WorldWideScience

Sample records for external hydrogen tank

  1. Assessment of the hydrogen external tank pressure decay anomaly on Space Transportation System (STS) 51-L

    Science.gov (United States)

    Buckley, Theresa M.

    1988-01-01

    Following the Challenger tragedy, an evaluation of the integrated main propulsion system flight data revealed a premature decay in the hydrogen external tank ullage pressure. A reconstruction of predicted ullage pressure versus time indicated an inconsistency between predicted and measured ullage pressure starting at approximately 65.5 seconds into the flight and reaching a maximum value between 72 and 72.9 seconds. This discrepancy could have been caused by a hydrogen gas leak or by a liquied hydrogen leak that occurred either in the pressurization system or in the external tank. The corresponding leak rates over the time interval from 65.5 to 72.9 seconds were estimated to range from 0.28 kg/s (0.62 lbm/s) + or - 41 percent to between 0.43 and 0.51kg/s (0.94 and 1.12lbs/s) + or - 1 percent for a gas leak and from 72.9 kg/s (160.5 lbs/s) + or - 41 percent to between 111.6 and 133.2 kg/s (245.8 and 293.3 lbs/s) + or - 1 percent for a liquid leak. No speculation is made to ascertain whether the leak is liquid or gas, as this cannot be determined from the analysis performed. Four structural failures in the hydrogen external tank were considered to explain the leak rates. A break in the 5-cm (2 in) pressurization line, in the 13-cm (5 in) vent line, or in the 43-cm (17 in) feedline is not likely. A break in the 10-cm (4 in) recirculation line with a larger structural failure occurring in the 72 to 73-second time period, the time of the visibly identified premature pressure decay, does seem plausible and the most likely of the four modes considered. These modes are not all-inclusive and do not preclude the possibility of a leak elsewhere in the tank.

  2. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    Science.gov (United States)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  3. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  4. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  5. Origin and development of ablator for Space Shuttle external tank

    Science.gov (United States)

    Ronquillo, L.

    1985-01-01

    The Space Shuttle External Tank (ET) represents the largest element of the Space Shuttle transportation system. The ET is the fuel tank which contains cryogenic propellants, including liquid oxygen and liquid hydrogen. The task of providing a suitable Thermal Protection System (TPS) which is mass producible for the ET represented a challenge for the aerospace industry. The difficulties were compounded by stringent insulation and ablation requirements for the materials to maintain their integrity over a wide range of operating temperatures during prelaunch and ascent. Attention is given to the configuration of the Space Shuttle system, the configuration of the external tank, the initial ET TPS concept, TPS materials and processes concepts, design rationale, TPS materials structural considerations, material and processes development, development tests, material/process verification, and flight results.

  6. External Tank CIL Closed Loop Verification System

    Science.gov (United States)

    Hartley, Eugene A., Jr.

    2005-01-01

    Lockheed Martin was requested to develop a closed loop CIL system following the Challenger accident. The system that was developed has proven to be very robust with minimal problems since implementation, having zero escapes in the last 7 years (27 External Tanks). We are currently investigating expansion of the CIL Closed Loop system to include "MI" CILs.

  7. External Tank Program - Legacy of Success

    Science.gov (United States)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir

  8. Permeation Barrier for Lightweight Liquid Hydrogen Tanks

    OpenAIRE

    Schultheiß, Daniel

    2007-01-01

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the ins...

  9. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  10. Permeation barrier for lightweight liquid hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, D.

    2007-04-16

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the insulating vacuum. The derived objective of this dissertation was to find and apply an adequate permeation barrier (liner) on CFRP. The investigated liners were either foils adhered on CFRP specimens or coatings deposited on CFRP specimens. The coatings were produced by means of thermal spraying, metal plating or physical vapor deposition (PVD). The materials of the liners included Al, Au, Cu, Ni and Sn as well as stainless steel and diamond-like carbon. The produced liners were tested for their permeation behavior, thermal shock resistance and adherence to the CFRP substrate. Additionally, SEM micrographs were used to characterize and qualify the liners. The foils, although being a good permeation barrier, adhered weakly to the substrate. Furthermore, leak-free joining of foil segments is a challenge still to be solved. The metal plating liners exhibited the best properties. For instance, no permeation could be detected through a 50 {mu}m thick Cu coating within the accuracy of the measuring apparatus. This corresponds to a reduction of the permeation gas flow by more than factor 7400 compared to uncoated CFRP. In addition, the metal platings revealed a high adherence and thermal shock resistance. The coatings produced by means of thermal spraying and PVD did not show a sufficient permeation barrier effect. After having investigated the specimens, a 170 liter CFRP tank was fully coated with 50 {mu}m Cu by means of metal plating. (orig.)

  11. Vehicular hydrogen storage using lightweight tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Weisberg, A H; Myers, B

    2000-07-22

    Lightweight hydrogen storage for vehicles is enabled by adopting and adapting aerospace tankage technology. The weight, volume, and cost are already acceptable and improving. Prototype tankage was demonstrated with 11.3% hydrogen by weight, 1.74 million inch (44.3 km) burst performance factor (P{sub b}V/W), and 3.77 kWh/kg specific energy for the tank and hydrogen (LHV). DOE cannot afford full scale aerospace development costs. For example, it costs many tens of $M to develop a rocket motor casing with a safety factor (SF) of 1.25. Large teams of experts are required to design, develop, and test new processes. Car companies are buying existing technology with only modest investments in research and development (R&D). The Lawrence Livermore National Laboratory (LLNL) team is maximizing the leverage from DOE funding by joining with industry to solve technical risks at the component level. LLNL is developing fabrication processes with IMPCO Technologies, Thiokol Propulsion, and Aero Tec Laboratories (ATL). LLNL is creating commercial products that are close to adoption under DOE solicitation. LLNL is breaking ground to achieve greater than 10% hydrogen by weight tankage with safety that exceeds the requirements of NGV2 standards modified for hydrogen. Risk reduction is proceeding along three axes: (1) Commercializable products will be available next year with {approx}90% confidence; (2) R&D progress is pushing the envelope in lightweight tankage for vehicles; and (3) Integration challenges are being met with partners in industry and DOE demo programs. This project is a key part of LLNL's effort to develop high cycle life energy storage systems with >600 Wh/kg specific energy for various applications, including: high altitude long endurance solar rechargeable aircraft, zero emission vehicles, hybrid energy storage/propulsion systems for spacecraft, energy storage for premium power, remote power sources, and peak shaving.

  12. Hydrogen Peroxide Storage in Small Sealed Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  13. 76 FR 14643 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Science.gov (United States)

    2011-03-17

    ...: Safety Requirements for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY... external product piping (wetlines) on a cargo tank motor vehicle (CTMV) unless the CTMV is equipped with... National Tank Truck Carriers, Inc., and the Tank Truck Manufacturers Association requesting an extension...

  14. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  15. 76 FR 4847 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Science.gov (United States)

    2011-01-27

    ...: Safety Requirements for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY... flammable liquids in unprotected external product piping on DOT specification cargo tank motor vehicles. If... specification cargo tank motor vehicle (CTMV), unless the vehicle is equipped with bottom damage...

  16. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  17. Thermal design of the Space Shuttle External Tank

    Science.gov (United States)

    Warmbrod, J. D.; Vaniman, J. L.; Elam, B. F.

    1981-01-01

    The history of the engineering and manufacturing requirements leading to the final Thermal Protection System (TPS) for the External Tank (ET) is presented. The thermal design for the ET must be optimized, based on considerations of cost, weight, and application of the TPS. The significant thermal requirements include the structural and component temperature limits, the propellant quality, the minimization of ice and frost, no air liquefaction, and no film boiling. The TPS materials selected to meet the requirements are a low density closed cell foam (CPR-488) and two light-weight ablators (SLA-56 and MA-25s). The first four flights of the Space Shuttle (1981) will measure and evaluate external environmental, structural, propulsion, electrical, and engine performance data. The ET will be instrumented to measure acoustics, pressures, heat transfer, vibration, temperatures, and structural strains. TPS weight reductions are planned for future ETs through the use of a comprehensive thermal instrumentation system.

  18. CFD simulations of filling and emptying of hydrogen tanks

    OpenAIRE

    MELIDEO DANIELE; BARALDI DANIELE; ACOSTA IBORRA BEATRIZ; ORTIZ CEBOLLA RAFAEL; MORETTO PIETRO

    2016-01-01

    During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from 40 C to 85 C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the...

  19. Prediction of pressurant mass requirements for axisymmetric liquid hydrogen tanks

    Science.gov (United States)

    Vandresar, N. T.

    1995-01-01

    Experimental data from several test series are compared to an existing correlation that predicts the amount of pressurant gas mass required to expel liquid hydrogen from axisymmetric tanks. It was necessary to use an alternate definition of the tank equivalent diameter to accommodate thermal mass in the tank wall that is initially warm and to accommodate liquid residuals in the tank after expulsion is stopped. With this modification, the existing correlation predicted mass requirements to within 14 percent of experimental results. Revision of the correlation constants using a nonlinear least-squares fit of the current experimental data has a minor effect, thus supporting the validity of the original correlation's form, its fitted constants, and the alternate definition of the tank equivalent diameter.

  20. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    Science.gov (United States)

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered.

  1. At Launch Pad 39B, the external tank mated to Space Shuttle Discovery shows damage from hail

    Science.gov (United States)

    1999-01-01

    A hole, created by recent hail storms, is identified as number one on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m.

  2. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  3. The External Calibrator for Hydrogen Observatories

    CERN Document Server

    Jacobs, Daniel C; Bowman, Judd; Neben, Abraham R; Stinnett, Benjamin; Turner, Lauren

    2016-01-01

    Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21cm hydrogen line across the redshift spectrum, from nearby to z=25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work has focused on model verification and does not address the need of 21cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles and co...

  4. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  5. Mixing and transient interface condensation of a liquid hydrogen tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  6. Pressurization and expulsion of a flightweight liquid hydrogen tank

    Science.gov (United States)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  7. In-tank hydrogen-ferric ion recombination

    Science.gov (United States)

    Selverston, S.; Savinell, R. F.; Wainright, J. S.

    2016-08-01

    An H2sbnd Fe3+ recombination method is being developed for all-iron flow batteries. Working principles are described and a proof-of-concept in-tank reactor is demonstrated. A membrane-less galvanic reactor is characterized using potential, polarization and impedance measurements at hydrogen partial pressures ranging from 0.3 to 11.3 psig. Through a vertical reactor geometry, hydrogen recombination rates of up to 60 mA cm-2 were measured at PH2 = 4.5 psig for a reactor with a platinum loading of 3.2 mg cm-2, based on the geometric catalyzed area. This is equivalent to over 375 mA cm-2 with respect to the cross sectional area of the reactor at the waterline. This rate is sufficient that the reactor will readily fit inside the positive reservoir of a flow battery. The reactor was found to be resistant to degradation by flooding or catalyst loss.

  8. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Thanh [Argonne National Lab. (ANL), Argonne, IL (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K [Argonne National Lab. (ANL), Argonne, IL (United States); Kromer, Matt [TIAX LLC, Lexington, MA (United States); Lasher, Stephen [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Law, Karen [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  9. Global Response of the Space Shuttle External Tank with the Presence of Intertank Stringer Cracks and Radius Blocks

    Science.gov (United States)

    Lovejoy, Andrew E.; Rankin, Charles C.

    2013-01-01

    After propellant was loaded into the external tank (ET), the November 5, 2010 launch of Space Shuttle mission STS-133 was scrubbed due to a gaseous hydrogen leak located in a vent line near the ground umbilical and ET connection. Subsequent visual inspections identified cracks in the sprayed-on foam insulation in the forward end of the ET intertank segment, adjacent to the liquid oxygen (LOX) tank, as shown in Figure 1. These cracks necessitated repair of the foam due to debris concerns that violated launch constraints. As part of the repair process, the affected foam was removed to reveal cracks in the underlying external hat stiffeners on the intertank, as shown in Figure 2. Ultimately, five stiffeners were discovered to be cracked adjacent to the LOX tank. As the managing center for the ET Project, NASA Marshall Space Flight Center (MSFC) coordinated failure investigation and repair activities among multiple organizations, which included the ET prime contractor (Lockheed Martin Space Systems Michoud Operations), the Space Shuttle Program Office at the NASA Johnson Space Center (JSC), the NASA Kennedy Space Center (KSC), and the NASA Engineering and Safety Center (NESC). STS-133 utilized the external tank designated as ET-137. Many aspects of the investigation have been reported previously in Refs. 1-7, which focus on the root cause of the failures, the flight readiness rationale and the local analyses of the stringer failures and repair. This paper summarizes the global analyses that were conducted on ET-137 as part of the NESC effort during the investigation, which was conducted primarily to determine if the repairs that were introduced to the stringers would alter the global response of the ET. In the process of the investigation, a new STAGS tabular input capability was developed to more easily introduce the aerodynamic pressure loads using a method that could easily be extended to incorporate finite element property data such as skin and stiffener

  10. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft

    Science.gov (United States)

    Mills, Gary L.; Buchholtz, Brian; Olsen, Al

    2012-06-01

    Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells, turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However, the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper, we report on the design, fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry, tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked, helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

  11. Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Janot, R. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France); Latroche, M. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)]. E-mail: michel.latroche@iscsa.cnrs.fr; Percheron-Guegan, A. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)

    2005-11-25

    This study is focused on the development of a hydrogen absorbing Zr{sub 2}Fe layer in the outer shell of high pressure (70 MPa) hydrogen storage tanks. This layer aims to absorb hydrogen coming from micro-cracks, as those formed by hydrogen embrittlement of the aluminium liner. A multi-phased Zr{sub 2}Fe alloy prepared by induction melting presents a very fast absorption kinetic and a maximum absorption capacity of about 1.8 wt.%. The volume expansion upon hydrogen absorption reaches 19% and is very anisotropic. The good resistance to contamination of the Zr{sub 2}Fe alloy is also demonstrated, since the absorption kinetic remains very fast after heating in air at 150 deg. C with the carbon fiber-epoxy resin composite used for the reinforcement of the high pressure storage vessel. Moreover, Zr{sub 2}Fe ribbons can be prepared by melt-spinning. An annealing treatment above the recrystallization temperature of the amorphous phase (around 410 deg. C) is needed to obtain hydrogen absorption rate similar to that of induction-melted Zr{sub 2}Fe alloy. However, the annealing leads to the limitation of the hydrogen capacity to 1.2 wt.%, due to the occurrence of an absorption-disproportionation phenomenon.

  12. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    Science.gov (United States)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  13. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  14. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  15. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    Science.gov (United States)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  16. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  17. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  18. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    Science.gov (United States)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  19. Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, W.E., Westinghouse Hanford

    1996-09-03

    This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  20. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    Science.gov (United States)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  1. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    Science.gov (United States)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  2. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  3. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  4. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  5. Poly stock project: development and studies on new Type IV tanks for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Barral, K.; Hembert, C.; Gerard, J. F.; Mazabraud, P.

    2005-07-01

    The Project Polystock (2003-2005) project aimed at developing new type IV tanks compatible with H2 use and at studying hydrogen fast compression in tanks. It was sponsored by the French Network PACo and partly financed by the French Research Ministry (MENSR). This paper deals mainly with the liner developments and tank qualification, but results on fast filling will be mentioned. For example, a short time calculation fast filling modelling tool was developed for type III and type IV composite pressure tanks and validated up to 350 bar with hydrogen. This modelling tool allows us to compare fast filling for various scenario : high ambient temperature / type of the tank / 350 or 7800 bar filling.... Within the Polystock project, liner polymeric materials were developed with a view to having a low permeability to hydrogen, good mechanical properties and low process cost. These three parameters : specific H2 performance / type IV tank viability / tank final cost, were determined as being essential for type IV tank liner development. Many polymeric materials were studied : polyethylene, polyamide 6, EVOH multi-layers, nanoclay-doped polymers Mechanic and permeability behaviours were characterized and materials were screened. For instance, it appeared that EVOH multi-layers were very good material towards permeation ; on the other hand, industrial process-ability was not cost efficient and this polymeric material becomes brittle at low temperature, which is not compatible with a H2 Energy tank application. A novel rotomolding process, named reactive rotomolding, was developed for the polyamide liner. Polyamide material, depending on the grade, can have good performance for both mechanical and permeation properties. Compared to the standard melt rotomolding, the reactive rotomolding allows an easier automation of the industrial rotomolding step, and opens the perspective of decreasing the liner manufacturing time by a factor 5 to 10, whence the final liner cost. This

  6. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    Science.gov (United States)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  7. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  8. First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories

    Science.gov (United States)

    Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David

    2017-03-01

    Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ∼1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.

