salt-bridge MFC at concentrations of 5 mM, 10 mM and 15 mM. Maximum power density of 12.8 mW/m{sup 2} was observed when 10 mM NaCl was used. Corresponding current density was noted to be 35.5 mA/m{sup 2}. Effect of cation exchanger was observed by replacing salt-bridge with a proton exchange membrane of equal surface area. When the salt-bridge was replaced by a proton exchange membrane, a 3-fold increase in the power density was observed. Power density and current density of 37.8 mW/m{sup 2} and 110.3 mA/m{sup 2} respectively were detected. The influence of the pre-inoculum on the MFC was studied using E. cloacae IIT-BT08 grown for 12, 14, 16 and 18 h. It was observed that 16 h grown culture when inoculated in the anode chamber gave the maximum power output. Power density and current density of 68 mW/m{sup 2} and 168 mA/m{sup 2} respectively were obtained. We demonstrate from these results that both physico-chemical as well as biological parameters need to be optimized for improving the power generation in MFCs. (author)

  15. Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength

    NARCIS (Netherlands)

    Schmuhl, R.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    The electric field-driven transport of ions through supported mesoporous γ-alumina membranes was investigated. The influence of ion concentration, ion valency, pH, ionic strength, and electrolyte composition on transport behavior was determined. The permselectivity of the membrane was found to be

  16. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  17. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    Science.gov (United States)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  18. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration

    NARCIS (Netherlands)

    Brink, van den P.; Zwijnenburg, A.; Smith, G.; Temmink, B.G.; Loosdrecht, van M.C.

    2009-01-01

    Extracellular polymeric substances (EPS) are generally negatively charged polymers. Membrane fouling in membrane bioreactors (MBRs) by EPS is therefore influenced by the water chemistry of the mixed liquor (calcium concentration, foulant concentration and ionic strength). We used alginate as a model

  19. A model of mitochondrial creatine kinase binding to membranes: adsorption constants, essential amino acids and the effect of ionic strength

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Belousova, Lubov; Plesner, Igor

    1993-01-01

    The quantitative aspects of mitochondrial creatinekinase (mitCK) binding to mitochondrial membranes were investigated. A simple adsorption and binding model was used for data fitting, taking into account the influence of protein concentration, pH, ionic strength and substrate concentration on the...

  20. Soy Glycenin: Influence of pH and Ionic Strength on Solubility and Molecular Structure at Ambient Temperatures

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Jongh, de H.H.J.; Hessing, M.; Gruppen, H.; Voragen, A.G.J.

    2000-01-01

    This study describes the relationship between the solubility of glycinin, a major soy protein, and its structural properties at a quaternary, tertiary, and secondary folding level under conditions representative for food products. When the ionic strength is lowered from 0.5 to 0.2 or 0.03, the basic

  1. Stability of the Cadmium Complex with the Bacterial Trihydroxamate Siderophore Desferrioxamine B at Seawater Ionic Strength

    Science.gov (United States)

    Christenson, E. A.; Schijf, J.

    2010-12-01

    strength. Whereas this is orders of magnitude smaller than values for DFOB complexes of other divalent transition metals (e.g., β(Cu2+) ~ 1014), it nevertheless makes DFOB one of the strongest known biogenic Cd ligands, rivaling synthetic ligands such as NTA. We present measurements of the stability constant of the Cd(II)-DFOB complex that were obtained by potentiometric titration of DFOB in the presence of Cd in a non-complexing background electrolyte (NaClO4) at seawater ionic strength (0.7 M). The titrations were corrected for hydrolysis and also performed at different Cd:DFOB ratios to detect any polynuclear species. Stability constants were derived from non-linear regressions of the data using FITEQL4.0. The results may provide new insights into the marine biogeochemistry of cadmium and its potential effects on primary productivity.

  2. Impact of the solution ionic strength on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling study

    International Nuclear Information System (INIS)

    Savoye, S.; Beaucaire, C.; Grenut, B.; Fayette, A.

    2015-01-01

    Highlights: • HTO and 85 Sr diffusion is studied in clayrocks under increasing ionic strengths. • Sr diffusive flux is 5 times higher than HTO under standard porewater ionic strength. • Sr diffusive flux is reduced when the porewater ionic strength increases. • The Sr diffusive evolution is qualitatively reproduced by a surface diffusion model. - Abstract: Diffusion of cations in clayrocks is widely investigated, because deep clay-rich formations are currently considered as one of the potential host rocks for radioactive waste repositories. However, several authors have already reported that sorbing cations seem to diffuse at rates larger than those predicted by a simple pore diffusion model from their sorption coefficients and from the diffusive flux of non-sorbing water tracers. This process has been attributed to the migration of cations within the electrical double layer, next to the mineral surfaces, called the surface diffusion phenomenon. The aim of this work was to verify whether this “enhanced” cation diffusion compared to neutral species was observed for strontium and, if so, to what extent this effect might vary with the salinity of the synthetic solutions. These questions were addressed by performing batch sorption, through-diffusion and out-diffusion experiments on rock samples from the Callovo-Oxfordian claystone formation (France). The results showed that there was a good agreement of the distribution ratios (R D ) determined on crushed and intact rocks by batch and through-diffusion methods with a R D decrease related to the increase of the sodium concentration, a sorption competitor. Such a trend was also well reproduced by means of a geochemical modeling based on the multi-site ion exchange (MSIE) theory. Moreover, the “enhanced” diffusion for strontium was clearly observed in this study: the Sr diffusive flux was almost five times higher than that for HTO in the cell with the lowest ionic strength, and diminished to less than 1

  3. The role of ionic strength on the mobility of uranium at ore-water interface

    International Nuclear Information System (INIS)

    Singh, Sarjan; Rout, S.; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Uranium contamination of soil and groundwater is a legacy of past activities associated with the nuclear fuel cycle, continuing concern associated with current mining operations as well as weathering of uranium bearing minerals. Considerable radio-toxicity is one of the challenges for environmentalist therefore; efforts have been given in recent years to understand 'U' behavior with respect to soil-water and rock-water chemistry for safety assessment of radioactive waste disposal program. Recent studies indicate that U mobility increases at soil-water interface with increase in salinity of the water. If salinization results in increased mobility of U significantly, this would be an important additional adverse phenomenon. It should then be taken into account when evaluating the effects of salinization in the context of environmental risk assessments. Nowadays, groundwater salinization is one of the main problems in arid and semi arid regions. The objective of the study was to evaluate the role of ionic strength of the water in uranium mobilization and speciation in the binary (Ore-Water) system

  4. Structure evolution of gelatin particles induced by pH and ionic strength.

    Science.gov (United States)

    Xu, Jing; Li, Tianduo; Tao, Furong; Cui, Yuezhi; Xia, Yongmei

    2013-03-01

    Microstructure of gelatin particles played a key role in determining the physicochemical properties of gelatin. Ionic strength and pH as systematic manners were considered to affect gelatin particles structure on the micrometer scale. Scanning electron microscopy was used for depicting the morphologies of gelatin particles. Increasing pH to 10.0 or decreasing pH to 4.0, spherical, spindle, and irregular aggregates of gelatin particles at 2, 6, 10, and 14% solution (w/w) were all transformed to spindle aggregates. When NaCl was added to the system, the molecular chains of gelatin possibly rearranged themselves in a stretched state, and the ribbon aggregates was observed. The structural transitions of gelatin aggregates were strongly depended on the electrostatic repulsion. In the gelatin-sodium dodecyl sulfate (SDS) case, the micrometer scale of aggregates was larger and the different degrees of cross-links were induced through hydrophobic interaction and electrostatic repulsion. Copyright © 2012 Wiley Periodicals, Inc.

  5. Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite

    International Nuclear Information System (INIS)

    Yu, Sh.M.; Ren, A.P.; Chen, Ch.L.; Chen, Y.X.; Wang, X.

    2006-01-01

    Humic substances and bentonite have attracted great interest in radioactive waste management. Here the sorption of cobalt on bentonite in the presence and absence of fulvic acid (FA) under ambient conditions was studied. The effects of pH, ionic strength, FA and solution concentrations on cobalt sorption to bentonite were also investigated using batch techniques. The results indicate that the sorption of cobalt is strongly dependent on pH and is independent of ionic strength under our experimental conditions. Surface complexation is considered the main mechanism of cobalt sorption to bentonite. In the presence of FA, little effect of FA on cobalt sorption was found at pH 8. The addition sequences of FA/Co 2+ to the bentonite suspension on the sorption of cobalt to FA-coated bentonite were also studied. The results indicated that the sorption is not influenced by the addition sequences. Some possible mechanisms are discussed

  6. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  7. Isokinetic strength of shoulder internal and external rotators in cricket bowlers

    Directory of Open Access Journals (Sweden)

    X.M. Mabasa

    2002-02-01

    Full Text Available The strength of the shoulder internal and external rotators incricket bowlers, may not be sufficient to cope with the demands of bowling.As very little research has been done on cricketers, this study was done to establish the isokinetic strength profile of the shoulder internal andexternal rotators in cricket bowlers.Isokinetic, shoulder rotational strength was evaluated in thirty malecricket volunteers with a mean age of 23.9 years and mean body weight of 70.3 kgs. The Cybex 340 dynamometer multi joint system was used to collect data on shoulder rotation strength in a standing neutral position. Data were collected at four different speeds (60,90,180 and 300deg/sec and were computed for peak torque values for internal and external ratios for both dominant and non dominant shoulders.The results showed no statistically significant difference in the mean shoulder rotational torque between the bowlingand non-bowling shoulders for external rotation (p>0.05, and indicated statistically significant differences in themean shoulder rotational torque between the bowling and non-bowling shoulders for internal rotation (p<0.05. Therewas a significant decrease in isokinetic peak torque production for the external/internal rotator muscles as the speedof contraction increased (p<0.05. The peak torque ratio for the external/internal rotator muscles of the bowling armwere significantly less than of the non-bowling arm (p<0.05. These findings suggest that the strength ratios of thebowling arm need to be considered when managing young cricketers and their injuries.

  8. Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal.

    Science.gov (United States)

    Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris

    2018-04-15

    Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was 80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sorption of uranyl ions on silica. Effects of contact time, pH, ionic strength, concentration and phosphate

    International Nuclear Information System (INIS)

    Zhang Hongxia; Tao Zuyi

    2002-01-01

    The sorption of UO 2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO 2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO 2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO 2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength. (author)

  10. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    Science.gov (United States)

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  11. UO2 leaching and radionuclide release modelling under high and low ionic strength solution and oxidation conditions

    International Nuclear Information System (INIS)

    1995-01-01

    In this work, the UO 2 dissolution under oxidizing conditions has been studied in order to compare these results to those obtained with spent fuel. Two different leaching solutions have been used, one with a high ionic strength trying to simulate the conditions expected in a saline repository and the other at low ionic strength much appropriate to granitic environments. In both cases, the dissolution has been studied studied as a function of pH, redox potential, oxidants, complexing agents, particle size as well as the experimental methodology. Results can be summarized as follows: a) The UO 2 dissolution is rather independent on ionic strength. b) Dissolution rates can be explained in general independent on the oxidant as: Log R=3DK [oxidant] Surface solid evolution is very important to understand the dissolution/oxidation mechanism of UO 2 . d) Under oxidizing conditions, the dissolution is H+ and HCO 3 promoted. e) In carbonate medium, both UO 2 and spent fuel dissolution rates are very similar, while in a non-complexing medium, spent fuel dissolution rate is much higher than the UO 2 one. This fact seems to indicate that radiolysis is much important non-complexing media. (Author)

  12. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities.

    Science.gov (United States)

    Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong

    2017-10-13

    The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength ( 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.

  13. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    Science.gov (United States)

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in

  14. Spectroscopic Characterization of Aqua [ fac-Tc(CO)3]+ Complexes at High Ionic Strength.

    Science.gov (United States)

    Chatterjee, Sayandev; Hall, Gabriel B; Engelhard, Mark H; Du, Yingge; Washton, Nancy M; Lukens, Wayne W; Lee, Sungsik; Pearce, Carolyn I; Levitskaia, Tatiana G

    2018-06-05

    Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO) 3 (OH 2 ) 3- n (OH) n ] 1- n (where n = 0-3) were examined by a range of spectroscopic techniques including 99 Tc/ 13 C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO) 3 (OH 2 ) 3 ] + > [ fac-Tc(CO) 3 (OH 2 ) 2 (OH)] > [ fac-Tc(CO) 3 (OH 2 )(OH) 2 ] - . These results correlate with established trends of the 99 Tc upfield chemical shift and carbonyl 13 C downfield chemical shift. The lone exception is [ fac-Tc(CO) 3 (OH)] 4 which exhibits a comparatively low electron density at the metal center attributed to the μ 3 -bridging nature of the - OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO) 3 Cl 3 ] 2- by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO) 3 ] + complexes lay the foundation for their identification in the complex aqueous matrixes.

  15. Temperature and ionic strength influences on actinide(VI)/(V) redox potentials for carbonate limiting complexes

    International Nuclear Information System (INIS)

    Capdevila, H.; Vitorge, P.

    1998-01-01

    Actinide behaviour was studied in two limiting aqueous solutions: acidic and carbonate. Cyclic voltametry was validated with well-known U redox system. SIT was used to account for I influence. Taylor's series expansions to the second order were used to account for T influence. Redox potentials of actinide couples had previously been measured in non complexing media. The above data treatments give standard values for redox potential E 0 , for the corresponding entropy ΔS 0 , enthalpy ΔH 0 and heat capacity ΔC p 0 changes, and also for the corresponding excess values (i.e. the variation of these thermodynamic constants with ionic strength). This methodology was here used in carbonate media to measure the potential of the redox couple PuO 2 (CO 3 ) 3 4- /PuO 2 (CO 3 ) 3 5- from 5 to 70 degC and from I = 0.5 to 4.5 M in Na 2 CO 3 , NaClO 4 media. Experimental details and full results are given for Pu. Only final results are given for Np. Previous and/or published data for U and Am are discussed. E and ΔS variations with T or I were enough to be measured. The values obtained for the fitted SIT coefficients Δε, and for ΔS and ΔCp are similar for U, Np and Pu redox reactions. Using this analogy for Am missing data is discussed. β 3 V /β 3 VI formation constant ratio of the carbonate limiting complexes were deduced from the potential shift from complexing to non complexing media for the Actinide(VI)/Actinide(V) redox couples. β 3 V (U and Pu) and β 3 VI (Np) were finally proposed using published β3 VI (U and Pu) and β 3 V (Np). For Am, this data treatment was used to discuss the AmO 2 2+ / AmO 2 + redox potential

  16. Solubility product of tetravalent neptunium hydrous oxide and its ionic strength dependence

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Mori, T. [Japan Nuclear Cycle Development Institute (JNC), 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1194 (Japan); Kohara, Y. [Inspection and Development Company, 4-33, Muramatsu, Tokaimura, Naka-gun, Ibaraki-ken, 319-1112 (Japan)

    2005-07-01

    Full text of publication follows: Solubility products (K{sub sp}) are key parameters in the context of reliable assessment of actinides migration in the repository conditions of high level radioactive waste. Neptunium (Np(IV)) is one of the most important actinide elements in the assessment, because of its inventory and the long half-life. A few previous data for Np(IV) solubility are varied widely due to experimental difficulties related to the extremely low solubility. We carried out batch-type experiments under nitrogen atmosphere using a glovebox. Np(V) was reduced to Np(III) by bubbling 0.5 ppm H{sub 2} / N{sub 2} gas through the solution for 30 days in the presence of platinum black as catalyst. After reducing treatment, the Np(III) converted to Np(IV) by auto-oxidation within approximately three days. The solubilities of the Np(IV) were measured in the pHc ranging from 2 to 4, at room temperature (23 {+-} 2 deg. C), in ionic strength(I) = 0.1, 0.5, 1.0 and 2.0 M NaClO{sub 4}. The equilibrium condition was confirmed by over-saturation and under-saturation method. After the equilibrium, the pH{sub c} and the E{sub h} value of the suspension were measured. The suspension was then filtered using a filter with a NMWL of 3000 (less than 2 nm{phi}). The Np radio activity in the filtrate was determined by alpha spectrometry and absorption spectra of Np(IV). The solubility decreased with increasing pHc and the hydrolysis species are predominantly formed. From the obtained results, the solubility products (K{sub sp}) of Np hydroxide, for the reaction, NpO{sub 2} . xH{sub 2}O {r_reversible} Np{sup 4+} + 4OH{sup -} + (x-2)H{sub 2}O, at I = 0.1, 0.5, 1.0 and 2.0 were determined by using formation constants ({beta}{sub n}(I)), which were determined for the reaction, Np{sup 4+} + nOH{sup -} {r_reversible} Np(OH){sub n}{sup (4-n)+}. By using the specific interaction theory (SIT), the solubility product of tetravalent Np hydrous oxide is calculated to be log K{sub sp}{sup 0

  17. How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study.

    Directory of Open Access Journals (Sweden)

    Zdeněk Kříž

    Full Text Available Progressive cerebral deposition of amyloid beta occurs in Alzheimers disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat but not others (rat, mouse. It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution on amyloid beta (1-42 with the human and rat amino acid sequence in three different environments: water with only counter ions, water with NaCl at a concentration of 0.15 M as a model of intracellular Na(+ concentration at steady state, and water with NaCl at a concentration of 0.30 M as a model of intracellular Na(+ concentration under stimulated conditions. We analyzed secondary structure stability, internal hydrogen bonds, and residual fluctuation. It was observed that the change in ionic strength affects the stability of internal hydrogen bonds. Increasing the ionic strength increases atomic fluctuation in the hydrophobic core of the human amyloid, and decreases the atomic fluctuation in the case of rat amyloid. The secondary structure analyses show a stable α-helix part between residues 10 and 20. However, C-terminus of investigated amyloids is much more flexible showing no stable secondary structure elements. Increasing ionic strength of the solvent leads to decreasing stability of the secondary structural elements. The difference in conformational behavior of the three amino acids at position 5, 10 and 13 for human and rat amyloids significantly changes the conformational behavior of the whole peptide.

  18. Nickel adsorption and desorption in an acric oxisol as a function of pH, ionic strength and incubation time

    Directory of Open Access Journals (Sweden)

    Estêvão Vicari Mellis

    Full Text Available ABSTRACT Although nickel (Ni has both important potential benefits and toxic effects in the environment, its behavior in tropical soils has not been well studied. Nickel adsorption-desorption in topsoil and subsoil samples of an acric Oxisol was studied at three pH values (from 3.0 to 8.0. Adsorption-desorption isotherms were elaborated from experiments with increasing Ni concentration (5 to 100 mg L-1, during 0, 4, and 12 weeks, using CaCl2 0.01 and 0.1 M as electrolytic support in order to also verify the effect of Ni-soil time contact and of ionic strength on the reaction. Experimental results of Ni adsorption fitted Langmuir model, which indicated that maximum Ni adsorption (71,440 mg kg-1 occurred at subsoil, after 12 weeks. Nickel affinity (KL was also greater at subsoil (1.0 L kg-1. The Ni adsorption in the topsoil samples was higher, due to its lower point of zero salt effect (PZSE and higher organic matter content. The increase in soil pH resulted in the increase of Ni adsorption. Nickel desorbed less from soil samples incubated for 4 or 12 weeks, suggesting that Ni interactions with colloidal particles increase over time. The amount of Ni desorbed increased with increasing ionic strength in both the topsoil and subsoil soil samples. Finally, adsorption-desorption hysteresis was clearly observed. Soil pH, ionic strength of soil solution and the Ni-soil contact time should be considered as criteria for selecting the areas for disposal of residues containing Ni or to compose remediation strategies for acric soils contaminated with Ni.