  9. Repair work begins on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    United Space Alliance technician Don Pataky repairs one of the hail-created divots in the foam insulation on the external tank of Space Shuttle Discovery. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  10. Repair work continues on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    In the Vehicle Assembly Building (VAB), United Space Alliance technician Robert Williams sands the repaired areas near the top of Space Shuttle Discovery's external tank. Repairs were required for damage caused by hail during recent storms. Because access to all of the damaged areas was not possible at the pad, the Shuttle was rolled back from Pad 39B to the VAB. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  11. Repair work begins on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    Standing inside a protective tent around the external tank of Space Shuttle Discovery in the Vehicle Assembly Building (VAB), United Space Alliance technician Don Pataky repairs divots caused by hail storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- shared experiment.

  12. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  13. Power Reactant Storage Assembly (PRSA) (Space Shuttle). PRSA hydrogen and oxygen DVT tank refurbishment

    Science.gov (United States)

    1993-07-01

    The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.

  14. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  15. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  16. Hydrogen gas filling into an actual tank at high pressure and optimization of its thermal characteristics

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Monde, Masanori; Setoguchi, Toshiaki

    2009-09-01

    Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Different types of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typically carbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminum lined vessel is easy to construct and posses high thermal conductivity compared to other commercially available vessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore, nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vessel has an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and in increasing the strength, it is also necessary to keep the material temperature below 85 °C for maintaining stringent safety requirements. While filling process occurs, the temperature can be exceeded due to the compression works of the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of the critical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogen filling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed for optimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representative vessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.

  17. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    Science.gov (United States)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  18. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  19. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  20. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  1. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  2. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  3. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  4. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    Science.gov (United States)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  5. IRIS Toxicological Review of Hydrogen Cyanide (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hydrogen cyanide and cyanide salts that will appear on the Integrated Risk Information System (IRIS) database.

  6. IRIS Toxicological Review of Hydrogen Cyanide (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hydrogen cyanide and cyanide salts that will appear on the Integrated Risk Information System (IRIS) database.

  7. Robot-arm-based NDE of hydrogen fuel tank using a 3D-movable HTS-SQUID gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y; Hayashi, K; Tanaka, S [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Tanabe, K, E-mail: hatukade@eco.tut.ac.j [Superconductivity Research Laboratory, ISTEC, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan)

    2010-06-01

    In this study, we constructed a robot-arm-based SQUID-NDE system utilizing a novel HTS-SQUID gradiometer with ramp-edge Josephson junctions for hydrogen fuel tank inspection, and developed an automatic 3D-scanning program. A cylindrical hydrogen fuel tank with a double-layer structure, in which a 3mm-thick Al liner was reinforced by a 3mm-thick carbon-fibre reinforced plastic (CFRP) cover, was prepared. The tank had a 10-mm-long through crack in the Al liner made by pressure cycle test. To inspect the tank using the SQUID-NDE system, we adopted a low-frequency eddy current technique that enables to excite deep part in the Al liner. By applying an excitation field of 7.5 {mu}T at 0.4 to 10 kHz to the tank from a double-D coil, the tank was scanned by the system while moving the HTS-SQUID gradiometer along curved surface of the tank in magnetically unshielded environment. Magnetic responses from the deep-lying crack in the tank were successfully detected by the system.

  8. External-field shifts in precision spectroscopy of hydrogen molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [INRNE, Bulgarian Academy of Sciences (Bulgaria); Korobov, Vladimir [Joint Institute for Nuclear Research (Russian Federation); Schiller, Stephan [Heinrich-Heine-Universitat Dusseldorf, Institut fur Experimentalphysik (Germany)

    2015-08-15

    The Effective Hamiltonian of the hydrogen molecular ions is a convenient tool for the evaluation of the shift of the energy levels of the ro-vibrational states and the frequencies of the transitions between them, due to external electric and magnetic fields. Using the Effective Hamiltonian, composite frequencies of suppressed susceptibility to external fields are constructed.

  9. Removal of Hydrogen Sulfide from Septic Tank by Vermicomposting Bio Filter

    Directory of Open Access Journals (Sweden)

    Abdol Kazem Neisi

    2016-09-01

    Full Text Available Background & Aims of the Study: Hydrogen sulfide (H2S is a colorless and highly toxic, easily dissolved in water, flammable and explosive gas. Hydrogen sulfide gas is the main cause of odor emissions from municipal sewage plants. One method for removal of hydrogen sulfide gas is the use of biological systems, biofilter. The aim of this study was to survey removal hydrogen sulfide provide in septic tank by vermicomposting biofilter. Materials and Methods: In this study pilot-scale biofilter has been made of bed vermicompost and wood trash. To survey biofilter performance under real condition, the pilot installed in one wastewater pumping station of Ahwaz city, Iran. The study was carried out over 80 days. Inlet and outlet H2S concentration were measured on regular basis. To provide an optimal condition for bacterial growth, moisture was adjusted between 40% and 60% throughout the experiment. Results: Results showed that H2S concentration emitted from the pumping station during the study varied greatly between 33 and 54ppm .The maximum adsorption capacity of the biological bedding was recorded at 22.4 g/m3.hr and the mean efficiency of H2S removal account the startup time was 89.31% .The mean performance efficiency during the biological activity after the startup was recorded at 96.88%. Conclusion: use up biofilter with vermicompost bed and woodchip is an economic method for H2S removal of septic tanks. Removal efficiency of more than 96% is expected with this method.

  10. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, W.E. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1996-05-02

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  11. Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the Columbia Accident Investigation

    Science.gov (United States)

    Wingard, Charles D.

    2004-01-01

    NASA suffered the loss of the seven-member crew of the Space Shuttle Columbia on February 1, 2003 when the vehicle broke apart upon re-entry to the Earth's atmosphere. The final report of the Columbia Accident Investigation Board (CAIB) determined that the accident was caused by a launch ascent incident-a suitcase-sized chunk of insulating foam on the Shuttle's External Tank (ET) broke off, and moving at almost 500 mph, struck an area of the leading edge of the Shuttle s left wing. As a result, one or more of the protective Reinforced Carbon-Carbon (RCC) panels on the wing leading edge were damaged. Upon re-entry, superheated air approaching 3,000 F breached the wing damage and caused the vehicle breakup and loss of crew. The large chunk of insulating foam that broke off during the Columbia launch was determined to come from the so-called bipod ramp area where the Shuttle s orbiter (containing crew) is attached to the ET. Underneath the foam in the bipod ramp area is a layer of TPS that is a cork-filled silicone rubber composite. In March 2003, the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama received cured samples of the foam and composite for testing from the Michoud Assembly Facility (MAF) in New Orleans, Louisiana. The MAF is where the Shuttle's ET is manufactured. The foam and composite TPS materials for the ET have been well characterized for mechanical property data at the super-cold temperatures of the liquid oxygen and hydrogen fuels used in the ET. However, modulus data on these materials is not as well characterized. The TA Instruments 2980 Dynamic Mechanical Analyzer (DMA) was used to determine the modulus of the two TPS materials over a range of -145 to 95 C in the dual cantilever bending mode. Multi-strain, fixed frequency DMA tests were followed by multi-frequency, fixed strain tests to determine the approximate bounds of linear viscoelastic behavior for the two materials. Additional information is included in the original extended

  12. Changes of Water Hydrogen Bond Network with Different Externalities

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2015-04-01

    Full Text Available It is crucial to uncover the mystery of water cluster and structural motif to have an insight into the abundant anomalies bound to water. In this context, the analysis of influence factors is an alternative way to shed light on the nature of water clusters. Water structure has been tentatively explained within different frameworks of structural models. Based on comprehensive analysis and summary of the studies on the response of water to four externalities (i.e., temperature, pressure, solutes and external fields, the changing trends of water structure and a deduced intrinsic structural motif are put forward in this work. The variations in physicochemical and biological effects of water induced by each externality are also discussed to emphasize the role of water in our daily life. On this basis, the underlying problems that need to be further studied are formulated by pointing out the limitations attached to current study techniques and to outline prominent studies that have come up recently.

  13. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Science, University of Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Tee Liang, David [Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, RO (China); Jiang, Wen-Ju [Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2007-12-15

    An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36-0.41 mol-H{sub 2}/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H{sub 2}/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR. (author)

  14. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  15. Regulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chong; Ma, Kun; Xing, Xin-Hui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    Experiments involving the addition of external nicotinamide adenine dinucleotide, reduced form (NADH) or nicotinamide adenine dinucleotide (NAD{sup +}) have been designed to examine how the hydrogen in Enterobacter aerogenes is liberated by NADH or NAD{sup +}. The addition of external NADH or NAD{sup +} was found to regulate hydrogen production by E. aerogenes in resting cells, batch cultures, and chemostat cultures. Particularly in chemostat cultivation, with the external addition of NADH, hydrogen production via the NADH pathway was decreased, while that via the formate pathway was increased; in the end, the overall hydrogen p was decreased. The addition of NAD{sup +}, on the other hand, gave the opposite results. The membrane-bound hydrogenase was found to play a central role in regulating hydrogen production. The occurrence of NADH oxidation (NAD{sup +} reduction) on the cell membrane resulted in an electron flow across the membrane; this changed the oxidation state and metabolic pattern of the cells, which eventually affected the hydrogen evolution. (author)

  16. Liquid hydrogen bubble chamber (diam. 30 cm), seen here being inserted into its vacuum tank

    CERN Multimedia

    CERN PhotoLab

    1959-01-01

    In the 1950s and 1960s, bubble and spark chambers were the dominant experimental tools in high-energy physics. While spark chambers were usually built and fitted to specific experiments, bubble chambers were constructed as general purpose devices that could be used for a variety of experiments. At CERN, the bubble chamber programme started under Charles Peyrou in the late 1950s. The first of CERN's bubble chambers, a 30 cm hydrogen chamber, is seen here being inserted into its vacuum tank. The HBC30, as it was called, took its first beam from the SC in 1959. One of the first pictures taken, of a positive pion-proton interaction, began a long series of pretty images for which bubble chambers would become famous. When it stopped operating in spring 1962, the HBC30 had consumed 150 km of film in its 3 years of operation.

  17. A model to predict the permeation of type IV hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Julien; Perreux, Dominique; Chapelle, David; Thiebaud, Frederic [MaHyTec, Dole (France); Nardin, Philippe [Franche Comte Univ. (France)

    2010-07-01

    In the frame of the certification process of the type IV hydrogen storage tanks MaHyTec aims to manufacture, this innovative SME is developing a numerical model dedicated to the study of permeation issues. Such an approach aims at avoiding complicated, time-consuming and expensive testing. Experimental results obtained under real conditions can moreover be significantly influenced by the scattering of material properties and liner dimensions. From simple testing on small-size flat membranes, the model allows to predict the gas diffusion flow through the whole structure by means of numerous parameters. On every step, theory can be compared with the results obtained from the samples. This document presents a brief review of the mathematical theory describing gas diffusion and the different aspects of the study for better understanding the proposed approach. (orig.)

  18. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    Science.gov (United States)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  19. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  20. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage

    NARCIS (Netherlands)

    Tapeinos, I.; Koussios, S.; Groves, R.M.

    2015-01-01

    This paper outlines the structural performance of a conformable pressurizable tank consisting of intersecting spherical shells (multi-cell tank). Multi-cell tanks outrival conventional multiple cylindrical tanks in volumetric efficiency when required to fit in a rectangular envelope in the

  1. A REVIEW: THE EFFECT OF OPERATING CONDITIONS AND THERMAL MANAGEMENT ON THE PERFORMANCES OF METAL HYDRIDE HYDROGEN STORAGE TANK

    Directory of Open Access Journals (Sweden)

    Taurista Perdana Syawitri

    2016-12-01

    Full Text Available For safety and operability concerns, the use of metal hydrides to store hydrogen appears to be particularly promising option for alternative energy at present. However, the process of adding, removing and distributing heat during the hydrogen charging/ discharging process is problematic due to the poor effective thermal conductivity of the metal hydride porous bed and the high enthalpies of H2 adsorption/desorption. Therefore, heat transfer is a critical factor affecting the performance of metal hydride hydrogen (MHR storage tanks. Over decade, many researches focused on MHR’s operating conditions and its thermal management to improve its performance.

  2. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  3. Structural arrangement trade study. Volume 3: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Addendum

    Science.gov (United States)

    1995-01-01

    This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.

  4. Final Report: Research Study on Development of Environmental Friendly Spray-on Foam Insulation (SOFI) for the External Tank (ET)

    Science.gov (United States)

    Stuckey, James M.

    1996-01-01

    The selection and quantification of four foams using a more environmentally friendly HCFC-141b blowing agent replacing foams that used the CFC-11 blowing agent for the external tank (ET) LWT has been addressed along with problems and solutions that were encountered during verification. The effort on two lower density spray foams for the ET SLWT are presented, but predicted weight savings were not encouraging. Suggestions for possible problem solving are included along with a new approach for selecting foams for qualification as back-up foams for the foams used on the ET LWT. We investigated three resins for use as thermally sprayed coatings for corrosion prevention on metal. The best coating was obtained with a thermoplastic polyimide resin. This coating has a good chance of meeting ET requirements. Possible third generation blowing agents have been shown usable in polyurethane spray and pour foams, and solubility in isocyannate foam components are acceptable. We considered aerogels as insulation materials on space vehicles, and suggested a liner for a liquid oxygen (LOX) composite tank.

  5. Stochastic resonance in the presence or absence of external signal in the continuous stirred tank reactor system

    Science.gov (United States)

    Hou, Zhonghuai; Xin, Houwen

    1999-07-01

    A two variable model, which has been proposed to describe a first-order, exothermic, irreversible reaction A→B carried out in a continuous stirred tank reactor (CSTR), is investigated when the control parameter is modulated by random and/or periodic forces. Within the bistable region where a limit cycle and a stable node coexist, stochastic resonance (SR) is observed when both random and periodic modulations are present. In the absence of periodic external signal noise induced coherent oscillations (NICO) appear when the control parameter is randomly modulated near the supercritical Hopf bifurcation point. In addition, the NICO-strength goes through a maximum with the increment of the noise intensity, characteristic for the occurrence of internal signal stochastic resonance (ISSR).

  6. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  7. Electromagnetically induced transparency in a spherical quantum dot with hydrogenic impurity in the external magnetic field

    Science.gov (United States)

    Pavlović, Vladan; Stevanović, Ljiljana

    2016-04-01

    In this paper we analyzed the realization of the electromagnetically induced transparency (EIT) effect in the spherical quantum dot with on-center hydrogenic impurity under the influence of the external magnetic field. Three energy levels of hydrogen impurity 1s0, 2p-1, and 3d-2, together with the probe and control laser fields, which induce σ- transitions between the given states, form a ladder configuration. Optical Bloch equations for such a system are solved in a stationary regime. Dependence of the susceptibility for such a system on the Rabi frequency of the control field, intensity of the external magnetic field, detuning of the control field, and decay rates coefficients are then discussed in detail. Finally, the explanation in dressed state picture is given.

  8. Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment

    Science.gov (United States)

    Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.

    2009-01-01

    Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.

  9. Structural Arrangement Trade Study. Volume 1: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Executive summary

    Science.gov (United States)

    1995-01-01

    This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.

  10. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    Science.gov (United States)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  11. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    OpenAIRE

    Essadki, Abdel Hafid; Gourich, Bouchaib; Vial, Christophe; Delmas, Henri; Bennajah, Mounir

    2009-01-01

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency...

  12. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    Science.gov (United States)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  13. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  14. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control.

  15. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    Science.gov (United States)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  16. [FHF]−—The Strongest Hydrogen Bond under the Influence of External Interactions

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2015-12-01

    Full Text Available A search through the Cambridge Structural Database (CSD for crystal structures containing the [FHF]− anion was carried out. Forty five hydrogen bifluoride structures were found mainly with the H-atom moved from the mid-point of the F…F distance. However several [FHF]− systems characterized by D∞h symmetry were found, the same as this anion possesses in the gas phase. The analysis of CSD results as well as the analysis of results of ab initio calculations on the complexes of [FHF]− with Lewis acid moieties show that the movement of the H-atom from the central position depends on the strength of interaction of this anion with external species. The analysis of the electron charge density distribution in complexes of [FHF]− was performed with the use of the Quantum Theory of Atoms in Molecules (QTAIM approach and the Natural Bond Orbitals (NBO method.

  17. Effect of external pressure environment on the internal noise level due to a source inside a cylindrical tank

    Science.gov (United States)

    Clevenson, S. A.; Roussos, L. A.

    1984-01-01

    A small cylindrical tank was used to study the effect on the noise environment within a tank of conditions of atmospheric (sea level) pressure or vacuum environments on the exterior. Experimentally determined absorption coefficients were used to calculate transmission loss, transmissibility coefficients and the sound pressure (noise) level differences in the interior. The noise level differences were also measured directly for the two exterior environments and compared to various analytical approximations with limited agreement. Trend study curves indicated that if the tank transmission loss is above 25 dB, the difference in interior noise level between the vacuum and ambient pressure conditions are less than 2 dB.

  18. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    Science.gov (United States)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  19. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  20. Stress Analysis and Testing at the Marshall Space Flight Center to Study Cause and Corrective Action of Space Shuttle External Tank Stringer Failures

    Science.gov (United States)

    Wingate, Robert J.

    2012-01-01

    After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.

  1. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    for each storage solution investigated in this work. Attention is given to solutions that involve high-pressure solid-state and gas hydrogen storage with an integrated passive cooling system. A set of libraries is implemented in the modeling platform to select among different material compositions, kinetic......Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...

  2. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  3. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (pressures; (ii) comparison of the forklift performances during heavy-duty operation when changing the powering in the series: standard battery - fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  4. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  5. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  6. 卧式液氢贮罐内温度分层数值模拟%NUMERICAL SIMULATION OF THERMAL STRATIFICATION PHENOMENON IN LIQUID HYDROGEN HORIZONTAL STORAGE TANK

    Institute of Scientific and Technical Information of China (English)

    王天祥; 陈虹; 雷刚; 李爱华

    2012-01-01

    A numerical study was performed for physical field of liquid hydrogen horizontal tank based on CFD technique and the distribution of temperature field, velocity field and tank pressure changes were depicted. The appearance and cause of thermal stratification phenomenon were analyzed. It is found that heat transfer of liquid hydrogen is convection and the convection boundary layer was formed between the tank wall and the hydrogen liquid. The thermal stratification appeared along the gravity direction, and the profile of the liquid hydrogen is Gauss probability curve. The flow in the tank is a unsteady and the location of vortexes changed continually. The self-pressurization phenomenon of the tank is obvious and the curve of the self-pressurization is nonlinear.%实验采用CFD技术,通过对静置卧式液氢贮罐内部物理场数值模拟,揭示了卧式贮罐内部温度场、速度场的分布规律以及气枕压力变化情况,分析了液氢温度分层形成的过程及原因.研究表明,卧式贮罐内液氢区域的传热方式为自然对流,自然对流边界层覆盖整个与液氢接触的贮罐壁面.在贮罐竖直方向上存在温度分层,液氢温度分布近似于高斯概率曲线.贮罐内部流动是一个不稳定状态,涡旋的位置也在不断变化.静置卧式液氢贮罐自生增压现象较为明显,压力增长曲线为非线性.

  7. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  8. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  9. Direct synthesis of sorbitol and glycerol from cellulose over ionic Ru/magnetite nanoparticles in the absence of external hydrogen.

    Science.gov (United States)

    Negoi, Alina; Trotus, Ioan Teodor; Mamula Steiner, Olimpia; Tudorache, Madalina; Kuncser, Victor; Macovei, Dan; Parvulescu, Vasile I; Coman, Simona M

    2013-11-01

    A sweet catalyst: A catalyst formed of Ru/functionalized silica-coated magnetite nanoparticles is highly efficient in the one-pot production of sorbitol and glycerol, starting from cellulose and in the absence of an external hydrogen source. The ease of recoverability of the catalyst from the solid residues, and its reuse without loss of activity or selectivity for several runs, is an important green element of the process.

  10. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  11. Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions

    Science.gov (United States)

    Osipov, Viatcheslav; Muratov, Cyrill; Hafiychuk, Halyna; Ponizovskya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

    2011-01-01

    We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents.

  12. Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions

    CERN Document Server

    Osipov, Viatcheslav; Hafiychuk, Halyna; Ponizovskaya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

    2010-01-01

    We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI ...

  13. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu

    Science.gov (United States)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-09-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  14. Impact Testing on Reinforced Carbon-Carbon Flat Panels With BX-265 and PDL-1034 External Tank Foam for the Space Shuttle Return to Flight Program

    Science.gov (United States)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.

  15. Causes and Countermeasures of Hydrogen Knobbing for the Head of Circumfluence Tank in Wet Hydrogen Sulfide Environment%湿硫化氢环境回流罐封头氢鼓包原因分析

    Institute of Scientific and Technical Information of China (English)

    张转连

    2011-01-01

    The cause and influence factors of hydrogen knobbing for inner surface of the head of circumfluence tank were analyzed in the refinery.Appropriate preventive measures have been proposed to prevent a similar situation in wet hydrogen sulfide environment.%通过对某炼油厂生产装置中回流罐进气端封头内表面产生氢鼓包的原因及影响因素的分析,提出了在湿硫化氢环境下防止回流罐产生类似情况的预防措施.

  16. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  17. On the Hydrogen Sulfide Removal Method of the Combined Vacuum Flash Tank%组合式负压闪蒸罐脱硫化氢方法

    Institute of Scientific and Technical Information of China (English)

    秦晓光; 陈玉书; 王蓉; 万攀

    2015-01-01

    为降低物流中的硫化氢的浓度,在源头控制硫化氢污染腐蚀,免于下游管线及设备的腐蚀危险,采用负压闪蒸法脱除物流中的硫化氢气体,创新应用组合式负压闪蒸罐,以达到高效脱除硫化氢和减少设备占地面积的目的;敏感性分析表明,影响负压闪蒸脱硫化氢方法的重要影响因素为硫化氢浓度和物流温度及负压闪蒸的压力选择.%In order to reduce the concentration of hydrogen sulfide in the stream, control hydrogen sulfide pollution corrosion at the source, avoid the corrosion hazard of downstream piping and equipment, the method of vacuum flash is used to remove the hydrogen sulfide gas in the stream.The combined vacuum flash tank is applied to achieve efficient removal of hydrogen sulfide and reducing equipment footprint.The sensitivity analysis show that the important factors impacting negative flash removal method of hydrogen sulfide are the hydrogen sulfide concentration, the stream temperature and the negative pressure selection flashed.

  18. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    Science.gov (United States)

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  19. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater.

    Science.gov (United States)

    Yun, J; Cho, K-S

    2016-12-01

    Microbial community associated with hydrogen production and volatile fatty acids (VFAs) accumulation was characterized in acidogenic hydrogenesis using molasses wastewater as a feedstock. Hydrogen and VFAs production were measured under an organic loading rate (OLR) from 19 to 35 g-COD l(-1)  day(-1) . The active microbial community was analysed using RNA-based massively parallel sequencing technique, and their correlation patterns were analysed using networking analysis. The continuous stirred tank reactor achieved stable hydrogen production at different OLR conditions, and the maximum hydrogen production rate (HPR) was 1·02 L-H2  l(-1)  day(-1) at 31·0 g-COD l(-1)  day(-1) . Butyrate (50%) and acetate (38%) positively increased with increase in OLR. Total VFA production stayed around 7135 mg l(-1) during the operation period. Although Clostridiales and Lactobacillales were relatively abundant, the HPR was positively associated with Pseudomonadaceae and Micrococcineae. Total VFA and acetate, butyrate and propionate concentrations were positively correlated with lactic acid bacteria (LAB) such as Bacillales, Sporolactobacillus and Lactobacillus. The close relationship between Pseudomonadaceae and Micrococcineae, and LAB play important roles for stable hydrogen and VFA production from molasses wastewater. Microbial information on hydrogen and VFA production can be useful to design and operate for acidogenic hydrogenesis using high strength molasses wastewater. © 2016 The Society for Applied Microbiology.

  20. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    Science.gov (United States)

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  1. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  2. Toroidal configuration of the orbit of the electron of the hydrogen atom under strong external magnetic fields

    OpenAIRE

    Aringazin, A. K.

    2002-01-01

    In this paper we overview some results on the hydrogen atom in external static uniform magnetic fields. We focus on the case of very strong magnetic field, B>>B_0=2.3x10^9 Gauss, use various approximate models and, particularly, in the adiabatic approximation have calculated exactly the integral defining the effective potential. This potential appears to be finite at z=0. Our consideration of the problem of highly magnetized atoms and molecules is motivated by the recently developed MagneGas ...

  3. Study on Hydrogen Sensitivity of Ziegler–Natta Catalysts with Novel Cycloalkoxy Silane Compounds as External Electron Donor

    Directory of Open Access Journals (Sweden)

    Hongming Li

    2016-12-01

    Full Text Available Two novel cycloalkoxy silane compounds (ED1 and ED2 were synthesized and used as the external electron donors (EEDs in Ziegler–Natta catalysts with diethyl 2,3-diisopropylsuccinate as internal electron donor. The results indicated that the Ziegler–Natta catalysts using ED1 and ED2 as EEDs had high catalytic activities and good stereoselectivities. The melt flow rate (MFR and gel permeation chromatography (GPC results revealed that the obtained polypropylene has higher MFR and lower average molecular weights than the commercial EED cyclohexyl methyl dimethoxysilane. The differential scanning calorimetry (DSC results indicated that new isospecific active centers formed after the introduction of new external donors. The work implied that the novel EEDs could improve the hydrogen sensitivities of the catalyst system and obtain polymers with high melt flow rate.

  4. 用于外浮顶油罐的BSMF型二次密封%BSMF TYPE SECONDARY SEAL FOR USE IN EXTERNAL FLOATING ROOF OIL TANK

    Institute of Scientific and Technical Information of China (English)

    方小芳; 姚定湘; 刘宗良

    2001-01-01

    石油及其产品在储存过程中的蒸发损耗,不仅造成油品数量的损失和环境污染,还导致油品质量的下降和增加不安全因素,因此对储油罐的密封是人们一直关注的问题。用于外浮顶油罐的二次密封,可以弥补一次密封的不足而使油品蒸发降低,大大减轻油气对环境造成的污染和减小不安全因素,并可保护一次密封免受阳光、雨雪、风沙的影响,从而保证储存油品的质量。%During the process of storage for petroleum and itsproduction,the evaporation loss not only makes the oil quanlity loss and envoriment pollution,but also makes the oil quality decrease and increase the unsafe factors.So the seal of oil tank is a problem with general great interesting.The secondary seal for the use of external floating roof oil tank may remedy the defect of fist seal,and makes oil evaporation decrease,So the envoroment pollution,caused by oil gas,reduces and the unsafe factors decrease.It can protects the first seal against the enfluence of sun light,rain and snow,wind and sand,and secure the quality of storage oil.

  5. Effect of external fields on the energies of hydrogenic donor with the anharmonic confinement potential

    Energy Technology Data Exchange (ETDEWEB)

    Aciksoz, E.; Bayrak, O. [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Soylu, A., E-mail: asimsoylu@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey)

    2015-01-01

    The impurity binding energy in the GaAs−Ga{sub 1−x}Al{sub x}As system is studied with an anharmonic type confinement potential by taking into account the influence of the external electric and magnetic fields within the framework of the effective mass approximation and asymptotic iteration method (AIM). The influence of the external electromagnetic fields and anharmonicity on a donor binding energy is examined systematically. It is shown that the donor binding energy is highly dependent on the external electric and magnetic fields and the confinement potential shapes. Both the electric and magnetic fields are increased, the binding energies increase for each of them. However, the behaviors of increase in the weak and strong fields’ regimes have different character a bit. Furthermore, when the more anharmonicity is considered, the binding energy of donor slightly increases as well.

  6. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    Science.gov (United States)

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  7. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m(3)d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m(3)d) and 32kgCOD/(m(3)d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry.

  8. The Design of Drainage System for External Floating Roof Tank in International Stockpile Project%浅谈国际储备库浮顶排水系统的设计选用

    Institute of Scientific and Technical Information of China (English)

    谭可昕

    2012-01-01

    Large external floating roof storage tank is widely used in petroleum,chemical,civil construction,transportation,metallurgy,national defense and other important fields.Central drainage system is the main accessory for external floating roof tank,its analysis and comparison of structure and type are important for the tank design.The paper summarized the design of central drainage system for external floating roof tank in international stockpile project.%大型外浮顶储罐广泛应用于石油、化工、市政建设、交通、冶金、国防等领域。中央排水系统是外浮顶罐的主要附件,其结构类型的分析和比较是储罐设计中的重要问题。文章综述了在国内一国际储备库项目中,外浮顶罐中央排水系统的设计选用。

  9. 49 CFR 238.223 - Locomotive fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  10. Space Transportation System (STS)-133/External Tank (ET)-137 Intertank (IT) Stringer Cracking Issue and Repair Assessment: Proximate Cause Determination and Material Characterization Study

    Science.gov (United States)

    Piascik, Robert S.

    2011-01-01

    Several cracks were detected in stringers located beneath the foam on the External Tank (ET) following the launch scrub of Space Transportation System (STS)-133 on November 5, 2010. The stringer material was aluminum-lithium (AL-Li) 2090-T83 fabricated from sheets that were nominally 0.064 inches thick. The mechanical properties of the stringer material were known to vary between different material lots, with the stringers from ET-137 (predominately lots 620853 and 620854) having the highest yield and ultimate stresses. Subsequent testing determined that these same lots also had the lowest fracture toughness properties. The NASA Engineering and Safety Center (NESC) supported the Space Shuttle Program (SSP)-led investigation. The objective of this investigation was to develop a database of test results to provide validation for structural analysis models, independently confirm test results obtained from other investigators, and determine the proximate cause of the anomalous low fracture toughness observed in stringer lots 620853 and 620854. This document contains the outcome of the investigation.

  11. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Essadki, A.H., E-mail: essadki@hotmail.com [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Vial, Ch. [Laboratoire de Genie Chimique et Biochimique, LGCB-UBP/ENSCCF, 24 avenue des Landais, BP 206, 63174 Aubiere Cedex (France); Delmas, H. [Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France); Bennajah, M. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France)

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm{sup 2}, but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H{sub 2} microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  12. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor.

    Science.gov (United States)

    Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  13. Preliminary investigations of hydrogen peroxide treatment of selected ornamental fishes and efficacy against external bacteria and parasites in green swordtails.

    Science.gov (United States)

    Russo, Riccardo; Curtis, Eric W; Yanong, Roy P E

    2007-06-01

    The objectives of these preliminary studies were to evaluate the use of hydrogen peroxide (H2O2) for the treatment of selected species of ornamental fishes and its efficacy in treating external bacteria and parasites. In the first part of the study, fish of five species (serpae tetra Hyphessobrycon eques (also known as Serpa tetra H. serpae), tiger barb Puntius tetrazona, blue gourami Trichogaster trichopterus, suckermouth catfish Hypostomus plecostomus, and green swordtail Xiphophorus hellerii) were exposed to H2O2 for 1 h at concentrations between 6 and 34 mg/L or for 24 h at concentrations between 1 and 6 mg/L. The results were species specific: green swordtails tolerated all of the treatments, serpae tetras and tiger barbs were sensitive only to the highest concentration, and mortalities of suckermouth catfish and blue gourami were recorded in every treatment. In the second part of the study, clinically healthy green swordtails and fish infested with external motile rod-shaped bacteria (i.e., Ichthyobodo spp., Trichodina spp., and Gyrodactylus spp.) were treated with several concentrations of H2O2. A single H2O2 treatment of 3.1 mg/L or more for 1 h effectively eliminated external bacteria, concentrations of 6.5 mg/L or more appeared to effectively kill Ichthyobodo spp., and none of the treatments tested was effective against Trichodina spp. or Gyrodactylus spp. These preliminary findings suggest that H2O2 is effective for treating certain external bacterial infections and flagellate infestations in some species of ornamental fish at the dosages tested. Other treatment regimens may need to be tested for effectiveness against Trichodina spp. and Dactylogyrus spp.