  19. The effect of pH and ionic strength on proton adsorption by the thermophilic bacterium Anoxybacillus flavithermus

    Science.gov (United States)

    Burnett, Peta-Gaye; Heinrich, Hannah; Peak, Derek; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2006-04-01

    Numerous studies have utilized surface complexation theory to model proton adsorption behaviour onto mesophilic bacteria. However, few experiments, to date, have investigated the effects of pH and ionic strength on proton interactions with thermophilic bacteria. In this study, we characterize proton adsorption by the thermophile Anoxybacillus flavithermus by performing acid-base titrations and electrophoretic mobility measurements in NaNO 3 (0.001-0.1 M). Equilibrium thermodynamics (Donnan model) were applied to describe the specific chemical reactions that occur at the water-bacteria interface. Acid-base titrations were used to determine deprotonation constants and site concentrations for the important cell wall functional groups, while electrophoretic mobility data were used to further constrain the model. We observe that with increasing pH and ionic strength, the buffering capacity increases and the electrophoretic mobility decreases. We develop a single surface complexation model to describe proton interactions with the cells, both as a function of pH and ionic strength. Based on the model, the acid-base properties of the cell wall of A. flavithermus can best be characterized by invoking three distinct types of cell wall functional groups, with p Ka values of 4.94, 6.85, and 7.85, and site concentrations of 5.33, 1.79, and 1.42 × 10 -4 moles per gram of dry bacteria, respectively. A. flavithermus imparts less buffering capacity than pure mesophilic bacteria studied to date because the thermophile possesses a lower total site density (8.54 × 10 -4 moles per dry gram bacteria).

  20. Effect of carboxymethyl cellulose and ionic strength on stability of mineral suspensions in potash ore flotation systems.

    Science.gov (United States)

    Pawlik, M; Laskowski, J S; Ansari, A

    2003-04-15

    The adsorption of sodium carboxymethyl cellulose from aqueous solutions varying in ionic strength from that of distilled water to 50% NaCl/KCl brine (about 3.5 mol/dm(3)) onto illite and dolomite has been studied. The purpose of this work was to investigate the solvency effects in the phenomena underlying the potash flotation process that is carried out in saturated brine. Based on viscosity measurements, the adsorption results were analyzed in terms of a simple model of polymer macromolecules in solution. Suspension stability measurements carried out concomitantly with adsorption tests showed the ranges of carboxymethyl cellulose concentration over which the tested suspensions either were aggregated or were restabilized.

  1. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players.

    Science.gov (United States)

    Wollin, Martin; Purdam, Craig; Drew, Michael K

    2016-01-01

    To investigate inter and intra-tester reliability of an externally fixed dynamometry unilateral hamstring strength test, in the elite sports setting. Reliability study. Sixteen, injury-free, elite male youth football players (age=16.81±0.54 years, height=180.22±5.29cm, weight 73.88±6.54kg, BMI=22.57±1.42) gave written informed consent. Unilateral maximum isometric peak hamstring force was evaluated by externally fixed dynamometry for inter-tester, intra-day and intra-tester, inter-week reliability. The test position was standardised to correlate with the terminal swing phase of the gait running cycle. Inter and intra-tester values demonstrated good to high levels of reliability. The intra-class coefficient (ICC) for inter-tester, intra-day reliability was 0.87 (95% CI=0.75-0.93) with standard error of measure percentage (SEM%) 4.7 and minimal detectable change percentage (MDC%) 12.9. Intra-tester, inter-week reliability results were ICC 0.86 (95% CI, 0.74-0.93), SEM% 5.0 and MDC% 14.0. This study demonstrates good to high inter and intra-tester reliability of isometric externally fixed dynamometry unilateral hamstring strength testing in the regular elite sport setting involving elite male youth football players. The intra-class coefficient in association with the low standard error of measure and minimal detectable change percentages suggest that this procedure is appropriate for clinical and academic use as well as monitoring hamstring strength in the elite sport setting. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution:. ionic strength effects and temperature dependence

    Science.gov (United States)

    Maaß, Frank; Elias, Horst; Wannowius, Klaus J.

    Conductometry was used to study the kinetics of the oxidation of hydrogen sulfite, HSO -3, by hydrogen peroxide in aqueous non-buffered solution at the low concentration level of 10 -5-10 -6 M, typically found in cloud water. The kinetic data confirm that the rate law reported for the pH range 3-6 at higher concentration levels, rate= kH·[H +]·[HSO -3]·[H 2O 2], is valid at the low concentration level and at low ionic strength Ic. At 298 K and Ic=1.5×10 -4 M, third-order rate constant kH was found to be kH=(9.1±0.5)×10 7 M -2 s -1. The temperature dependence of kH led to an activation energy of Ea=29.7±0.9 kJ mol -1. The effect of the ionic strength (adjusted with NaCl) on rate constant kH was studied in the range Ic=2×10 -4-5.0 M at pH=4.5-5.2 by conductometry and stopped-flow spectrophotometry. The dependence of kH on Ic can be described with a semi-empirical relationship, which is useful for the purpose of comparison and extrapolation. The kinetic data obtained are critically compared with those reported earlier.

  3. Charge and softness of the outer part of the cell wall of Thiobacillus ferrooxidans in the low ionic strength medium

    Directory of Open Access Journals (Sweden)

    Škvarla Jiří

    2002-03-01

    Full Text Available The surface charge and surface potential are parameters influencing the microbial adhesion phenomenon through the electrostatic interaction between bacteria and substrates. The Smoluchowski equation, originally developed for estimating the above parameters from the experimentally accessible electrophoretic mobility of rigid colloid particles, is however inapplicable to the elastic bacterial cells. The problem is that the outer cell wall of bacteria is a layer with a complex polyelectrolyte structure. In this article, the OhshimaLs model of the gsofth particle is applied to describe the surface electrostatics of Thiobacillus ferrooxidans cells by measuring their electrophoretic mobility in distilled water as a function of a (low ionic strength and pH. In this model, the rigid core is considered to be covered with a charged ion-penetrable layer of polyelectrolytes. Two model parameters have been determined by the curve fitting at pH from 3.2 to 5.8, namely the number density of the dissociated groups N and the softness parameter 1/ƒÉ of the polyelectrolyte layer of the bacterium. A disagreement of the best fit parameters (evaluated by the correlation coefficient with the analogous parameters determined for other colloids (including bacterial cells in aqueous solutions of a high ionic strength is discussed.

  4. Transport of vanadium (V in saturated porous media: effects of pH, ionic-strength and clay mineral

    Directory of Open Access Journals (Sweden)

    Yulu Wang

    2016-10-01

    Full Text Available Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M and pH (4–8 and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.

  5. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    Science.gov (United States)

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  6. Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals-xyloglucan multilayered thin films.

    Science.gov (United States)

    Dammak, Abir; Moreau, Céline; Azzam, Firas; Jean, Bruno; Cousin, Fabrice; Cathala, Bernard

    2015-12-15

    The effect of the variation of CNC concentration on the growth pattern of CNC-XG films is investigated. We found that a transition in the growth slope occurs at a CNC concentration of roughly 3-4gL(-1). A close effect can be obtained by the increase of the ionic strength of the CNC suspensions, suggesting that electrostatic interactions are involved. Static light scattering investigation of CNC dispersions at increasing concentrations demonstrated that the particle-particle interactions change as the CNC concentration increases. Neutron Reflectivity (NR) was used to probe the internal structure of the films. The increase of the CNC concentration as well as the increase of the ionic strength in the CNC suspension were found to induce a densification of the adsorbed CNC layers, even though the mechanisms are not strictly identical in both cases. Small changes in these parameters provide a straightforward way of controlling the architecture of CNC-based multilayered thin films and, as a result, their functional properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: variation of polymer concentration and ionic strength.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2010-06-15

    The adsorption of carboxymethyl cellulose (CMC) on the basal planes of talc and molybdenite has been studied using in situ atomic force microscope (AFM) imaging. These experiments were partnered with quantitative adsorption isotherm determinations on particulate samples. The isotherms revealed a clear increase of the CMC adsorbed amount upon increasing the solution ionic strength for adsorption on both minerals. In addition, the shapes of the isotherms changed in response to the change in the electrolyte concentration, with CMC on talc displaying stepped (10(-3) M KCl), Langmuir (10(-2) M KCl), then Freundlich isotherm shapes (10(-1) M KCl), and CMC on molybdenite displaying stepped (10(-3) M KCl), Freundlich (10(-2) M KCl), then Langmuir isotherm shapes (10(-1) M KCl). AFM imaging of the polymer layer on the mineral surfaces with varying solution conditions mirrored and confirmed the conclusions from the isotherms: as the polymer solution concentration increased, coverage on the basal plane increased; as the ionic strength increased, coverage on the basal plane increased and the morphology of the layer changed from isolated well-distributed polymer domains to extensive adsorption and formation of dense, uneven polymer domains/features. In addition, comparison of the talc and molybdenite datasets points toward the presence of different binding mechanisms for CMC adsorption on the talc and molybdenite basal plane surfaces. 2010 Elsevier Inc. All rights reserved.

  8. Effect of the ionic strength of pulsed electric field treatment medium on the physicochemical and structural characteristics of lactoferrin.

    Science.gov (United States)

    Sui, Qian; Roginski, Hubert; Williams, Roderick P W; Wooster, Tim J; Versteeg, Cornelis; Wan, Jason

    2010-11-24

    Pulsed electric field (PEF) treatment (35 kV cm(-1) for 19.2 μs using bipolar 2 μs pulses) was conducted on bovine lactoferrin (LF; 0.4 mg mL(-1)) prepared in simulated milk ultrafiltrate (SMUF), at concentrations between 0.2× and 2× normal strength, with electrical conductivities ranging from 0.17 to 1.04 S m(-1). The physicochemical and structural characteristics (LF content by a spectrophotometric and an ELISA method, surface hydrophobicity, electrophoretic mobility, far-UV circular dichroism spectra, and tryptophan fluorescence) of LF dissolved in SMUF of all strengths tested were not changed after PEF treatment. The PEF treatment of LF in 0.2 strength SMUF did not cause the release of LF-bound ferric ion into the aqueous phase, with a concentration of LF-bound iron being the same as that of the untreated LF control (174 μg L(-1)). However, in treatment media with higher ionic strengths, ferric ion was released from the LF molecule into the aqueous phase. The concentration of LF-bound iron decreased from 174 μg L(-1) for the LF treated in 0.2 strength SMUF to 80 μg L(-1) for that treated in double-strength SMUF. The results suggest that the PEF-induced iron depletion of LF does not appear to cause an appreciable conformational change in LF molecules. PEF treatment could be developed as a novel physical way to produce iron-depleted LF, as an alternative to the existing chemical method.

  9. Glenosphere size in reverse shoulder arthroplasty: is larger better for external rotation and abduction strength?

    Science.gov (United States)

    Müller, Andreas M; Born, Marian; Jung, Christian; Flury, Matthias; Kolling, Christoph; Schwyzer, Hans-Kaspar; Audigé, Laurent

    2018-01-01

    The role of glenosphere size in reverse shoulder arthroplasty (RSA) may be important in prosthetic stability, joint kinematics, rotator cuff tension and excursion, scapular impingement, humeral lateralization, deltoid wrap, and the occurrence of "notching." This study compared short- and midterm clinical and radiographic outcomes for 2 different glenosphere sizes of a single RSA type with respect to implant positioning, glenoid size, and morphology. This retrospective analysis included 68 RSA procedures that were prospectively documented in a local register during a 5-year postoperative period. Two glenosphere diameter sizes of 36 mm (n = 33) and 44 mm (n = 35) were used. Standard radiographs were made preoperatively (ie, baseline) and at 6, 12, 24, and 60 months after surgery. Range of motion, strength, the Constant-Murley score, and the Shoulder Pain and Disability Index were also assessed at all follow-up visits. The effect of glenosphere size on measured outcomes was adjusted for baseline values, patient gender, and humeral head diameter. No significant differences were found in the functional scores between treatment groups at all follow-up assessments. At the 12-month follow-up, patients with a 44-mm glenosphere had greater external rotation in adduction (mean difference, 12°; P = .001) and abduction strength (mean difference, 1.4 kg; P = .026) compared with those with the smaller implant. These differences remained at 60 months. Scapular notching was observed in 38% of all patients, without any relevant difference between the groups. An increase in glenosphere diameter leads to a clinically moderate but significant increase in external rotation in adduction and abduction strength at midterm follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Comparative study on sorption of radiocobalt to montmorillonite and its Al-pillared and cross-linked samples. Effect of pH, ionic strength and fulvic acid

    International Nuclear Information System (INIS)

    Yu, S.; Cheng, J.; Chen, C.; Wang, X.

    2007-01-01

    Effects of pH, ionic strength and fulvic acid on sorption of radiocobalt on montmorillonite and its Al-pillared and cross-linked samples were studied using batch technique. The results indicate that the sorption of cobalt is strongly dependent on pH values and independent of ionic strength. Fulvic acid enhances the sorption of cobalt slightly at low pH, but has no influence at high pH values. Surface complexation is considered the main mechanism of cobalt sorption to montmorillonite. The sequences of FA/Co 2+ additions to the system did not affect cobalt sorption. (author)

  11. Hip external rotation strength predicts hop performance after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Kline, Paul W; Burnham, Jeremy; Yonz, Michael; Johnson, Darren; Ireland, Mary Lloyd; Noehren, Brian

    2018-04-01

    Quadriceps strength and single-leg hop performance are commonly evaluated prior to return to sport after anterior cruciate ligament reconstruction (ACLR). However, few studies have documented potential hip strength deficits after ACLR, or ascertained the relative contribution of quadriceps and hip strength to hop performance. Patients cleared for return to sports drills after ACLR were compared to a control group. Participants' peak isometric knee extension, hip abduction, hip extension, and hip external rotation (HER) strength were measured. Participants also performed single-leg hops, timed hops, triple hops, and crossover hops. Between-limb comparisons for the ACLR to control limb and the non-operative limb were made using independent two-sample and paired sample t tests. Pearson's correlations and stepwise multiple linear regression were used to determine the relationships and predictive ability of limb strength, graft type, sex, and limb dominance to hop performance. Sixty-five subjects, 20 ACLR [11F, age 22.8 (15-45) years, 8.3 ± 2 months post-op, mass 70.47 ± 12.95 kg, height 1.71 ± 0.08 m, Tegner 5.5 (3-9)] and 45 controls [22F, age 25.8 (15-45) years, mass 74.0 ± 15.2 kg, height 1.74 ± 0.1 m, Tegner 6 (3-7)], were tested. Knee extension (4.4 ± 1.5 vs 5.4 ± 1.8 N/kg, p = 0.02), HER (1.4 ± 0.4 vs 1.7 ± 0.5 N/kg, p = 0.04), single-leg hop (146 ± 37 vs 182 ± 38% limb length, p hop (417 ± 106 vs 519 ± 102% limb length, p hop (3.3 ± 2.0 vs 2.3 ± 0.6 s, p hop (364 ± 107 vs 446 ± 123% limb length, p = 0.01) were significantly impaired in the operative versus control subject limbs. Similar deficits existed between the operative and non-operative limbs. Knee extension and HER strength were significantly correlated with each of the hop tests, but only HER significantly predicted hop performance. After ACLR, patients have persistent HER strength, knee extension strength, and hop test deficits in the

  12. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides.

    Science.gov (United States)

    Bolscher, Jan G M; Adão, Regina; Nazmi, Kamran; van den Keybus, Petra A M; van 't Hof, Wim; Nieuw Amerongen, Arie V; Bastos, Margarida; Veerman, Enno C I

    2009-01-01

    The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.

  13. Computer-aided model analysis for ionic strength-dependent effective charge of protein in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Lim, Young-il; Jørgensen, Sten Bay; Kim, In-Ho

    2005-01-01

    differential algebraic equation (PDAE) system, a fast and accurate numerical method (i.e., conservation element/solution element (CE/SE) method), is proposed. Sensitivity and elasticity of the model parameters (e.g., steric/shape factors, adsorption heat coefficient, effective protein charge, equilibrium...... constant, mass transfer coefficient, axial dispersion coefficient and bed voidage) are analyzed for a BSA-salt system in a low protein concentration range. Within a low concentration range of bovine serum albumin (BSA) where linear adsorption isotherms are shown, the adsorption heat coefficient, shape...... salt concentrations, it is proposed that the effective protein charge could depend upon the salt concentration (or ionic strength). The reason for this dependence may be a steric hindrance of protein binding sites combined with a salt shielding effect neutralizing the surface charges of the protein. (c...

  14. Turning a weakness into a strength. A smart external energy policy for Europe

    International Nuclear Information System (INIS)

    Coby van der, Linde

    2008-01-01

    Energy policy objectives and the suitability of traditional instruments to achieve them are currently under review. The main goals are to improve the balance among the three priorities of energy policy-making, to make a transition to both a more sustainable energy mix and, at the same time, improve the security of that mix during the transition to it. As this policy will only produce result in the longer term, an alternative in EU external energy policy-making should be found to coercing reluctant members states into accepting the usually top down, generic approach of the EU and into giving up competencies that serve national interests. This pragmatic route to policy-making could be to explore a path that turns EU weakness in the foreign and energy policy sphere into strengths by the smart use of diversity, asymmetry and subsidiarity in a bottom up, more tailor-made approach

  15. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    Science.gov (United States)

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  16. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    Science.gov (United States)

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  17. Effects of hydrodynamic mixing intensity coupled with ionic strength on the initial stage dynamics of bridging flocculation of polystyrene latex particles with polyelectrolyte

    NARCIS (Netherlands)

    Adachi, Y.; Matsumoto, T.; Cohen Stuart, M.A.

    2002-01-01

    Effects of hydrodynamic mixing intensity on the initial stage dynamics of bridging flocculation induced by adsorbing polyelectrolyte were analyzed as an extension of previous report on the effect of ionic strength (J. Coll. Int. Sci. 204 (1998) 328). Mixing condition were changed by adopting forked

  18. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  19. The influence of a fulvic acid on the adsorption of europium and strontium by alumina and quartz: effects of pH and ionic strength

    International Nuclear Information System (INIS)

    Norden, M.; Ephraim, J.H.; Allard, B.

    1994-01-01

    A batch method has been employed to study the adsorption of trace quantities of Eu and Sr on α-Al 2 O 3 and SiO 2 as a function of pH (3-9), ionic strength (0.10 and 0.01 M NaClO 4 ) and the presence of a well-characterized aquatic fulvic acid (FA). A comparison of Eu and Sr adsorption by alumina showed that FA could both reduce and enhance metal ion adsorption. In the absence of FA the adsorption of the metal ions onto alumina was a function of both pH and ionic strength. In the presence of FA the ionic strength effect on the Eu adsorption vanished, while the Sr adsorption showed a clear dependence on ionic strength. The adsorption of Eu and Sr on quartz was lower than the adsorption of the metals on alumina. Additionally, the adsorption of Eu and Sr on quartz was apparently lower than the adsorption on alumina in the presence of Fa. For both metal ions the adsorption on quartz was higher at 0.10 M than at 0.01 M NaClO 4 - an observation that was reversed in the case of alumina. Increasing concentrations of FA lowered the pH at which Eu adsorption on alumina would be reduced. (orig.)

  20. SORPTION OF CU AND ZN TO KAOLINITE AND IRON OXIDE: EFFECTS OF HUMIC ACID AND IONIC STRENGTH AND IMPLICATIONS FOR STORMWATER RUNOFF

    Science.gov (United States)

    Heavy metals are common pollutants in wet weather flows and urban waterways. Changes in ionic strength, whether from mixing with saline waters, road salt, or from the large osmotic adjustment needed for the Microtox toxicity assay, affect the aqueous chemistry of stormwater runof...

  1. Study and modeling of lanthanide(3)-L and americium(3)-L (With L = NTA, EDTA and DTPA) in high ionic strength aqueous solutions

    International Nuclear Information System (INIS)

    Rocchiccioli, F.

    2000-01-01

    The dissociation constants of NTA, EDTA, DTPA in NaCl, NaClO 4 , LiCl and LiClO 4 aqueous solutions of various ionic strengths have been gathered from the literature and from the Critical Surveys of Stability Constants. These values have been completed by a series of pKa values obtained in the same salted solution at higher ionic strengths by potentiometry involving a combined glass electrode at 25 deg C. The dependencies of the pKas versus the ionic strength have been investigated by using the Specific Interaction Theory (SIT), the parabolic model and the Pitzer model. The stability constants of complexes involving lanthanides (III), such as Nd 3+ , Eu 3+ and Lu 3+ , and americium (III), with the ligands previously mentioned in NaCl, NaClO 4 , LiCl and LiClO 4 aqueous solutions of high ionic strengths have been determined. The methods used for the determination of the stability constants for the lanthanide complexes are various: direct measurements by potentiometry when possible, UV-visible absorption spectroscopy involving Arsenazo (III) as a competitor ligand. For the actinide complexes, solvent extraction experiments have been performed. The different systems, along with the dissociation constants of several complexes in the same aqueous media, have been successfully modeled by the SIT, the parabolic method and the Pitzer method. (author)

  2. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    Directory of Open Access Journals (Sweden)

    Diana Campelo

    2017-10-01

    Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.