  14. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  15. Fundamental study on hydrogen storage with hydrogen absorbing alloys. Operating characteristics of storage tank; Suiso kyuzo gokin wo mochiita suiso chozo ni kansuru kiso kenkyu. Chozo yoki no dosa tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, S.; Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Hydrogen absorption by a hydrogen storage (MH storage) is investigated for static characteristics, with a constant current applied to the hydrogen generator, and dynamic characteristics, with a fluctuating current applied to the same simulating actual insolation. In the experiment, alloy temperature (MH temperature) in the storage and a current for the generator are preset, and then automatic measurement is allowed to proceed at 10-second intervals of the differential pressure, hydrogen temperature in the piping, absolute pressure, MH temperature, room temperature, and water tank temperature. It is found as the result of the experiment that absorption performance is improved when the MH storage is cooled; that the mean absorption rate which is 1 without cooling increases to 1.62 at 7degC; that the mean absorption rate changes in proportion to the applied current (introduced hydrogen flow rate); that the rate which is 1 at 32A decreases to 0.53 that at 16A; that the absorption rate is dependent more on the current applied to the storage than the temperature of the heat exchanging medium; and that, even in the presence of fluctuation halfway in the applied current, the total absorption will be equal to a case of constant current application if the total amount of applied current is equal. 2 refs., 7 figs., 5 tabs.

  16. Understanding composition-property relationships in Ti-Cr-V-Mo alloys for optimisation of hydrogen storage in pressurised tanks.

    Science.gov (United States)

    Callear, Samantha K; Ramirez-Cuesta, Anibal J; Kamazawa, Kazuya; Towata, Shin-ichi; Noritake, Tatsuo; Parker, Stewart F; Jones, Martin O; Sugiyama, Jun; Ishikiriyama, Mamoru; David, William I F

    2014-08-21

    The location of hydrogen within Ti-Cr-V-Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti-Cr-V-Mo alloys is discussed.

  17. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  18. Tanks and Tank Troops

    Science.gov (United States)

    1982-03-01

    operational in the Bundeswehr. These include the well-known U.S. M113 APC, the HS-30 APC, developed by the Swiss company Hispano- Suiza , as well as the...powered by the Leyland L-60 engine, and the French AMX-30, powered by the Hispano- Suiza HS-110 engine. The new Japanese STB-6 tank (ඒ") is...of all foreign series-produced tank engines. A complete tank engine replacement can be performed in four hours. The Hispano- Suiza HS-110 engine

  19. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    Science.gov (United States)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  20. Thiomicrospira hydrogeniphila sp. nov., an aerobic, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a seawater tank containing a block of beef tallow.

    Science.gov (United States)

    Watsuji, Tomo-O; Hada, Emi; Miyazaki, Masayuki; Ichimura, Masako; Takai, Ken

    2016-09-01

    A moderately psychrophilic, aerobic, hydrogen- and sulfur-oxidizing bacterium, designated strain MAS2T, was isolated from a tank containing coastal seawater from Tokyo Bay and a block of beef tallow added as organic material. Growth occurred under aerobic chemolithoautotrophic conditions in the presence of molecular hydrogen, thiosulfate, tetrathionate, elemental sulfur or sulfide as the sole energy source and bicarbonate as a carbon source. The isolate represented a Gram-staining-negative rod with a single polar flagellum and grew in artificial seawater medium with thiosulfate at 2-40 °C (optimum 30 °C). The isolate grew in media with thiosulfate at Na+ concentrations between 30 and 1380 mM (optimum 270 mM). MAS2T possessed C16 : 0, C16 : 1 and C18 : 1 as the major fatty acids. The G+C content of the genomic DNA was 39.6 mol%. The 16S rRNA gene sequence similarity analysis showed that the isolate represented a member of the genus Thiomicrospira within the class Gammaproteobacteria and was most closely related to Thiomicrospira frisia JB-A2T. On the basis of phenotypic and molecular properties, the isolate represents a novel species of the genus Thiomicrospira, for which the name Thiomicrospira hydrogeniphila sp. nov. is proposed (type strain, MAS2T=JCM 30760T=DSM 100274T).

  1. NUMERICAL ANALYSIS FOR HYDRIDING IN METAL HYDRIDE HYDROGEN STORAGE TANK%金属氢化物储氢器吸氢过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    叶建华; 蒋利军; 李志念; 刘晓鹏; 王树茂

    2011-01-01

    Based on the principle of hydride adsorption, a one-dimensional mathematical model for hydriding in a cylindrical metal hydride hydrogen storage tank was established. The heat and mass transfer of metal hydride beds was computed by finite difference method. The variation in temperature and hydrogen concentration at different radial positions of the hydride layer was analyzed during the process of hydriding. The effects of supply pressure, heat convection coefficient and hydride layer radial thickness on the hydriding was studied. It is shown that hydride formation initially takes place uniformly all over the metal hydride layer, but with the process of hydriding, the hydriding rate at the core region is gradually slower than one at surface region. The increase of supply pressure and heat convection coefficient can accelerate the hydriding of the hydrogen storage tank. The effect of hydride layer radial thickness is significant on the hydriding rate, and the thinner hydride layer, the higher the hydriding rate.%基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.

  2. Hydrogen storage container

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  3. Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  4. Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  5. Evaluation of 241 AN tank farm flammable gas behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.

    1994-01-01

    The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

  6. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  7. Tank characterization report for double-shell tank 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, N.E.

    1997-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AN-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated an Hydrogen Watch List tank.)

  8. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Science.gov (United States)

    2010-10-01

    ... FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-17 Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17...

  9. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Lifecycle Verification of Tank Liner Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Smith, Barton [ORNL

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  11. Lifecycle Verification of Tank Liner Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Smith, Barton [ORNL

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  12. 46 CFR 154.452 - External pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false External pressure. 154.452 Section 154.452 Shipping... Independent Tank Type C and Process Pressure Vessels § 154.452 External pressure. The design external pressure...) for tanks without a vacuum relief valve. P2=0, or the pressure relief valve setting for an enclosed...

  13. 46 CFR 64.19 - External pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false External pressure. 64.19 Section 64.19 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.19 External pressure. (a) A tank without a vacuum breaker must be designed to withstand an external pressure of 71/2 psig or more. (b) A tank with a vacuum breaker...

  14. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  15. Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields

    Science.gov (United States)

    Dehyar, A.; Rezaei, G.; Zamani, A.

    2016-10-01

    In the present work, we have investigated the simultaneous effects of external electric and magnetic fields on the energy spectrum of an electron bound to an impurity confined in a spherical quantum dot with Kratzer potential. To this end, energy eigenvalues are obtained using the asymptotic iteration method. The energy dependencies upon the confinement potential and external fields are reported. Our results indicate that the confinement potential, external electric and magnetic fields have a great influence on the energy eigenvalues of the system. We found that, an increase in the magnetic field increases the energy eigenvalues of the states with positive magnetic quantum number, m ≽ 0 . While, the states with negative m decrease, reaching to their minimum values and increase again, with increasing the magnetic field. Moreover, an increase in electric field strength leads to decrease the confinement effects and energy eigenvalues of the system.

  16. Think Tanks

    Science.gov (United States)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  17. Hybrid Composite Cryogenic Tank Structure

    Science.gov (United States)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  18. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    Science.gov (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (Eb) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the Eb can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm(-1) electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H2 molecule when no strain or E-field is applied; however, the absorption increases to five H2 molecules under 15% biaxial strain and six H2 molecules under both 15% biaxial strain combined with a 5.14 V nm(-1)E-field. The average adsorption energies for H2 of BN-(Na-mH2) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H2)4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  19. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure

    Science.gov (United States)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.

  20. Analysis of a weld of an hydrogen tank under pressure: contribution of the nano-indentation for the characterization; Analyse d'une soudure d'un reservoir d'hydrogene sous pression: apport de la nanoindentation pour la caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Russo, C.; Delobelle, P.; Perreux, D. [Laboratoire de Mecanique Appliquee R. Chaleat (LMARC), Institut FEMTO-ST, UFC and CNRS, 25 - Besancon (France); Russo, C.; Munier, E. [CEA Valduc, 21 - Is-sur-Tille (France); Decamps, B. [Institut de Chimie et des Materiaux Paris-Est vient, CNRS, CMTR-ICMPE, 94 - Thiais (France)

    2007-07-01

    This work deals with the size of an hydrogen spherical tank under pressure, composed of two half shell in aluminium alloy AZ5G machined in a forged bar and welded by electrons beam by a circumference. In this work, it is shown what the nano-indentation test can bring here. The influence of the tempering heat treatment after welding, the grains diameter and the loss in alloy elements (Zn and Mg) on the local mechanical properties of the weld bead has been revealed. In the same way, a hardening of the alloy due to the hydrogen penetration and leading to an increase of the dislocations density is observed. (O.M.)

  1. Hydrogen Concentration Distribution Simulation During Severe Accidents in Pressurizer Relief Tank Compartment of NPP Containment%严重事故下安全壳卸压箱隔间氢气浓度场模拟

    Institute of Scientific and Technical Information of China (English)

    郭强; 陈耀东

    2012-01-01

    根据MELCOR程序对全厂断电诱发的严重事故下安全壳内各隔间的氢气浓度分布的计算结果,参考美国联邦法规关于氢气控制和风险分析的标准,分析安全壳内氢气的燃烧风险.结果表明:安全壳内平均氢气浓度不会导致整体性氢气燃烧,但存在局部燃烧的风险.通过CFD程序对氢气浓度较高的卸压箱隔间进行氢气释放和空间气体流动过程的模拟,得到更细致的卸压箱隔间内氢气浓度场分布,给出氢气聚集区域的准确位置,为采取严重事故缓解措施,设计氢复合器布置方案提供了参考依据.%Based on the analysis by MELCOR for hydrogen concentration distributions in compartments of NPP containment during severe accidents which is induced by station blackout, the hydrogen combustion risk was investigated. According to the hydrogen control and risk analysis standard of US, the results show that the average hydrogen concentration will not bring on global deflagration, but local deflagration may occur. By application of CFD code, further simulation of hydrogen release and flow process in pressurizer relief tank compartment was performed. More details of hydrogen distribution and hydrogen accumulation zone were showed. Through the results, some insights were given as references for severe accident mitigation measures and hydrogen recombines arrangement design.

  2. Comparative safety analysis of LNG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  3. LNG储罐外墙温度应力分析及预应力筋设计%Thermal stress analyses on external wall of LNG storage tank and the design of prestressed reinforcement

    Institute of Scientific and Technical Information of China (English)

    程旭东; 朱兴吉

    2012-01-01

    The external wall of large-scale LNG storage tank is mainly built by the prestressed concrete and it has complicated stress distribution and deformation. Based on the introduction to a computing method for the thermal stress of prestressed concrete wall, we deduced computing formulae of the cylindrical wall thermal stress, the prestressed reinforcement of external wall subjected to the temperature difference load and other common loads, and locations of the maximum hoop stress by means of theoretic analyses. Consequently, a optimized scheme for prestessed reinforcement was then given. The results show that the ultra-low temperature liquid in the inner tank will produce a huge thermal stress to the prestressed concrete external wall and the maximum hoop thermal stress can reach up to a half of the tensile strength of concrete, which makes the external wall more dangerous when it is subject to internal pressure. Therefore, the temperature difference load should be considered in the design of the loop prestressed reinforcement. Numerical simulations taken afterwards by applying the automatic dynamic incremental nonlinear analysis (ADINA) finite element software to set up various discrete models of prestessed concrete verified not only the correctness of formulae deduced but also the prestessed reinforcement optimized scheme that makes the stress distribution and deformation of external wall more sound.%大型LNG储罐的外墙一般由预应力混凝土建造,其应力分布及变形比较复杂.在介绍预应力混凝土外墙温度应力计算方法的基础上,采用理论分析的方法,推导出了圆筒形外墙温度应力的计算公式,外墙在温差荷载及其他普通荷载作用下预应力筋的计算公式以及最大环向应力所在位置计算公式,进而给出了预应力筋结构调整的方案.研究结果表明,内罐的超低温液体会使预应力混凝土外墙产生很大的温度应力,环向温度应力最大可达混凝土抗拉强

  4. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    Science.gov (United States)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  5. The Analysis of Corrosion Situationabout the Spherical Tanks in the Wet Hydrogen Sulfide Environment%湿硫化氢环境下的球罐腐蚀状况分析

    Institute of Scientific and Technical Information of China (English)

    李海涛

    2014-01-01

    The corrosion situation of spherical tanks in the wet hydrogen sulfide environment was introduced , and the corrosion mechanisms were also analyzed in detail , as well as on influence factors of the low temperature wet hydrogen sulfide corrosion of hydro treating unit in petrochemical installations.Some wet hydrogen sulfide corrosion situations in hydro treating unit were summarized.The concrete reason of stress corrosion cracking and hydrogen knobbing with the actual working condition was obtained.The improvement measures and the matters needing attention in use were proposed.%阐述并分析了湿硫化氢环境下的球罐腐蚀状况,对球罐腐蚀机理及状况原因进行了详细的分析,以及对湿硫化氢腐蚀的影响因素,简述了一些加氢处理装置中湿硫化氢腐蚀的具体状况。结合实际工况,分析了其失效原因中发生应力腐蚀开裂或氢鼓包的具体原因,提出了改进措施及使用中的注意事项。

  6. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  7. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  8. Nitrogen tank

    CERN Document Server

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  9. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    1999-12-08

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit.

  10. Computational Analyses of Pressurization in Cryogenic Tanks

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  11. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  12. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  13. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  14. Waste behavior analysis for tank 241-SY-103

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, N.E.

    1994-09-27

    Tank 241-SY-103 is on the Flammable Gas Watch List. The waste in this tank behaves similarly to that in tank 241-Sy-101. Both show slurry growth and periodic surface level drops. However, the surface level drops are much smaller than those in tank 101-SY. A standard hydrogen monitoring system (SHMS) was recently installed in tank 103-SY, and waste auger samples were recently taken. This document covers the characterization results to date for the auger samples, and the behavior of the tank waste during both steady state periods and gas release events.

  15. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  16. Levitated liquid hydrogen cryotank for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Baecker, M.; Brommer, G. [Aventis Research and Technologies, Huerth (DE)] [and others

    2000-07-01

    A critical component for the application of hydrogen technology in automobiles is the storage of liquid hydrogen. Conventional tanks show intolerable evaporation losses. An innovative tank concept based on a superconducting suspension of an inner tank in an outer tank was realized in a functional model. The model shows an evaporation rate lowered by 50% compared to a conventional reference tank. In addition the design of a more compact prototype tank was worked out with a rotational symmetric arrangement. First components for this suspension concept were tested successfully. (author)

  17. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  18. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  19. AMC’s Hydrogen Future: Sustainable Air Mobility

    Science.gov (United States)

    2009-06-01

    Aluminum Liner (Left) CFRP Shell (Right) 69 36. Hydrogen Insulated Pressure Tank in Toyota Prius 70 37. Annual Solar Radiation 87...evaporative losses (Aceves, 2006). The insulated pressure tank was placed in a Toyota Prius (see Figure 36). The tank when filled with 10 kilograms of...design. Figure 36 Hydrogen Insulated Pressure Tank in Toyota Prius (Aceves, 2006) 71 Hydrogen storage vessels are advancing rapidly. These

  20. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  2. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    Science.gov (United States)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  3. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  4. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  5. Tank 241-BX-106: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-BX-106. (Waste from this tank shall be transferred to a double-shell tank.)

  6. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  7. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked...

  8. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  9. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  10. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  11. HANFORD TANK CLEANUP UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  12. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K

    2007-10-01

    High level radioactive waste (HLW) is stored in underground storage tanks at the Savannah River Site. The SRS is proceeding with closure of the 22 tanks located in F-Area. Closure consists of removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. A performance assessment is being performed in support of closure of the F-Tank Farm. Initially, the carbon steel construction materials of the high level waste tanks will provide a barrier to the leaching of radionuclides into the soil. However, the carbon steel liners will degrade over time, most likely due to corrosion, and no longer provide a barrier. The tank life estimation in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. The tank life estimation in support of the F-Tank Farm closure performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. Consumption of the tank steel encased in grouted conditions was determined to occur either due to carbonation of the concrete leading to low pH conditions, or the chloride-induced de-passivation of the steel leading to accelerated corrosion. A deterministic approach was initially followed to estimate the life of the tank liner in grouted conditions or in soil conditions. The results of this life estimation are shown in Table 1 and Table 2 for grouted and soil conditions respectively. The tank life has been estimated under conservative assumptions of diffusion rates. However, the same process of

  13. Homogeneity of passively ventilated waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.; Jensen, L.; Cromar, R.D.; Hayes, J.C. [and others

    1997-07-01

    Gases and vapors in the high-level radioactive waste underground storage tanks at the Hanford Site are being characterized to help resolve waste storage safety issues and estimate air emissions. Characterization is accomplished by collecting and analyzing air samples from the headspaces of the tanks. Samples are generally collected from a single central location within the headspace, and it is assumed that they are representative of the entire headspace. The validity of this assumption appears to be very good for most tanks, because thermally induced convection currents within the headspaces mix constituents continuously. In the coolest waste tanks, however, thermally induced convection may be suppressed for several months of each year because of the seasonal soil temperature cycle. To determine whether composition does vary significantly with location in a cool tank, the headspaces of three waste tanks have been sampled at different horizontal and vertical locations during that part of the year when thermally induced convection is minimized. This report describes the bases for tank selection and the sampling and analytical methods used, then analyzes and discusses the results. Headspace composition data from two risers at three elevations in Tanks 241-B-103, TY-103, and U-112 have been analyzed by standard analysis of variance (ANOVA) methods, which indicate that these tank headspaces are essentially homogeneous. No stratification of denser vapors (e.g., carbon tetrachloride, dodecane) or lighter gases (e.g., ammonia, hydrogen) was detected in any of the three tanks. A qualitative examination of all tentatively identified organic vapors in SUMMA{trademark} and TST samples supported this conclusion.

  14. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  15. In-tank shutoff valve is provided with maximum blast protection

    Science.gov (United States)

    Holden, C. F.

    1966-01-01

    In-tank shutoff valve is installed with the valve poppet and actuator inside the tank to provide maximum blast protection during rocket engine test operation. This valve design is applicable wherever explosive fuels are used and is currently being used in lox and liquid hydrogen tanks at a rocket engine test site.

  16. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  17. Tank characterization report: Tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  18. Tank evaluation system shielded annular tank application

    Energy Technology Data Exchange (ETDEWEB)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  19. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  20. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  1. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Ørsten, Mark; Nørgaard Kristensen, Nete

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......Though think tanks have a long history internationally, they have especially in recent years come to play an increasingly important role in both policy-formulation and public debate. In this article, we analyse the growing presence of think tanks in a Danish context during the 2000s and the first...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  2. Tank 241-TX-118 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-09

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118.

  3. Tank 241-TX-105 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

  4. Tank 241-BX-104 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-14

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104.

  5. Cryogenic Storage Tank Non-Destructive Evaluation

    Science.gov (United States)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  6. Tank 241-AZ-101 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

  7. Tank 241-AZ-102 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

  8. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  9. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  10. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  11. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    The emergence of more think tanks in recent decades has spawned some interest in how they function and impact policy-making in the European Union and its member states. So far however few empirical studies of think tanks have been carried out and think tanks have mainly been studied...... in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...... Brussels, Denmark and Germany are categorised according to different expert roles in a pilot analysis. As the analysis is sensitive to the interpretation and weight given to different indicators, besides from picturing the think tank landscape, the analysis is intended to trigger a discussion of how...

  12. Simulation studies on the effect of a buffer layer on the external parameters of hydrogenated amorphous silicon –– solar cells

    Indian Academy of Sciences (India)

    K Rajeev Kumar; M Zeman

    2008-10-01

    Device modeling of –– junction amorphous silicon solar cells has been carried out using the amorphous semiconductor analysis (ASA) simulation programme. The aim of the study was to explain the role of a buffer layer in between the - and -layers of the –– solar cell on the external parameters such as dark current density and open circuit voltage. Investigations based on the simulation of dark – characteristics revealed that as the buffer layer thickness increases the dark current for a given voltage decreases.

  13. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  14. 33 CFR 157.15 - Slop tanks in tank vessels.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number....

  15. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank...

  16. Standard guide for three methods of assessing buried steel tanks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers procedures to be implemented prior to the application of cathodic protection for evaluating the suitability of a tank for upgrading by cathodic protection alone. 1.2 Three procedures are described and identified as Methods A, B, and C. 1.2.1 Method A—Noninvasive with primary emphasis on statistical and electrochemical analysis of external site environment corrosion data. 1.2.2 Method B—Invasive ultrasonic thickness testing with external corrosion evaluation. 1.2.3 Method C—Invasive permanently recorded visual inspection and evaluation including external corrosion assessment. 1.3 This guide presents the methodology and the procedures utilizing site and tank specific data for determining a tank's condition and the suitability for such tanks to be upgraded with cathodic protection. 1.4 The tank's condition shall be assessed using Method A, B, or C. Prior to assessing the tank, a preliminary site survey shall be performed pursuant to Section 8 and the tank shall be tightness test...

  17. Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions

    Science.gov (United States)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2017-03-01

    The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.

  18. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  19. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  20. Fuel reprocessing tank

    Energy Technology Data Exchange (ETDEWEB)

    Gonda, Sumitora

    1998-10-09

    A tank of the present invention for spent fuels comprises a stainless steel tank main body for storing a highly corrosive dissolving solution, a steam jet pump disposed to the inside of the tank main body for transferring the dissolving solution to the outside of the tank main body and pipelines connecting them. With such a constitution, abnormal abrasion and drag of mechanical parts are less caused. In addition, a cleaning nozzle and a cleaning liquid pipeline which eliminates clogging of a sucking port of the steam jet pump if clogging is caused by sludges are disposed thereby enabling to avoid possibility of clogging. (T.M.)

  1. Hanford tanks initiative plan

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  2. A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter

    Science.gov (United States)

    Chen, Jia-yi; Zhao, Lin; Li, Nan; Liu, Hang

    2015-08-01

    The study experimentally investigates the changing performance of three-dimensional electrode H2O2-producting MFCs coupled with simultaneous wastewater treatment at various external cell voltages from 0.1 V to 0.8 V, in order to explore the optimal applied voltage and its reasons. The graphite particle electrodes made of graphite powders with polytetrafluoroethene (PTFE) as the binder are used as three-dimensional cathode. The results indicate that applied voltage is demonstrated to increase the productive rate and output of H2O2 and the efficiency of acetate degradation. Besides, a relatively high current density caused by a high applied voltage has a positive impact on anode performance in terms of organic degradation and coulombic efficiency. In addition, a relatively high voltage leads to the reduction of H2O2 and the evolution of H2. Considering H2O2 concentration, anodic COD removal and current efficiencies of MFCs at various voltages, the optimal voltage is chosen to be 0.4 V, achieving the H2O2 generation of 705.6 mg L-1 at a rate of 2.12 kg m-3 day-1 and 76% COD removal in 8 h, with energy input of 0.659 kWh per kg H2O2. Coulombic efficiency, faradic efficiency and COD conversion efficiency are 92%, 96%, and 88% respectively.

  3. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Rey, M. [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Tremblay, J. C. [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2015-04-21

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  4. Rainwater tank drowning.

    Science.gov (United States)

    Byard, Roger W

    2008-11-01

    Drowning remains a significant cause of accidental death in young children. The site of drowning varies among communities and is influenced by cultural and geographic factors, including the availability of particular water sources. The drowning deaths of a twin two-year-old brother and sister in a rainwater tank are reported to demonstrate specific issues that may arise. Ladders, vegetation and trellises may provide access to tanks and should be removed. Secure child-proof access points should also be installed, particularly on in-ground tanks (given the ready accessibility of the latter). As there has been a recent trend in Australia to install more domestic rainwater tanks, the number of childhood rainwater tank drownings and near-drownings will need to be monitored by forensic pathologists and child death review committees to ensure that this has not led to the introduction of a new hazard into the home environment.

  5. Tank characterization reference guide

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  6. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  7. Enhanced Hydrogen Dipole Physisorption, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Channing [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  8. Progress toward hydrogen peroxide micropulsion

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  9. Tank 241-C-203: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-203.

  10. Tank 241-C-204 Tank Characterization Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-204.

  11. Tank 241-SX-115 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, L.M.

    1995-04-24

    This document is a plan which serves as the contractual agreement between the Characterization Project, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-SX-115.

  12. Tank 241-TY-104 Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-15

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-C Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-TY-104.

  13. 解读TANKED

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    品牌为重、创造为先,Tanked racing用不走“寻常路”给国内众多同行们生动地上了一课。通过持续近四年的高速成长,Tanked racingE成为中国头盔业翘楚,然而Tanked racing并不局限于此,因为未来的舞台还很大。

  14. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  15. Computational Analyses of Pressurization in Cryogenic Tanks

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  16. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  17. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  18. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  19. Tank waste characterization basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  20. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid... requirements applicable to inner tanks for cryogenic liquid tank car tanks. ...

  1. TANK CAR CONSTRUCTION REFINMENT

    Directory of Open Access Journals (Sweden)

    A. N. Soberzhansjkyj

    2010-06-01

    Full Text Available The increase of volume and load-carrying capacity of tank cars is an urgent task for improving the efficiency of transportation of liquid bulk cargoes. Variants of the constructive and technical approaches, which allow increasing the specified indices, are considered. After the analysis the most rational constructive scheme meeting the modern requirements for tank cars and allowing to raise their productivity is chosen.

  2. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  3. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  4. Closed out Tank 241-SY-101 DACS system change request {number_sign}1--100

    Energy Technology Data Exchange (ETDEWEB)

    Gauck, G.J.

    1995-03-07

    This report is a compilation of system change requests processed during the development of the Data Acquisition and Control System for the Tank 241-SY-101 hydrogen mitigation project. Tank 241-SY-101 is on the Hydrogen Watch List. The disposition of the request, date the change was installed, date verified, and whether an Acceptance Test Procedure was required and completed are described for each request change.

  5. LOX Tank Helium Removal for Propellant Scavenging

    Science.gov (United States)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  6. Applying Study of Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; JIANG Hai; YIN Shao-hui; TIAN Zhi-gang

    2005-01-01

    Hydrogen is an important source of energy. The natural resouces of hydrogen is plenty and it gives us lots of heat, and it is clean. One of difficulties of developing hydrogen sources of energy is hydrogen storage. Hydrogen storage tank is either dangous or a little of capacity. Liquid hydrogen occupys small space. Liquefaction temprature of hydrogen is - 253℃and need better heat insulation protection, the volumn and weight of heat insulation layer are equal to hydrogen storage tank. Hydrogen storage utillizing hydrogen storage material is a very safety、 economical and effective method. Hydrogen storage material is either a medium of solid hydrogen storage or is negative pole active material of Ni-H battery,and is the one of key technoloy of fuel and Ni-H battery, it is an important material of new sources of energy too. Nanotechnology is introduced Mg-matrix hydrogen storage alloy and is achieved progress gteatly,but hydrogen storage alloy need be mede further improvment on applying investigation.

  7. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  8. Standard hydrogen monitoring system equipment installation instructions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1996-09-27

    This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

  9. 40 CFR 270.305 - What tank information must I keep at my facility?

    Science.gov (United States)

    2010-07-01

    ..., bypass systems, and pressure controls (e.g., vents). (d) A diagram of piping, instrumentation, and process flow for each tank system. (e) A description of materials and equipment used to provide external...

  10. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  11. Standard-D hydrogen monitoring system, system design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1996-09-26

    During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

  12. Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-09-27

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.

  13. Hydrogen mitigation Gas Characterization System: System design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1998-07-17

    The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

  14. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  15. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  16. Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept

    Science.gov (United States)

    Kosareo, Daniel N.; Roche, Joseph M.

    2006-01-01

    A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.

  17. Dwelling Water Tanks in Diyarbakir

    Directory of Open Access Journals (Sweden)

    Ali Ceylan

    2008-02-01

    Full Text Available BACKGROUND: In this connection, the object of this study has been to identify and compare the microbiological contamination and residue chlorine levels in the main network water that is taken from the Dicle Dam and distributed in Diyarbakir Province Centre and in the tanks of dwellings that use this water as well as the effects of the maintenance, hygiene, and physical conditions of these tanks on microbiological contamination. METHODS: Water samples were taken from both the tank input side network water and tank output side tank waters of 200 dwellings with water tanks in Diyarbakir city centre (tank entrance network side water for 200 and tank output side tank water for 200 within the framework of the research study. RESULTS: Coliform bacteria were detected in 35% of the tank entrance side network water samples and in 52.0% percent of the tank output side water samples. Faecal coliform bacteria were not detected in tank entrance side network water samples, but they existed in 2.5% of the tank output side water samples. Free residue chlorine level was found to be over 0.2 ppm in 67% of tank entrance side network water samples and in 35% of the tank output side water samples. Coliform bacteria were detected in 95.5% of the tank entrance side network water samples, of which free residue chlorine level were below 0.2 ppm. Total germ growth was detected in 52.0% of the tank entrance side network water samples and in 67.5% of the tank output side water samples. The most frequently isolated bacteria both in tank entrance side network and tank output side water samples were found to be Bacillus spp. Bacillus type bacteria were found in 48% of tank entrance side network water samples and 57.5% of the tank output side water samples. Filamentous fungi were prevalent in 8% of all the samples examined within the study and the most commonly isolated filamentous fungi were Aspergillus spp (5.5% and Penicillum spp (2.5%. Water tanks of dwellings contain more

  18. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  19. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  20. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  1. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  2. An Aluminum Salvage Station for the External Tank (ASSET)

    Science.gov (United States)

    1990-12-01

    cutter A-8 requires regular cleaning of the beam exit window and the optical components. This is important because the LB efficiency is greatly reduced...7142.8 Batteries 4 640 2560.0 BCDU 4 168 672.0 * DCSU 2 182 364.0 DDCU 167 167.0 PVCU 2 147 294.0 PV Cable Set 231 231.0 OIPU 185 185.0 * SUT 225...299 1196.0 Fluid Junction Box 2 93 186.0 Radiator 842.2 842.2 EPS 6390.2 Batteries 4 640 2560.0 BCDU 4 168 672.0 DCSU 2 182 364.0 DDCU 167 167.0 PVCU 2

  3. Mechanism Analysis of Hydrogen Blisters on the Surface of a Gas Tank and Research on Its Preventive Measures%低分气分液罐表面氢鼓泡机理分析及预防措施研究

    Institute of Scientific and Technical Information of China (English)

    陈虎; 冯亚娟; 谈平庆; 王和慧; 侯峰

    2015-01-01

    Serious blisters were found on the shell surface of the gas tank which operated in wet H2S environment during a regular inspection. It was confirmed with gas sampling device that the gas in the blister was hydrogen. The causes of blisters were analyzed and investigated by chemical analysis, metallographic examines, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results revealed that the elongated MnS inclusions were the important reason for the hydrogen blisters. The preventive measures of the hydrogen blisters were put forward based on the above study.%某石化公司脱硫装置低分气分液罐在湿硫化氢环境中运行,检修时发现罐体外表面出现严重的鼓泡现象。本文利用气体取样装置测定鼓泡内气体为氢气,并通过宏观检查、金相组织分析、扫描电镜分析和能谱分析等测试方法对低分气分液罐氢鼓泡原因进行分析和研究,结果表明,长条形MnS夹杂物是导致罐体表面产生氢鼓泡的重要原因。在此基础上,提出氢鼓泡预防措施。

  4. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  5. Simulation Research of Vaporization and Pressure Variation in a Cryogenic Propellant Tank at the Launch Site

    Science.gov (United States)

    Chen, Liang; Liang, Guo-zhu

    2013-12-01

    In order to improve depiction of pressure variation and investigate the interrelation among the physical processes in propellant tanks, a 2D axial symmetry Volume-of-Fluid (VOF) CFD model is established to simulate a large-sized liquid propellant tank when the rocket is preparing for launch with propellant loaded at the launch site. The numerical model is considered with propellant free convection, heat transfer between the tank and the external environment, thermal exchange between propellant and inner tank wall surfaces, gas compressibility, and phase change modeled under the assumption of thermodynamic equilibrium. Vaporization rate of the vented LH2 tank and prediction of pressure change in the tank pressurized with GHe are obtained through simulation. We analysis the distributions of phase, temperature, and velocity vectors to reveal interactions among the propellant's own convection motion, heat transfer and phase change. The results show that the vaporization rate is mainly affected by heat leaks though the tank wall when the tank is vented, but it does not completely accord with the trend of the leakage because of convection motion and temperature nonuniformity of the liquid propellant in the tank. We also find that the main factors on pressure variation in the pressurized tank are the heat transfer on the tank wall surface bonding the ullage and propellant vaporization which has comparatively less influence.