  3. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig® 639a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste

  4. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    Science.gov (United States)

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.

  5. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO{sub 4})) conditions. The influences of different complexing anions (1 x 10{sup -4} M) such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI){sub Hydroxy} > U(VI){sub HumicAcid} > U(VI){sub carbonate} > U(VI){sub citrate}. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L{sub 3

  6. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rota...

  7. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  8. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhiwei [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Fan Qiaohui [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: fanqiaohui@gmail.com; Wang Wenhua; Xu Junzheng [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Chen Lei [School of Chemical Engineering, Shandong University of Technology, 255049 Zibo, Shandong (China); Wu Wangsuo [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: wuws@lzu.edu.cn

    2009-09-15

    Attapulgite was investigated to remove UO{sub 2}{sup 2+} from aqueous solutions because of its strong sorption capacity. Herein, the attapulgite sample was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and acid-base titration in detail. Sorption of UO{sub 2}{sup 2+} on attapulgite was strongly dependent on pH values and ionic strength. The presence of humic acid enhanced the sorption of UO{sub 2}{sup 2+} on attapulgite obviously because of the strong complexation of humic acid (HA) with UO{sub 2}{sup 2+} on attapulgite surface. Sorption of UO{sub 2}{sup 2+} on attapulgite was mainly dominated by ion-exchange or outer-sphere complexation at low pH values, and by inner-sphere complexation at high pH values. The results indicated that attapulgite was a suitable material for the preconcentration and solidification of UO{sub 2}{sup 2+} from large volume of solutions because of its negative surface charge and large surface areas.

  9. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    Science.gov (United States)

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  10. Self-diffusion of charged colloidal tracer spheres in transparent porous glass media: Effect of ionic strength and pore size

    Science.gov (United States)

    Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.

    1998-05-01

    The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.

  11. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  12. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    Science.gov (United States)

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Alvarez-Merino, M A; Moreno-Castilla, C

    2007-01-30

    A study was conducted on the effects of carbon surface chemistry, solution pH, and ionic strength on the removal of diuron and amitrole from aqueous solutions by adsorption on an as-received and oxidized activated carbon fiber. Results obtained were explained by the surface characteristics of the adsorbents and the characteristics of the herbicide molecules. Under the experimental conditions used, diuron uptake was much higher than that of amitrole, despite its larger molecular dimensions, due to the lesser water solubility, greater hydrophobicity, and larger dipolar moment of diuron compared with amitrole. Uptake variations associated with differences in carbon surface oxidation, solution pH, and ionic strength were explained by corresponding changes in electrostatic, hydrophobic, and van der Waals interactions.

  14. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum.

    Science.gov (United States)

    Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin

    2017-07-12

    In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.

  15. The effect of pH, buffer capacity and ionic strength on quetiapine fumarate release from matrix tablets prepared using two different polymeric blends.

    Science.gov (United States)

    Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman

    2017-08-01

    The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.

  16. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    Science.gov (United States)

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  17. Interaction of nucleic acids with electrically charged surfaces. VII. The effect of ionic strength of neutral medium on the conformation of dna adsorbed on the mercury electrode.

    Science.gov (United States)

    Brabec, V

    1980-02-01

    Triangular-wave direct current (d.c.) voltammetry at a hanging mercury drop electrode and phase-selective alternating current (a.c.) polarography at a dropping mercury electrode were used for the investigation of adsorption of double-helical (ds) DNA at mercury electrode surfaces from neutral solutions of 0.05-0.4 M HCOONH4. It was found for the potential region T (from -0.1 V up to ca. -1.0 V) that the height of voltammetric peaks of ds DNA is markedly influenced by the initial potential only at relatively low ionic strength (mu) (from 0.05 up to ca. 0.3). Also a decrease of differential capacity (measured by means of a.c. polarography) in the region T depended markedly on the electrode potential only at relatively low ionic strength. The following conclusions were made concerning the interaction of ds DNA with a mercury electrode charged to potentials of the region T in neutral medium of relatively low ionic strength mu potentials in the Vicinity of the zero charge potential a higher number of ds DNA segments can be opened, probably as a consequence of the strain which could act on the ds DNA molecule in the course of the segmental adsorption/desorption process.

  18. Hydrolysis of polyacrylamide containing associative hydrophobic groups: effect of the degree of hydrolysis and ionic strength on the viscosity in aqueous medium

    International Nuclear Information System (INIS)

    Lima, Bruna V. de; Vidal, Rosangela R.L.; Reis, Jeanne H.C. dos; Balaban, Rosangela de C.

    2009-01-01

    The HAPAM-10N polymer (hydrophobically modified and partially hydrolyzed polyacrylamide) was obtained by partial hydrolysis of HAPAM (hydrophobically modified polyacrylamide) precursor containing very low amount of hydrophobic groups (0.75%) in 0.1 M NaCl and 0.25 M NaOH aqueous solutions, at 40 deg C for 10 min. Hydrolysis degree of 44.64 % was obtained by 13 C NMR. The viscosity of polymers solutions was evaluated as a function of polymer concentration, ionic strength and temperature, at constant shear rate. The viscosity of HAPAM solutions increased with polymer concentration, however, it did not change significantly with the increase of ionic strength, and decreased with the temperature enhancement. The viscosity of HAPAM-10N solutions increased significantly in distilled water, due to electrostatic repulsions among carboxylate groups. However, with the increase of polymer concentration, ionic strength and temperature, it was not observed a significant increase of viscosity, probably due to the low amount of hydrophobic groups and high hydrolysis degree. (author)

  19. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  20. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release.

    Science.gov (United States)

    Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana

    2016-03-07

    The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.

  1. A study on the swelling characteristics of a potential buffer material : Effect of ionic strength and temperature on the swelling pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    This study is intended to investigate the effect of ionic strength and temperature on the swelling pressure of bentonite. The dry density for compacted bentonite was adjusted between 1.4 Mg/m{sup 3} - 1.8 Mg/m{sup 3}. The effect of temperature was tested at 20 deg C, 40 deg C, 60 deg C, 80 deg C, and the effect of ionic strength with distilled water, synthetic ground water, and 0.01 M - 0.1 M NaCl solution. The swelling pressure decreased with increasing ionic strength, and its dependency got lower at high dry density. Temperature had negligible effect on the swelling pressure of compacted bentonite, which could be explained by the change in hydration pressure, osmotic pressure, and pore water pressure in accordance with temperature. The swelling pressure of compacted bentonite with low dry density was dominated mainly by osmosis. However, hydration was thought to become important at higher dry density, compared with the osmosis. 32 refs., 11 figs., 4 tabs. (Author)

  2. [Verification of a decrease in the rigidity of the phage lambda DNA polymeric chain in low ionic strength aqueous solutions by testing the polymer-polymer interlink interactions].

    Science.gov (United States)

    Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V

    2011-01-01

    Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.

  3. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  4. Strength and water-tightness of the closure head and valves of a model cask under high external pressure

    International Nuclear Information System (INIS)

    Terada, O.; Kumada, M.; Hayakawa, T.; Mochizuki, S.; Ohrui, K.

    1978-01-01

    This paper describes experimental research on the strength and water-tightness of the closure head and attached valves of a model cask under high external pressure, in simulation of its having been accidentally lost in the deep sea. Both the external pressure tests and the corrosion tests were carried out using scale models of the closure head of an 80-ton spent-fuel shipping cask, and the full size pressure relief valves and drain valves which were to be attached to the actual cask. Based on the results of the above tests, evaluations were made, and new information was obtained on the pressure-proof strength and water-tightness of the closure head of the cask and the valves. Lastly, research which is being carried on in Japan on the pressure equalizer is also introduced

  5. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    Science.gov (United States)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  6. Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants

    International Nuclear Information System (INIS)

    Godinez, Itzel G.; Darnault, Christophe J.G.; Khodadoust, Amid P.; Bogdan, Dorin

    2013-01-01

    The aggregation, transport and deposition kinetics (i.e. attachment and release) of TiO 2 nanoparticles (nano-TiO 2 ) were investigated as a function of ionic strength and the presence of anionic (sodium dodecylbenzene sulfonate, SDBS) and non-ionic (Triton X-100) surfactants in 100% critical micelle concentration (CMC). The electrolyte concentration of the suspensions dictated the kinetic stability of nano-TiO 2 thus influencing the transport and retention of the nanoaggregates in the saturated porous medium. With increasing ionic strength, the interaction between approaching nano-TiO 2 and nano-TiO 2 already deposited onto collectors surfaces seemed to be more favorable than the interaction between approaching nano-TiO 2 and bare collectors surfaces. The abrupt and gradual reduction in electrolyte concentration during the flushing cycles of the column experiments induced the release of previously deposited nano-TiO 2 suggesting attachment of nano-TiO 2 through secondary energy minimum. Highlights: ► This study focuses on aggregation, transport and deposition kinetics of nano-TiO 2 . ► Ionic strength and surfactants impact nano-TiO 2 transport in saturated porous media. ► Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition. ► Changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2 . -- Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition and changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2

  7. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  8. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  9. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli

    2010-01-01

    The amphiphilic double-tail peptides AXG were studied regarding secondary structure and self-assembly in aqueous solution. The two tails A = Ala 6 and G = Gly6 are connected by a central pair X of hydrophilic residues, X being two aspartic acids in ADG, two lysines in AKG and two arginines in ARG. The peptide AD (Ala6Asp) served as a single-tail reference. The secondary structure of the four peptides was characterized by circular dichroism spectroscopy under a wide range of peptide concentrations (0.01-0.8 mM), temperatures (20-98 °C), pHs (4-9.5) and ionic strengths. In salt-free water both ADG and AD form a β-sheet type of structure at high concentration, low pH and low temperature, in a peptide-peptide driven assembly of individual peptides. The transition has a two-state character for ADG but not for AD, which indicates that the added tail in ADG makes the assembly more cooperative. By comparison the secondary structures of AKG and ARG are comparatively stable over the large range of conditions covered. According to dynamic light scattering the two-tail peptides form supra-molecular aggregates in water, but high-resolution AFM-imaging indicate that ordered (self-assembled) structures are only formed when salt (0.1 M NaCl) is added. Since the CD-studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a correlation between nanofibers and a β-sheet or unordered secondary structure, whereas ARG forms fibers in spite of lacking β-sheet structure. Since the AKG and ARG double-tail peptides self-assemble into distinct nanostructures while their secondary structures are resistant to environment factors, these new peptides show potential as robust building blocks for nano-materials in various medical and nanobiotechnical applications. © 2010 The Royal Society

  10. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.

    Science.gov (United States)

    Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L

    2015-12-15

    Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All

  11. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  12. Effects of ionic strength on the coordination of Eu(III) and Cm(III) to a Gram-negative bacterium, Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Ozaki, T.; Ohnuki, T.; Kimura, T.; Francis, A.J.

    2006-01-01

    We studied the effect of ionic strength on the interactions of Europium(III) and Curium(III) with a Gram-negative bacterium Paracoccus denitrificans. Bacterial cells grown in 0.5-, 3.5-, and 5.0% NaCl were used in adsorption experiments and laser experiments that were performed at the same ionic strengths as those in the original growth media. The distribution ratio (log K d ) for Eu(III) and Cm(III) was determined at pHs 3-5. To elucidate the coordination environment of Eu(III) adsorbed on P. denitrificans, we estimated the number of water molecules in the inner sphere and strength of the ligand field by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pHs 4-6. The log K d of Eu(III) and Cm(III) increased with an increase of pH at all ionic strengths because there was less competition for ligands in cells with H + at higher pHs, wherein less H + was present in solution: cation adsorption generally occurs through an exchange with H + on the functional groups of coordination sites. No significant differences were observed in the log K d of Eu(III) and Cm(III) at each pH in 0.5-, 3.5-, and 5.0% NaCl solutions, though competition for ligands with Na + would be expected to increase at higher NaCl concentrations. The log K d of Eu(III) was almost equivalent to that of Cm(III) under all the experimental conditions. TRLFS showed that the coordination environments of Eu(III) did not differ from each other at 0.5-, 3.5-, and 5.0% NaCl at pHs 4-6. TRLFS also showed that the characteristic of the coordination environment of Eu(III) on P. denitrificans was similar to that on a halophile, Nesterenkonia halobia, while it significantly differed from that on a non-halophile, Pseudomonas putida. These findings indicate that the number of coordination sites for Eu(III) on P. denitrificans, whose cell surface may have similar structures to that of halophiles, increased with increasing ionic strength, though their structure remained unchanged. (orig.)

  13. Effect of ionic composition of meteor trace on its relaxation time in the presence of external electric field

    International Nuclear Information System (INIS)

    Klimov, M.P.; Lyatskaya, A.M.

    1989-01-01

    The dissipation of meteor trace as the function of ionic composition and electric field is investigated numerically. Critical values of electric field E 1 and E 2 are determined. At E 1 the dissipation process is similar to the diffusion one; lifetimes are proportional to diffusion coefficient. At E 1 2 - the dissipation process falls into two phases with different character of lifetime dependence on meteor trace mass. At E>E 2 lifetime does not depend on the electric field

  14. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.

    Science.gov (United States)

    Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian

    2015-01-01

    Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.

  15. On optimization of internal/external spur gears tooth bending strength

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2014-01-01

    level at the tooth root. As with most machine elements the design/geometry is defined in standards (ISO). The present work focuses on changing the tooth root design of both external and internal gears, in order to improve the stress concentration factor. The design changes made are compliant...

  16. Transport and abatement of fluorescent silica nanoparticle (SiO{sub 2} NP) in granular filtration: effect of porous media and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao, E-mail: chaozeng@email.arizona.edu; Shadman, Farhang; Sierra-Alvarez, Reyes [University of Arizona, Department of Chemical and Environmental Engineering (United States)

    2017-03-15

    The extensive production and application of engineered silica nanoparticles (SiO{sub 2} NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO{sub 2} NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO{sub 2} NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO{sub 2} filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO{sub 2} NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO{sub 2} NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO{sub 2} NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO{sub 2} NP filtration.

  17. Transport and abatement of fluorescent silica nanoparticle (SiO_2 NP) in granular filtration: effect of porous media and ionic strength

    International Nuclear Information System (INIS)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-01-01

    The extensive production and application of engineered silica nanoparticles (SiO_2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO_2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO_2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO_2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO_2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO_2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO_2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO_2 NP filtration.

  18. Sorption of metal ions on clay minerals. 2: Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.L.; Charlet, L.; Manceau, A.

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 {micro}M, 0.3 M NaNO{sub 3}) and ionic strength (0.3 and 0.01 M NaNO{sub 3}, TotCo = 100 {micro}M) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. Spectral simulations revealed the occurrence of {approximately} 2 Mg and {approximately} 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites.

  19. Transport and abatement of fluorescent silica nanoparticle (SiO2 NP) in granular filtration: effect of porous media and ionic strength

    Science.gov (United States)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-03-01

    The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.

  20. Potentiometric and spectrophotometric characterization of the UO{sub 2}{sup 2+}-citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Berto, S.; Daniele, P.G.; Prenesti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Crea, F.; De Stefano, C.; Sammartano, S. [Messina Univ. (Italy). Dipt. di Chimica Inorganica, Chimica Analitica e Chimica Fisica

    2012-07-01

    In this paper we report an investigation on the interactions between dioxouranium(VI) and citrate using potentiometry (H{sup +}-glass electrode) and UV-spectrophotometry. Potentiometric measurements were carried out in NaCl and KNO{sub 3} aqueous solutions at t = 25 C in a wide range of experimental conditions (concentrations, ligand/metal molar ratio, pH, titrants). Measurements in NaCl were carried out at different ionic strength values (0.1 {<=} I/mol L{sup -1} {<=} 1.0); different procedures were employed for the acquisition of experimental data and careful analysis of these data performed. In all cases the speciation model that best fits experimental data takes into account the formation of the following species: UO{sub 2}(Cit){sup -}, (UO{sub 2}){sub 2}(Cit){sub 2}{sup 2-}, (UO{sub 2}){sub 2}(Cit){sub 2}(OH){sub 2}{sup 4-}, (UO{sub 2}){sub 2}(Cit){sub 2}(OH){sup 3-}, (UO{sub 2}){sub 2}(Cit)(OH){sub 2}{sup -}, (UO{sub 2}){sub 2}(Cit)(OH){sup 0}, (UO{sub 2}){sub 3}(Cit){sub 2}(OH){sub 5}{sup 5-}. The dependence on ionic strength of formation constants was taken into account by using both a simple Debye-Hueckel type equation and the SIT (specific ion interaction theory) approach. Moreover, a visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO{sub 3} medium) has been calculated to characterise the compounds found by pH-metric refinement. Recommended values for the uranyl-citrate species were proposed for each ionic strength values in NaCl aqueous solution. Comparison with literature stability constants is reported too. (orig.)

  1. A Research Agenda for Evaluating Strength of Internal Preferences and External Influences in Consumer Smartphone Switching

    OpenAIRE

    Nykänen, Jussi Ilmari; Tuunainen, Virpi Kristiina; Tuunanen, Tuure

    2015-01-01

    This article proposes a research agenda to study what causes consumers to switch smartphone manufacturer and operating system brands. International consumer survey is planned for data collection and structural equation modeling method will be used to extrapolate whether internal preferences play a larger role than external influences in consumers’ switching behavior. The effects are expected to be moderated by behavioral control, subjective uncertainty and prior switching ex...

  2. Effects of external environments on the short beam shear strength of filament wound graphite/epoxy

    Science.gov (United States)

    Penn, B. G.; Clemons, J. M.

    1986-01-01

    Filament wound graphite/epoxy samples were immersed in seawater, deionized water, and toluene at room temperature and 80 deg C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains and short beam shear strengths were determined after environmental exposure. Samples immersed in deionized water and seawater had higher percent weight gains than those immersed in toluene at room temperature and 80 deg C. The percent weight gains for samples immersed in methanol at room temperature were comparable to those of deionized water and seawater immersed samples. A comparison of percent decreases in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

  3. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  4. Turning a Weakness into a Strength. A Smart External Energy Policy for Europe

    International Nuclear Information System (INIS)

    Van der Linde, C.

    2008-04-01

    The EU should recognize that the current incomplete powers in the field of energy and the strategic foreign policy dimensions will take a long time to develop into what can be considered 'one voice'. If immediate accomplishments in this area are desired, a different approach to the development of an external energy policy is required. Instead of trying to convince the Member States to transfer their competencies in energy, foreign and security policy as soon as possible to the EU level, the EC should promote a bottom-up approach. This should allow for the smarter use of diversity, asymmetry, and subsidiarity among Member States, and turning these perceived stumbling blocks into assets or instruments of external energy policy. Such an approach uses, for example, the discipline of the internal energy market, climate change policies, and the expert ministries of individual Member States with producer and competing consumer countries. The EC can start by enhancing transparency and beginning to prepare the ground for a crisis mechanism. They should focus on stimulating the Member States and the companies in a race to the top, and reward best practices, bottom-up rather than top-down. It is also important that the development towards a low-carbon economy, as the EU's longterm containment policy, is made an integral part of security of supply approaches. A smart crisis mechanism is the basis for external energy policy to be developed on, not the other way around. Furthermore, Member States should substantiate why their external energy policy contributes not only to the national but also to the EU-regional or EU-wide security of supply. National interests should not run counter to the interests in continuous energy flows of other Member States, but instead should help increase the energy flows available to the European market. By using diversity and asymmetry as an asset of EU policy-making, those policies that truly are most effective at the European level will be

  5. Removal of radiocobalt from aqueous solutions by kaolinite affected by solid content, pH, ionic strength, contact time and temperature

    International Nuclear Information System (INIS)

    Kan Li; Zhengjie Liu; Lei Chen; Yunhui Dong; Jun Hu; Chinese Academy of Sciences, Hefei

    2013-01-01

    The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters (i.e., ΔGdeg, ΔSdeg, ΔHdeg) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management. (author)

  6. Adsorption of Sr(II) and Eu(III) on Na-rectorite. Effect of pH, ionic strength, concentration and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Wang, X.K. [School of Nuclear Science and Engineering, North China Electric Power Univ., BJ (China); Key Lab. of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chen, C.L.; Sheng, G.D.; Li, J.X. [Key Lab. of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chen, Y.X. [School of Nuclear Science and Engineering, North China Electric Power Univ., BJ (China)

    2010-07-01

    The surface charge characteristics of Na-rectorite (NaAl{sub 4}[Si,Al]{sub 8}O{sub 20}(OH){sub 4}.nH{sub 2}O;) were studied by potentiometric acid-base titrations. Sr(II) and Eu(III) adsorptions on Na-rectorite as a function of pH, ionic strength, and Sr(II)/Eu(III) concentrations were carried out to investigate the surface interactions between Sr(II)/Eu(III) with Na-rectorite. The results indicated that the adsorptions of Sr(II) and Eu(III) on Na-rectorite increased with increasing pH and decreased with increasing ionic strength and initial Sr(II)/Eu(III) concentrations, and that the affinity of Na-rectorite for Eu(III) was much higher than for Sr(II). The experimental data of Sr(II)/Eu(III) adsorption were simulated by the diffuse-layer model (DLM) well with the aid of FITEQL 3.2. Simultaneous adsorptions of Sr(II) and Eu(III) on Na-rectorite were also modeled using the DLM. The adsorption mechanisms of Sr(II) and Eu(III) on Na-rectorite may be dominated by ion exchange interaction at low pH or moderate pH, and by surface complexation interaction at high pH. (orig.)

  7. Sorption properties of Th(IV) on the raw diatomite-Effects of contact time, pH, ionic strength and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guodong; Hu Jun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)], E-mail: xkwang@ipp.ac.cn

    2008-10-15

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO{sub 4}{sup -}, NO{sub 3}{sup -} and Cl{sup -}) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data ({delta}H{sup 0}, {delta}S{sup 0}, {delta}G{sup 0}) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  8. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity.

    Science.gov (United States)

    Hruska, Jakub; Krám, Pavel; McDowell, William H; Oulehle, Filip

    2009-06-15

    Temporal trends in DOC concentration and flux were investigated at two geochemically distinct forested catchments in western Czech Republic. Mean discharge-weighted DOC concentrations averaged 18.8 mg L(-1) at the acidic Lysina catchment, and 20.2 mg L(-1) at base-rich and well-buffered Pluhuv Bor. Between 1993 and 2007 DOC in streamwater increased significantly in both catchments: the mean annual increase was 0.42 mg L(-1) yr(-1) (p DOC were correlated with only modest increases in stream pH in both catchments, but large declines in ionic strength (IS), that resulted from declining atmospheric deposition. Neither catchment has undergone changes in soil-water pH, yet DOC concentrations tripled in the soil-water of both catchments. We conclude that changes in ionic strength of soil-water and streamwater, rather than acidity, are the primary drivers of changes in streamwater DOC in this region. Temperature, precipitation and discharge show no statistically significant trends during the study period, suggesting that climate change has played no role in the changes in DOC that we have observed.

  9. Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: Algae biochemical composition and kinetics.

    Science.gov (United States)

    Flores-Chaparro, Carlos E; Chazaro Ruiz, Luis Felipe; Alfaro de la Torre, Ma Catalina; Huerta-Diaz, Miguel Angel; Rangel-Mendez, Jose Rene

    2017-05-15

    Release of low-molecular aromatic hydrocarbons (HC) into natural waters brings severe consequences to our environment. Unfortunately very limited information is available regarding the treatment of these pollutants. This work evaluated the use of brown, green and red macroalgae biomass as biosorbents of benzene and toluene, two of the most soluble HC. Raw seaweed biomasses were completely characterized, then evaluated under different temperatures and ionic strengths to assess their potential as biosorbents and to elucidate the biosorption mechanisms involved. Brown macroalgae registered the highest removal capacities for benzene and toluene (112 and 28 mg·g -1 , respectively), and these were not affected at ionic strength < 0.6 M. Langmuir and Sips isotherm equations well described biosorption data, and the pseudo-second order model provided the best fit to the kinetics rate. Hydrocarbons are adsorbed onto the diverse chemical components of the cell wall by London forces and hydrophobic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto smectite: influence of pH, concentration and ionic strength

    International Nuclear Information System (INIS)

    Guimaraes, V.; Azenha, M.; Silva, A.F.; Bobos, I.

    2012-01-01

    Document available in extended abstract form only. Strontium-90 (t 1/2 = 29.1 years) resulting from the nuclear fission process is one of the main constituents connected with nuclear waste fuel. Concerning the physical properties and sorption behaviour one of the suitable buffer materials used as a backfill in the geological disposal systems for high-level radioactive wastes is smectite. The 2 μm clay fractions of di-octahedral smectite were used for adsorption experiments in batch and flow-through experiments. Flow-through experiments were carried out at different pH (4 and 8) and concentrations (8.00x10 -2 mmolSr 2+ /L, 2.0x10 -1 mmolSr 2+ /L, 3.3x10 -1 mmolSr 2+ /L and 4.1 x10 -1 mmol Sr 2+ /L). Batch experiments were carried out at different ionic strength ([KNO 3 ]=10 -2 M and [KNO 3 ]=10 -3 M), pH (4 and 8), whereas the concentration ranged between 0.19 mmolSr 2+ /L and 9.60 mmolSr 2+ /L. The adsorption strontium rate in flow-through experiments was found higher at pH 4 than at pH 8, where less of 20% amount of strontium was adsorbed on clay surface after 34 hours. This is explained by the surface charge of smectite layers with a permanent negative charge on the basal planes due essentially to isomorphic substitution. Also additional polar sites are conditionally charged by direct protonation of outer edge surfaces. Therefore, more negative sites become available for the strontium ions sorption, as the pH increasing. After adsorption, the clays were submitted to a desorption process. The rate of desorption at pH 4 is initially too fast due to the elevated amount of strontium released by smectite. After 255 min, the strontium amount desorbed is very low and the rate of desorption approached to zero. By contrast at pH 8 the rate of desorption is practically constant, and after 255 min there is a significant amount of strontium released by clay. Due to these different behaviors in different pH conditions, after 10 hours of desorption, the amount of strontium

  11. A new approach combining different MRI methods to provide detailed view on swelling dynamics of xanthan tablets influencing drug release at different pH and ionic strength.

    Science.gov (United States)

    Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa

    2010-08-03

    The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug

  12. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Armour, Tanya; Forwell, Lorie; Litchfield, Robert; Kirkley, Alexandra; Amendola, Ned; Fowler, Peter J

    2004-01-01

    Evaluation of the knee after an anterior cruciate ligament reconstruction with the use of the semitendinosus and gracilis (hamstring) autografts has primarily focused on flexion and extension strength. The semitendinosus and gracilis muscles contribute to internal tibial rotation, and it has been suggested that harvest of these tendons for the purpose of an anterior cruciate ligament reconstruction contributes to internal tibial rotation weakness. Internal tibial rotation strength may be affected by the semitendinosus and gracilis harvest after anterior cruciate ligament reconstruction. Prospective evaluation of internal and external tibial rotation strength. Inclusion criteria for subjects (N = 30): unilateral anterior cruciate ligament reconstruction at least 2 years previously, a stable anterior cruciate ligament (problems after initial knee reconstruction, a normal contralateral knee, and the ability to comply with the testing protocol. In an attempt to minimize unwanted subtalar joint motion, subjects were immobilized using an ankle brace and tested at angular velocities of 60 degrees /s, 120 degrees /s, and 180 degrees /s at a knee flexion angle of 90 degrees . The mean peak torque measurements for internal rotation strength of the operative limb (60 degrees /s, 17.4 +/- 4.5 ft-lb; 120 degrees /s, 13.9 +/- 3.3 ft-lb; 180 degrees /s, 11.6 +/- 3.0 ft-lb) were statistically different compared to the nonoperated limb (60 degrees /s, 20.5 +/- 4.7 ft-lb; 120 degrees /s, 15.9 +/- 3.8 ft-lb; 180 degrees /s, 13.4 +/- 3.8 ft-lb) at 60 degrees /s (P = .012), 120 degrees /s (P = .036), and 180 degrees /s (P = .045). The nonoperative limb demonstrated greater strength at all speeds. The mean torque measurements for external rotation were statistically similar when compared to the nonoperated limb at all angular velocities. We have shown through our study that patients who undergo surgical intervention to repair a torn anterior cruciate ligament with the use of autogenous

  13. Effect of repeated sterilization by different methods on strength of carbon fiber rods used in external fixator systems.

    Science.gov (United States)

    Unal, Omer Kays; Poyanli, Oguz Sukru; Unal, Ulku Sur; Mutlu, Hasan Huseyin; Ozkut, Afsar Timucin; Esenkaya, Irfan

    2018-05-16

    We set out to reveal the effects of repeated sterilization, using different methods, on the carbon fiber rods of external fixator systems. We used a randomized set of forty-four unused, unsterilized, and identical carbon fiber rods (11 × 200 mm), randomly assigned to two groups: unsterilized (US) (4 rods) and sterilized (40 rods). The sterilized rods were divided into two groups, those sterilized in an autoclave (AC) and by hydrogen peroxide (HP). These were further divided into five subgroups based on the number of sterilization repetition to which the fibers were subjected (25-50-75-100-200). A bending test was conducted to measure the maximum bending force (MBF), maximum deflection (MD), flexural strength (FS), maximum bending moment (MBM) and bending rigidity (BR). We also measured the surface roughness of the rods. An increase in the number of sterilization repetition led to a decrease in MBF, MBM, FS, BR, but increased MD and surface roughness (p < 0.01). The effect of the number of sterilization repetition was more prominent in the HP group. This study revealed that the sterilization method and number of sterilization repetition influence the strength of the carbon fiber rods. Increasing the number of sterilization repetition degrades the strength and roughness of the rods.

  14. Complexation study of NpO2+ and UO22+ ions with several organic ligands in aqueous solutions of high ionic strength

    International Nuclear Information System (INIS)

    Borkowski, M.; Lis, S.; Choppin, G.R.

    1995-01-01

    The acid dissociation constants, pK a , and the stability constants for NpO 2 + and UO 2 2+ have been measured for certain organic ligands [acetate, α-hydroxyisobutyrate, lactate, ascorbate, oxalate, citrate, EDTA, 8-hydroxyquinoline, 1, 10-phenanthroline, and thenoyltrifluoroacetone] in 5 m (NaCl) ionic strength solution. The pK a values were determined by potentiometry or spectrometry. These methods, as well as solvent extraction with 233 U and 237 Np radiotracers, were used to measure the stability constants of the 1:1 and 1:2 complexes of dioxo cations. These constants were used to estimate the concentrations required to result in 10 % competition with hydrolysis in the 5 m NaCl solution. Such estimates are of value in assessing the solubility from radioactive waste of AnO 2 + and AnO 2 2+ in brine solutions in contact with nuclear waste in a salt-bed repository

  15. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohamed [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)]. E-mail: mtaha978@yahoo.com; Fazary, Ahmed E. [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)

    2005-01-01

    The second stage dissociation constant pK{sub 2} of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities ({delta}G{sup 0}, {delta}H{sup 0}, and {delta}S{sup 0}) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK{sub 2} for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed.

  16. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    International Nuclear Information System (INIS)

    Taha, Mohamed; Fazary, Ahmed E.

    2005-01-01

    The second stage dissociation constant pK 2 of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities (ΔG 0 , ΔH 0 , and ΔS 0 ) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK 2 for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed

  17. Detailed landfill leachate plume mapping using 2D and 3D Electrical Resistivity Tomography - with correlation to ionic strength measured in screens

    DEFF Research Database (Denmark)

    Maurya, P.K.; Rønde, Vinni; Fiandaca, G.

    2017-01-01

    Leaching of organic and inorganic contamination from landfills is a serious environmental problem as surface water and aquifers are affected. In order to assess these risks and investigate the migration of leachate from the landfill, 2D and large scale 3D electrical resistivity tomography were used...... at a heavily contaminated landfill in Grindsted, Denmark. The inverted 2D profiles describe both the variations along the groundwater flow as well as the plume extension across the flow directions. The 3D inversion model shows the variability in the low resistivity anomaly pattern corresponding to differences...... in the ionic strength of the landfill leachate. Chemical data from boreholes agree well with the observations indicating a leachate plume which gradually sinks and increases in size while migrating from the landfill in the groundwater flow direction. Overall results show that the resistivity method has been...

  18. Diffusion of organic colloids in compacted bentonite. The influence of ionic strength on molecular size and transport capacity of the colloids

    International Nuclear Information System (INIS)

    Wold, S.; Eriksen, Trygve E.

    2000-09-01

    Diffusion of radionuclides in compacted bentonite can be affected by inorganic and organic colloids if the radionuclides form complexes with the colloids. Formation and mobility of the colloid-radionuclide complexes will be governed by the properties of the colloids as well as the competition between complexation and sorption of the radionuclides on bentonite. This report presents the results of experiments with organic colloids humic acid (HA) and lignosulfonate (LS). The aim of the experiments has been to describe the HA and LS properties: size distribution, acidity, sorption on bentonite, diffusivity in compacted bentonite, complexation with strontium, and diffusion of strontium in bentonite in the presence of HA. This study indicates that the diffusion of cationic radionuclides like Sr 2+ is not affected by the presence of HA in high ionic strength solution. In 0.1 M NaClO 4 solution, HA is most probably not available for complexation due to coiling and shielding of the negative sites

  19. Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

    DEFF Research Database (Denmark)

    Montes, Ruth; Ahyayauch, Hasna; Ibarguren, Maitane

    2010-01-01

    Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols...... for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from...... native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes...

  20. The solubility of UO22+ in dilute sodium chloride solutions and in high-ionic strength sodium sulfate and chlorine brines

    International Nuclear Information System (INIS)

    Marquez, L.N.; Kadkhodayan, B.; Wruck, D.A.

    1995-01-01

    Uranium is a major component of high-level nuclear waste. In an oxidizing environment, UO 2 2+ would be expected to be the dominant dissolved species in solution. In addition to dilute solutions, because high-level nuclear waste may be stored in repositories containing salt, it is important to characterize the aqueous chemistry of UO 2 2+ and the solubility-controlling U(VI) solids in high-ionic strength brines as a function of pH. We have studied the solubility of UO 2 2+ by precipitation of solid phase in 0.001 molal NaCl, 5.2 molal NaCl, and saturated Na 2 SO 4 at pH values ranging from 5 to 12. The solution concentrations were measured by alpha particle liquid scintillation counting. The precipitated solids were characterized by powder x-ray diffraction, electron microscopy, infrared spectroscopy, and x-ray photoelectron spectroscopy

  1. Aggregation and ecotoxicity of CeO{sub 2} nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoecke, Karen, E-mail: karen.vanhoecke@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium); Van der Meeren, Paul [Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Smagghe, Guy [Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, B-9000 Gent (Belgium)

    2011-04-15

    The influence of pH (6.0-9.0), natural organic matter (NOM) (0-10 mg C/L) and ionic strength (IS) (1.7-40 mM) on 14 nm CeO{sub 2} NP aggregation and ecotoxicity towards the alga Pseudokirchneriella subcapitata was assessed following a central composite design. Mean NP aggregate sizes ranged between 200 and 10000 nm. Increasing pH and IS enhanced aggregation, while increasing NOM decreased mean aggregate sizes. The 48 h-E{sub r}C20s ranged between 4.7 and 395.8 mg CeO{sub 2}/L. An equation for predicting the 48 h-E{sub r}C20 (48 h-E{sub r}C20 = -1626.4 x (pH) + 109.45 x (pH){sup 2} + 116.49 x ([NOM]) - 14.317 x (pH) x ([NOM]) + 6007.2) was developed. In a validation study with natural waters the predicted 48 h-E{sub r}C20 was a factor 1.08-2.57 lower compared to the experimental values. - Research highlights: > Algal ecotoxicity of CeO{sub 2} nanoparticles (NPs) depends on pH and NOM concentration. > Increasing pH and ionic strength enhanced CeO{sub 2} nanoparticle aggregation. > Increasing NOM concentration decreased mean CeO{sub 2} aggregate size. > An empirical model to predict 48 h-E{sub r}C{sub 20} values of CeO{sub 2} NPs was developed. > The model was validated using natural surface waters with various characteristics. - CeO{sub 2} nanoparticle aggregation and toxicity depend on abiotic factors such as pH, NOM and IS. Effect concentrations can be predicted as a function of pH and NOM.

  2. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    International Nuclear Information System (INIS)

    Chow, Edith; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech

    2009-01-01

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution

  3. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edith [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)], E-mail: Edith.Chow@csiro.au; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)

    2009-01-19

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution.

  4. Zn2+ and Sr2+ Adsorption at the TiO2 (110)-Electrolyte Interface: Influence of Ionic Strength, Coverage, and Anions

    International Nuclear Information System (INIS)

    Zhang, Z.; Fenter, P.; Cheng, L.; Sturchio, N.; Bedzyk, M.; Machesky, M.; Anovitz, L.; Wesolowski, D.

    2006-01-01

    The X-ray standing wave technique was used to probe the sensitivity of Zn 2+ and Sr 2+ ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile (α-TiO 2 ) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn 2+ and Sr 2+ reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with - , coupled with the insensitivity of Zn 2+ and Sr 2+ cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn 2+ and Sr 2+ show a maximum Stern-layer coverage of ∼0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters

  5. Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature.

    Science.gov (United States)

    Yang, Shitong; Li, Jiaxing; Lu, Yi; Chen, Yixue; Wang, Xiangke

    2009-09-01

    Bentonite has been widely studied in nuclear waste management because of its special physicochemical properties. In this work, the sorption of Ni(II) from aqueous solution onto GMZ bentonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and temperature was investigated under ambient conditions. The results indicated that the pseudo-second-order rate equation simulated the kinetic sorption process well. The sorption of Ni(II) on GMZ bentonite was strongly dependent on pH and on ionic strength. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on GMZ bentonite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. A positive effect of HA on Ni(II) sorption was found at pH8. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Ni(II) at three different temperatures: 303.15, 318.15 and 333.15K. The thermodynamic parameters (DeltaH(0), DeltaS(0) and DeltaG(0)) of Ni(II) sorption on GMZ bentonite at the three different temperatures were calculated from the temperature-dependent sorption isotherms. The results indicated that the sorption process of Ni(II) on GMZ bentonite was endothermic and spontaneous. Experimental results indicate that GMZ bentonite is a suitable sorbent for pre-concentration and solidification of Ni(II) from large volume solutions.

  6. Sorption of Ni(II) on GMZ bentonite: Effects of pH, ionic strength, foreign ions, humic acid and temperature

    International Nuclear Information System (INIS)

    Yang Shitong; Li Jiaxing; Lu Yi; Chen Yixue; Wang Xiangke

    2009-01-01

    Bentonite has been widely studied in nuclear waste management because of its special physicochemical properties. In this work, the sorption of Ni(II) from aqueous solution onto GMZ bentonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and temperature was investigated under ambient conditions. The results indicated that the pseudo-second-order rate equation simulated the kinetic sorption process well. The sorption of Ni(II) on GMZ bentonite was strongly dependent on pH and on ionic strength. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation and ion exchange with Na + /H + on GMZ bentonite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. A positive effect of HA on Ni(II) sorption was found at pH 8. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Ni(II) at three different temperatures: 303.15, 318.15 and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) of Ni(II) sorption on GMZ bentonite at the three different temperatures were calculated from the temperature-dependent sorption isotherms. The results indicated that the sorption process of Ni(II) on GMZ bentonite was endothermic and spontaneous. Experimental results indicate that GMZ bentonite is a suitable sorbent for pre-concentration and solidification of Ni(II) from large volume solutions.

  7. Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique

    Directory of Open Access Journals (Sweden)

    Gislene Mari Fujiwara

    2013-09-01

    Full Text Available Stigmasterol - a plant sterol with several pharmacological activities - is susceptible to oxidation when exposed to air, a process enhanced by heat and humidity. In this context, microencapsulation is a way of preventing oxidation, allowing stigmasterol to be incorporated into various pharmaceutical forms while increasing its absorption. Microparticles were obtained using a blend of polymers of sodium alginate, starch and chitosan as the coating material through a one-stage process using the external gelation technique. Resultant microparticles were spherical, averaging 1.4 mm in size. Encapsulation efficiency was 90.42% and method yield 94.87%. The amount of stigmasterol in the oil recovered from microparticles was 9.97 mg/g. This technique proved feasible for the microencapsulation of stigmasterol.