  6. Improved Polyurethane Storage Tank Performance

    Science.gov (United States)

    2014-06-30

    Figure 5.2.4 – Teen / Twenty Berm Bays from Tank 11 Corner Improved Polyurethane Storage Tank Performance Page 63 of 197 FY2009 Final Technical...5.3.9 Pump Discharge Pressure Measurement Improved Polyurethane Storage Tank Performance Page 76 of 197 FY2009 Final Technical Report...chamber pressure Improved Polyurethane Storage Tank Performance Page 173 of 197 FY2009 Final Technical Report Seaman Corporation could not be

  7. pH对发酵系统的产甲烷活性抑制及产氢强化%Enhancement of the fermentative hydrogen production in a continuous-flow stirred tank reactor by decreasing pH to inhibit methanogenesis

    Institute of Scientific and Technical Information of China (English)

    李建政; 苏晓煜; 昌盛; 张立国; 于泽

    2012-01-01

    To develop a feasible method for inhibiting methanogenesis while enhancing fermentative hydrogen production in anaerobic organic wastewater fermentation process, a continuous - flow stirred tank reactor (CSTR) a methane production feature was introduced and used as the base-line condition. The CSTR was op- erated at (35 ± 1 )℃ with an influent COD 7 000 mg/L and a hydraulic retention time (HRT) 8 h throughout the performance test. When the pH in the CSTR decreased from 6. 5 - 7.2 to 6. 0 - 6. 5, the methane yield decreased remarkably and could not be inspected in the biogas at last, while the percentage of hydrogen in bio- gas kept at a low level less than 3 %. When the CSTR operated with a lower pH 4. 0 -5.0, the acidogenesis was further enhanced with a total organic intermediate of 2 052 rag/L, dominated by ethanol and acetic acid, indicating a typical ethanol-type fermentation established in the CSTR. During the ethanol-type fermentation process, a biogas yield of 26 L/d was obtained with a hydrogen percentage about 45%. The specific hydrogen producing rate of the anaerobic activated sludge reached at 1.67 L/( g · d) averagely. Key words: organic wastewater; methanogenesis; fermentative hydrogen production; pH adjustment; continu- ous-flow stirred tank reactor (CSTR)%为抑制厌氧发酵系统的产甲烷活性,强化其发酵产氢性能,采用逐级降低pH的调控方法,探讨连续流搅拌槽式反应器(CSTR)从具有显著甲烷发酵特征的厌氧发酵系统向发酵产氢系统转变的运行特征.在进水COD7000mg/L、水力停留时间(HRT)8h条件下,发酵体系在pH由6.5~7.2降低到6.0~6.5时,虽然发酵气中的甲烷体积分数逐渐减少乃至消失,但氢气体积分数一直在3%以下;当pH下降到4.0~5.0时,系统中的产酸发酵作用得到了进一步强化,挥发性发酵产物总量平均为2052mg/L,呈现为典型的乙醇型发酵

  8. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    Science.gov (United States)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  9. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  10. SY Tank Farm ventilation isolation option risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  11. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes....

  12. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  13. STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2007-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  14. External Otitis (Swimmer's Ear)

    Science.gov (United States)

    ... to Pneumococcal Vaccine Additional Content Medical News External Otitis (Swimmer's Ear) By Bradley W. Kesser, MD, Associate ... the Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis External otitis ...

  15. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  16. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1995-04-19

    This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

  17. 27 CFR 25.145 - Tanks, vehicles, and vessels.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.145 Tanks, vehicles, and... mark each tank, tank car, tank truck, tank ship, barge, or deep tank of a vessel in accordance...

  18. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...... different heat storage types is compared. Design/methodology/approach - The thermal performance of Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems is calculated with the simulation program TRNSYS. Two different TRNSYS models based on measurements were developed and used....... Findings - Based on the calculations it is concluded that low flow solar combisystems based on bikini tanks are promising for low energy buildings, while solar combisystems based on tank-in-tank stores are attractive for the houses with medium heating demand and old houses with high heating demand...

  19. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  20. [Severe hydrogen sulfide intoxication: a pediatric case of survival].

    Science.gov (United States)

    Claudet, I; Marcoux, M-O; Karsenty, C; Rittié, J-L; Honorat, R; Lelong-Tissier, M-C

    2012-03-01

    We report a paediatric case of survival following severe hydrogen sulfide (H2S) gas intoxication. A 13-year-old boy was found submerged to the neck in a manure tank. He was hypothermic, unresponsive with bilateral mydriasis, and had poor oxygen saturation. After intubation, he was transferred to the paediatric intensive care unit of a tertiary care children's hospital. He developed acute respiratory distress syndrome (ARDS) requiring high frequency percussive ventilation. Cardiac evaluation was significant for myocardial infarction and left ventricular function impairment. He completely recovered from the respiratory and cardiac failure. Neurological examinations showed abnormal signals on MRI in the semi-oval center and in the frontal cortex. Follow-up detected partial impairment of axonal fibers of the right external popliteal sciatic nerve. Paediatric cases of survival after H2S intoxication have been rarely reported. Such exposures can evolve to severe ARDS and benefit from high frequency percussive ventilation. Hypothermia and other metabolic abnormalities are now better explained thanks to actual knowledge about endogenous H2S function. Lessons learned from paediatric accidents should result in better information about this threat for farmers and families living in houses with septic tanks, reducing the risk to their own and their children's safety.

  1. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  2. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    Science.gov (United States)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  3. Analysis Method of Transient Temperature Field for Fuel Tank of High-Altitude Large UAV

    Institute of Scientific and Technical Information of China (English)

    Qing Ai; Liang Chen; Xiaojing Xu; Shiyu Liu; Zhenwen Hu; Xinlin Xia

    2016-01-01

    Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Thermal network method combined with hierarchical dynamic grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.

  4. Tank Characterization Report for Double Shell Tank (DST) 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, M.R.

    2000-03-23

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  5. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  6. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  7. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of...

  8. 27 CFR 25.35 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device....

  9. 49 CFR 230.116 - Oil tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... adjacent to the fuel supply tank or in another safe location; (b) Closes automatically when tripped...

  10. 14 CFR 23.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 23.1013 Section 23.1013... tanks. (a) Installation. Each oil tank must be installed to— (1) Meet the requirements of § 23.967 (a...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with...

  11. An uncertainty analysis of the PVT gauging method applied to sub-critical cryogenic propellant tanks

    Energy Technology Data Exchange (ETDEWEB)

    Van Dresar, Neil T. [NASA Glenn Research Center, Cleveland, OH (United States)

    2004-08-01

    The PVT (pressure, volume, temperature) method of liquid quantity gauging in low-gravity is based on gas law calculations assuming conservation of pressurant gas within the propellant tank and the pressurant supply bottle. There is interest in applying this method to cryogenic propellant tanks since the method requires minimal additional hardware or instrumentation. To use PVT with cryogenic fluids, a non-condensable pressurant gas (helium) is required. With cryogens, there will be a significant amount of propellant vapor mixed with the pressurant gas in the tank ullage. This condition, along with the high sensitivity of propellant vapor pressure to temperature, makes the PVT method susceptible to substantially greater measurement uncertainty than is the case with less volatile propellants. A conventional uncertainty analysis is applied to example cases of liquid hydrogen and liquid oxygen tanks. It appears that the PVT method may be feasible for liquid oxygen. Acceptable accuracy will be more difficult to obtain with liquid hydrogen. (Author)

  12. Accountability Tanks Calibration Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, William Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may be met.

  13. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  14. Tank closure reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  15. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  16. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  17. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  18. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  19. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    Hydrogen system, as a new energy carrier, could deliver clean and efficient energy services in a wide range of applications. This paper presents an economic dispatch-based mathematical model that facilitates investigations on the techno-economic feasibility of hydrogen systems in the context...... of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  20. Structural Analysis of Helios Filament-Wound Tanks Subjected to Internal Pressure and Cooling

    Science.gov (United States)

    Ko, William L

    2005-01-01

    A finite-element stress analysis is performed on Helios filament-wound hydrogen tanks to examine the stress field and effect of end dome geometry on the stress field. Each tank is composed of a central circular cylindrical section with either geodesic or hemispherical end domes, which have metallic polar bosses. The tanks are subjected to combined and separate internal pressure and temperature loading conditions, and the stress contributions of each loading component are examined. The tank-wall-polar-boss interfacial meridional tensile stress in the hemispherical dome is found to be approximately 27 percent lower than that in the geodesic dome. The effects of both material anisotropy and the aluminum lining on the intensities of tensile meridional stress at the tank-wall-polar-boss bonding interface are examined.

  1. Standard-B Hydrogen Monitoring System, system design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1995-01-16

    During most of the year, it is assumed that the vapor in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gases to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gases from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. This document describes the design of the Standard-B Hydrogen Monitoring System, (SHMS) and its components as it differs from the original SHMS. The differences are derived from changes made to improve the system performance but not implemented in all the installed enclosures.

  2. Hanford waste tank cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ``waste`` data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment.

  3. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    Science.gov (United States)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  4. Approach for tank safety characterization of Hanford site waste

    Energy Technology Data Exchange (ETDEWEB)

    Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

    1995-03-01

    The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

  5. Static Stress Analysis of Security Injection Tank

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The static structural analysis of the security injection tank is made to make sure whether the tank can withstand concerned loads or not on all conditions conforming to concerned code prescripts and design requirements. The tanks

  6. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  7. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  8. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  9. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    Energy Technology Data Exchange (ETDEWEB)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  10. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  11. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  12. Solitons in a wave tank

    Science.gov (United States)

    Olsen, M.; Smith, H.; Scott, A. C.

    1984-09-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations.

  13. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  14. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  15. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula o...

  16. Solitons in a wave tank

    DEFF Research Database (Denmark)

    Olsen, M.; Smith, H.; Scott, Alwyn C.

    1984-01-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment...

  17. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  18. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, W W [comp.; Consultant, Wellington, Delaware (United States); Strachan, D M [comp.; Pacific Northwest Lab., Richland, WA (United States)

    1992-08-01

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observed in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.

  19. Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Lott, D.T.

    1995-05-18

    Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP`s performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12.

  20. STS-133/ET-137 Tanking Test Photogrammetry Assessment

    Science.gov (United States)

    Oliver, Stanley T.

    2012-01-01

    Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.

  1. Competitive Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in opportunity structures that are mediated by historically constituted institutions in knowledge regimes. The paper distinguishes between four different strategies, the authoritative, the collaborative, the agenda-setting and the competitive strategy that are distinguished by the relations think tanks have...... to established institutions and power in public policy. On the basis of the hypothesis that more competitive think tanks have emerged due to lower opportunity costs, the paper investigates how ‘competitive’ think tank strategies have been used in Germany, Denmark, the EU-institutions in Brussels...... and in the United Kingdom from 2000 to 2012. The findings contradict the hypothesis that the competitive think tank strategy is the dominant or even a common strategy across the cases under investigation. The competitive strategy is particularly rare among EU and German think tanks. As such the paper challenges...

  2. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  3. In-tank photo analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G. [and others

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods.

  4. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  5. Research of wind and snow cover loads on the roofs of the vertical cylindrical tanks

    Directory of Open Access Journals (Sweden)

    A.A. Semenov

    2012-08-01

    Full Text Available The widespread use of vertical cylindrical tanks puts the question of their sustainable design. Snow load brings the greatest contribution to the stress-strain state of the supporting structures of vertical tanks spherical domed coatings in the IV-VIII snowy areas of Russia.New geometrical forms of the tank coatings with volume 20 000 m3 were developed. The results of aerodynamic research of proposed coatings model were presented.The coefficients of the external pressure on the surface of the walls and coating of the tank were determined. Qualitative and quantitative picture of the snowy mass under the influence of the wind were also determined.The obtained results can be used to develop effective design solutions for domed coatings of the oil tanks.

  6. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  7. Multiple steady states in coupled flow tank reactors

    Science.gov (United States)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  8. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 2. Research on promotion of international cooperation (research on standardization of hydrogen energy technologies); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on the basic research on standardization of hydrogen energy technologies, and ISO/TC197. As for the standardization, in relation to the hydrogen station in the WE-NET second phase research, the laws related to handling of gaseous hydrogen, and the basic issues on facility and safe handling were studied. As for ISO/TC197, the following draft standards were examined: Fuel supply system interface for liquid hydrogen vehicles, fuel tank for liquid hydrogen vehicles, container for liquid hydrogen transport, specification of hydrogen fuel, hydrogen fuel supply facility for air ports, gaseous hydrogen and hydrogen mixture fuel system for vehicles, gaseous hydrogen fuel connector for vehicles, gaseous hydrogen fuel tank for vehicles, and basic items for hydrogen system safety. Final examination of the fuel supply system interface for liquid hydrogen vehicles, and the specification of hydrogen fuel was finished, and these are scheduled to be registered for ISO. (NEDO)

  9. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  10. X-33 Tank Failure During Autoclave Fabrication

    Science.gov (United States)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    During a repair cure cycle on tank #1 of the X-33 liquid hydrogen tanks, a skin to core disbond occurred. Both the inner skin and outer skin of the lobe #1 sandwich panel was noted to have been disbonded and cracked- An investigation was undertaken to determine the cause of this failure. The investigation consisted of reviewing all of the processing data and performing testing on the failed lobe #1, as well as the other lobes, which did not fail during the cure cycle. The tests consisted of residual stress measurements in one of the intact lobes and "plug-pulls" to assess skin to core strength on all of the remaining lobes. Results showed an extremely low bondline strength due to lack of proper filleting of the adhesive, in addition, tests showed a very rapid decrease in strength with increasing temperature, as well as a further decrease in strength with a larger number of cycles. Also, the honeycomb used was not vented so pressure could build up within the cells. All of these factors appeared to be contributors to the failure.

  11. X-33 Tank Failure During Autoclave Fabrication

    Science.gov (United States)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    During a repair cure cycle on tank #1 of the X-33 liquid hydrogen tanks, a skin to core disbond occurred. Both the inner skin and outer skin of the lobe #1 sandwich panel was noted to have been disbonded and cracked- An investigation was undertaken to determine the cause of this failure. The investigation consisted of reviewing all of the processing data and performing testing on the failed lobe #1, as well as the other lobes, which did not fail during the cure cycle. The tests consisted of residual stress measurements in one of the intact lobes and "plug-pulls" to assess skin to core strength on all of the remaining lobes. Results showed an extremely low bondline strength due to lack of proper filleting of the adhesive, in addition, tests showed a very rapid decrease in strength with increasing temperature, as well as a further decrease in strength with a larger number of cycles. Also, the honeycomb used was not vented so pressure could build up within the cells. All of these factors appeared to be contributors to the failure.

  12. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  13. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  14. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  15. Ventless pressure control of two-phase propellant tanks in microgravity

    Science.gov (United States)

    Kassemi, Mohammad; Panzarella, Charles H.

    2004-01-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  16. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car... devices must be retested periodically as specified in Retest Table 1 of paragraph (b)(5) of this...

  17. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  18. Tank characterization report for double shell tank 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    Winkelman, W.D., Westinghouse Hanford

    1996-08-07

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-104. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  19. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  20. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  1. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  2. Tank characterization report for single-shell Tank B-201

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

  3. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  4. [Death in a relaxation tank].