  8. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE

    International Nuclear Information System (INIS)

    Philippini, V.; Aupiais, J.; Moulin, Ch.; Vercouter, Th.

    2009-01-01

    Ca 2+ complexation by both sulfate and selenate ligands was studied by CE. The species were observed to give a unique retention peak as a result of a fast equilibrium between the free ions and the complexes. The change in the corresponding retention time was interpreted with respect to the equilibrium constant of the complexation reaction. The results confirmed the formation of CaSO 4 (aq) and CaSeO 4 (aq) under our experimental conditions. The formation data were derived from the series of measurements carried out at about 15, 25, 35, 45 and 55 degrees C in 0.1 mol/L NaNO 3 ionic strength solutions, and in 0.5 and 1.0 mol/L NaNO 3 ionic strength solutions at 25 degrees C. Using a constant enthalpy of reaction enabled to fit all the experimental data in a 0.1 mol/L medium, leading to the thermodynamic parameters: Δ r G 0.1M (25 degrees C) = -(7.59±0.23) kJ/mol, Δ r H 0.1M = 5.57±0.80 kJ/mol, and Δ r S 0.1M (25 degrees C) = 44.0±3.0 J mol -1 K -1 for CaSO 4 (aq) and Δ r G 0.1M )(25 degrees C) = - (6.66±0.23) kJ/mol, Δ r H 0.1M = 6.45±0.73 kJ/mol, and Δ r S 0.1M (25 degrees C) = 44.0±3.0 J mol -1 K -1 for CaSeO 4 (aq). Both formation reactions were found to be endothermic and entropy driven. CaSO 4 (aq) appears to be more stable than CaSe O 4(aq) by 0.93 kJ/mol under these experimental conditions, which correlates with the difference of acidity of the anions as expected for interactions between hard acids and hard bases according to the hard and soft acids and bases theory. The effect of the ionic medium on the formation constants was successfully treated using the Specific ion Interaction Theory, leading to significantly different binary coefficients ε Na + ,SO 4 2- (0.15±0.06) mol/kg -1 and ε Na + ,SeO 4 2- -(0.26±0.10)mol/kg -1 . (authors)

  9. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    Science.gov (United States)

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p strength was significantly higher during condition 3 than during condition 1 (p isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Liquid-solid phase transition of physical hydrogels subject to an externally applied electro-chemo-mechanical coupled field with mobile ionic species.

    Science.gov (United States)

    Wu, Tao; Li, Hua

    2017-08-09

    In this study, a model was multiphysically developed for the simulation of the phase transition of physical hydrogels between liquid solution and solid gel states, subject to an electro-chemo-mechanically coupled field, with the effect of the mobile ionic species in the solution. The present model consists of the governing equations for the equilibrium of forces and the conservation of mass, Maxwell's equations, and an evolution equation for the interface. Based on the second law of thermodynamics, the constitutive equations are formulated from the energy viewpoint, including a novel formulation of free energy with the effect of crosslink density. The present model may be reduced to Suo's non-equilibrium thermodynamic theory if the interface is ignored when only a single phase exists. It may also be reduced to Dolbow's model for gel-gel phase transition when the electric field is ignored. Therefore, the present model becomes more generalized since it is able to represent both the bulk phase and the interface behaviors, and the mechanical field is simultaneously coupled with both the electric and chemical fields. In the first case study, the system at equilibrium state was numerically investigated for analysis of the influences of the electrical and chemical potentials as well as the mechanical pressure externally imposed on the boundary of the system domain. The second case study presents a spherically symmetrical solution-gel phase transition at non-equilibrium states, with the emphasis on the evolution of both the interface and electrochemical potentials.

  11. The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants.

    Science.gov (United States)

    Kuttiyawong, K; Nakapong, S; Pichyangkura, R

    2008-11-03

    Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.

  12. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    The influence of external stimuli such as pH, temperature, and ionic strength of the swelling media on equilibrium swelling properties has been observed. Hydrogels showed a typical pH and temperature responsive behaviour such as low pH and high temperature has maximum swelling while high pH and low temperature ...

  13. Increased external hip-rotation strength relates to reduced frontal-plane knee control during drop jumping in recreational female athletes: paradox or adaptation?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Thorborg, Kristian; Andersson, Elin

    2011-01-01

    The purpose of the present study was to examine the relationship between hip muscle strength (abduction and external rotation) and frontal-plane knee control during drop jumping in recreational female athletes. Thirty-three healthy young recreational female athletes were included. Maximal isometric...

  14. Determination of UV filters in high ionic strength sample solutions using matrix-compatible coatings for solid-phase microextraction.

    Science.gov (United States)

    An, Jiwoo; Anderson, Jared L

    2018-05-15

    A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2

  15. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  16. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  17. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  18. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    International Nuclear Information System (INIS)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    1990-01-01

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove

  19. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    Science.gov (United States)

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sorption properties of Th(IV) on the raw diatomite-Effects of contact time, pH, ionic strength and temperature

    International Nuclear Information System (INIS)

    Sheng Guodong; Hu Jun; Wang Xiangke

    2008-01-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH 3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO 4 - , NO 3 - and Cl - ) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (ΔH 0 , ΔS 0 , ΔG 0 ) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic

  1. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    Science.gov (United States)

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  2. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.

    Science.gov (United States)

    Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N

    2014-06-01

    In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron

  3. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO{sub 2} coated on non woven paper with SiO{sub 2} as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Aguedach, Abdelkahhar [Laboratoire de l' Eau et environnement, Universite Chouaib Doukkali, Faculte des Sciences, BP.20, El Jadida, Maroc (Morocco); Brosillon, Stephan [Laboratoire Science Chimiques de Rennes UMR 6226, Equipe Chimie et Ingenierie des Procedes, Ecole Nationale Superieure de Chimie, Universite Rennes 1, avenue du General Leclerc, 35700 Rennes (France)], E-mail: Stephan.Brosillon@ensc-rennes.fr; Morvan, Jean [Laboratoire Science Chimiques de Rennes UMR 6226, Equipe Chimie et Ingenierie des Procedes, Ecole Nationale Superieure de Chimie, Universite Rennes 1, avenue du General Leclerc, 35700 Rennes (France); Lhadi, El Kbir [Laboratoire de l' Eau et environnement, Universite Chouaib Doukkali, Faculte des Sciences, BP.20, El Jadida, Maroc (Morocco)

    2008-01-31

    Reactive black 5 (RB5), an azo dye, was degraded by using UV-irradiated TiO{sub 2} coated on non woven paper with SiO{sub 2} as a binder. The adsorption capacity of the photocatalyst was studied at natural pH, superior to pH{sub pzc} of the binder, for various ionic strengths. Different salts such as NaCl, KCl, CaCl{sub 2}, LiCl, Ca(NO{sub 3}){sub 2} were used to increase the ionic strength. The presence of salt increased the adsorption capacity. The electrostatic interactions between dye and oxide surface charges (TiO{sub 2}/SiO{sub 2}) is very important in the adsorption phenomena. The effect of the ionic strength of the solution on photocatalyst degradation was studied. The rate of degradation was increased by the presence of salts in the range of the experimental conditions. The increase of the initial decolorization rate was observed in the following order: Ca{sup 2+} > K{sup +} > Na{sup +} > Li{sup +}. Experiments with different anions (Cl{sup -}, NO{sub 3}{sup -}) had shown that nitrate was an indifferent electrolyte for the adsorption and photodegradation of the dye on SiO{sub 2}/TiO{sub 2}.

  4. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder

    International Nuclear Information System (INIS)

    Aguedach, Abdelkahhar; Brosillon, Stephan; Morvan, Jean; Lhadi, El Kbir

    2008-01-01

    Reactive black 5 (RB5), an azo dye, was degraded by using UV-irradiated TiO 2 coated on non woven paper with SiO 2 as a binder. The adsorption capacity of the photocatalyst was studied at natural pH, superior to pH pzc of the binder, for various ionic strengths. Different salts such as NaCl, KCl, CaCl 2 , LiCl, Ca(NO 3 ) 2 were used to increase the ionic strength. The presence of salt increased the adsorption capacity. The electrostatic interactions between dye and oxide surface charges (TiO 2 /SiO 2 ) is very important in the adsorption phenomena. The effect of the ionic strength of the solution on photocatalyst degradation was studied. The rate of degradation was increased by the presence of salts in the range of the experimental conditions. The increase of the initial decolorization rate was observed in the following order: Ca 2+ > K + > Na + > Li + . Experiments with different anions (Cl - , NO 3 - ) had shown that nitrate was an indifferent electrolyte for the adsorption and photodegradation of the dye on SiO 2 /TiO 2

  5. The effect of ionic strength on the adsorption of H{sup +}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+} by Bacillus subtilis and Bacillus licheniformis: A surface complexation model

    Energy Technology Data Exchange (ETDEWEB)

    Daughney, C.J. [McGill Univ., Montreal, Quebec (Canada). Earth and Planetary Sciences; Fein, J.B. [Univ. of Notre Dame, IN (United States)

    1998-02-01

    To quantify metal adsorption onto bacterial surfaces, recent studies have applied surface complexation theory to model the specific chemical and electrostatic interactions occurring at the solution-cell wall interface. However, to date, the effect of ionic strength on these interactions has not been investigated. In this study, the authors perform acid-base titrations of suspensions containing Bacillus subtilis or Bacillus licheniformis in 0.01 or 0.1 M NaNO{sub 3}, and they evaluate the constant capacitance and basic Stern double-layer models for their ability to describe ionic-strength-dependent behavior. The constant capacitance model provides the best description of the experimental data. The constant capacitance model parameters vary between independently grown bacterial cultures, possibly due to cell wall variation arising from genetic exchange during reproduction. The authors perform metal-B. subtilis and metal-B. licheniformis adsorption experiments using Cd, Pb, and Cu, and they solve for stability constants describing metal adsorption onto distinct functional groups on the bacterial cell walls. They find that these stability constants vary substantially but systematically between the two bacterial species at the two different ionic strengths.

  6. Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions.

    Science.gov (United States)

    Shankar, Vaibhavi; Heo, Jiyong; Al-Hamadani, Yasir A J; Park, Chang Min; Chu, Kyoung Hoon; Yoon, Yeomin

    2017-07-15

    The performance of an ultrafiltration (UF)-biochar process was evaluated in comparison with a UF membrane process for the removal of humic acid (HA). Bench-scale UF experiments were conducted to study the rejection and flux trends under various hydrodynamic, pH, ionic strength, and pressure conditions. The resistance-in-series model was used to evaluate the processes and it showed that unlike stirred conditions, where low fouling resistance was observed (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ), higher values and comparable trends were obtained for UF-biochar and UF alone for unstirred conditions (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ). Thus, the processes were further evaluated under unstirred conditions. Additionally, total fouling resistance was decreased in the presence of biochar by 6%, indicating that HA adsorption by biochar could diminish adsorption fouling on the UF membrane and thus improve the efficiency of the UF-biochar process. The rejection trends of UF-biochar and UF alone were similar in most cases, whereas UF-biochar showed a noticeable increase in flux of around 18-25% under various experimental conditions due to reduced membrane fouling. Three-cycle filtration tests further demonstrated that UF-biochar showed better membrane recovery and antifouling capability by showing more HA rejection (3-5%) than UF membrane alone with each subsequent cycle of filtration. As a result of these findings, the UF-biochar process may potentially prove be a viable treatment option for the removal of HA from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, G.D.; Wang, X.K. [School of Nuclear Science and Engincering, North China Electric Power Univ., BJ (China); Key Lab of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Shao, D.D.; Fan, Q.H.; Xu, D. [Key Lab of Novel Thin Film Solar Cells, Inst. of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chen, Y.X. [School of Nuclear Science and Engincering, North China Electric Power Univ., BJ (China)

    2009-07-01

    Sorption of radionuclides on MX-80 bentonite has been studied extensively because of its high sorption capacity and low penetrability. Herein, MX-80 bentonite was characterized by acid-base titration, XRD and FTIR in detail. The sorption of Eu(III) from aqueous solution to MX-80 bentonite was investigated as a function of contact time, solid content, ionic strength and pH under N{sub 2} conditions. The experimental data was performed with the diffuse layer model (DLM) with the aid of FITEQL 3.1 code. The site densities are 2.52 x 10{sup -4} mol/g for [{identical_to}XOH] and 1.54 x 10{sup -4} mol/g for [{identical_to}YOH], and acidity constants as pK{sub a} are pK{sub XO} = 6.772, pK{sub YOH{sub 2}{sup +}} = -1.68. and pK{sub YO} = 4.145. The sorption of Eu(III) on MX-80 bentonite consists of {identical_to}YOEu{sup 2+} species at low pH values and {identical_to}XOEu(OH){sup 2+} species at high pH values. The sorption isotherms were simulated by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, respectively, and the results indicated that Langmuir model fitted the sorption data better than the Langmuir and D-R models. XAFS technique was applied to characterize the local structural environment of the adsorbed Eu(III), and the results indicated that Eu(III) was bond to O atoms at a distance of about 2.43 A as {identical_to}Y/XO-Eu{sup 2+} at low pH values. (orig.)

  8. Transport and retention of 14C-perfluorooctanoic acid (PFOA) in saturated limestone and sand porous media: Effects of input concentration, ionic strength and cation type

    Science.gov (United States)

    Xueyan, L.; Gao, B.; Sun, Y.; Wu, J.

    2017-12-01

    Perfluorooctanoic acid (PFOA) has been used in a wide variety of industrial and consumer product applications. PFOA has been detected around the world at ng/L to μg/L levels in groundwater, and at ng/g levels in soil.The physicochemical properties of porous media were proven to play pivotal roles in determining the transport behavior of various pollutants. It is anticipated that physicochemical properties of porous media will strongly influence the transport behavior of PFOA. In addition, previous investigations have revealed that input concentration significantly influence the transport behavior of nanoparticles and antibiotics. Thus, this study was designed experimentally and fundamentally to gain insight into transport and retention of PFOA in various porous medias at different input concentrations, solution IS and cation type. Unlike in quartz sand porous media, the BTCs in limestone porous media exhibited increasing retention rate and high degree of tailing in limestone porous media. Results showed that higher relative retention occurred in limestone porous media than in quartz sand porous media under the same solution chemistry. This result was attributed to the less negative zeta-potentials, rougher surface and larger specific surface area, and the presence of hydroxyl groups and organic matters of limestone grains. Higher ionic strength and Ca2+ had little impact on the mobility of PFOA in quartz sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. The difference is likely due to the compression of the electrical double layer, and the surface-charge neutralization and cation-bridging effect of Ca2+. Higher input concentration resulted in lower relative PFOA retention in limestone porous media, but the influence were insignificant in quartz sand porous media. This effect is likely because attachment sites in limestone responced to the variety of input concentration differently than quartz.

  9. Antibodies to co-trimoxazole (trimethoprim and/or sulfamethoxazole) related to the presence of the drug in a commercial low-ionic-strength solution.

    Science.gov (United States)

    Pham, Bach-Nga; Gien, Dominique; Bensaad, Farid; Babinet, Jérome; Dubeaux, Isabelle; Rouger, Philippe; Le Pennec, Pierre-Yves

    2012-04-01

    Drug-dependent antibodies have been associated with approximately 10% of acquired immune hemolytic anemia cases. These antibodies are a rare cause of interference in pretransfusion red blood cell (RBC) serologic testing. The aim of this work was to report three cases of subjects developing antibodies against co-trimoxazole, a combination of trimethoprim (TMP) and sulfamethoxazole (SMX). Blood samples of donor/patients were referred to our laboratory for the exploration of a positive antibody detection test. There was no recent history of drug taking. Antibody identification was performed by gel test using an indirect antiglobulin test, with reagent RBCs in low-ionic-strength solutions (LISS) containing co-trimoxazole or not. All three sera showed positive reactions when RBCs were resuspended in LISS containing co-trimoxazole, but negative reactions when RBCs were resuspended in LISS without antibiotic. We detected antibodies against co-trimoxazole showing three different antibody patterns: anti-TMP plus anti-SMX, anti-TMP alone, or anti-SMX alone. Anti-TMP showed an apparent anti-Ku specificity in the two cases where it was present. Anti-SMX showed an apparent anti-H specificity in one of the two cases described. The drug-dependent antibodies were not associated with acquired hemolytic anemia or other pathologies. Antibodies against co-trimoxazole may only be detected when using a diluent for reagent RBCs containing the drug in question. Antibody pattern (anti-TMP and/or anti-SMX) may vary according to individuals' immune response. Drug-dependent antibodies may react as antibodies against a high-prevalence antigen, supporting the hypothesis of antibodies to drug and membrane components. Drug-dependent antibodies such as anti-co-trimoxazole may be a serologic finding without clinical features. © 2011 American Association of Blood Banks.

  10. Experimental Determination of Lead Interactions with Citrate and EDTA in NaCl and MgCl2 Solutions to High Ionic Strength and Its Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yongliang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Kirkes, Leslie Dawn [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Westfall, Terry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Marrs, Cassandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Knox, Jandi [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Burton, Heather Lynn [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group

    2017-09-01

    For this study, the interactions of lead with citrate and ethylenediaminetetraacetate (EDTA) are investigated based on solubility measurements as a function of ionic strength at room temperature (22.5 ± 0.5°C) in NaCl and MgCl2 solutions. The formation constants (log β10 ) for Pb[C3H5O(COO)3]– (abbreviated as PbCitrate) and Pb[(CH2COO)2N(CH2)2N(CH2COO)2)]2– (abbreviated as PbEDTA2–) Pb2+ + [C3H5O(COO)3]3– = Pb[C3H5O(COO)3] (1) Pb2+ + (CH2COO)2N(CH2)2N(CH2COO)2)4- = Pb[(CH2COO)2N(CH2)2N(CH2COO)2)]2– (2) are evaluated as 7.28 ± 0.18 (2σ) and 20.00 ± 0.20 (2σ), respectively, with a set of Pitzer parameters describing the specific interactions in NaCl and MgCl2 media. Based on these parameters, the interactions of lead with citrate and EDTA in various low temperature environments can be accurately modelled.

  11. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors

    International Nuclear Information System (INIS)

    Boudouresque, B.; Courcon, P.; Lestiboubois, G.

    1964-01-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm 2 gas pressure, should remain in contact with the fuel. (authors) [fr

  12. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  13. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    Science.gov (United States)

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p internal connection had higher bending moments than zirconia abutments with external connection (T2) (p internal connected zirconia

  14. Theoretical modeling of cationic surfactant aggregation at the silica/aqueous solution interface: Effects of pH and ionic strength

    NARCIS (Netherlands)

    Drach, M.; Andrzejewska, A.; Narkiewicz-Michalek, J.; Rudzinski, W.; Koopal, L.K.

    2002-01-01

    A theory of ionic surfactant aggregation on oppositely charged surfaces is presented. In the proposed model the adsorbed phase is considered as a mixture of singly dispersed surfactant molecules, monolayered and bilayered aggregates of various sizes and the ions of simple electrolyte added to the

  15. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    Science.gov (United States)

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  16. Biodegradation of high strength phenolic wastewater in a modified external loop inversed fluidized bed airlift bioreactor (EIFBAB)

    Energy Technology Data Exchange (ETDEWEB)

    Aye, T. T.; Loh, K-C. [National University of Singapore, Dept. of Chemical and Environmental Engineering, (Singapore)

    2003-12-01

    Phenol degradation at high concentrations was investigated in both batch and continuous mode, using a modified external loop inversed fluidized bed airlift bioreactor (EIFBAB). It was found that the modified EIFBAB, when operated at five litres/hour was capable of degrading 3,000 mg/L phenol. Under continuous operation the bioreactor was capable of degrading up to 5,000 mg/L phenol, with gradual acclimatization of the biofilm on the expanded polystyrene beads. Response of the system under shock loading was also evaluated. Results showed that the system was able to absorb the shock well up to 5,000 mg/L phenol. Although phenol breakthrough was evident in the effluent beyond 4,500 mg/L., the increase in effluent phenol concentration was gradual, and the effluent concentration did not increase beyond 1,000 mg/L phenol. 6 refs., 3 tabs., 3 figs.

  17. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  18. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  19. Flashphotolysis investigations of the influence of the ionic strength on the kinetics of energy transfer reactions. Investigation of the reaction of Tb(III)- and Eu(III)-trisdipicolinate with different charged iron compounds

    International Nuclear Information System (INIS)

    Dorle, A.

    1999-01-01

    Luminescent lanthanide complexes are especially important as labels for the investigation of biological substances. The rare earths are employed as probes and are often able to substitute more expensive radioactive labels. The kinetic investigations of the reactions of Tb(III)- and Eu(III)-trisdipicolinate (charge: 3**-) with different charged iron complexes as quenchers (charge: 3 - , 1 - , 2 + ) (solvent: H 2 O) at varying ionic strength give results that can help to find out more details about how the intermolecular energy transfer takes place. By creating a Stern-Volmer plot one can get the rate constant of the luminescent quenching: Plotting the rate constants of quenching taken from the timeresolved flashphotolysis measurement (y-axis) versus the concentration of the quencher (x-axis) the resulting slope equals a rate constant k 2 of 2 nd order. (author)

  20. [Relationship between the ionic composition of blood and urine and the salinity of the external environment of the crab Hemigrapsus sanguineus].

    Science.gov (United States)

    Busev, V M; Semen'kov, P G; Mishchenko, T Ia

    1977-01-01

    Studies have been made on the dependence of sodium, potassium, magnesium and calcium concentrations of the blood and urine on the salinity of the external milieu in the crab H. sanguineus. Effective regulation of sodium and potasssium balance at low salinities was found. Within the salinity range investigated, magnesium level in the blood is maintained at lower level as compared to that in the environment. At low salinities, regulation of potassium and sodium concentrations in the blood is monitored by extrarenal mechanisms. Uber high salinity conditions, regulation of magnesium and potassium concentrations in the blood is accomplished at the expense of the activity of antennal glands. Calcium concentration in the blood is regulated by extra-renal mechanisms. The antennal glands affect regulation of calcium balance.

  1. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  2. Ionic thermometers

    International Nuclear Information System (INIS)

    Strnad, M.

    1975-01-01

    An original method of temperature measurement based on conductivity changes near the phase transition point of ionic compounds and suitable for the range from 200 to 700 0 C according to the thermometric compound used, is given. By choosing between two approaches it is posible to evaluate either a discrete value of temperature or continuous measurement in a range to about 50 0 C below the phase transition point of thermometric compounds. The extreme nonlinearity of conductivity of the chosen group of ionic crystals used as well as the technical applications developed in the laboratories have not previously been published. The aim of the research is the application of this measuring method for temperature indication in nuclear reactors. Preliminary tests in radiation fields in an experimental reactor are yielding a real hope in this direction. (author)

  3. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  4. Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth

    International Nuclear Information System (INIS)

    Dong Wenming; Wang Xiangke; Bian Xiaoyan; Wang Aixia; Du Jingzhou; Tao, Z.Y.

    2001-01-01

    The sorption and desorption of Eu(III) as a representative of trivalent lanthanides and actinides on bentonite, alumina, red earth and red earth treated to remove free iron oxides were comparatively investigated by using batch technique and radiotracer 152+154 Eu. The effects of pH, ionic strength, fulvic acid, iron oxides in red earth and the sorption mechanism were also discussed. As compared to alumina and red earth, Eu(III) presents a considerable distribution coefficient (K d ) onto bentonite. It was found that the pH and the presence of clay minerals are the main factors dominating the sorption/desorption characteristic of Eu 3+ in the soil, and that a sorption-desorption hysteresis on bentonite and red earth actually occurs. Furthermore, the main sorption mechanism of lanthanides onto bentonite, alumina and red earth is the formation of bridged hydroxo complexes with the surface, and there are negative effects of fulvic acid and free iron oxides in red earth on the sorption of Eu(III). The results of this paper indicate that the additivity rule on the sorption characteristic of a soil from the individual component's characteristics is not general

  5. Hip- and knee-strength assessments using a hand-held dynamometer with external belt-fixation are inter-tester reliable

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Bandholm, Thomas; Hölmich, Per

    2013-01-01

    PURPOSE: In football, ice-hockey, and track and field, injuries have been predicted, and hip- and knee-strength deficits quantified using hand-held dynamometry (HHD). However, systematic bias exists when testers of different sex and strength perform the measurements. Belt-fixation of the dynamome...

  6. Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Equilibrium measurements at physiological pH using matrix-bound proteins: the effects of ionic strength, deoxygenation and of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Chétrite, G; Cassoly, R

    1985-10-05

    The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.

  7. HIGH IONIC STRENGTH OR PRESENCE OF INOSITOL ...

    African Journals Online (AJOL)

    Preferred Customer

    CysG11(104)α is at the α1β1 subunit interface in both the T and R quaternary structures. It is therefore ... The static titration of guinea pig haemoglobin with DTNB has shown that the haemoglobin ..... Okonjo, K.O.; Okia, T.O. J. Protein Chem.

  8. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    Science.gov (United States)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  9. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  10. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  11. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  12. Regional Externalities

    NARCIS (Netherlands)

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  13. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    Science.gov (United States)

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  14. Interfacial Structure and Double Layer Capacitance of Ionic Liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai

    2018-01-01

    Ionic liquids are organic salts that are in liquid phase at room temperature. Their wide liquidus range, particularly at room temperature, results from the liquids’ large and asymmetric molecular geometry. This leads to a collection of unique properties, such as, high ionic strength, extremely low

  15. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  16. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  17. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Directory of Open Access Journals (Sweden)

    Camargo E.F.M.

    2002-01-01

    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  18. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  19. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  20. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  1. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid.

    Science.gov (United States)

    Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh

    2013-10-15

    Guar gum is a galactomannan extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba. It was found to form a soft viscoelastic gel in 1-butyl-3-methylimidazolium chloride, an ionic liquid at an optimized concentration of 10%w/v. A nanocomposite gel of the gum with enhanced strength could be prepared with 0.2%w/v of multiwalled carbon nanotubes (MWCNTs) in the ionic liquid. When the gels thus prepared were subjected to surface fractures or bisected completely, they found to self-heal at room temperature without any external interventions. The self-healing process could be repeated several times. These viscoelastic gel systems showed thixotropic nature and recovery of the storage modulus with time for several cycles was observed upon rheological investigations. The interaction took place between ionic liquid, guar gum and MWCNT was studied by SEM, TEM, FT-IR, powder XRD and rheometry. The results suggested that, upon standing at room temperature development of electrostatic interactions and the van der Waals interactions among the ionic liquid molecules facilitated the formation of reversible noncovalent bonds and eventually activated the self-healing in the gel systems through appropriate chain entanglements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Density Profiles, Energy, and Oscillation Strength of a Quantum Dot in Two Dimensions with a Harmonic Oscillator External Potential using an Orbital-free Energy Functional Based on Thomas–Fermi Theory

    Directory of Open Access Journals (Sweden)

    Suhufa Alfarisa

    2016-03-01

    Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.

  3. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  4. Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment

    DEFF Research Database (Denmark)

    Reisner, Walter; Beech, J. P.; Larsen, Niels Bent

    2007-01-01

    100×100 nm in dimension. Surprisingly, we find that the variation of the persistence length alone with ionic strength is not enough to explain our results. The effect is due mainly to increasing self-avoidance created by the reduced screening of electrostatic interactions at low ionic strength......We show that the ionic environment plays a critical role in determining the configurational properties of DNA confined in silica nanochannels. The extension of DNA in the nanochannels increases as the ionic strength is reduced, almost tripling over two decades in ionic strength for channels around....... To quantify the increase in self-avoidance, we introduce a new parameter into the de Gennes theory: an effective DNA width that gives the increase in the excluded volume due to electrostatic repulsion....

  5. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  6. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  7. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  8. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  9. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  10. Redox potentials of PuO{sub 2}{sup 2+}/PuO{sub 2}{sup +} and Pu{sup 4+}/Pu{sup 3+} at different ionic strengths and temperatures; entropy and heat capacity; Potentiels Redox des couples PuO{sub 2}{sup 2+}/PuO{sub 2}{sup +} et Pu{sup 4+}/Pu{sup 3+} a force ionique et temperature variables. Entropie et capacite calorifique

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, H.; Vitorge, P.

    1994-05-01

    The reversible redox potentials of the Plutonium couples are measured by using cyclic voltammetry, in perchloric media at ionic strength, I from 0,5 M to 3M, and temperature, T, from 5 deg C to 65 deg C. At each T, experimental results, E(T,I), are extrapolated to I = O by applying the Specific Interaction Theory (S.I.T.) to get interaction coefficients, {Delta} is element of (T), and E(T,O) (e.g. standard potentials when T = 25 deg C). At T = 25 deg C the numerical values of the potentials of all the Pu couples are nearly the same. It is then not easy to detect a systematic error due to disproportionation or redox impurity. This can explain some discrepancy on numerical values already published. We finally propose ``recommended values`` of the reversible redox potentials. As a first approximation, the variations of these potentials seem to be quite linear versus temperature: entropy variation versus T is small. But taking into account heat capacity that is involved in the E(T,I) second order derivative, usually improves the fitting. A second order expansion of {epsilon}(T) and of the Debye Huckel term, D(T) are used to propose equations that account for simultaneous ionic strength and temperature influences on G, S, Cp, H, and lg K. These equations, in particular those modelling the ionic strength influence on {Delta}S, {Delta}Cp, and {Delta}H are first checked for published mean activity coefficients of HCI and NaCI. Small discrepancy between the numerical values of entropy changes of actinides redox couples, deduced from electrochemical and calorimetric techniques are discussed. (authors). 27 refs., 6 tabs., 10 figs.

  11. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  12. Lewis Acidic Ionic Liquids.

    Science.gov (United States)

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  13. Debye length dependence of the anomalous dynamics of ionic double layers in a parallel plate capacitor

    NARCIS (Netherlands)

    Kortschot, R. J.; Philipse, A. P.; Erné, B. H.

    2014-01-01

    The electrical impedance spectrum of simple ionic solutions is measured in a parallel plate capacitor at small applied ac voltage. The influence of the ionic strength is investigated using several electrolytes at different concentrations in solvents of different dielectric constants. The electric

  14. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  15. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  16. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Vovusha, Hakkim; Schwingenschlö gl, Udo; Nunes, Suzana Pereira

    2017-01-01

    and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained

  17. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  18. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  19. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert; Herrera, Rafael; Archer, Lynden A.; Giannelis, Emmanuel P.

    2008-01-01

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  20. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  1. Ionic liquid marbles.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  2. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  3. POSS Ionic Liquid.

    Science.gov (United States)

    Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki

    2010-12-22

    We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.

  4. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  5. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  6. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  7. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  8. Studies of bio-mimetic medium of ionic and non-ionic micelles by a simple charge transfer fluorescence probe N,N-dimethylaminonapthyl-(acrylo)-nitrile

    Science.gov (United States)

    Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.

    2011-05-01

    In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.

  9. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  10. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  11. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  12. Ionic Strength Dependent Kinetics of Nanocolloidal Gold Deposition

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane, is investigated in situ using single wavelength reflectometry. A well-defined flow of colloids toward the surface is realized

  13. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  14. Crystal growth under external electric fields

    International Nuclear Information System (INIS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-01-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal

  15. Crystal growth under external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  16. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    Science.gov (United States)

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  17. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  18. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  19. Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2018-05-25

    Lead halide perovskites are mixed electronic/ionic semiconductors that have recently revolutionized the photovoltaics field. The physical characterization of the ionic conductivity has been rather elusive due to the highly intermixing of ionic and electronic current. In this work the synthesis of low defect density monocrystalline MAPbBr3 (MA=Methyl ammonium) solar cells free of hole transport layer (HTL) suppresses the effect of electronic current. Impedance spectroscopy reveals the characteristic signature of ionic diffusion (the Warburg element and transmission line equivalent circuit) and ion accumulation at the MAPbBr3/Au interface. Diffusion coefficients are calculated based on a good correlation between thickness of MAPbBr3 and characteristic diffusion transition frequency. In addition, reactive external interfaces are studied by comparison of polycrystalline MAPbBr3 devices prepared either with or without a HTL. The low frequency response in IS measurements is correlated with the chemical reactivity of moving ions with the external interfaces and diffusion into the HTL.

  20. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness.

    Science.gov (United States)

    David, Alessio; Fajardo, Oscar Y; Kornyshev, Alexei A; Urbakh, Michael; Bresme, Fernando

    2017-07-01

    The properties of ionic liquids can be modified by applying an external electrostatic potential, providing a route to control their performance in nanolubrication applications. Most computational studies to date have focused on the investigation of smooth surfaces. Real surfaces are generally inhomogeneous and feature roughness of different length scales. We report here a study of the possible effects that surface roughness may have on electrotunable lubricity with ionic liquids, performed here by means of non-equilibrium molecular dynamics simulations. In order to advance our understanding of the interplay of friction and substrate structure we investigate coarse grained models of ionic liquids confined in model surfaces with nanometer roughness. The friction is shown to depend on the roughness of the substrate and the direction of shear. For the investigated systems, the friction coefficient is found to increase with roughness. These results are in contrast with previous studies, where roughness induced reduction of friction was reported, and they highlight the strong sensitivity of the friction process to the structure of the surfaces. The friction force features a maximum at a specific surface charge density. This behaviour is reminiscent of the one reported in ionic liquids confined by flat surfaces, showing the generality of this physical effect in confined ionic liquids. We find that an increase of the substrate-liquid dispersion interactions shifts the maximum to lower surface charges. This effect opens a route to control electrotunable friction phenomena by tuning both the electrostatic potential and the composition of the confining surfaces.

  1. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  2. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  3. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  4. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  5. Strengths, Weaknesses, Opportunities and Threats

    NARCIS (Netherlands)

    Bull, J.W.; Jobstvogt, N.; Böhnke-Henrichs, A.; Mascarenhas, A.; Sitas, N.; Baulcomb, C.; Lambini, C.K.; Rawlins, M.; Baral, H.; Zähringer, J.; Carter-Silk, E.; Balzan, M.V.; Kenter, J.O.; Häyhä, T.; Petz, K.; Koss, R.

    2016-01-01

    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an

  6. Strengths, weaknesses, opportunities and threats

    DEFF Research Database (Denmark)

    Bull, Joseph William; Jobstvogt, N.; Böhnke-Henrichs, A.

    2016-01-01

    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assess...

  7. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  8. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene

    2018-03-01

    In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  10. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  11. Lattice dynamics of ionic crystals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1990-01-01

    The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces

  12. Furfural production using ionic liquids: A review.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  14. Effect of external noise on the current response in superlattices

    International Nuclear Information System (INIS)

    Suqing Duan; Wu Binyi; Wang Zhigang; Zhao Xiangeng

    2004-01-01

    Within the single-band model and the nearest-neighbor approximation we investigate the effect of external noise on the current response driven by dc-ac field which has a fluctuating component. We find the external noise can destroy the current resonant peaks. When the strength of the external noise becomes enough large, all the current resonant peaks will completely disappear

  15. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  16. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  17. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  18. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  19. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-08-31

    This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  1. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  2. Efeito da natureza do eletrólito e da força iônica na energia livre da reação de adsorção de níquel em solos Effect of electrolyte nature and ionic strength in the free energy of nickel adsorption reaction in soils

    Directory of Open Access Journals (Sweden)

    Cindy Silva Moreira Iglesias

    2007-10-01

    Full Text Available A adsorção é o principal processo responsável pelo acúmulo de metais pesados na superfície dos colóides do solo. O conhecimento detalhado desse fenômeno pode fornecer subsídios para o aprimoramento das práticas de remediação de solos contaminados. Avaliou-se a energia livre (deltaG0 de adsorção de Ni em amostras superficiais (0,0-0,2 m e subsuperficiais (na maior expressão do horizonte B de um Latossolo Vermelho acriférrico típico textura argilosa (LVwf e de um Nitossolo Vermelho eutroférrico textura muito argilosa (NVef, utilizando-se soluções de NaCl e CaCl2 em três forças iônicas (1,0, 0,1 e 0,01 mol L-1. As amostras de solo receberam 2, 5, 10, 20, 30, 40, 50 e 70 mg dm-3 de Ni, na proporção solo:solução de 1:10. A adsorção de Ni pelos solos foi espontânea, visto que a deltaG0 apresentou valores negativos em todas as concentrações estudadas. Os valores de deltaG0 diminuíram com o aumento da dose de Ni adicionada. O NVef apresentou maior deltaG0 que o LVwf devido, principalmente, às suas características químicas e mineralógicas. Os horizontes superficiais apresentaram, em geral, maior deltaG0 em relação aos subsuperficiais, em razão do elevado teor de matéria orgânica encontrado em superfície. A deltaG0 foi maior para as menores forças iônicas do meio, tanto para CaCl2 quanto para NaCl.The adsorption is the main process responsible for the accumulation of heavy metals in the surface of soil colloids. Detailed knowledge of this phenomenon can contribute to improve the remediation practices for contaminated soil. The free energy (deltaG0 of Ni adsorption was evaluated in surface (0.0-0.2 m and subsurface (in the maximum expression of B horizon samples of a clayey Rhodic Acrudox (RA and a very clayey Eutric Kandiudalf (EK. Ni was added (2, 5, 10, 20, 30, 40, 50, and 70 mg dm-3, in a 1:10 soil:solution ratio. Two background electrolytes (NaCl and CaCl2 and three ionic strengths - IS (1.0; 0.1 and 0

  3. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Isometric shoulder strength in young swimmers.

    Science.gov (United States)

    McLaine, Sally J; Ginn, Karen A; Fell, James W; Bird, Marie-Louise

    2018-01-01

    The prevalence of shoulder pain in young swimmers is high. Shoulder rotation strength and the ratio of internal to external rotation strength have been reported as potential modifiable risk factors associated with shoulder pain. However, relative strength measures in elevated positions, which include flexion and extension, have not been established for the young swimmer. The aim of this study was to establish clinically useful, normative shoulder strength measures and ratios for swimmers (14-20 years) without shoulder pain. Cross-sectional, observational study. Swimmers (N=85) without a recent history of shoulder pain underwent strength testing of shoulder flexion and extension (in 140° abduction); and internal and external rotation (in 90° abduction). Strength tests were performed in supine using a hand-held dynamometer and values normalised to body weight. Descriptive statistics were calculated for strength and strength ratios (flexion:extension and internal:external rotation). Differences between groups (based on gender, history of pain, test and arm dominance) were explored using independent and paired t tests. Normative shoulder strength values and ratios were established for young swimmers. There was a significant difference (pdifferences in strength ratios. Relative strength of the dominant and non-dominant shoulders (except for extension); and for swimmers with and without a history of shoulder pain was not significantly different. A normal shoulder strength profile for the young swimmer has been established which provides a valuable reference for the clinician assessing shoulder strength in this population. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Picosecond radiolysis of ionic liquids

    International Nuclear Information System (INIS)

    Funston, A.M.; Wishart, J.F.; Neta, P.; Lall, S.I.; Engel, R.

    2003-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Ionic liquids are completely nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. Kinetic studies with a picosecond electron accelerator, such as the BNL Laser-Electron Accelerator Facility (LEAF), allow one to observe primary radiation products and their reactions on short time scales. For example, the solvated electron lifetime in neat methyltributylammonium bis(trifluoromethylsulfonyl)imide is ∼300 ns and its absorption maximum is ∼1400 nm. Kinetic studies of primary radiolytic products and their reactivities will be described for several types of ionic liquids. Supported in part by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under contract DE-AC02-98-CH1088

  6. Thermophysical properties of ionic liquids.

    Science.gov (United States)

    Rooney, David; Jacquemin, Johan; Gardas, Ramesh

    2010-01-01

    Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

  7. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs

    International Nuclear Information System (INIS)

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-01-01

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid–semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics. (paper)

  8. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  9. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  10. Mass-imbalanced ionic Hubbard chain

    Science.gov (United States)

    Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.

    2017-07-01

    A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.

  11. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  12. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  13. Ionic liquid-tolerant cellulase enzymes

    Science.gov (United States)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  14. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    Science.gov (United States)

    Onishi, Koichi; Kirimoto, Kenta; Sun, Yong

    2017-02-01

    A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  15. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  16. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  17. Study on epoxy resin modified by polyether ionic liquid

    Science.gov (United States)

    Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.

    2017-06-01

    Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.