    Science.gov (United States)

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  5. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  6. Estimating Residual Solids Volume In Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  7. Potential radiological exposure rates resulting from hypothetical dome failure at Tank W-10

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The main plant area at Oak Ridge National Laboratory (ORNL) contains 12 buried Gunite tanks that were used for the storage and transfer of liquid radioactive waste. Although the tanks are no longer in use, they are known to contain some residual contaminated sludges and liquids. In the event of an accidental tank dome failure, however unlikely, the liquids, sludges, and radioactive contaminants within the tank walls themselves could create radiation fields and result in above-background exposures to workers nearby. This Technical Memorandum documents a series of calculations to estimate potential radiological exposure rates and total exposures to workers in the event of a hypothetical collapse of a Gunite tank dome. Calculations were performed specifically for tank W-10 because it contains the largest radioactivity inventory (approximately half of the total activity) of all the Gunite tanks. These calculations focus only on external, direct gamma exposures for prescribed, hypothetical exposure scenarios and do not address other possible tank failure modes or routes of exposure. The calculations were performed with established, point-kernel gamma ray modeling codes.

  8. 46 CFR 154.446 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  9. 40 CFR 265.1085 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 265.1085 Section 265... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1085 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks...

  10. 40 CFR 63.685 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Tanks. 63.685 Section 63... Standards: Tanks. (a) The provisions of this section apply to the control of air emissions from tanks for.... (b) The owner or operator shall control air emissions from each tank subject to this section...

  11. 27 CFR 24.167 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  12. 7 CFR 58.218 - Surge tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two...

  13. 14 CFR 25.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 25.1013 Section 25.1013... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank...

  14. 14 CFR 27.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and where used...

  15. 14 CFR 29.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 29.1013 Section 29.1013... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank...

  16. 40 CFR 264.1084 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 264.1084 Section 264... Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1084 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks for which §...

  17. 7 CFR 58.320 - Brine tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet....

  18. The Politics of Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    of a typology of think tanks, quantitative data and interviews with think tank practitioners, the interplay between state and market dynamics and the development of different types of think tanks is analysed. Although think tanks develop along different institutional trajectories, it is concluded that the Anglo...

  19. Engineering evaluation of alternatives: Managing the assumed leak from single-shell Tank 241-T-101

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H. [ICF Kaiser Hanford Co., Richland, WA (United States); Jenkins, C. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-02-01

    At mid-year 1992, the liquid level gage for Tank 241-T-101 indicated that 6,000 to 9,000 gal had leaked. Because of the liquid level anomaly, Tank 241-T-101 was declared an assumed leaker on October 4, 1992. SSTs liquid level gages have been historically unreliable. False readings can occur because of instrument failures, floating salt cake, and salt encrustation. Gages frequently self-correct and tanks show no indication of leak. Tank levels cannot be visually inspected and verified because of high radiation fields. The gage in Tank 241-T-101 has largely corrected itself since the mid-year 1992 reading. Therefore, doubt exists that a leak has occurred, or that the magnitude of the leak poses any immediate environmental threat. While reluctance exists to use valuable DST space unnecessarily, there is a large safety and economic incentive to prevent or mitigate release of tank liquid waste into the surrounding environment. During the assessment of the significance of the Tank 241-T-101 liquid level gage readings, Washington State Department of Ecology determined that Westinghouse Hanford Company was not in compliance with regulatory requirements, and directed transfer of the Tank 241-T-101 liquid contents into a DST. Meanwhile, DOE directed WHC to examine reasonable alternatives/options for safe interim management of Tank 241-T-101 wastes before taking action. The five alternatives that could be used to manage waste from a leaking SST are: (1) No-Action, (2) In-Tank Stabilization, (3) External Tank Stabilization, (4) Liquid Retrieval, and (5) Total Retrieval. The findings of these examinations are reported in this study.

  20. Tank 241-AZ-101 and Tank 241-AZ-102 Airlift Circulator Operation Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    1999-12-07

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs) and during the initial operation (''bump'') of the tank 241-AZ-101 mixer pumps. The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-142-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No. 2E98-082 and No. 2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). In addition the last two vapor samples will be collected from the headspace of tank 241-AZ-101 during the operation of the mixer pumps. Each mixer pump will be operated for approximately 5 minutes. Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds. The following sections provide the general methodology and procedures to be used in the

  1. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  2. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  3. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  4. Integral Radiator and Storage Tank

    Science.gov (United States)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  5. Regulating multiple externalities

    DEFF Research Database (Denmark)

    Waldo, Staffan; Jensen, Frank; Nielsen, Max

    2016-01-01

    Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory instrume......Open access is a well-known externality problem in fisheries causing excess capacity and overfishing. Due to global warming, externality problems from CO2 emissions have gained increased interest. With two externality problems, a first-best optimum can be achieved by using two regulatory...

  6. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  7. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  8. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  9. Acute collective gas poisoning at work in a manure storage tank.

    Science.gov (United States)

    Żaba, Czesław; Marcinkowski, Jerzy T; Wojtyła, Andrzej; Tężyk, Artur; Tobolski, Jarosław; Zaba, Zbigniew

    2011-01-01

    Cases of deaths in manure or septic tanks are rare in legal-medical practice, more frequently as unfortunate occupational accidents. Poisoning with toxic gases, especially with hydrogen sulfide, is reported as the cause of death, while the exhaustion of oxygen in the air is omitted with the simultaneous excess of carbon dioxide. In such cases, determination of the direct cause of death constitutes a big problem because post-mortem examination does not reveal the specific changes. A case of acute collective poisoning by gases in a manure storage tank is presented of 5 agricultural workers, 2 of whom died. While explaining the cause of poisoning and deaths, toxicological blood tests were performed in the victims of the accident, as well as gases inside the manure storage tank. The post-mortem examinations and toxicological blood tests performed did not allow determination of the direct cause of death. Toxicological tests of gases from inside the manure tank showed a very low concentration of oxygen, with a simultaneous very high concentration of carbon dioxide, and a considerable level of hydrogen sulfide. The cause of fainting of three and deaths of two workers was not the poisoning with hydrogen sulfide, but oxygen deficiency in the air of the tank.

  10. Steady-state plant model to predict hydrogen levels in power plant components

    Science.gov (United States)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-01

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  11. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  12. Tank 241-C-109 vapor sampling and analysis tank characterization report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank C-109. The drivers and objectives of the waste tank headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports.

  13. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  14. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  15. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  16. Gas generation and retention in Tank 101-SY: A summary of laboratory studies, tank data, and information needs

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R. [comp.] [Pacific Northwest Lab., Richland, WA (United States); Ashby, E.C. [Georgia Inst. of Tech., Atlanta, GA (United States); Jonah, C.; Meisel, D. [Argonne National Lab., IL (United States); Strachan, D.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-06-01

    Chemical and radioactive wastes from processes used to separate plutonium from uranium are stored in underground tanks at the Hanford Site in Washington state. In March 1981, it was observed that the volume of wastes in Tank 101-SY slowly increased, followed by a rapid decrease and the venting of large quantities of gases. These cycles occurred every 8 to 15 weeks and continue to the present time. Subsequent analyses showed that these gases were composed primarily of hydrogen and nitrous oxide (N{sub 2}O). In response to the potential for explosion and release of hazardous materials to the environment, laboratory programs were initiated at Argonne National Laboratory (ANL), Georgia Institute of Technology (GIT), Pacific Northwest Laboratory (PNL), and Westinghouse Hanford Company (WHC), to develop a better understanding of the physical and chemical processes occurring in this waste tank. An aggressive sampling and analysis effort is also under way to characterize the wastes as fully as possible. These efforts will provide a technically defensible basis for safety analyses and future mitigation/remediation of the tank and its contents.

  17. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  18. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  19. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)

    2010-09-15

    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)

  20. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    Science.gov (United States)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  1. The development of a computational platform to design and simulate on-board hydrogen storage systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2017-01-01

    the vehicular tank within the frame of a complete refueling system. The two technologies that are integrated in the platform are solid-state hydrogen storage in the form of metal hydrides and compressed gas systems. In this work the computational platform is used to compare the storage performance of two tank...

  2. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  3. Solubilities of gases in simulated Tank 241-SY-101 wastes

    Energy Technology Data Exchange (ETDEWEB)

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

  4. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  5. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  6. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  7. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  8. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  9. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  10. Models for recurrent gas release event behavior in hazardous waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N. [Pacific Northwest Lab., Richland, WA (United States); Arnold, B.C. [California Univ., Riverside, CA (United States). Dept. of Statistics

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ``rolls over``, changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ``time between consecutive GRE`s``. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed.

  11. Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.

  12. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  13. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING ARP PRODUCT SIMULANT AND SB4 TANK 40 SLUDGE SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; John Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Erich Hansen, E; Kim Crapse, K; David Hobbs, D

    2008-05-14

    The radioactive startup of two new SRS processing facilities, the Actinide Removal Process (ARP) and the Modular Caustic-Side-Solvent-Extraction Unit (MCU) will add two new waste streams to the Defense Waste Processing Facility (DWPF). The ARP will remove actinides from the 5.6 M salt solution resulting in a sludge-like product that is roughly half monosodium titanate (MST) insoluble solids and half sludge insoluble solids. The ARP product will be added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and dewatered prior to pulling a SRAT receipt sample. The cesium rich MCU stream will be added to the SRAT at boiling after both formic and nitric acid have been added and the SRAT contents concentrated to the appropriate endpoint. A concern was raised by an external hydrogen review panel that the actinide loaded MST could act as a catalyst for hydrogen generation (Mar 15, 2007 report, Recommendation 9). Hydrogen generation, and it's potential to form a flammable mixture in the off-gas, under SRAT and Slurry Mix Evaporator (SME) processing conditions has been a concern since the discovery that noble metals catalyze the decomposition of formic acid. Radiolysis of water also generates hydrogen, but the radiolysis rate is orders of magnitude lower than the noble metal catalyzed generation. As a result of the concern raised by the external hydrogen review panel, hydrogen generation was a prime consideration in this experiment. Testing was designed to determine whether the presence of the irradiated ARP simulant containing MST caused uncontrolled or unexpected hydrogen production during experiments simulating the DWPF Chemical Process Cell (CPC) due to activation of titanium. A Shielded Cells experiment, SC-5, was completed using SB4 sludge from Tank 405 combined with an ARP product produced from simulants by SRNL researchers. The blend of sludge and MST was designed to be prototypic of planned DWPF SRAT and SME cycles. As glass quality was not an objective

  14. TANK48 CFD MODELING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single

  15. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  16. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  17. In-tank recirculating arsenic treatment system

    Science.gov (United States)

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  18. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply....... The investigations showed that the yearly thermal performance of small SDHW systems can be increased by up to about 30 % if a smart solar tank is used instead of a traditional solar combi tank. The thermal increase is strongly influenced by the hot water consumption and consumption pattern. Recommendations...... for future development of smart solar tanks are given....

  19. Hydrogen Spectrum

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The series of absorption or emission lines that are characteristic of the hydrogen atom. According to the Bohr theory of the hydrogen atom, devised by Danish physicist Neils Bohr (1885-1962) in 1913, the hydrogen atom can be envisaged as consisting of a central nucleus (a proton) around which a single electron revolves. The electron is located in one of a number of possible permitted orbits, each...

  20. Potential of Aerostats for the Recovery of Disabled Main Battle Tanks and Other Heavy Military Vehicles and Equipment

    Science.gov (United States)

    2007-08-01

    PAGE UNCLASSIFIED 17. LIMITATION OF ABSTRACT UL 18. NUMBER OF PAGES 90 19b. TELEPHONE NUMBER (include area code) 301 -227-5468...investigated for use in the ISO tank design: Stainless Steel Cold Rolled ( AISI Type 302 Stainless Steel, cold rolled to 1550 Mpa tensile strength) Titanium...Battle Tanks and Other Heavy Military Equipment 75 Appendix 5: ‘Hydrogen Storage’ Information MatWeb, The Online Materials Database AISI Type 302

  1. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  2. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  3. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  4. Small Tank Tetraphenylborate Catalyst Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    2001-06-04

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation (STTP) as an alternative to replace the In-Tank Precipitation Facility at the Savannah River Site. The Department of Energy discontinued operation of the In-Tank Precipitation facility due to the potential for catalytic decomposition of sodium tetraphenylborate. The STTP applies the same process chemistry for removal of cesium from the radioactive wastes but at a controlled lower temperature and in a smaller facility that offers engineering features to mitigate potential for a catalytic reaction. However, additional understanding of the catalytic reaction, through further experimental investigation, is needed to better define the potential for a reaction to occur in the proposed facility.

  5. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  6. ICPP Tank Farm systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, W.B.; Beer, M.J.; Cukars, M.; Law, J.P.; Millet, C.B.; Murphy, J.A.; Nenni, J.A.; Park, C.V.; Pruitt, J.I.; Thiel, E.C.; Ward, F.S.; Woodard, J.

    1994-01-01

    During the early years (1950--1965) of Idaho Chemical Processing Plant (ICPP) operations, eleven, 300,000-gallon waste storage tanks were constructed. A project was in progress to replace these aging tanks; however, since fuel reprocessing has been curtailed at ICPP, it is not clear that the new tanks are required. The Department of Energy (DOE) requested a systems engineering evaluation to determine the need for the new tanks. Over 100 alternatives were identified during a facilitated team meeting using Value Engineering techniques. After eliminating any ideas which clearly could not meet the requirements, the remaining ideas were combined into nine basic cases with five sub cases. These fourteen cases were then carefully defined using two methods. First, each case was drawn graphically to show waste processing equipment interfaces and time constraints where they existed or were imposed. Second, each case was analyzed using a time-dependent computer simulation of ICPP waste management activities to determine schedule interactions, liquid storage requirements, and solid waste quantities. Based on the evaluation data, the team developed the following recommendations: Install and operate the high-level liquid waste evaporator; minimize liquid waste generation as much as possible within the constraints of required ICPP operational, safety, and environmental commitments; bring a Waste Immobilization Facility on line by 2008 or earlier; operate NWCF as required to alleviate the need for new tank farm capacity; maximize the concentration of Na and K in the calcine to minimize the final amount of waste requiring immobilization; avoid using Bin Set 7 for calcine storage, if possible, to reduce future calcine retrieval and D&D costs; and use WM-190 for liquid waste storage and one of the pillar and panel vaulted tanks as the spare.

  7. Tank calibration; Arqueacao de tanques

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  8. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  9. Out-of-tank evaporator demonstration: Tanks focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned.

  10. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    Science.gov (United States)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  11. Leaking Underground Storage Tank (LUST) Trust Fund

    Science.gov (United States)

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  12. Lightweight, Composite Cryogenic Tank Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm has developed and qualified strong, all-composite LOX tanks for launch vehicles. Our new 42-inch diameter tank design weighs 486 lbs and burst without...

  13. External radiation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  14. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  15. ANALYTICAL SOLUTIONS FOR THE SLOSHING LOADING ON CIRCULAR CYLINDRICAL LIQUID TANKS WITH INTERIOR SEMI-POROUS BARRIERS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The estimation of sloshing loading on liquid tanks is of fundamental importance due to the wide and important applications of liquid tanks in various engineering aspects. Analytical solutions for the sloshing loading on circular cylindrical liquid tanks with an interior concentric vertical thin semi-porous barrier under external excitations are presented. And the extensions of the solutions to the elastic vibrations and to the high frequency limit to count for the earthquake response are also included.   A clear view on the influence of semi-porous barriers to the sloshing response of oscillating tanks is obtained by the analyses of systematic computational results. The present results may offer guidance to the corresponding design for liquid tanks of various applications and also a basis of comparison for the development of more sophisticated numerical methods for hydrodynamic and hydro-elastic analyses.

  16. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  17. Hydrogen carriers

    Science.gov (United States)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  18. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General specification applicable to cryogenic... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic...

  19. Design of an Experimental PCM Solar Tank

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Istvan Peter

    2010-09-15

    The one of the most important part of a solar collector system is the solar tank. The relevant type and capacity of the solar tank is a requirement of the good operation of the system. According the current architectural tendencies the boiler rooms are smaller, so the putting of the currently available solar tanks is very difficult. It is necessary to store the energy in a little space. The solution of the problem is the solar tank particularly filled with phase change material.