  18. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  19. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  20. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  1. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  2. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  3. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  4. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  5. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  6. ExternE National Implementation Finland

    International Nuclear Information System (INIS)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  7. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  8. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    Science.gov (United States)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  9. Application of Ionic Liquids in Hydrometallurgy

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  10. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... otitis. Fungal external otitis (otomycosis), typically caused by Aspergillus niger or Candida albicans, is less common. Boils are ... in the ear. Fungal external otitis caused by Aspergillus niger usually causes grayish black or yellow dots (called ...

  11. ExternE: Externalities of energy Vol. 2. Methodology

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  12. Ceramic External Pressure Housings For Deep Sea Vehicles

    National Research Council Canada - National Science Library

    Stachiw, J. D; Peters, Donald; McDonald, Glenn

    2006-01-01

    Only glasses, ceramic and carbon fiber reinforced plastic can provide the necessary weight to strength ratio to make the external pressure housings for undersea vehicles positively buoyant at the abyssal design depth...

  13. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  14. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  15. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  16. Dielectric constant of ionic solutions: a field-theory approach.

    Science.gov (United States)

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  17. Ionic versus nonionic contrast media

    International Nuclear Information System (INIS)

    Zylak, C.J.; Gafni, A.

    1988-01-01

    The efficacy and effectiveness of the nonionic contrast media have been established. Widespread usage has been hampered because of the approximate tenfold increase in cost compared with the ionic media. An economic evaluation considering costs and consequences of both interventions (ionic vs nonionic contrast media) was performed; it is a cost effectiveness (CEA) and a cost-benefit analysis (CBA) for the Canadian experience. The results of the CEA demonstrate a value per life-year saved within an acceptable range when compared with value for quality-adjusted life years for programs such as treatment of severe (diastolic≥ 105 mm Hg) and mild (diastolic 95-104 mm Hg) hypertension in men aged 40. The CBA showed a net cost to society when benefits were measured as future treatment costs saved plus productivity gained. However, if people are willing to pay a small amount for the comfort of the new intervention, this will result in a break-even situation

  18. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    polymerization. Chitin is not only the main component of the shells of crustaceans, but also exists as a structural polysaccharide of insects, mushrooms...combination of the dissolution of the biomass with the acid catlaysts to depolymerize the biomass into feedstock type chemicals. By using an imidazolium...Technical Section Technical Objective Ionic liquids have demonstrated the ability to effectively dissolve biomass ,1,2 including chitin and

  19. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power and ...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  20. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  1. Ionic Liquids in Biomass Processing

    Science.gov (United States)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  2. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  3. On the chemical stabilities of ionic liquids.

    Science.gov (United States)

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  4. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  5. The U(1) Higgs model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1988-01-01

    An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)

  6. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  7. ExternE: Externalities of energy Vol. 1. Summary

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  8. Externalities of fuel cycles 'ExternE' project. Summary report

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  9. Electromechanical engineering in SnO2 nanoparticle tethered hybrid ionic liquid

    Science.gov (United States)

    Deb, Debalina; Bhattacharya, Subhratanu

    2017-05-01

    Challenge of developing electrolytes comprising synergic properties of high mechanical strength with superior electrical and electrochemical properties has so far been unmet towards the application of secondary storage devices. In this research, we have engineered the electromechanical properties of 2-(trimethylamino) ethyl methacrylate bis(trifluoromethylsulfonyl) imide [TMEM]TFSI ionic liquid by tethering silane modified SnO2 nanoparticles within it. Different percentages of tethering are employed to achieve improved ionic conductivity, better discharge/ charging ratio (40%) along with gel like mechanical properties. Our findings appear to provide an optimal solution towards the future prospects in application in a number of areas, notably in energy-related technologies.

  10. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  11. A Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    . This process has been evaluated as a wettability-modifying agent in carbonates and captured the global research focus in water-based enhanced oil recovery (EOR) methods. This paper provides a comprehensive review of the published research to speed the process of further investigations in this field. The review......Advanced water flooding is a process in which the ionic strength as well as the ionic composition of the injected water is tuned to improve the oil recovery. It has been observed in field trials and in lab core flooding experiments; advanced water flooding has the potential to recover additional oil...

  12. External radiation surveillance

    International Nuclear Information System (INIS)

    Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site

  13. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  14. Thermophysical properties of ammonium and hydroxylammonium protic ionic liquids

    International Nuclear Information System (INIS)

    Chhotaray, Pratap K.; Gardas, Ramesh L.

    2014-01-01

    Highlights: • Density, viscosity and sound velocity measured for five ammonium and hydroxylammonium based protic ionic liquids. • Experimental density and viscosity data estimated using Gardas and Coutinho model and Vogel–Tamman–Fulcher equation. • Effects of cation, anion and alkyl chain length on studied properties have been discussed. • The intermolecular interactions were analyzed on the basis of derived properties. - Abstract: In this work, five protic ionic liquids having propylammonium, 3-hydroxy propylammonium as cations and formate, acetate, trifluoroacetate as anions have been synthesized. Thermophysical properties such as density (ρ), viscosity (η) and sound velocity (u) have been measured at various temperatures ranging from (293.15 to 343.15) K at atmospheric pressure. The experimental density and viscosity were fitted with second order polynomial and Vogel–Tamman–Fulcher (VTF) equations, respectively. Also experimental densities were correlated with the estimated density proposed by Gardas and Coutinho model. The coefficient of thermal expansion (α) and isentropic compressibility (β s ) values have been calculated from the experimental density and sound velocity data using empirical correlations. Lattice potential energy (U POT ) has been calculated to understand the strength of ionic interaction between the ions. Thermal decomposition temperature (T d ) and glass transition temperature (T g ) along with crystallization and melting point were investigated using TGA and DSC analysis, respectively. The effect of alkyl chain length and electronegative fluorine atoms on anionic fragment as well as hydroxyl substituent on cationic side chain in the protic ionic liquids has been discussed for studied properties. The effect of ΔpK a over the studied properties has also been analyzed

  15. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  16. On the Chemical Stabilities of Ionic Liquids

    OpenAIRE

    Yen-Ho Chu; Ming-Chung Tseng; Venkatesan Srinivasadesikan; Subbiah Sowmiah

    2009-01-01

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transfor...

  17. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  18. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  19. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  20. ExternE: Externalities of energy Vol. 5. Nuclear

    International Nuclear Information System (INIS)

    Dreicer, M.; Tort, V.; Manen, P.

    1995-01-01

    Since the early 1970s, there has been increased interest in the environmental impacts that are caused by the generation of electricity. The comparative risk assessment studies at that time used mainly deaths and injuries as impact indicators. By the end of the 1980s studies changed to the assessment of the costs imposed on society and the environment that were not included in the market price of the energy produced, the so-called external costs. The preliminary studies that were published set the conceptual basis, grounded in neo-classical economics, for the valuation of the health and environmental impacts that could be assessed. As a consequence of the many questions raised by the methodologies employed by these early studies, Directorate General XII (DG XII) of the Commission of the European Communities established a collaborative research programme with the United States Department of Energy to identify an appropriate methodology for this type of work. Following the completion of this collaboration, the DG XII programme has continued as the ExternE project. The main objective of the work carried out at CEPN was to develop an impact pathway methodology for the nuclear fuel cycle that would be consistent with the methodologies developed for other fuel cycles, without loosing the nuclear-specific techniques required for a proper evaluation. In this way, comparisons between the different fuel cycles would be possible. This report presents the methodology and demonstration of the results in the context of the French nuclear fuel cycle. The United States team at Oak Ridge National Laboratory has previously issued a draft report on the results of their assessment. The French fuel cycle was broken down into 8 separate stages. Reference sites and 1990s technology were chosen to represent the total nuclear fuel cycle, as it exists today. In addition, the transportation of material between the sites was considered. The facilities are assessed for routine operation, except

  1. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  2. Screening in dense ionic fluids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1991-01-01

    There has been great progress in recent years in determining and understanding the structure of molten salts. I focus on molten alkali halides and discuss two main points concerning their liquid structure and its relationship with static electrical response in these dense ionic conductors. These are (i) the nature of screening and the related definitions and properties of the screening length and of the dielectric function, and (ii) developments in integral equations techniques for the evaluation of molten salt structure and static screening from given pair potentials. (author). 26 refs, 3 figs, 2 tabs

  3. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  4. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  5. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  6. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    Though the reactions have both electrostatic control and frontier orbital control the former dominates in the initial stages of the reaction. Keywords. Stereoselectivity; ionic cycloaddition; density functional theory; acridizinium ion; methyl vinyl ether; 2,3-dimethylisoquinolinium ion. 1. Introduction. In polar or ionic cycloadditions ...

  7. Principle and applications of ionic thermometric detectors

    International Nuclear Information System (INIS)

    Rosenkranz, J.; Jakes, D.

    1989-01-01

    The basic principles of electric conductivity of ionic compounds as well as causes and the character of phase transformation in these systems are briefly explained. The design of ionic thermometric detectors, their function and some applications in thermometry are also described. (author). 3 figs., 1 tab., 7 refs

  8. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  9. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  10. Experimental Determination of Solubilities of Tri-calcium Di-Citrate Tetrahydrate [Ca3[C3H5O(COO)3]2•4H2O] Earlandite in NaCl and MgCl2 Solutions to High Ionic Strengths and Its Pitzer Model: Applications to Nuclear Waste Isolation and Other Low Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yongliang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Kirkes, Leslie Dawn [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Westfall, Terry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Marrs, Cassandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Knox, Jandi [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group; Burton, Heather Lynn [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Carlsbad Programs Group

    2017-09-01

    In this study, solubility measurements on tri-calcium di-citrate tetrahydrate [Ca3[C3H5O(COO)3]2•4H2O, abbreviated as Ca3[Citrate]2•4H2O] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg–1 and in MgCl2 solutions up to I = 7.5 mol•kg–1, at room temperature (22.5 ± 0.5°C). The solubility constant (log K$0\\atop{sp}$) for Ca3[Citrate]2•4H2O and formation constant (logβ$0\\atop{1}$) for Ca[C3H5O(COO)3]Ca3[C3H5O(COO)3]2•4H2O (earlandite) = 3Ca2+ + 2[C3H5O(COO)3]3– + 4H2O (1) Ca2+ + [C3H5O(COO)3]3– = Ca[C3H5O(COO)3] (2) are determined as –18.11 ± 0.05 and 4.97 ± 0.05, respectively, based on the Pitzer model with a set of Pitzer parameters describing the specific interactions in NaCl and MgCl2 media.

  11. [External cephalic version].

    Science.gov (United States)

    Navarro-Santana, B; Duarez-Coronado, M; Plaza-Arranz, J

    2016-08-01

    To analyze the rate of successful external cephalic versions in our center and caesarean sections that would be avoided with the use of external cephalic versions. From January 2012 to March 2016 external cephalic versions carried out at our center, which were a total of 52. We collected data about female age, gestational age at the time of the external cephalic version, maternal body mass index (BMI), fetal variety and situation, fetal weight, parity, location of the placenta, amniotic fluid index (ILA), tocolysis, analgesia, and newborn weight at birth, minor adverse effects (dizziness, hypotension and maternal pain) and major adverse effects (tachycardia, bradycardia, decelerations and emergency cesarean section). 45% of the versions were unsuccessful and 55% were successful. The percentage of successful vaginal delivery in versions was 84% (4% were instrumental) and 15% of caesarean sections. With respect to the variables studied, only significant differences in birth weight were found; suggesting that birth weight it is related to the outcome of external cephalic version. Probably we did not find significant differences due to the number of patients studied. For women with breech presentation, we recommend external cephalic version before the expectant management or performing a cesarean section. The external cephalic version increases the proportion of fetuses in cephalic presentation and also decreases the rate of caesarean sections.

  12. Piezosurgery in External Dacryocystorhinostomy.

    Science.gov (United States)

    Czyz, Craig N; Fowler, Amy M; Dutton, Jonathan J; Cahill, Kenneth V; Foster, Jill A; Hill, Robert H; Everman, Kelly R; Nabavi, Cameron B

    Dacryocystorhinostomy (DCR) can be performed via an external or endoscopic approach. The use of ultrasonic or piezosurgery has been well described for endoscopic DCRs but is lacking for external DCRs. This study presents a case series of external DCRs performed using piezosurgery evaluating results and complications. Prospective, consecutive case series of patients undergoing primary external DCR for lacrimal drainage insufficiency. A standard external DCR technique was used using 1 of 2 piezosurgery systems for all bone incision. All patients received silicone intubation to the lacrimal system. Surgical outcome was measured in terms of patient-reported epiphora as follows: 1) complete resolution, 2) improvement >50%, 3) improvement 50% improvement. There were 4 patients (7%) who had <50% improvement. There was 1 (2%) intraoperative complication and 2 (4%) postoperative complications recorded. Piezourgery is a viable modality for performing external DCRs. The lack of surgical complications shows a potential for decreased soft tissues damage. The surgical success rate based on patient-reported epiphora is similar to those published for mechanical external DCRs. This modality may benefit the novice surgeon in the reduction of soft and mucosal tissue damage.

  13. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  14. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  16. Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, N.V.; Karachevtsev, M.V.; Leontiev, V.S.; Karachevtsev, V.A., E-mail: karachevtsev@ilt.kharkov.ua

    2017-01-15

    The enhancement of the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes suspended with single-stranded DNA (ssDNA) in water observed after amino acids doping is the largest at cysteine addition. The PL intensity increased through the passivation of p-defects on the carbon nanotube sidewall by the cysteine molecules due to thiol group. The effect of several external factors on the cysteine-induced enhancement of PL from carbon nanotubes covered with ssDNA was studied: UV irradiation, tip or bath sonication treatment of the suspension, the ionic strength and pH of aqueous suspension. It turned out that all these factors have an essential influence on the dependence of the PL enhancement on the cysteine concentration through inducing of additional defects on nanotube as well as a change of the nanotube surface coverage with polymer. The obtained experimental results demonstrated that PL from carbon nanotubes can be exploited successfully for the monitoring of cysteine concentration in aqueous solution. - Highlights: • Cysteine doping enhances carbon nanotube emission more than other amino acids do. • SWNT emission dependence on cysteine concentration is tuned by UV irradiation and pH. • Type of sonication treatment influences SWNT PL dependence on cysteine concentration. • Polymer coverage and defectiveness of nanotubes effect on nanotube emission. • Graphic abstract.

  17. Synthesis, thermophysical properties and COSMO-RS study of DBU based protic ionic liquids

    International Nuclear Information System (INIS)

    Losetty, Venkatramana; Matheswaran, Pranesh; Wilfred, Cecilia Devi

    2017-01-01

    Graphical abstract: Three dimensional representation of experimental density (ρ kg·m −3 ), viscosity (η mPa·s) and surface tension (10 2 × σ mN·m −1 ) of [DBU][Tfa]. - Highlights: • Thermophysical properties have been measured for synthesized DBU based protic ILs. • The experimental viscosity is fitted to Vogel-Tammann-Fulcher and Arrhenius equations. • Measured surface tension data was used to calculate the thermodynamic surface properties. • COSMO-Rs helpful to understand the ionic interactions. - Abstract: In the present work, a new series of DBU based protic ionic liquids has been synthesized. The anions were generated from acetic acid, trifluoro acetic acid, methane sulfonic acid and trifluoro methanesulfonic acid. The obtained [DBU][Ac], [DBU][Tfa], [DBU][Msa] and [DBU][Tfmsa] ionic liquids were characterized by 1 H NMR and 13 C NMR. The neat ILs were used to determine thermophysical properties namely density (ρ), viscosity (η) surface tension (γ) at various temperature ranges and atmospheric pressure (0.1 MPa). The experimental density and viscosity values were correlated using the linear and Vogel-Tammann-Fulcher (VTF) equations, respectively. Furthermore, thermal expansion coefficient (α) molar volume (V m ), thermodynamic surface properties and critical temperatures were estimated from experimental results. The lattice potential energy (U POT ) of the ILs was calculated to estimate the strength of ionic interactions between ions. In addition, the effect of water content on experimental results was measured and also estimated. The theoretical model namely COSMO-RS was used to study the ionic interactions in synthesized ionic liquids. Finally, the experimental and calculated results were discussed to understand the effect of temperature and moiety of ionic liquid on the thermophysical properties studied.

  18. Automated External Defibrillator

    Science.gov (United States)

    ... leads to a 10 percent reduction in survival. Training To Use an Automated External Defibrillator Learning how to use an AED and taking a CPR (cardiopulmonary resuscitation) course are helpful. However, if trained ...

  19. Energy policy and externalities

    International Nuclear Information System (INIS)

    Bertel, E.; Fraser, P.

    2002-01-01

    External costs of energy have been assessed in a number of authoritative and reliable studies based upon widely accepted methodologies such as life cycle analysis (LCA). However, although those costs are recognised by most stakeholders and decision makers, results from analytical work on externalities and LCA studies are seldom used in policy making. The International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) convened a joint workshop in November 2001 to offer experts and policy makers an opportunity to present state-of-the-art results from analytical work on externalities and debate issues related to the relevance of external costs and LCA for policy-making purposes. The findings from the workshop highlight the need for further work in the field and the potential rote of international organisations like the IEA and the NEA in this context. (authors)

  20. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  1. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...

  2. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  3. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  4. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  5. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  6. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  7. At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb.

    Science.gov (United States)

    Magnus, C R A; Boychuk, K; Kim, S Y; Farthing, J P

    2014-06-01

    The purpose was to determine if an at-home resistance tubing strength training program on one shoulder (that is commonly used in rehabilitation settings) would produce increases in strength in the trained and untrained shoulders via cross-education. Twenty-three participants were randomized to TRAIN (strength-trained one shoulder; n = 13) or CONTROL (no intervention; n = 10). Strength training was completed at home using resistance tubing and consisted of maximal shoulder external rotation, internal rotation, scaption, retraction, and flexion 3 days/week for 4 weeks. Strength was measured via handheld dynamometry and muscle size measured via ultrasound. For external rotation strength, the trained (10.9 ± 10.9%) and untrained (12.7 ± 9.6%) arm of TRAIN was significantly different than CONTROL (1.6 ± 13.2%; -2.7 ± 12.3%; pooled across arm; P tubing training program on one limb can produce increases in strength in both limbs, and has implications for rehabilitation after unilateral shoulder injuries. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  9. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  10. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    Science.gov (United States)

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  12. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  14. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  15. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  16. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  17. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  18. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  19. Malignant external otitis

    International Nuclear Information System (INIS)

    Dupuch, K.M.; Iryboz, T.; Firat, M.; Levy, C.; Tubiana, J.M.

    1991-01-01

    This paper illustrates the value of CT and MR in early diagnosis and spread of malignant external otitis. The authors retrospectively analyzed 15 patients with proved malignant external otitis examined with postcontrast high-resolution CT (15/15) and MR (6/15) (T1- and T2-weighting). Gallium studies were done in 6/15 patients. Early diagnosis was made when CT demonstrated a soft-tissue mass of the external auditory canal associated with scattered zones of cortical bone erosions (13/15). Spread of the disease was better delineated by MR than CT, especially skull base extension (6/15). Temporomandibular joint involvement with extension into parotid or/and masticator spaces 6/15 was as well detected with CT as with MR. If CT remains the first and best procedure for diagnosis, MR - despite its cost - appears a good procedure to depict exact anatomic spread, allowing therapeutic management

  20. Productivity Change and Externalities

    DEFF Research Database (Denmark)

    Kravtsova, Victoria

    2014-01-01

    This paper contributes to the analysis of the impact of externalities on the host country's total factor productivity by taking into account different dimensions of spillover effects. Namely, engagement in exporting and foreign ownership is generally perceived as being beneficial to individual...... firms and the economy as a whole. The approach used in the current research accounts for different internal as well as external factors that individual firms face and evaluates the effect on changes in productivity, technology as well as the efficiency of domestic firms. The empirical analysis focuses...... on Hungary. While the country leads the group of post-socialist countries in the amount of attracted foreign direct investments (FDI) the effect of this policy on the economy remains unclear. The research finds that different externalities play a different role in productivity, technological and efficiency...

  1. Externality or sustainability economics?

    International Nuclear Information System (INIS)

    Bergh, Jeroen C.J.M. van den

    2010-01-01

    In an effort to develop 'sustainability economics' Baumgaertner and Quaas (2010) neglect the central concept of environmental economics-'environmental externality'. This note proposes a possible connection between the concepts of environmental externality and sustainability. In addition, attention is asked for other aspects of 'sustainability economics', namely the distinction weak/strong sustainability, spatial sustainability and sustainable trade, distinctive sustainability policy, and the ideas of early 'sustainability economists'. I argue that both sustainability and externalities reflect a systems perspective and propose that effective sustainability solutions require that more attention is given to system feedbacks, notably other-regarding preferences and social interactions, and energy and environmental rebound. The case of climate change and policy is used to illustrate particular statements. As a conclusion, a list of 20 insights and suggestions for research is offered. (author)

  2. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  3. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.

    Science.gov (United States)

    Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-09-06

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  4. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Dongyeop X. Oh

    2013-09-01

    Full Text Available Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS submersion. In addition, the linear swelling ratio (LSR of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  5. Geometry and gravity influences on strength capability

    Science.gov (United States)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  6. The External Mind

    DEFF Research Database (Denmark)

    , Extended Mind and Distributed Cognition by Claudio Paolucci pp. 69-96 The Social Horizon of Embodied Language and Material Symbols by Riccardo Fusaroli pp. 97-123 Semiotics and Theories of Situated/Distributed Action and Cognition: a Dialogue and Many Intersections by Tommaso Granelli pp. 125-167 Building......The External Mind: an Introduction by Riccardo Fusaroli, Claudio Paolucci pp. 3-31 The sign of the Hand: Symbolic Practices and the Extended Mind by Massimiliano Cappuccio, Michael Wheeler pp. 33-55 The Overextended Mind by Shaun Gallagher pp. 57-68 The "External Mind": Semiotics, Pragmatism...

  7. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  8. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  9. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    have the advantages of liquid and solid phase together.11. Task-specific ionic liquids ... more attention as alternative reaction media in green chemistry than conventional ..... The reaction mixture was divided into two. Figure 3. Reusability of ...

  10. ELECTROCATALYSIS OF HEMOGLOBIN IN IONIC LIQUID ...

    African Journals Online (AJOL)

    Preferred Customer

    thermal stability, relatively high ionic conductivity, negligible vapor pressure and wide ... through the opposite end of the tube to establish an electrical contact and the ... support to assembly the Hb molecules and form a biocompatible porous ...

  11. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  12. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  13. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    the matrix of a polymer electrode – thereby causing volume expansion which can be converted into work. Solvent molecules are able to penetrate the polymer too. A precise description of the nature of these ionic and solvent movements is therefore important for understanding and improving the performance....... This work examines the influence of solvent, ionic species and electrolyte concentration on the fundamental question about the ionic mechanism involved: Is the actuation process driven by anion motion, cation motion, or a mixture of the two? In addition: What is the extent of solvent motion? The discussion...... is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  14. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  15. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  16. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  17. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  18. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  19. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  20. Ionic liquids in the synthesis of nanoobjects

    International Nuclear Information System (INIS)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A

    2010-01-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  1. Recent development of ionic liquid membranes

    OpenAIRE

    Wang, Junfeng; Luo, Jianquan; Feng, Shicao; Li, Haoran; Wan, Yinhua; Zhang, Xiangping

    2016-01-01

    The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquidâliquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive ov...

  2. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  3. Ionic secondary emission SIMS principles and instrumentation

    International Nuclear Information System (INIS)

    Darque-Ceretti, E.; Migeon, H.N.; Aucouturier, M.

    1998-01-01

    The ionic analysis by secondary emission (SIMS) is one of material analysis based on the ions bombardment. That is micro-analysis method in taking into account that the dimensions of the analysed volume are under the micrometer. This paper details in a first part some ionic secondary emission principle to introduce a description of the instrumentation: microprobe, ions production, spectrometers. (A.L.B.)

  4. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  5. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  6. Probing Lipid Bilayers under Ionic Imbalance.

    Science.gov (United States)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  8. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  9. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  10. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  11. Externalities - an analysis using the EU ExternE-results

    International Nuclear Information System (INIS)

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case

  12. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  13. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  14. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered....... Electrical neutrality was continuously assured in the model by the inclusion of the Poisson-Boltzmann equation to the system of governing equations. Voltage differences were applied across the sample as boundary conditions in order to evaluate the competition between diffusion and electromigration terms...

  15. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.

    Science.gov (United States)

    Greathouse, Jeffery A; Cygan, Randall T

    2006-06-15

    Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water

  16. External costs of electricity

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2005-01-01

    This article presents a synthesis of the ExternE project (External costs of Energy) of the European community about the external costs of power generation. Pollution impacts are calculated using an 'impact pathways' analysis, i.e. an analysis of the emission - dispersion - dose-response function - cost evaluation chain. Results are presented for different fuel cycles (with several technological variants) with their confidence intervals. The environmental impact costs are particularly high for coal: for instance, in France, for coal-fired power plants it is of the same order as the electricity retail price. For natural gas, this cost is about a third of the one for coal. On the contrary, the environmental impact costs for nuclear and renewable energies are low, typically of few per cent of the electricity price. The main part of these costs corresponds to the sanitary impacts, in particular the untimely mortality. In order to avoid any controversy about the cost evaluation of mortality, the reduction of the expectation of life due to the different fuel cycles is also indicated and the risks linked with nuclear energy are presented using several comparisons. (J.S.)

  17. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  18. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  19. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    Science.gov (United States)

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  20. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  1. Strength asymmetry of the shoulders in elite volleyball players.

    Science.gov (United States)

    Hadzic, Vedran; Sattler, Tine; Veselko, Matjaž; Markovic, Goran; Dervisevic, Edvin

    2014-01-01

    Volleyball players are reported to have shoulder strength imbalances. Previous authors have primarily investigated small samples of male players at a single skill level, without considering playing position, and with inconsistent findings. To evaluate shoulder strength asymmetry and a history of shoulder injury in a large sample of professional volleyball players of both sexes across different playing positions and skill levels. Descriptive laboratory study. A sample of 183 volleyball players (99 men, 84 women). We assessed shoulder internal-rotator and external-rotator concentric strength at 60°/s using an isokinetic dynamometer and dominant-nondominant differences in shoulder strength and strength ratios using repeated-measures analyses of variance. Peak torque was normalized for body mass and external-rotation/internal-rotation concentric strength. Internal-rotation strength was asymmetric in favor of the dominant side in both sexes, regardless of previous shoulder injury status. Male volleyball players had a lower shoulder strength ratio on the dominant side, regardless of previous shoulder injury status. However, this finding was valid only when hand dominance was taken into account. Female volleyball players playing at a higher level (ie, first versus second division) were 3.43 times more likely to have an abnormal strength ratio. Playing position was not associated with an abnormal shoulder strength ratio or strength asymmetry. In male volleyball players, the external-rotation/internal-rotation strength ratio of the dominant shoulder was lower, regardless of playing position, skill level, or a previous shoulder injury. In female players, the ratio was less only in those at a higher skill level. Although speculative, these findings generally suggest that female volleyball players could have a lower risk of developing shoulder-related problems than male volleyball players. Isokinetic shoulder testing may reveal important information about the possible risk

  2. Ionic interactions in the water zone at oil well-sites

    Energy Technology Data Exchange (ETDEWEB)

    Kleven, R.

    1996-11-01

    The aim of this doctoral thesis has been to obtain a better understanding of ionic behaviour in a water zone of sedimentary rock exposed to sea-water based drilling fluid and completion fluid. Interaction processes addressed have been ion exchange on the surface of the reservoir rocks and precipitation of divalent cations with sulphate ions from the sea water. Clay minerals are focused on because of their ability to conduct electricity through ion-exchange reactions. The most important parameters that the distribution of ions around a borehole depends upon are suggested to be (1) the ability of the sedimentary rocks to sorb/desorb ions, (2) the effect of added solutions on the sorption/desorption processes, (3) the mobility of ions. The first of four enclosed papers studies ionic interaction, mainly on homo-ionic clay mineral - salt solution, in batch experiments under pH, ionic strength and temperature conditions likely to occur in the field. Paper II investigates the use of tritiated water as a reference tracer in miscible displacement processes in porous sandstone cores. Ionic interaction processes during drilling of oil wells with conventional KCl bentonite mud tagged with HTO were studied by means of measured ionic and HTO concentration of water sampled in the near well-bore region. A tracer method was developed and ``tracer diagrams`` illustrate sorption/desorption processes. The water analyses, sampling procedure, and tracer techniques are presented in the third paper. Paper IV compares the interpretation of laboratory data and field data. 173 refs., 47 figs., 22 tabs.

  3. Give Me Strength.

    Institute of Scientific and Technical Information of China (English)

    维拉

    1996-01-01

    Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to

  4. Studies of ionic diffusion in crystalline rock

    International Nuclear Information System (INIS)

    Ohlsson, Yvonne

    2001-01-01

    Matrix diffusion is of great importance in delaying radionuclides escaping from a deep geologic repository, on their way to the biosphere. There are, however, poorly understood mechanisms related to transport in pores with charged pore surfaces. Ions are affected by this charge and may be repelled or attracted by it. The rate of transport may be reduced, or even enhanced, as a result of this. Transport of ions is studied by traditional diffusion experiments, but mainly by a faster electrical conductivity method. With this method the pore connectivity, the formation factor variability and its relation to the porosity, as well as the surface conductivity are investigated. The method is compared. with traditional diffusion experiments, and an in-situ application is suggested and qualitatively tested. Furthermore, surface diffusion is studied by evaluating literature data and recently developed diffusion models. The pore connectivity reached to a depth of at least 15 cm in the rocks studied. The formation factor did not generally decrease with increasing sample length. It was also found that not only cations in the free pore water add to the electrical conductivity, but also at least part of those sorbed to the pore surfaces of the minerals. This surface conductivity influences the determination of the formation factor in low ionic strength pore waters, and was also found to be a function of the formation factor. It was furthermore dependent on the type of ion at the surface, giving for example a higher conductivity for Na + than for Cs + . It is not fully understood which part of the sorbed ions that are mobile. A simple model was developed assigning the mobile ions to the diffuse layer, and this model explained experimental data for diffusion of Cs + in clay well. This is contradicted by surface conductivity measurements that have shown that most mobile ions are found behind the Stern layer. The in-situ formation factor determination method seems promising. The most

  5. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    OpenAIRE

    MELEK ACAR BOYACIOĞLU; YAKUP KARA

    2013-01-01

    Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and w...

  6. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  7. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  8. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  9. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  10. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke

    2014-01-01

    to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...... of 38 checklist items. Empirical support was considered the most valid methodology for item inclusion. Assessment of methodological justification showed that none of the items were supported empirically. Other kinds of literature justified the inclusion of 22 of the items, and 17 items were included...

  12. The effect of the production method on the mechanical strength of an alumina porous hollow fiber

    NARCIS (Netherlands)

    de Wit, Patrick; van Daalen, Frederique S.; Benes, Nieck E.

    2017-01-01

    The mechanical strength of inorganic porous hollow fibers is an important property and is strongly affected by the production method. Three production methods for fibers are compared: non-solvent induced phase separation (NIPS), bio-ionic gelation with an internal multivalent ion source (BIG-I), and

  13. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  14. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  15. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  16. Interviewing to Understand Strengths

    Science.gov (United States)

    Hass, Michael R.

    2018-01-01

    Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…

  17. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  19. Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network.

    Science.gov (United States)

    Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua

    2017-08-30

    In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.

  20. Thermophysical properties of hydroxyl ammonium ionic liquids

    International Nuclear Information System (INIS)

    Kurnia, K.A.; Wilfred, C.D.; Murugesan, T.

    2009-01-01

    The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices n D , T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature 'T d ' for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA)

  1. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  2. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  3. Desulfurization of oxidized diesel using ionic liquids

    Science.gov (United States)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  4. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  5. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  6. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  7. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  8. Ultra-Stretchable Ionic Nanocomposites: From Dynamic Bonding to Multi-Responsive Behavior

    KAUST Repository

    Odent, Jeremy

    2017-06-12

    Although multi-responsive materials have the potential to revolutionize a wide spectrum of technologies, the design of systems that combine a range of responses to a variety of different external changes without the associated property trade-offs has remained elusive. We herein demonstrate a new family of multi-responsive nanocomposites that leverage the dynamic and reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites. This new design leads to a unique property profile that combines simultaneous improvements in stiffness, toughness and extensibility. In addition to their exceptional stretchability, the new, ionic nanocomposites exhibit unique strain-dependent behavior (i.e. the deformation increases with increasing strain rate) and return to normal state after deformation including shape-memory and scratching recovery.

  9. Ultra-Stretchable Ionic Nanocomposites: From Dynamic Bonding to Multi-Responsive Behavior

    KAUST Repository

    Odent, Jeremy; Raquez, Jean-Marie; Dubois, Philippe; Giannelis, Emmanuel P.

    2017-01-01

    Although multi-responsive materials have the potential to revolutionize a wide spectrum of technologies, the design of systems that combine a range of responses to a variety of different external changes without the associated property trade-offs has remained elusive. We herein demonstrate a new family of multi-responsive nanocomposites that leverage the dynamic and reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites. This new design leads to a unique property profile that combines simultaneous improvements in stiffness, toughness and extensibility. In addition to their exceptional stretchability, the new, ionic nanocomposites exhibit unique strain-dependent behavior (i.e. the deformation increases with increasing strain rate) and return to normal state after deformation including shape-memory and scratching recovery.

  10. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  11. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  12. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  13. Association of Strength Measurement with Rotator Cuff Tear in Patients with Shoulder Pain: The ROW Study

    Science.gov (United States)

    Miller, Jennifer Earle; Higgins, Laurence D.; Dong, Yan; Collins, Jamie E.; Bean, Jonathan F.; Seitz, Amee L.; Katz, Jeffrey N.; Jain, Nitin B.

    2016-01-01

    Objective This study examines the association between strength measurements and supraspinatus tear in patients with shoulder pain. This study characterized determinants of abduction strength among patients with tears. Design Two-hundred and eight patients with shoulder pain (69 with and 110 without tear) were recruited. Strength was tested using hand-held dynamometer. Supraspinatus tears were diagnosed by combination of clinical assessment and blinded MRI review. Associations of supraspinatus tear with patient characteristics and strength measurements (abduction, internal rotation and external rotation) were assessed using multivariable logistic regression models. Results Patients with supraspinatus tear had decreased abduction strength (p=0.02) and decreased external rotation strength (ptear laterality, and BMI, decreased abduction strength (OR= 1.18 per kg, 95% C.I.=1.06–1.32) and decreased external rotation strength (OR=1.29 per kg, 95% C.I.=1.14–1.48) were associated with supraspinatus tear. In patients with tear, age ≥60 years, female sex, and VAS pain score were significantly associated with decreased abduction strength but tear size, fatty infiltration, and atrophy were not. Conclusions Decreased abduction and external rotation strength were associated with supraspinatus tear in patients with shoulder pain. In this cohort, the abduction strength of patients with tears, was influenced by demographic factors but not tear characteristics. PMID:26098921

  14. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....

  15. Steven's orbital reduction factor in ionic clusters

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  16. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment......The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  17. Influence of greenhouse climate and plant density on external quality of chrysanthemum (Dendranthema grandiflorum (Ramat.)Kitamura) : First steps towards a quality model

    NARCIS (Netherlands)

    Carvalho, S.M.P.; Heuvelink, E.

    2001-01-01

    The effects of greenhouse climate and plant density on external quality of chrysanthemum (Dendranthema grandiflorum syn. Chrysanthemum morifolium) are reviewed. The external quality aspects analysed in this paper are stem morphology (length, diameter and "strength"), leaf morphology (number and

  18. Predicting fatigue service life extension of RC bridges with externally bonded CFRP repairs : [project brief].

    Science.gov (United States)

    2015-12-01

    Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...

  19. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  20. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  1. External corners as heat bridges

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  2. Ionic systems in materials research : new materials and processes based on ionic polymerizations and/or ionic liquids

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.

    2007-01-01

    Systems based on ionic interactions are usually related to reversible processes and/or transitory chemical states and, nowadays, they are believed to be key factors for the understanding and for the development of processes in several branches of chemistry and materials research. During the last

  3. [External pancreatic fistulas management].

    Science.gov (United States)

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  4. Application of Alkaline Ionic Liquids in the Pretreatment Process of Eucalyptus Kraft Pulping

    Directory of Open Access Journals (Sweden)

    Yi Hou

    2016-09-01

    Full Text Available In order to explore the potential application of green solvent ionic liquids (ILs in the kraft pulping process, eucalyptus wood was pretreated by [Mmim]DMP before normal pulping. The results showed that materials pretreated shortly by the ionic liquid had a higher yield and viscosity coupled with a lower potassium permanganate value and residual lignin content in the pulp, as a result of the cooking process. It was also inferred that alkaline [Mmim]DMP pretreatment could dissolve lignin effectively from fiber to result in a stronger binding force and more entangled properties. Paper tensile and burst strength were improved by about 40% and 60%, respectively. These results provide a new way for eucalyptus to be utilized in the kraft pulping process.

  5. Degree of Contracture Related to Residual Muscle Shoulder Strength in Children with Obstetric Brachial Plexus Lesions.

    Science.gov (United States)

    van Gelein Vitringa, Valerie M; van Noort, Arthur; Ritt, Marco J P F; van Royen, Barend J; van der Sluijs, Johannes A

    2015-12-01

     Little is known about the relation between residual muscle strength and joint contracture formation in neuromuscular disorders. This study aimed to investigate the relation between residual muscle strength and shoulder joint contractures in children with sequelae of obstetric brachial plexus lesion (OBPL). In OBPL a shoulder joint contracture is a frequent finding. We hypothesize that residual internal and external rotator strength and their balance are related to the extent of shoulder joint contracture.  Clinical assessment was performed in 34 children (mean 10.0 years) with unilateral OBPL and Narakas classes I-III. External and internal rotation strengths were measured with the shoulder in neutral position using a handheld dynamometer. Strength on the affected side was given as percentage of the normal side. Contracture was assessed by passive internal and external rotations in degrees (in 0° abduction). Mallet classification was used for active shoulder function.  External and internal rotation strengths on the affected side were approximately 50% of the normal side and on average both equally affected: 56% (SD 18%) respectively 51% (SD 27%); r  = 0.600, p  = 0.000. Residual strengths were not related to passive internal or external rotation ( p  > 0.200). Internal rotation strength ( r  =  - 0.425, p muscle strength influence contracture formation cannot be confirmed in this study. Our results are of interest for the understanding of contracture formation in OBPL.

  6. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  7. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  8. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  9. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  10. Hip strength assessment using handheld dynamometry is subject to intertester bias when testers are of different sex and strength

    DEFF Research Database (Denmark)

    Thorborg, K; Bandholm, T; Schick, M

    2013-01-01

    Handheld dynamometry (HHD) is a promising tool for obtaining reliable hip strength measurements in the clinical setting, but intertester reliability has been questioned, especially in situations where testers exhibit differences in upper-extremity muscle strength (male vs female). The purpose...... of this study was to examine the intertester reliability concerning strength assessments of hip abduction, adduction, external and internal rotation, flexion and extension using HHD, and to test whether systematic differences in test values exist between testers of different upper-extremity strength. Fifty...... healthy individuals (29 women), aged 25 ± 5 years were included. Two physiotherapist students (one female, one male) of different upper-extremity strength performed the measurements. The tester order and strength test order were randomized. Intraclass correlation coefficients were used to quantify...

  11. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  12. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes

    International Nuclear Information System (INIS)

    Herath, Mahesha B.; Creager, Stephen E.; Rajagopal, Rama V.; Geiculescu, Olt E.; DesMarteau, Darryl D.

    2009-01-01

    We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 x 10 -6 S/cm at 30 deg. C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.

  13. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  14. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Li+, its lower weight, ease of handling and its poten- tial use in high energy density batteries. Li2SiO4 is one of the .... that influence the ionic conductivity of a crystal the activation energy is of utmost importance since the .... fraction techniques are commonly employed to elu- cidate the structure features of superionic solids.

  15. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  16. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  17. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  18. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  19. Desalination of aqueous media using ionic liquids

    NARCIS (Netherlands)

    2014-01-01

    The present invention relates to a method for extracting metal and/or metalloid ions from an aqueous medium, comprising the steps of: a) mixing the aqueous medium with an ionic liquid comprising an aliphatic carboxylate anion having at least one unsaturated carbon-carbon bond, or and/or with a

  20. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a