  20. Results of Hg speciation testing on tank 39 and 1Q16 tank 50 samples

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The seventeenth shipment of samples was designated to include two Tank 39 samples and the 1Q16 Tank 50 Quarterly WAC sample. The surface Tank 39 sample was pulled at 262.1” from the tank bottom, and the depth Tank 39 sample was pulled at 95” from the tank bottom. The 1Q16 Tank 50 WAC sample was drawn from the 1-L variable depth sample received by SRNL.

  1. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank......Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...

  2. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank......Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...

  3. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-05

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

  4. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  5. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

  6. 27 CFR 19.382 - Bottling tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottling tanks. 19.382... Manufacture of Articles Bottling, Packaging, and Removal of Products § 19.382 Bottling tanks. All spirits shall be bottled from tanks listed and certified as accurately calibrated in the notice of...

  7. 33 CFR 183.510 - Fuel tanks.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak...

  8. 27 CFR 19.273 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 19.273 Section 19... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Construction, Equipment and Security § 19.273 Tanks. (a) General. (1) Tanks used as receptacles for spirits, denatured spirits, or wines shall be located,...

  9. 27 CFR 19.586 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 19.586 Section 19.586 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Containers and Marks Containers § 19.586 Tanks. Tanks...

  10. 49 CFR 172.328 - Cargo tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo tanks. 172.328 Section 172.328... SECURITY PLANS Marking § 172.328 Cargo tanks. (a) Providing and affixing identification numbers. Unless a cargo tank is already marked with the identification numbers required by this subpart,...

  11. 7 CFR 58.427 - Paraffin tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks...

  12. 49 CFR 172.326 - Portable tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on...

  13. 19 CFR 151.44 - Storage tanks.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  14. Opposed Bellows Would Expel Contents Of Tank

    Science.gov (United States)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  15. Think Tanks, Education and Elite Policy Actors

    Science.gov (United States)

    Savage, Glenn C.

    2016-01-01

    The past decade has seen think tanks operate in sophisticated ways to influence the development of education policies. In this paper, I reflect upon the influence of think tanks in the formation of national reform, using the Common Core State Standards initiative in the USA as an illustrative case. In doing so, I explore how certain think tanks,…

  16. Tank 12H residuals sample analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shine, E. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  17. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... and the corresponding upward flow in the central parts of the tank. Tank design parameters such as tank volume, height to diameter ratio and insulation and different initial conditions of the tank are investigated.It is elucidated how thermal stratification in the tank is influenced by the natural convection and how...

  18. 49 CFR 230.115 - Feed water tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... for tank wells or tank hose and shall be maintained in a manner that allows the unobstructed flow...

  19. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  20. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    is a plot of total hydrogen gas as a function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 13 psig...function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 50 psig using a H2O:NaBH4 ratio of 4.6:1 and 3.0... pressure tank (McMaster-Carr, part number. 6778K21). The pressure tank has a 185-psig maximum pressure rating at 37.8 ºC and a maximum operating

  1. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3...

  2. Tank characterization report for double-shell tank 241-AP-102

    Energy Technology Data Exchange (ETDEWEB)

    LAMBERT, S.L.

    1999-02-23

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues.

  3. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay

  4. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  5. 33 CFR 157.10b - Segregated ballast tanks, dedicated clean ballast tanks, and special ballast arrangements for...

    Science.gov (United States)

    2010-07-01

    ..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., dedicated clean ballast tanks, and special ballast arrangements for tank vessels transporting Outer..., 1980 must, if segregated ballast tanks or dedicated clean ballast tanks are not required under §...

  6. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper;

    2006-01-01

    hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3......The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...

  7. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Science.gov (United States)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  8. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Anantatmula, R.P.; Schwenk, E.B. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations.

  9. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  10. Hydrogen Peroxide Propulsion for Smaller Satellites

    OpenAIRE

    Whitehead, John

    1998-01-01

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable bench top propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  11. Hydrogen fuel for space conditioning of buildings

    Science.gov (United States)

    Bonne, U.

    A comparative study is presented concerning the unique characteristics and relative advantages of hydrogen-air flames employed in boilers for building space heating. From the standpoint of safety, it is noted that the flammability limits of H2, at 4-75 percent in air, are far wider than the 5-15 percent of CH4. In addition to ignition characteristics, pipe sizing and storage tanks, stoichiometric fuel/air ratios, influence of fuel consumption on heating values, UV spectra, and the influence of fuel composition on fuel gas composition, are considered for a variety of hydrocarbon gas, heating oil, alcohols, and carbonaceous solid fuel alternatives to hydrogen.

  12. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    Energy Technology Data Exchange (ETDEWEB)

    HASSAN, NEGUIB

    2004-06-29

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

  13. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data

  14. ICPP Tank Farm planning through 2012

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  15. Hanford Site Waste Storage Tank Information Notebook

    Energy Technology Data Exchange (ETDEWEB)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  16. Development of sensors for hydrogen safety on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kitanoya, S.; Furusaki, K.; Inoue, R.; Watanabe, M.; Matsuno, T.; Ichikawa, D. [NGK Spark Plug Co. Ltd, Aichi (Japan)

    2007-07-01

    When combusted, hydrogen fuel used in fuel cell vehicles (FCV) generates water only. Although this technology can help protect against global warming, the safety of hydrogen fuel must be resolved before widespread use of hydrogen-based FCVs can be realized. Hydrogen gas has a broad flammability range and will ignite when mixed with air in the ranges from 4 to 75 per cent. The primary technical requirement for FCV safety is to detect hydrogen leaks and shut off the hydrogen gas. Hydrogen sensors that detect hydrogen leaks are an important part of the safety issue. This paper presented 2 newly developed hydrogen sensors in which micro-electromechanical system (MEMS) technology was used to build a micro-heater with very small heat capacity. Both sensors have different detection principles. One is placed above the hydrogen tank and fuel cells. This combustion type sensor uses catalytic combustion of the hydrogen on the micro-heater. It features quick start-up and high accuracy. The other type of hydrogen sensor can be place in a hydrogen gas purging pipe. This thermal conduction-type sensor can detect the change in thermal conductivity of the gas. The catalytic combustion sensor is based on the detection of the voltage difference between the detection heater and reference heater. 6 refs., 3 tabs., 24 figs.

  17. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  18. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  19. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  20. Hydrogen Fire in a Storage Vessel

    Science.gov (United States)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor

  1. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  2. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  3. MALIGNANT EXTERNAL OTITIS

    OpenAIRE

    Massoud Moghaddam

    1993-01-01

    Two case reports of malignant external otitis in the elderly diabetics and their complications and management with regard to our experience at Amir Alam Hospital, Department of ENT will be discussed here.

  4. Checklists for external validity

    DEFF Research Database (Denmark)

    Dyrvig, Anne-Kirstine; Kidholm, Kristian; Gerke, Oke;

    2014-01-01

    RATIONALE, AIMS AND OBJECTIVES: The quality of the current literature on external validity varies considerably. An improved checklist with validated items on external validity would aid decision-makers in judging similarities among circumstances when transferring evidence from a study setting...... to an implementation setting. In this paper, currently available checklists on external validity are identified, assessed and used as a basis for proposing a new improved instrument. METHOD: A systematic literature review was carried out in Pubmed, Embase and Cinahl on English-language papers without time restrictions....... The retrieved checklist items were assessed for (i) the methodology used in primary literature, justifying inclusion of each item; and (ii) the number of times each item appeared in checklists. RESULTS: Fifteen papers were identified, presenting a total of 21 checklists for external validity, yielding a total...

  5. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  6. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  7. Migration with fiscal externalities.

    Science.gov (United States)

    Hercowitz, Z; Pines, D

    1991-11-01

    "This paper analyses the distribution of a country's population among regions when migration involves fiscal externalities. The main question addressed is whether a decentralized decision making [by] regional governments can produce an optimal population distribution...or a centralized intervention is indispensable, as argued before in the literature.... It turns out that, while with costless mobility the fiscal externality is fully internalized by voluntary interregional transfers, with costly mobility, centrally coordinated transfers still remain indispensable for achieving the socially optimal allocation."

  8. Sen cycles and externalities

    OpenAIRE

    Piggins, Ashley; Salerno, Gillian

    2016-01-01

    It has long been understood that externalities of some kind are responsible for Sen’s (1970) theorem on the impossibility of a Paretian liberal. However, Saari and Petron (2006) show that for any social preference cycle generated by combining the weak Pareto principle and individual decisiveness, every decisive individual must suffer at least one strong negative externality. We show that this fundamental result only holds when individual preferences are strict. Building on their contribution,...

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  10. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  11. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  12. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  13. Underground tank assembly with internal bladder

    Energy Technology Data Exchange (ETDEWEB)

    Strock, D.J.

    1987-03-10

    An underground tank assembly is described for storing motor fuels, such as gasoline or diesel fuel, comprising: a collapsible primary tank comprising a flexible bladder for containing a motor fuel, the primary tank being moveable from a collapsed generally empty position to an inflated generally full position; a substantially rigid secondary tank substantially surrounding and enclosing the primary tank for secondary containment of an leakage of motor fuel from the primary tank, the secondary tank having a top, a bottom, and end walls extending between and connecting the top and bottom; the bladder having a bottom portion positioned adjacent the bottom of the secondary tank; and conduit means extending through the top of the rigid secondary tank to a position in proximity to the bottom portion of the flexible bladder. The conduit means includes an inlet conduit with an inlet upright portion for filing the flexible bladder with motor fuel and an outlet conduit with an outlet upright portion for withdrawing the motor fuel from the flexible bladder. The outlet upright portion of the outlet conduit is positioned within the interior of and is substantially concentrically and coaxially surrounded by the inlet upright portion of the inlet conduit. The outlet conduit and the inlet conduit both are positioned in proximity to one of the end walls of the rigid secondary tank.

  14. Chemical composition of Hanford Tank SY-102

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

  15. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  16. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  17. COLD-SAT - An orbital cryogenic hydrogen technology experiment

    Science.gov (United States)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10 (-6) to 10(-4) g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  18. COLD-SAT: An orbital cryogenic hydrogen technology experiment

    Science.gov (United States)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  19. Volatilization of hydrogen sulfide from a quiescent surface.

    Science.gov (United States)

    de Cassia Feroni, Rita; Santos, Jane Meri; Reis, Neyval Costa

    2012-01-01

    Air-water mass transfer of hydrogen sulfide from a shallow tank with a quiescent surface under the influence of weak wind stress on the water surface was studied numerically using a two-dimensional model. The flow field in the tank was investigated using a computational code based on a finite volume, which is used to numerically solve momentum, mass and continuity conservation equations. The results show that water phase flow field is strongly dependent on the wind-induced surface velocity and the aspect ratio of the tank. Based on the numerical study, the liquid-side mass transfer coefficient is correlated with Reynolds number (R(e)), tank aspect ratio (AR) and Schmidt number (S(c)). Overall mass transfer coefficient (K(L)) values extend further downstream as the R(e) number increases.

  20. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  1. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  2. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  3. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    Science.gov (United States)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  4. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  5. Dramatic inspection cost reduction of spherical storage tanks; Reduction importante des couts d'inspection des reservoires de stockage spheriques

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoyuki, Ohkawa [Osaka Gas Co., Ltd (Japan)

    2000-07-01

    To ensure the safety of spherical gas holders and LPG storage tanks (hereafter called spherical storage tanks), both daily and periodic inspections are performed after the tanks become operational. One such periodic inspection involves opening the tank to check the integrity of weld lines on the inner and outer walls, but this is a costly and time-consuming task. A more suitable and efficient alternative is prescribed by standards like the Guidelines for Spherical Gas Holders published by the Japan Gas Association (hereafter called JGA Guidelines) which stipulate operational tank inspections that are conducted on the weld lines of inner and outer walls from outside the tank (i.e., external defect detection) without actually opening the tank. External defect detection technologies are widely available today, but Osaka Gas, Tokyo Gas and Toho Gas have jointly developed a high-speed TOFD (time of flight diffraction) mode that is quite different from the pulse reflection mode of ultrasonic defect detection testing prescribed by JGA Guidelines. Along these same lines, Osaka Gas also developed an inspection robot that travels along the weld line in an effort to reduce the cost of inspections still further. This paper will show that applying this newly developed inspection mode and robot to operational tank inspections will significantly reduce inspection costs, cut inspection time and improve the work environment. (authors)

  6. Simple characterisation of solar DHW tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    1998-01-01

    The aim of the project is to compare different methods used for testing small solar domestic hot water tanks. A small hot water tank is tested at three different European laboratories by means of the test methods normally used at the laboratories. The tank is marketed in Denmark.The test carried...... out at the Department for Buildings and Energy compromises determination of the heat loss coefficient for the tank and the heat transfer coefficient for the auxiliary helix. A dynamic test is performed and a simulation model of the tank is made and validated against measured energy quantities...... and temperatures. The annual thermal performance for a solar domestic hot water system based on the tested tank is calculated. Further, proposal for a future test on mixing during draw-off as well as proposal for a maximum acceptable mixing during draw-off is given....

  7. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    Science.gov (United States)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  8. Evaluation of insulated pressure vessels for cryogenic hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Garcia-Villazana, O; Martinez-Frias, J

    1999-03-01

    This paper presents an analytical and experimental evaluation of the applicability of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH?) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The purpose of this work is to verify that commercially available aluminum-lined, fiber- wrapped vessels can be used for cryogenic hydrogen storage. The paper reports on previous and ongoing tests and analyses that have the purpose of improving the system design and assure its safety.

  9. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  10. Hydrogen for road transport: implementations and developments; L'hydrogene pour le transport sur route: realisations et developpements

    Energy Technology Data Exchange (ETDEWEB)

    Junker, M.; Bocquet, L.; Bendif, M.; Karboviac, D. [Alphea, 57 - Forbach (France)

    2000-07-01

    The different technologies for the use of hydrogen in the road transport are overviewed: type of propulsion (fuel cell and electric motor or internal combustion motor), hydrogen production, on-board storage, infrastructure. The aspects of safety, standardization and regulation are approached too. At the present time, main of the hydrogen buses are equipped with polymer membrane cells (PEMFC), directly supplied in hydrogen and stored in tanks under pressure (300 bars). On the other hand, the automobile manufacturers are developing different types of prototypes: internal combustion engines with liquid hydrogen storage, PEM cell cars with hydrogen storage (liquid, gas or hydrides) or with methanol storage. The infrastructure type will depend on the primary fuel chosen by the automobile manufacturers and on the requirements of the petroleum firms. Several hydrogen service stations have been constructed. They deliver hydrogen, on a gaseous or liquid state; the hydrogen being produced by natural gas reforming or by electrolysis. The setting of a 'Hydrogen system' require indeed the development of specific means of production, transport, distribution and storage. The public acceptance will be won by safeguards of safety, reliability, performance and competitiveness. The research and development studies are nowadays particularly centred on: 1)the on-board hydrogen storage 2)the on-board systems of hydrogen production from methanol and gasoline 3)the standardization and regulation. (O.M.)

  11. Water Tanks, Tanks, Published in 2006, 1:24000 (1in=2000ft) scale, Washington County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2006. It is described as 'Tanks'. Data by...

  12. Utilities:Water:Water Tanks at Pipe Spring National Monument, Arizona (Utilities.gdb:Water:tanks)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents tanks at Pipe Spring National Monument, Arizona. It consists of 2 polygons representing the Tunnel Spring Division Tank and the 1/2...

  13. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2009-07-10

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the

  14. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  15. 40 CFR 61.343 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Tanks. 61.343 Section 61.343... § 61.343 Standards: Tanks. (a) Except as provided in paragraph (b) of this section and in § 61.351, the owner or operator must meet the standards in paragraph (a)(1) or (2) of this section for each tank...

  16. ICPP tank farm closure study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  17. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  18. 46 CFR 153.281 - Piping to independent tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above...

  19. 49 CFR 179.201-3 - Lined tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lined tanks. 179.201-3 Section 179.201-3... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a)...

  20. 49 CFR 179.220-9 - Compartment tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks....