N reactor external events probabilistic risk assessment
International Nuclear Information System (INIS)
Baxter, J.T.
1989-01-01
An external events probabilistic risk assessment of the N Reactor has been completed. The methods used are those currently being proposed for external events analysis in NUREG-1150. Results are presented for the external hazards that survived preliminary screening. They are earthquake, fire, and external flood. Core damage frequencies for these hazards are shown to be comparable to those for commercial pressurized water reactors. Dominant fire sequences are described and related to 10 CFR 50, Appendix R design requirements. Potential remedial measures that reduce fire core damage risk are described including modifications to fire protection systems, procedure changes, and addition of new administrative controls. Dominant seismic sequences are described. The effect of non-safety support system dependencies on seismic risk is presented
Impact of external events on site evaluation: a probabilistic approach
International Nuclear Information System (INIS)
Jaccarino, E.; Giuliani, P.; Zaffiro, C.
1975-01-01
A probabilistic method is proposed for definition of the reference external events of nuclear sites. The external events taken into account are earthquakes, floods and tornadoes. On the basis of the available historical data for each event it is possible to perform statistical analyses to determine the probability of occurrence on site of events of given characteristics. For earthquakes, the method of analysis takes into consideration both the annual frequency of seismic events in Italy and the probabilistic distribution of areas stricken by each event. For floods, the methods of analysis of hydrological data and the basic criteria for the determination of design events are discussed and the general lines of the hydraulic analysis of a nuclear site are shown. For tornadoes, the statistical analysis has been performed for the events which occurred in Italy during the last 40 years; these events have been classified according to an empirical intensity scale. The probability of each reference event should be a function of the potential radiological damage associated with the particular type of plant which must be installed on the site. Thus the reference event could be chosen such that for the whole of the national territory the risk for safety and environmental protection is the same. (author)
Probabilistic analysis of external events with focus on the Fukushima event
International Nuclear Information System (INIS)
Kollasko, Heiko; Jockenhoevel-Barttfeld, Mariana; Klapp, Ulrich
2014-01-01
External hazards are those natural or man-made hazards to a site and facilities that are originated externally to both the site and its processes, i.e. the duty holder may have very little or no control over the hazard. External hazards can have the potential of causing initiating events at the plant, typically transients like e.g., loss of offsite power. Simultaneously, external events may affect safety systems required to control the initiating event and, where applicable, also back-up systems implemented for risk-reduction. The plant safety may especially be threatened when loads from external hazards exceed the load assumptions considered in the design of safety-related systems, structures and components. Another potential threat is given by hazards inducing initiating events not considered in the safety demonstration otherwise. An example is loss of offsite power combined with prolonged plant isolation. Offsite support, e.g., delivery of diesel fuel oil, usually credited in the deterministic safety analysis may not be possible in this case. As the Fukushima events have shown, the biggest threat is likely given by hazards inducing both effects. Such hazards may well be dominant risk contributors even if their return period is very high. In order to identify relevant external hazards for a certain Nuclear Power Plant (NPP) location, a site specific screening analysis is performed, both for single events and for combinations of external events. As a result of the screening analysis, risk significant and therefore relevant (screened-in) single external events and combinations of them are identified for a site. The screened-in events are further considered in a detailed event tree analysis in the frame of the Probabilistic Safety Analysis (PSA) to calculate the core damage/large release frequency resulting from each relevant external event or from each relevant combination. Screening analyses of external events performed at AREVA are based on the approach provided
External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)
International Nuclear Information System (INIS)
Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.
1989-01-01
The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events
Energy Technology Data Exchange (ETDEWEB)
Hanan, N.A.; Ilberg, D.; Xue, D.; Youngblood, R.; Reed, J.W.; McCann, M.; Talwani, T.; Wreathall, J.; Kurth, P.D.; Bandyopadhyay, K.
1986-03-01
A review of the Oconee-3 Probabilistic Risk Assessment (OPRA) was conducted with the broad objective of evaluating qualitatively and quantitatively (as much as possible) the OPRA assessment of the important sequences that are ''externally'' generated and lead to core damage. The review included a technical assessment of the assumptions and methods used in the OPRA within its stated objective and with the limited information available. Within this scope, BNL performed a detailed reevaluation of the accident sequences generated by internal floods and earthquakes and a less detailed review (in some cases a scoping review) for the accident sequences generated by fires, tornadoes, external floods, and aircraft impact. 12 refs., 24 figs., 31 tabs.
International Nuclear Information System (INIS)
Hanan, N.A.; Ilberg, D.; Xue, D.
1986-03-01
A review of the Oconee-3 Probabilistic Risk Assessment (OPRA) was conducted with the broad objective of evaluating qualitatively and quantitatively (as much as possible) the OPRA assessment of the important sequences that are ''externally'' generated and lead to core damage. The review included a technical assessment of the assumptions and methods used in the OPRA within its stated objective and with the limited information available. Within this scope, BNL performed a detailed reevaluation of the accident sequences generated by internal floods and earthquakes and a less detailed review (in some cases a scoping review) for the accident sequences generated by fires, tornadoes, external floods, and aircraft impact. 12 refs., 24 figs., 31 tabs
Probabilistic safety assessment for seismic events
International Nuclear Information System (INIS)
1993-10-01
This Technical Document on Probabilistic Safety Assessment for Seismic Events is mainly associated with the Safety Practice on Treatment of External Hazards in PSA and discusses in detail one specific external hazard, i.e. earthquakes
External event analysis methods for NUREG-1150
International Nuclear Information System (INIS)
Bohn, M.P.; Lambright, J.A.
1989-01-01
The US Nuclear Regulatory Commission is sponsoring probabilistic risk assessments of six operating commercial nuclear power plants as part of a major update of the understanding of risk as provided by the original WASH-1400 risk assessments. In contrast to the WASH-1400 studies, at least two of the NUREG-1150 risk assessments will include an analysis of risks due to earthquakes, fires, floods, etc., which are collectively known as eternal events. This paper summarizes the methods to be used in the external event analysis for NUREG-1150 and the results obtained to date. The two plants for which external events are being considered are Surry and Peach Bottom, a PWR and BWR respectively. The external event analyses (through core damage frequency calculations) were completed in June 1989, with final documentation available in September. In contrast to most past external event analyses, wherein rudimentary systems models were developed reflecting each external event under consideration, the simplified NUREG-1150 analyses are based on the availability of the full internal event PRA systems models (event trees and fault trees) and make use of extensive computer-aided screening to reduce them to sequence cut sets important to each external event. This provides two major advantages in that consistency and scrutability with respect to the internal event analysis is achieved, and the full gamut of random and test/maintenance unavailabilities are automatically included, while only those probabilistically important survive the screening process. Thus, full benefit of the internal event analysis is obtained by performing the internal and external event analyses sequentially
Analysis of external events - Nuclear Power Plant Dukovany
International Nuclear Information System (INIS)
Hladky, Milan
2000-01-01
PSA of external events at level 1 covers internal events, floods, fires, other external events are not included yet. Shutdown PSA takes into account internal events, floods, fires, heavy load drop, other external events are not included yet. Final safety analysis report was conducted after 10 years of operation for all Dukovany operational units. Probabilistic approach was used for analysis of aircraft drop and external man-induced events. The risk caused by man-induced events was found to be negligible and was accepted by State Office for Nuclear Safety (SONS)
External events analysis of the Ignalina Nuclear Power Plant
International Nuclear Information System (INIS)
Liaukonis, Mindaugas; Augutis, Juozas
1999-01-01
This paper presents analysis of external events impact on the safe operation of the Ignalina Nuclear Power Plant (INPP) safety systems. Analysis was based on the probabilistic estimation and modelling of the external hazards. The screening criteria were applied to the number of external hazards. The following external events such as aircraft failure on the INPP, external flooding, fire, extreme winds requiring further bounding study were analysed. Mathematical models were developed and event probabilities were calculated. External events analysis showed rather limited external events danger to Ignalina NPP. Results of the analysis were compared to analogous analysis in western NPPs and no great differences were specified. Calculations performed show that external events can not significantly influence the safety level of the Ignalina NPP operation. (author)
Probabilistic Models for Solar Particle Events
Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.
2009-01-01
Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.
External Events PSA for the Paks NPP
International Nuclear Information System (INIS)
Bareith, Attila; Karsa, Zoltan; Siklossy, Tamas; Vida, Zoltan
2014-01-01
Initially, probabilistic safety assessment of external events was limited to the analysis of earthquakes for the Paks Nuclear Power Plant in Hungary. The level 1 seismic PSA was completed in 2002 showing a significant contribution of seismic failures to core damage risk. Although other external events of natural origin had previously been screened out from detailed plant PSA mostly on the basis of event frequencies, a review of recent experience on extreme weather phenomena made during the periodic safety review of the plant led to the initiation of PSA for external events other than earthquakes in 2009. In the meantime, the accident of the Fukushima Dai-ichi Nuclear Power Plant confirmed further the importance of such an analysis. The external event PSA for the Paks plant followed the commonly known steps: selection and screening of external hazards, hazard assessment for screened-in external events, analysis of plant response and fragility, PSA model development, and risk quantification and interpretation of results. As a result of event selection and screening the following weather related external hazards were subject to detailed analysis: extreme wind, extreme rainfall (precipitation), extreme snow, extremely high and extremely low temperatures, lightning, frost and ice formation. The analysis proved to be a significant challenge due to scarcity of data, lack of knowledge, as well as limitations of existing PSA methodologies. This paper presents an overview of the external events PSA performed for the Paks NPP. Important methodological aspects are summarised. Key analysis findings and unresolved issues that need further elaboration are highlighted. Development of external events PSA for the Paks NPP was completed by the end of 2012. The analysis followed the commonly known steps: selection and screening of external hazards, hazard assessment for screened-in external events, analysis of plant response and fragility, PSA model development, and risk
MGR External Events Hazards Analysis
International Nuclear Information System (INIS)
Booth, L.
1999-01-01
The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses
External events analysis for the Savannah River Site K reactor
International Nuclear Information System (INIS)
Brandyberry, M.D.; Wingo, H.E.
1990-01-01
The probabilistic external events analysis performed for the Savannah River Site K-reactor PRA considered many different events which are generally perceived to be ''external'' to the reactor and its systems, such as fires, floods, seismic events, and transportation accidents (as well as many others). Events which have been shown to be significant contributors to risk include seismic events, tornados, a crane failure scenario, fires and dam failures. The total contribution to the core melt frequency from external initiators has been found to be 2.2 x 10 -4 per year, from which seismic events are the major contributor (1.2 x 10 -4 per year). Fire initiated events contribute 1.4 x 10 -7 per year, tornados 5.8 x 10 -7 per year, dam failures 1.5 x 10 -6 per year and the crane failure scenario less than 10 -4 per year to the core melt frequency. 8 refs., 3 figs., 5 tabs
Technical basis document for external events
International Nuclear Information System (INIS)
OBERG, B.D.
2003-01-01
This document supports the Tank Farms Documented Safety Analysis and presents the technical basis for the FR-equencies of externally initiated accidents. The consequences of externally initiated events are discussed in other documents that correspond to the accident that was caused by the external event. The external events include aircraft crash, vehicle accident, range fire, and rail accident
Risk and sensitivity analysis in relation to external events
International Nuclear Information System (INIS)
Alzbutas, R.; Urbonas, R.; Augutis, J.
2001-01-01
This paper presents risk and sensitivity analysis of external events impacts on the safe operation in general and in particular the Ignalina Nuclear Power Plant safety systems. Analysis is based on the deterministic and probabilistic assumptions and assessment of the external hazards. The real statistic data are used as well as initial external event simulation. The preliminary screening criteria are applied. The analysis of external event impact on the NPP safe operation, assessment of the event occurrence, sensitivity analysis, and recommendations for safety improvements are performed for investigated external hazards. Such events as aircraft crash, extreme rains and winds, forest fire and flying parts of the turbine are analysed. The models are developed and probabilities are calculated. As an example for sensitivity analysis the model of aircraft impact is presented. The sensitivity analysis takes into account the uncertainty features raised by external event and its model. Even in case when the external events analysis show rather limited danger, the sensitivity analysis can determine the highest influence causes. These possible variations in future can be significant for safety level and risk based decisions. Calculations show that external events cannot significantly influence the safety level of the Ignalina NPP operation, however the events occurrence and propagation can be sufficiently uncertain.(author)
Probabilistic analysis of extreme wind events
Energy Technology Data Exchange (ETDEWEB)
Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)
1997-12-31
A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)
Application of declarative modeling approaches for external events
International Nuclear Information System (INIS)
Anoba, R.C.
2005-01-01
Probabilistic Safety Assessments (PSAs) are increasingly being used as a tool for supporting the acceptability of design, procurement, construction, operation, and maintenance activities at Nuclear Power Plants. Since the issuance of Generic Letter 88-20 and subsequent IPE/IPEEE assessments, the NRC has issued several Regulatory Guides such as RG 1.174 to describe the use of PSA in risk-informed regulation activities. Most PSA have the capability to address internal events including internal floods. As the more demands are being placed for using the PSA to support risk-informed applications, there has been a growing need to integrate other eternal events (Seismic, Fire, etc.) into the logic models. Most external events involve spatial dependencies and usually impact the logic models at the component level. Therefore, manual insertion of external events impacts into a complex integrated fault tree model may be too cumbersome for routine uses of the PSA. Within the past year, a declarative modeling approach has been developed to automate the injection of external events into the PSA. The intent of this paper is to introduce the concept of declarative modeling in the context of external event applications. A declarative modeling approach involves the definition of rules for injection of external event impacts into the fault tree logic. A software tool such as the EPRI's XInit program can be used to interpret the pre-defined rules and automatically inject external event elements into the PSA. The injection process can easily be repeated, as required, to address plant changes, sensitivity issues, changes in boundary conditions, etc. External event elements may include fire initiating events, seismic initiating events, seismic fragilities, fire-induced hot short events, special human failure events, etc. This approach has been applied at a number of US nuclear power plants including a nuclear power plant in Romania. (authors)
Treatment of external events in the linked event tree methodology NPP Goesgen - Daeniken example
International Nuclear Information System (INIS)
Kozlik, Thomas
2014-01-01
The NPP Goesgen-Daeniken uses a combined level 1 / level 2 PSA model for its event analyses. The model uses a linked event tree approach, using the software RISKMAN R . Each initiating event passes through a modularized event tree structure, consisting of external events pre-trees, alignment and support systems trees and front-line and containment response trees. This paper explains the structure of the linked event trees. Switches are used to bypass certain trees for specific initiating events. The screening process applied to possible external events is explained. The final scope of considered natural external events in the Goesgen PSA consists of earthquakes, seasonal events causing cooling water intake plugging or external floods. The structure of the natural external events pre-trees is explained. The treatment of external floods is explained in more detail. Floods at the Goesgen site are caused by extreme river flows into the old branch of the Aare river. A new model has been developed to analyse the probabilistic flood hazard using a bivariate distribution (water level and flood duration). Analysing the statistical data, the time trend had to be considered. The Goesgen PSA models 7 external flood initiating events, considering different water levels and durations at the flooded plant site. The building fragilities were developed in terms of resistance times. The RISKMAN R external flood pre-tree consists of top events for operator actions and failure of the building functions, which leads to the functional failure of equipment located at the lower elevation of the building. (author)
External flood probabilistic safety analysis of a coastal NPP
International Nuclear Information System (INIS)
Pisharady, Ajai S.; Chakraborty, M.K.; Acharya, Sourav; Roshan, A.D.; Bishnoi, L.R.
2015-01-01
External events pose a definitive challenge to safety of NPP, solely due to their ability to induce common cause failures. Flooding incidents at Le Blayais NPP, France, Fort Calhoun NPP, USA and Fukushima Daiichi have pointed to the importance of external flooding as an important contributor to NPP risk. A methodology developed for external flood PSA of a coastal NPP vulnerable to flooding due to tsunami, cyclonic storm and intense local precipitation is presented in this paper. Different tasks for EFPSA has been identified along with general approach for completing each task
Probabilistic Cross-Identification of Cosmic Events
Budavari, Tamas
2011-01-01
We discuss a novel approach to identifying cosmic events in separate and independent observations. In our focus are the true events, such as supernova explosions, that happen once, hence, whose measurements are not repeatable. Their classification and analysis have to make the best use of all the available data. Bayesian hypothesis testing is used to associate streams of events in space and time. Probabilities are assigned to the matches by studying their rates of occurrence. A case study of ...
Level 2 probabilistic event analyses and quantification
International Nuclear Information System (INIS)
Boneham, P.
2003-01-01
In this paper an example of quantification of a severe accident phenomenological event is given. The performed analysis for assessment of the probability that the debris released from the reactor vessel was in a coolable configuration in the lower drywell is presented. It is also analysed the assessment of the type of core/concrete attack that would occur. The coolability of the debris ex-vessel evaluation by an event in the Simplified Boiling Water Reactor (SBWR) Containment Event Tree (CET) and a detailed Decomposition Event Tree (DET) developed to aid in the quantification of this CET event are considered. The headings in the DET selected to represent plant physical states (e.g., reactor vessel pressure at the time of vessel failure) and the uncertainties associated with the occurrence of critical physical phenomena (e.g., debris configuration in the lower drywell) considered important to assessing whether the debris was coolable or not coolable ex-vessel are also discussed
Probabilistic attribution of individual unprecedented extreme events
Diffenbaugh, N. S.
2016-12-01
The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.
Radiation protection criteria for cases of probabilistic disruptive events
International Nuclear Information System (INIS)
Beninson, D.J.
1985-01-01
The individual risk limitation for the case of probabilistic disruptive events is studied, when the radiation effects cease to be only stochastic; the proposed criterion is applied for the case of high level waste repositories. The protection's optimization results from the differential cost-benefit. More general procedures of decision theory that use probabilistically defined utility functions are considered for its calculation. These more general procedures can be applied also in cases where radiation exposures are only potential, to optimize the required level of safety features. It is shown that for disruptive events of low probability and large resulting consequences, the concept of 'expectation' of consequence can not be used in decision making, but that the use of probabilistically based utility functions can conceptually assure a consistent approach in deciding the required level of safety. The use of utility functions of logaritmic form to assign weights to consequences involving different loss of life is explored (M.E.L.) [es
Vulnerability analysis of a PWR to an external event
International Nuclear Information System (INIS)
Aruety, S.; Ilberg, D.; Hertz, Y.
1980-01-01
The Vulnerability of a Nuclear Power Plant (NPP) to external events is affected by several factors such as: the degree of redundancy of the reactor systems, subsystems and components; the separation of systems provided in the general layout; the extent of the vulnerable area, i.e., the area which upon being affected by an external event will result in system failure; and the time required to repair or replace the systems, when allowed. The present study offers a methodology, using Probabilistic Safety Analysis, to evaluate the relative importance of the above parameters in reducing the vulnerability of reactor safety systems. Several safety systems of typical PWR's are analyzed as examples. It was found that the degree of redundancy and physical separation of the systems has the most prominent effect on the vulnerability of the NPP
PROBABILISTIC CROSS-IDENTIFICATION OF COSMIC EVENTS
International Nuclear Information System (INIS)
Budavari, Tamas
2011-01-01
I discuss a novel approach to identifying cosmic events in separate and independent observations. The focus is on the true events, such as supernova explosions, that happen once and, hence, whose measurements are not repeatable. Their classification and analysis must make the best use of all available data. Bayesian hypothesis testing is used to associate streams of events in space and time. Probabilities are assigned to the matches by studying their rates of occurrence. A case study of Type Ia supernovae illustrates how to use light curves in the cross-identification process. Constraints from realistic light curves happen to be well approximated by Gaussians in time, which makes the matching process very efficient. Model-dependent associations are computationally more demanding but can further boost one's confidence.
International Nuclear Information System (INIS)
Krauss, Matias; Berg, Heinz-Peter
2014-01-01
The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) initiated in September 2003 a comprehensive program for the revision of the national nuclear safety regulations which has been successfully completed in November 2012. These nuclear regulations take into account the current recommendations of the International Atomic Energy Agency (IAEA) and Western European Nuclear Regulators Association (WENRA). In this context, the recommendations and guidelines of the Nuclear Safety Standards Commission (KTA) and the technical documents elaborated by the respective expert group on Probabilistic Safety Analysis for Nuclear Power Plants (FAK PSA) are being updated or in the final process of completion. A main topic of the revision was the issue external hazards. As part of this process and in the light of the accident at Fukushima and the findings of the related actions resulting in safety reviews of nuclear power plants at national level in Germany and on European level, a revision of all relevant standards and documents has been made, especially the recommendations of KTA and FAK PSA. In that context, not only design issues with respect to events such as earthquakes and floods have been discussed, but also methodological issues regarding the implementation of improved probabilistic safety analyses on this topic. As a result of the revision of the KTA 2201 series 'Design of Nuclear Power Plants against Seismic Events' with their parts 1 to 6, part 1 'Principles' was published as the first standard in November 2011, followed by the revised versions of KTA 2201.2 (soil) and 2201.4 (systems and components) in 2012. The modified the standard KTA 2201.3 (structures) is expected to be issued before the end of 2013. In case of part 5 (seismic instrumentation) and part 6 (post>seismic actions) draft amendments are expected in 2013. The expert group 'Probabilistic Safety Assessments for Nuclear Power Plants' (FAK PSA) is an advisory body of the Federal
External events analysis for experimental fusion facilities
International Nuclear Information System (INIS)
Cadwallader, L.C.
1990-01-01
External events are those off-normal events that threaten facilities either from outside or inside the building. These events, such as floods, fires, and earthquakes, are among the leading risk contributors for fission power plants, and the nature of fusion facilities indicates that they may also lead fusion risk. This paper gives overviews of analysis methods, references good analysis guidance documents, and gives design tips for mitigating the effects of floods and fires, seismic events, and aircraft impacts. Implications for future fusion facility siting are also discussed. Sites similar to fission plant sites are recommended. 46 refs
Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events
DeChant, C. M.; Moradkhani, H.
2014-12-01
Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.
International Nuclear Information System (INIS)
Ravindra, M.K.; Banon, H.
1992-07-01
In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described
Defining initiating events for purposes of probabilistic safety assessment
International Nuclear Information System (INIS)
1993-09-01
This document is primarily directed towards technical staff involved in the performance or review of plant specific Probabilistic Safety Assessment (PSA). It highlights different approaches and provides typical examples useful for defining the Initiating Events (IE). The document also includes the generic initiating event database, containing about 300 records taken from about 30 plant specific PSAs. In addition to its usefulness during the actual performance of a PSA, the generic IE database is of the utmost importance for peer reviews of PSAs, such as the IAEA's International Peer Review Service (IPERS) where reference to studies on similar NPPs is needed. 60 refs, figs and tabs
Advanced nuclear plant design options to cope with external events
International Nuclear Information System (INIS)
2006-02-01
reactors from external event impacts, as well as to assist the designers of advanced NPPs in the definition of a consistent strategy of design and siting evaluation in relation to extreme external events. This publication was prepared through the collaboration of the designers of 14 advanced NPPs from Argentina, Canada, Germany, India, Japan, Lithuania, the Republic of Korea, the Russian Federation and the United States of America, and was supported by a dedicated IAEA technical meeting convened in Vienna 14-19 November 2004. This publication also incorporates the contributions from several international experts, who provided descriptions of the state of the art approaches and methodologies for site safety assessment, probabilistic safety assessment (PSA) in relation to external events, and component qualification
International Nuclear Information System (INIS)
Hoffmann, H.H.
1998-01-01
A procedures guide for a probabilistic safety analysis for the external event 'Air plane crash' has been prepared. The method is based on analysis done within the framework of PSA for German NPPs as well as on international documents. Both crashes of military air planes and commercial air planes contribute to the plant risk. For the determination of the plant related crash rate the air traffic will be divided into 3 different categories of air traffic: - The landing and takeoff phase, - the airlane traffic and waiting loop traffic, - the free air traffic, and the air planes into different types and weight classes. (orig./GL) [de
Probabilistic delay differential equation modeling of event-related potentials.
Ostwald, Dirk; Starke, Ludger
2016-08-01
"Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Fullwood, R.R.; Shier, W.G.
1989-01-01
Probabilistic risk analysis (PRA) is being used to study design alternatives for the advanced neutron source research reactor being designed at Oak Ridge National Laboratory for operation in the 1990s. Major communication paths between the designers and the safety analysts are accident discussions supported by event tables, event-tree graphics, and accident sequence probabilities. The BETA code used in conjunction with a word processor provides this linkage. This paper describes the process, features of the BETA, how it works, and some examples of usage
Current status and issues of external event PSA for extreme natural hazards after Fukushima accident
International Nuclear Information System (INIS)
Choi, In-Kil; Hahm, Daegi; Kim, Min Kyu
2014-01-01
Extreme external events is emerged as significant risk contributor to the nuclear power plants after Fukushima Daiichi accident due to the catastrophic earthquake followed by great tsunami greater than a design basis. This accident shows that the extreme external events have the potential to simultaneously affect redundant and diverse safety systems and thereby induce common cause failure or common cause initiators. The probabilistic risk assessment methodology has been used for the risk assessment and safety improvement against the extreme natural hazards. The earthquake and tsunami hazard is an important issue for the nuclear industry in Korea. In this paper, the role and application of probabilistic safety assessment for the post Fukushima action will be introduced. For the evaluation of the extreme natural hazard, probabilistic seismic and tsunami hazard analysis is being performed for the safety enhancement. The research activity on the external event PSA and its interim results will be introduced with the issues to be solved in the future for the reliability enhancement of the risk analysis results. (authors)
IPEEE Review of other external events of the NPP Asco
International Nuclear Information System (INIS)
Canadell, F.; Aleman, A.; Beltran, F.; Pifarre, D.; Hernandez, H.; Gasca, C.
2011-01-01
Within the process of maintaining and updating the risk analysis of the NPP Asco, results from the review of the vulnerability study of the plant against severe accidents caused by external success (Individual Plant Examination of External Events, IPEEE).
International Nuclear Information System (INIS)
1999-01-01
The present volume is a collection of progress reports which have been submitted within the scope of the CRP on safety of RBMK type NPPs in relation to external events including seismic related papers and man-induced events (explosions and airplane crash). It includes papers concerned with experience related to RBMK equipment testing and calculations of seismic resistance, soil-structure interactions analysis, safety assurance, aircraft impact qualification and other external events for RBMK type NPP, seismic stability of NPPs in Eastern Europe, probabilistic assessment of NPP safety under aircraft impact, dynamic analysis of NPPs, screening of external hazards for NPP
Review IPEEE C.N. external event Vandellos II
International Nuclear Information System (INIS)
Hernandez, H.; Gasca, C.; Beltran, F.; Salvat, M.; Pifarre, D.; Canadell, F.; Aleman, A.
2010-01-01
Within the process of maintaining and updating the risk analysis of CN Vandellos II, results from the review of the study of vulnerability of the plant against severe accidents caused by external events (Individual Plant Examination on Extornal Events, IPEEE).
The Role of Working Memory in the Probabilistic Inference of Future Sensory Events.
Cashdollar, Nathan; Ruhnau, Philipp; Weisz, Nathan; Hasson, Uri
2017-05-01
The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Sezen, Halil [The Ohio State Univ., Columbus, OH (United States). Dept. of Civil, Environmental and Geodetic Engineering; Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States). College of Engineering, Nuclear Engineering Program, Dept. of Mechanical and Aerospace Engineering; Denning, R. [The Ohio State Univ., Columbus, OH (United States); Vaidya, N. [Rizzo Associates, Pittsburgh, PA (United States)
2017-12-29
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
Identification and analysis of external event combinations for Hanhikivi 1PRA
Energy Technology Data Exchange (ETDEWEB)
Helander, Juho [Fennovoima Oy, Helsinki (Finland)
2017-03-15
Fennovoima's nuclear power plant, Hanhikivi 1, Pyhäjoki, Finland, is currently in design phase, and its construction is scheduled to begin in 2018 and electricity production in 2024. The objective of this paper is to produce a preliminary list of safety-significant external event combinations including preliminary probability estimates, to be used in the probabilistic risk assessment of Hanhikivi 1 plant. Starting from the list of relevant single events, the relevant event combinations are identified based on seasonal variation, preconditions related to different events, and dependencies (fundamental and cascade type) between events. Using this method yields 30 relevant event combinations of two events for the Hanhikivi site. The preliminary probability of each combination is evaluated, and event combinations with extremely low probability are excluded from further analysis. Event combinations of three or more events are identified by adding possible events to the remaining combinations of two events. Finally, 10 relevant combinations of two events and three relevant combinations of three events remain. The results shall be considered preliminary and will be updated after evaluating more detailed effects of different events on plant safety.
Initiating events in the safety probabilistic analysis of nuclear power plants
International Nuclear Information System (INIS)
Stasiulevicius, R.
1989-01-01
The importance of the initiating event in the probabilistic safety analysis of nuclear power plants are discussed and the basic procedures necessary for preparing reports, quantification and grouping of the events are described. The examples of initiating events with its occurence medium frequency, included those calculated for OCONEE reactor and Angra-1 reactor are presented. (E.G.)
International Nuclear Information System (INIS)
Puukka, Tiia
2014-01-01
Due to natural disasters occurred in the world and the experiences perceived of the Fukushima nuclear accident, the particular knowledge of the role and influence of external hazards in the safety of interim storage of spent nuclear fuel has been emphasized. For that reason it is substantial that they are included in the probabilistic risk assessment (PRA) of the interim storage facility. This is also required by the Regulatory Guides issued by The Finnish Radiation and Nuclear Safety Authority STUK. To enhance safety culture and nuclear safety in Olkiluoto, The Finnish utility Teollisuuden Voima Oyj has recently completed an analysis of external natural (seismic events are studied as a separate analysis) and unintentional human-induced risks associated with the spent fuel pool cooling and decay heat removal systems as part of the full-scope PRA study for the interim storage of spent fuel (KPA store). The analysis had four goals to achieve: (1) to determine the definition of an initiating event in the context of the KPA store, (2) to identify all potential external hazards and hazard combinations, (3) to perform a qualitative screening analysis based on frequency-strength analysis and detailed plant responses analysis and (4) to model the hazards passed the screening analysis so that model can be used as a risk analysis tool in the risk informed decision making and operating procedures. The assessment carried out included the analysis of operation procedures of decay heat removal, the study of external hazards related initiating events included in the PRA of the OL1 and OL2 nuclear power plants and their dependencies on the initiating events of the KPA store. All external hazards related initiating events were modeled using fault tree linking method. The main result and conclusion of this study was that using the screening analysis, initiating events caused by external hazards that could lead to leakage of the spent fuel pools or that could pose a threat to the
Advanced reactor passive system reliability demonstration analysis for an external event
International Nuclear Information System (INIS)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin
2017-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Directory of Open Access Journals (Sweden)
Matthew Bucknor
2017-03-01
Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.
Advanced reactor passive system reliability demonstration analysis for an external event
Energy Technology Data Exchange (ETDEWEB)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)
2017-03-15
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.
Analysis of core damage frequency due to external events at the DOE [Department of Energy] N-Reactor
International Nuclear Information System (INIS)
Lambright, J.A.; Bohn, M.P.; Daniel, S.L.; Baxter, J.T.; Johnson, J.J.; Ravindra, M.K.; Hashimoto, P.O.; Mraz, M.J.; Tong, W.H.; Conoscente, J.P.; Brosseau, D.A.
1990-11-01
A complete external events probabilistic risk assessment has been performed for the N-Reactor power plant, making full use of all insights gained during the past ten years' developments in risk assessment methodologies. A detailed screening analysis was performed which showed that all external events had negligible contribution to core damage frequency except fires, seismic events, and external flooding. A limited scope analysis of the external flooding risk indicated that it is not a major risk contributor. Detailed analyses of the fire and seismic risks resulted in total (mean) core damage frequencies of 1.96E-5 and 4.60E-05 per reactor year, respectively. Detailed uncertainty analyses were performed for both fire and seismic risks. These results show that the core damage frequency profile for these events is comparable to that found for existing commercial power plants if proposed fixes are completed as part of the restart program. 108 refs., 85 figs., 80 tabs
Analysis of core damage frequency due to external events at the DOE (Department of Energy) N-Reactor
Energy Technology Data Exchange (ETDEWEB)
Lambright, J.A.; Bohn, M.P.; Daniel, S.L. (Sandia National Labs., Albuquerque, NM (USA)); Baxter, J.T. (Westinghouse Hanford Co., Richland, WA (USA)); Johnson, J.J.; Ravindra, M.K.; Hashimoto, P.O.; Mraz, M.J.; Tong, W.H.; Conoscente, J.P. (EQE, Inc., San Francisco, CA (USA)); Brosseau, D.A. (ERCE, Inc., Albuquerque, NM (USA))
1990-11-01
A complete external events probabilistic risk assessment has been performed for the N-Reactor power plant, making full use of all insights gained during the past ten years' developments in risk assessment methodologies. A detailed screening analysis was performed which showed that all external events had negligible contribution to core damage frequency except fires, seismic events, and external flooding. A limited scope analysis of the external flooding risk indicated that it is not a major risk contributor. Detailed analyses of the fire and seismic risks resulted in total (mean) core damage frequencies of 1.96E-5 and 4.60E-05 per reactor year, respectively. Detailed uncertainty analyses were performed for both fire and seismic risks. These results show that the core damage frequency profile for these events is comparable to that found for existing commercial power plants if proposed fixes are completed as part of the restart program. 108 refs., 85 figs., 80 tabs.
Simple probabilistic method for relative risk evaluation of nuclear terrorism events
International Nuclear Information System (INIS)
Zhang Songbai; Wu Jun
2006-01-01
On the basis of the event-tree and probability analysis methods, a probabilistic method of nuclear terrorism risk was built, and the risk of terrorism events was analyzed. With the statistical data for and hypothetical data for relative events, the relative probabilities of the four kinds of nuclear terrorism events were obtained, as well as the relative risks of these four kinds of nuclear terrorism events were calculated by using this probabilistic method. The illustrated case show that the descending sequence of damages from the four kinds of nuclear terrorism events for single event is as following: nuclear explosive and improvised nuclear explosive, nuclear facility attacked, and 'dirty bomb'. Under the hypothetical condition, the descending sequence of possibilities for the four kinds of nuclear terrorism events is as following: 'dirty bomb', nuclear facility attacked, improvised nuclear explosive and nuclear explosive, but the descending sequence of risks is as following: 'dirty bomb', improvised nuclear explosive, nuclear facility attacked, and nuclear explosive . (authors)
Probabilistic safety analysis on an SBWR 72 hours after the initiating event
International Nuclear Information System (INIS)
Dominguez Bautista, M.T.; Peinador Veira, M.
1996-01-01
Passive plants, including SBWRs, are designed to carry out safety functions with passive systems during the first 72 hours after the initiation event with no need for manual actions or external support. After this period, some recovery actions are required to enable the passive systems to continue performing their safety functions. The study was carried out by the INITEC-Empresarios Agrupados Joint Venture within the framework of the international group collaborating with GE on this project. Its purpose has been to assess, by means of probabilistic criteria, the importance to safety of each of these support actions, in order to define possible requirements to be considered in the design in respect of said recovery actions. In brief, the methodology developed for this objective consists of (1) quantifying success event trees from the PSA up to 72 hours, (2) determining the actions required in each sequence to maintain Steady State after 72 hours, (3) identifying available alternative core cooling methods in each sequence, (4) establishing the approximate (order of magnitude) realizability of each alternative method, (5) calculating the frequency of core damage as a function of the failure probability of post-72-hour actions and (6) analysing the importance of post-72-hour actions. The results of this analysis permit the establishment, right from the conceptual design phase, of the requirements that will arise to ensure these actions in the long term, enhancing their reliability and preventing the accident from continuing beyond this period. (Author)
International Nuclear Information System (INIS)
Mladin, D.; Stefan, I.
2005-01-01
The international experience has shown that the external events could be an important contributor to plant/ reactor risk. For this reason such events have to be included in the PSA studies. In the context of PSA for nuclear facilities, external events are defined as events originating from outside the plant, but with the potential to create an initiating event at the plant. To support plant safety assessment, PSA can be used to find methods for identification of vulnerable features of the plant and to suggest modifications in order to mitigate the impact of external events or the producing of initiating events. For that purpose, probabilistic assessment of area events concerning fire and flooding risk and impact is necessary. Due to the relatively large power level amongst research reactors, the approach to safety analysis of Romanian 14 MW TRIGA benefits from an ongoing PSA project. In this context, treatment of external events should be considered. The specific tasks proposed for the complete evaluation of area event analysis are: identify the rooms important for facility safety, determine a relative area event risk index for these rooms and a relative area event impact index if the event occurs, evaluate the rooms specific area event frequency, determine the rooms contribution to reactor hazard state frequencies, analyze power supply and room dependencies of safety components (as pumps, motor operated valves). The fire risk analysis methodology is based on Berry's method [1]. This approach provides a systematic procedure to carry out a relative index of different rooms. The factors, which affect the fire probability, are: personal presence in the room, number and type of ignition sources, type and area of combustibles, fuel available in the room, fuel location, and ventilation. The flooding risk analysis is based on the amount of piping in the room. For accuracy of the information regarding piping a facility walk-about is necessary. In case of flooding risk
International Nuclear Information System (INIS)
1995-01-01
This Safety Practice provides guidance on conducting a PSA for external hazards in nuclear power plants. Emphasis is placed on the procedural steps of the PSA rather then on the details of corresponding methods. The publication is intended to assist technical persons managing or performing PSAs. A particular aim is to promote a standardized framework, terminology and form of documentation for external hazards PSA so as to facilitate external review of the results of such studies. For those specialists who are already involved in related studies, such as a Level 1 PSA dealing only with internal events, this publication provides an indication of how additional external events could be integrated into an existing PSA. 16 refs, 5 figs, 2 tabs
International Nuclear Information System (INIS)
2014-01-01
The Fukushima Dai-ichi accident triggered discussions about the significance of external hazards and their treatment in safety analyses. In addition, stress tests results have shown vulnerabilities and potential of cliff-edge effects in plant responses to external hazards and have identified possibilities and priorities for improvements and safety measures' implementation at specific sites and designs. In order to address these issues and provide relevant conclusions and recommendations to CSNI and CNRA, the CSNI Working Group on Risk Assessment (WGRISK) directed, in cooperation with the CSNI Working Group on Integrity and Ageing of Components and Structures (WGIAGE), a workshop hosted by UJV Rez. The key objectives of the workshop were to collect information from the OECD member states on methods and approaches being used, and experience gained in probabilistic safety assessment of natural external hazards, as well as to support the fulfillment of the CSNI task on 'PSA of natural external hazards including earthquakes'. These objectives are described more in detail in the introduction in Chapter 1 of this report. The WGRISK activities preceding the workshop and leading to the decision to organize it are described in Chapter 2 of this report. The focus of the workshop was on external events PSA for nuclear power plants, including all modes of operation. The workshop scope was generally limited to external, natural hazards, including those hazards where the distinction between natural and man-made hazards is not sharp. The detailed information about the presentations, discussions, and results of the workshop is presented in Chapter 3 of this report. Some general conclusions were agreed on during the workshop, which are presented in the following paragraphs. - The lessons learned from the Fukushima Dai-ichi reactor accidents and related actions at the national, regional, and global level have emphasized the importance to assess risks associated (authors) with
Evaluation of external hazards to nuclear power plants in the United States: Other external events
International Nuclear Information System (INIS)
Kimura, C.Y.; Prassinos, P.G.
1989-02-01
In support of implementation of the Nuclear Regulatory Commission's Severe Accident Policy, the Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to ''other external events.'' The broad objective has been to gain an understanding of whether ''other external events'' (the hazards not covered by previous reports) are among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. The ''other external events'' covered in this report are nearby industrial/military facility accidents, on site hazardous material storage accidents, severe temperature transients, severe weather storms, lightning strikes, external fires, extraterrestrial activity, volcanic activity, earth movement, and abrasive windstorms. The analysis was based on two figures-of-merit, one based on core damage frequency and the other based on the frequency of large radioactive releases. 37 refs., 8 tabs
External man-induced events on nuclear power plants
International Nuclear Information System (INIS)
Paganini, C.E.
1982-01-01
These notes for the postgraduate course on Radiological Protection and Nuclear Safety deal with the effects produced by some human activities on the siting and design of a nuclear installation. The existing activities, as well as the foreseen or foreseeable future ones are evaluated. In the first place, the potential sources of events are identified and classified in two categories: stationary and mobile, and the events are classified in five groups: 1) Aircraft crash; 2) Chemical explosions; 3) Discharge of dangerous fluids (explosive, toxic or corrosive); 4) Fire, and 5) Sabotage, terrorism, guerrillas. Then, the effects which may result from these events and affect the nuclear installation are studied: 1) pressure waves; 2) Impact of missiles; 3) Heat, fire; 4) Smoke and dust; 5) Gas or inflammable and/or explosive dust clouds; 6) Toxic and/or corrosive gases and liquids; 7) Ground shaking; 8) Flooding or lack of water; 9) Foundations failure or collapse. Next, the methods for making a deterministic and/or a probabilistic study (or both) are indicated for each event considered, and from these studies the ''screening'' values which allow to determine if an event can be rejected or must be considered are established. For this second case, the method for obtaining the ''design event'' that shall serve as a basis for the design of the plant is indicated. (M.E.L.) [es
External events analysis in PSA studies for Czech NPPs
International Nuclear Information System (INIS)
Holy, J.; Hustak, S.; Kolar, L.; Jaros, M.; Hladky, M.; Mlady, O.
2014-01-01
The purpose of the paper is to summarize current status of natural external hazards analysis in the PSA projects maintained in Czech Republic for both Czech NPPs - Dukovany and Temelin. The focus of the presentation is put upon the basic milestones in external event analysis effort - identification of external hazards important for Czech NPPs sites, screening out of the irrelevant hazards, modeling of plant response to the initiating events, including the basic activities regarding vulnerability and fragility analysis (supported with on-site analysis), quantification of accident sequences, interpretation of results and development of measures decreasing external events risk. The following external hazards are discussed in the paper, which have been addressed during several last years in PSA projects for Czech NPPs: 1)seismicity, 2)extremely low temperature 3)extremely high temperature 4)extreme wind 5)extreme precipitation (water, snow) 6)transport of dangerous substances (as an example of man-made hazard with some differences identified in comparison with natural hazards) 7)other hazards, which are not considered as very important for Czech NPPs, were screened out in the initial phase of the analysis, but are known as potential problem areas abroad. The paper is a result of coordinated effort with participation of experts and staff from engineering support organization UJV Rez, a.s. and NPPs located in Czech Republic - Dukovany and Temelin. (authors)
Protection of nuclear power plants against external events
International Nuclear Information System (INIS)
Kinet, P.; Roch, R.
1978-01-01
The paper describes the methodology of the safety design of nuclear power plants against external events with particular emphasis of the Belgian Plants. The site analysis and potential hazards evaluation are explained. The different designs incorporating various combinations of reinforced structures and dedicated systems are analysed. The particular lay-out and systems of the Belgian Plants are explained. (author)
Method to Find Recovery Event Combinations in Probabilistic Safety Assessment
International Nuclear Information System (INIS)
Jung, Woo Sik; Riley, Jeff
2016-01-01
These research activities may develop mathematical methods, engineering analyses, and business processes. The research activities of the project covered by this scope are directed toward the specific issues of implementing the methods and strategies on a computational platform, identifying the features and enhancements to EPRI tools that would be necessary to realize significant improvements to the risk assessments performed by the end user. Fault tree analysis is extensively and successfully applied to the risk assessment of safety-critical systems such as nuclear, chemical and aerospace systems. The fault tree analysis is being used together with an event tree analysis in PSA of nuclear power plants. Fault tree solvers for a PSA are mostly based on the cutset-based algorithm. They generate minimal cut sets (MCSs) from a fault tree. The most popular fault tree solver in the PSA industry is FTREX. During the course of this project, certain technical issues (see Sections 2 to 5) have been identified that need to be addressed regarding how minimal cut sets are generated and quantified. The objective of this scope of the work was to develop new methods or techniques to address these technical limitations. By turning on all the cutset initiators (%1, %2, %3, %), all the possible minimal cut sets can be calculated easier than with the original fault tree. It is accomplished by the fact that the number of events in the minimal cut sets are significantly reduced by using cutset initiators instead of random failure events. And byy turning on a few chosen cutset initiators and turning off the other cutset initiators, minimal cut sets of the selected cutset initiator(s) can be easily calculated. As explained in the previous Sections, there is no way to calculate these minimal cut sets by turning off/on the random failure events in the original fault tree
Method to Find Recovery Event Combinations in Probabilistic Safety Assessment
Energy Technology Data Exchange (ETDEWEB)
Jung, Woo Sik [Sejong University, Seoul (Korea, Republic of); Riley, Jeff [Electric Power Research, Palo Alto (United States)
2016-05-15
These research activities may develop mathematical methods, engineering analyses, and business processes. The research activities of the project covered by this scope are directed toward the specific issues of implementing the methods and strategies on a computational platform, identifying the features and enhancements to EPRI tools that would be necessary to realize significant improvements to the risk assessments performed by the end user. Fault tree analysis is extensively and successfully applied to the risk assessment of safety-critical systems such as nuclear, chemical and aerospace systems. The fault tree analysis is being used together with an event tree analysis in PSA of nuclear power plants. Fault tree solvers for a PSA are mostly based on the cutset-based algorithm. They generate minimal cut sets (MCSs) from a fault tree. The most popular fault tree solver in the PSA industry is FTREX. During the course of this project, certain technical issues (see Sections 2 to 5) have been identified that need to be addressed regarding how minimal cut sets are generated and quantified. The objective of this scope of the work was to develop new methods or techniques to address these technical limitations. By turning on all the cutset initiators (%1, %2, %3, %), all the possible minimal cut sets can be calculated easier than with the original fault tree. It is accomplished by the fact that the number of events in the minimal cut sets are significantly reduced by using cutset initiators instead of random failure events. And byy turning on a few chosen cutset initiators and turning off the other cutset initiators, minimal cut sets of the selected cutset initiator(s) can be easily calculated. As explained in the previous Sections, there is no way to calculate these minimal cut sets by turning off/on the random failure events in the original fault tree.
Probabilistic assessment of fire related events in CWPH (Pilot study)
International Nuclear Information System (INIS)
Chatterjee, D.; Maity, S.C.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.
2006-01-01
As a part of Fire PSA for KAPS, a pilot study has been taken up identifying CWPH as the important zone vulnerable to fire. As the CWPH houses pumps belonging to all important cooling (APWC, FFW, NAHPPW, NALPW, etc.) of both the units, a single fire leads to failure of multiple safety/safety support system cooling affecting the safety of the plant. The objective of this study is as follows: Familiarising with the various published Fire-PSA study, comparing and finalisation of the computer code amongst various codes available with DAE, identifying and sequencing different activities involved for carrying out Fire PSA, i.e. Zoning and Sub-Zoning of Fire Source Area, Fire vulnerability of System and Component surrounding Fire Source, etc., finalization of report format and documentation. Computer Code FDS is used to carry out Fire Hazard Analysis. FDS is the latest state-of the-art software package extensively used for Fire Hazard Analysis. It develops a 3D scenario for any given fire giving credit to actual physical location of fire load and ventilation. It gives the time dependent of any fire in a specific zone crediting the time required by operator to take necessary preventive action which helps in quantifying the probability of error for any particular operator's for PSA study. To identify the most vulnerable sub-zone in CWPH, a walk down was organized and physical location of each load; their separation, fire barrier, ventilator in the room, arrangement of fire protection/fighting system, localized operator's room were reviewed. Fire in the middle diesel tank with pump is considered as initiating event in the sub-zone of CWPH. The Event Tree for this initiating event for CWPH was developed. Event Tree end states are identified as large fire i.e. fire which is failed to be detected by both means, i.e. early and late and failure in fighting by both means i.e. early and late. (author)
Random and externally controlled occurrences of Dansgaard–Oeschger events
Directory of Open Access Journals (Sweden)
J. Lohmann
2018-05-01
Full Text Available Dansgaard–Oeschger (DO events constitute the most pronounced mode of centennial to millennial climate variability of the last glacial period. Since their discovery, many decades of research have been devoted to understand the origin and nature of these rapid climate shifts. In recent years, a number of studies have appeared that report emergence of DO-type variability in fully coupled general circulation models via different mechanisms. These mechanisms result in the occurrence of DO events at varying degrees of regularity, ranging from periodic to random. When examining the full sequence of DO events as captured in the North Greenland Ice Core Project (NGRIP ice core record, one can observe high irregularity in the timing of individual events at any stage within the last glacial period. In addition to the prevailing irregularity, certain properties of the DO event sequence, such as the average event frequency or the relative distribution of cold versus warm periods, appear to be changing throughout the glacial. By using statistical hypothesis tests on simple event models, we investigate whether the observed event sequence may have been generated by stationary random processes or rather was strongly modulated by external factors. We find that the sequence of DO warming events is consistent with a stationary random process, whereas dividing the event sequence into warming and cooling events leads to inconsistency with two independent event processes. As we include external forcing, we find a particularly good fit to the observed DO sequence in a model where the average residence time in warm periods are controlled by global ice volume and cold periods by boreal summer insolation.
Random and externally controlled occurrences of Dansgaard-Oeschger events
Lohmann, Johannes; Ditlevsen, Peter D.
2018-05-01
Dansgaard-Oeschger (DO) events constitute the most pronounced mode of centennial to millennial climate variability of the last glacial period. Since their discovery, many decades of research have been devoted to understand the origin and nature of these rapid climate shifts. In recent years, a number of studies have appeared that report emergence of DO-type variability in fully coupled general circulation models via different mechanisms. These mechanisms result in the occurrence of DO events at varying degrees of regularity, ranging from periodic to random. When examining the full sequence of DO events as captured in the North Greenland Ice Core Project (NGRIP) ice core record, one can observe high irregularity in the timing of individual events at any stage within the last glacial period. In addition to the prevailing irregularity, certain properties of the DO event sequence, such as the average event frequency or the relative distribution of cold versus warm periods, appear to be changing throughout the glacial. By using statistical hypothesis tests on simple event models, we investigate whether the observed event sequence may have been generated by stationary random processes or rather was strongly modulated by external factors. We find that the sequence of DO warming events is consistent with a stationary random process, whereas dividing the event sequence into warming and cooling events leads to inconsistency with two independent event processes. As we include external forcing, we find a particularly good fit to the observed DO sequence in a model where the average residence time in warm periods are controlled by global ice volume and cold periods by boreal summer insolation.
Protection of nuclear power plants against external events
International Nuclear Information System (INIS)
Suetterlin, L.
1978-01-01
The different aspects for the selection of external events to be accounted for in designing nuclear power plants and in defining load assumptions are illustrated: 1) In case of earthquake the severest possible events according to the state of science and technology are assumed. 2) For events where it is not or only to a certain extent possible to apply this method, e.g. in the load case airplane crash, load assumptions are defined in a combined probabilitic-deterministic way. By the example of plant protection, it is shown that by integrating all measures for protecting against interference of third parties (sabotage) or other external events, optimum protection concepts may be achieved. In all considerations on interference of third parties or other external events, one has to take into account that absolute protection is not possible. Nevertheless, it may be confirmed that nuclear power plants not only have a much higher level of protection than other, non-nuclear plants with equal or even higher potential hazard, but also that they meet the requirement not to increase significantly the current risk of society. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)
1997-12-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.
Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model.
Liu, Xueliang; Wang, Meng; Yin, Bao-Cai; Huet, Benoit; Li, Xuelong
2015-11-01
Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.
RA-6 reactor's probabilistic safety evaluation. Identification and selection of starting events
International Nuclear Information System (INIS)
Kay, J.; Chiossi, C.; Felizia, E.; Vallerga, H.; Kalejman, G.; Navarro, R.; Caruso, G.J.
1987-01-01
A summary of the 'Identification and selection of starting events' stage of the previous probabilistic safety evaluation of RA-6 reactor is presented. This evaluation was performed to verify if the safety criteria required for the licensing of RA-6 are met and to promote the diffusion of its meaning and usefulness with educational purposes. At this stage the starting events of RA-6 are determined and the probability that such events occur is calculated. The identification and selection of starting events is performed in two steps: determination of proposed starting events and determination of postulated starting events. The proposed starting events are determined by means of the master logic diagram (MLD) method, while the postulated starting events are obtained by grouping the proposed starting events. The simplifying hypothesis required for the application of MLD to the reactor are also formulated. The probability that the proposed and postulated starting events occur is afterwards calculated, adopting different fault models, in accordance with the nature of events that are considered. Conservative hypothesis on the characteristics of these events and the uncertainty of parameter values of those models are also formulated. The numerical values of the above mentioned probabilities are obtained by giving the parameters suitable values that are extracted from specialized publications. (Author)
Rare events in networks with internal and external noise
Hindes, J.; Schwartz, I. B.
2017-12-01
We study rare events in networks with both internal and external noise, and develop a general formalism for analyzing rare events that combines pair-quenched techniques and large-deviation theory. The probability distribution, shape, and time scale of rare events are considered in detail for extinction in the Susceptible-Infected-Susceptible model as an illustration. We find that when both types of noise are present, there is a crossover region as the network size is increased, where the probability exponent for large deviations no longer increases linearly with the network size. We demonstrate that the form of the crossover depends on whether the endemic state is localized near the epidemic threshold or not.
External human induced events in site evaluation for nuclear power plants. Safety guide
International Nuclear Information System (INIS)
2004-01-01
decommissioning of units located at the same site. In some cases other nuclear facilities (such as fuel fabrication units or fuel processing units) may be located at the same site and therefore should be considered in the hazard evaluation for the plant. While this Safety Guide deals primarily with site characterization stages, it also contains useful guidance for the site selection. preoperational and operational stages. Recommendations for the development of the design bases for design basis external human induced events (DBEHIE) are beyond the scope of the present publication. In this sense, the present Safety Guide concentrates on the definition of hazards for the site and on the general identification of major effects on the plant as a whole, according to the reference probabilistic or deterministic criteria, which are to be used in a design or in a design assessment framework. The next step in the full determination of the design basis for a specific plant is carried out in a design context, being intrinsically dependent on the layout and design. This additional step is therefore discussed in the series of standards relating to design, together with the detailed loading schemes and the design procedures, owing to their constitutive dependence. Hence, in this Safety Guide, the term 'design basis' should be understood as being limited mainly to that part of the determination of the design basis that is independent of any procedure for plant layout or design. In the selection between a deterministic and a probabilistic approach for hazard evaluation, several issues are determinant. These include: the availability of data for the site. The possibility of reliable extrapolation to lower excess values. The design approach to be adopted. The compatibility with national standards for hazard evaluation and design. And public acceptance issues. In this context, basic reference is made to a probabilistic approach for the site evaluation stage, while the derivation of single values on
Probabilistic tsunami hazard assessment considering time-lag of seismic event on Nankai trough
International Nuclear Information System (INIS)
Sugino, Hideharu; Sakagami, Masaharu; Ebisawa, Katsumi; Korenaga, Mariko
2011-01-01
In the area in front of Nankai trough, tsunami wave height may increase if tsunamis attacking from some wave sources overlap because of time-lag of seismic event on Nankai trough. To evaluation tsunami risk of the important facilities located in front of Nankai trough, we proposed the probabilistic tsunami hazard assessment considering uncertainty on time-lag of seismic event on Nankai trough and we evaluated the influence that the time-lag gave to tsunami hazard at the some representative points. (author)
Estimation of initiating event frequency for external flood events by extreme value theorem
International Nuclear Information System (INIS)
Chowdhury, Sourajyoti; Ganguly, Rimpi; Hari, Vibha
2017-01-01
External flood is an important common cause initiating event in nuclear power plants (NPPs). It may potentially lead to severe core damage (SCD) by first causing the failure of the systems required for maintaining the heat sinks and then by contributing to failures of engineered systems designed to mitigate such failures. The sample NPP taken here is twin 220 MWe Indian standard pressurized heavy water reactor (PHWR) situated inland. A comprehensive in-house Level-1 internal event PSA for full power had already been performed. External flood assessment was further conducted in area of external hazard risk assessment in response to post-Fukushima measures taken in nuclear industries. The present paper describes the methodology to calculate initiating event (IE) frequency for external flood events for the sample inland Indian NPP. General extreme value (GEV) theory based on maximum likelihood method (MLM) and order statistics approach (OSA) is used to analyse the rainfall data for the site. Thousand-year return level and necessary return periods for extreme rainfall are evaluated. These results along with plant-specific topographical calculations quantitatively establish that external flooding resulting from upstream dam break, river flooding and heavy rainfall (flash flood) would be unlikely for the sample NPP in consideration.
International Nuclear Information System (INIS)
Amico, P.J.; Ferrell, W.L.; Rubin, M.P.
1984-01-01
A probabilistic assessment was made of the effects on public dose of water hammer events in LWRs. The analysis utilized actual historical water hammer data to determine if the water hammer events contributed either to system failure rates or initiating event frequencies. Representative PRAs were used to see if changes in initiating events and/or system failures caused by water hammer resulted in new values for the dominant sequences in the PRAs. New core melt frequencies were determined and carried out to the subsequent increase in public dose. It is concluded that water hammer is not a significant problem with respect to risk to the public for either BWRs or PWRs. (orig./HP)
Advanced Test Reactor probabilistic risk assessment
International Nuclear Information System (INIS)
Atkinson, S.A.; Eide, S.A.; Khericha, S.T.; Thatcher, T.A.
1993-01-01
This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory
The SKI-project External events - Phase 2. Estimation of fire frequencies per plant and per building
International Nuclear Information System (INIS)
Poern, K.
1996-08-01
The Swedish-Finnish handbook for initiating event frequencies, I-Book, does not contain any fire frequencies. This matter of fact is not defensible considering the substantial risk contribution caused by fires. In the PSAs performed hitherto the initiating fire frequencies have been determined from case to case. Because data are usually very scarce in these areas it is very important to develop unique definitions, to systematically utilize both international and national experiences and to establish an appropriate statistical estimation method. It is also important to present the accumulated experience such that it can be used for different purposes, not only within PSA but also in the concrete fire preventive work. During phase 1 of the project External Events an inventory was made of existing methods for probabilistic fire analysis in general. During phase 2 of the project it was decided to initialize the work on a complementary handbook, called X-Book, in order to encompass the frequencies of system external events, i.e. initiating events that are caused by events occurring outside the system boundaries. In Version 1 of the X-Book the attention is mainly focussed on the estimation of initiating fire frequencies, per plant and per building. This estimation is basically founded on reports that the power companies have collected for this specific purpose. This report describes the statistical model and method that have been used in the estimation process. The methodological results achieved may, possibly after some modification, be applicable also to other types of system external events
Probabilistic Dynamics for Integrated Analysis of Accident Sequences considering Uncertain Events
Directory of Open Access Journals (Sweden)
Robertas Alzbutas
2015-01-01
Full Text Available The analytical/deterministic modelling and simulation/probabilistic methods are used separately as a rule in order to analyse the physical processes and random or uncertain events. However, in the currently used probabilistic safety assessment this is an issue. The lack of treatment of dynamic interactions between the physical processes on one hand and random events on the other hand causes the limited assessment. In general, there are a lot of mathematical modelling theories, which can be used separately or integrated in order to extend possibilities of modelling and analysis. The Theory of Probabilistic Dynamics (TPD and its augmented version based on the concept of stimulus and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid (continuous-discrete systems considering uncertain events. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. The developed approach and related methods are used as a basis for a test case simulation in view of various methods applications for severe accident scenario simulation and uncertainty analysis. For this and for wider analysis of accident sequences the initial test case specification is then extended and discussed. Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity analysis allows the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of accident modelling and analysis can be efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly decrease the uncertainty of this estimate.
Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.
2017-12-01
Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.
The EPR-a comprehensive design concept against external events
International Nuclear Information System (INIS)
Waas, U.; Stoll, U.
2005-01-01
The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissible affected. In the design of the EPR particular attention was paid to the following external hazards: Earthquake, Airplane crash, Explosion pressure wave. The design concept for these events is discussed below. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The Basic Design was developed for the seismic loads given in the European Utility Requirements with a horizontal free field Peak Ground Acceleration (PGA) for all site conditions of 0.25 g. The seismic protection is based on a deterministic design approach, with the intention of ensuring the safety functions in case of SSE. The loads for the design basis airplane crash and - if required - for the design extension airplane crash are defined depending on site specific requirements. For the design basis airplane crash as defined in Finland the safety goals are fulfilled for postulated single failure and preventive maintenance as well as for specific unlikely scenarios with local impacts where one redundant train is assumed to be lost. For the design extension airplane crash no single failure and preventive maintenance are assumed. Reactor building (RB), fuel building (FB), safeguard building (SB) 2 and 3 are protected by design against airplane crash. The common base mat of the RB, FB and SBs ensures global stability. To avoid penetration the wall thickness of the outer building structures of RB, FB and SB2/3 is set at 1.80 m (result of an optimization process). To rule out major induced vibrations due to airplane crash the inner building structures are decoupled from the outer walls. The SB 1 and SB4, the main steam and feedwater valve compartments, the diesel buildings and the service water pump buildings are protected against
Safety assessment of multi-unit NPP sites subject to external events
International Nuclear Information System (INIS)
Samaddar, Sujit; Hibino, Kenta; Coman, Ovidiu
2014-01-01
This paper presents a framework for conducting a probabilistic safety assessment of multi-unit sites against external events. The treatment of multiple hazard on a unit, interaction between units, implementation of severe accident measures, human reliability, environmental conditions, metric of risk for both reactor and non-reactor sources, integration of risk and responses and many such important factors need to be addressed within the context of this framework. The framework facilitates the establishment of a comprehensive methodology that can be applied internationally to the peer review of safety assessment of multi-unit sites under the impact of multiple external hazards. In summary, it can be said that the site safety assessment for a multi-unit site will be quite complex and need to start with individual unit risk assessments, these need to be combined considering the interactions between units and their responses, and the fragilities of the installations established considering the combined demands from all interactions. Using newly established risk metric the risk can then be integrated for the overall site. Fig. 2 shows schematically such a proposal. Much work has to done and the IAEA has established a working group that is systematically establishing the structure and process to incorporate the many issues that are a part of a multi-unit site safety assessment. (authors)
International Nuclear Information System (INIS)
Maskin, M.; Charlie, F.; Hassan, A.; Prak Tom, P.; Ramli, Z.; Mohamed, F.
2016-01-01
Highlights: • Identifying possible important initiating events (IEs) for Level 1 probabilistic safety assessment performed on research nuclear reactor. • Methods in screening and grouping IEs are addressed. • Focusing only on internal IEs due to random failures of components. - Abstract: This paper attempts to present the results in identifying possible important initiating events (IEs) as comprehensive as possible to be applied in the development of Level-1 probabilistic safety assessment (PSA) study. This involves the approaches in listing and the methods in screening and grouping IEs, by focusing only on the internal IEs due to random failures of components and human errors with full power operational conditions and reactor core as the radioactivity source. Five approaches were applied in listing the IEs and each step of the methodology was described and commented. The criteria in screening and grouping the IEs were also presented. The results provided the information on how the Malaysian PSA team applied the approaches in selecting the most probable IEs as complete as possible in order to ensure the set of IEs was identified systematically and as representative as possible, hence providing confidence to the completeness of the PSA study. This study is perhaps one of the first to address classic comprehensive steps in identifying important IEs to be used in a Level-1 PSA study.
Probabilistic safety analysis for fire events for the NPP Isar 2
International Nuclear Information System (INIS)
Schmaltz, H.; Hristodulidis, A.
2007-01-01
The 'Probabilistic Safety Analysis for Fire Events' (Fire-PSA KKI2) for the NPP Isar 2 was performed in addition to the PSA for full power operation and considers all possible events which can be initiated due to a fire. The aim of the plant specific Fire-PSA was to perform a quantitative assessment of fire events during full power operation, which is state of the art. Based on simplistic assumptions referring to the fire induced failures, the influence of system- and component-failures on the frequency of the core damage states was analysed. The Fire-PSA considers events, which will result due to fire-induced failures of equipment on the one hand in a SCRAM and on the other hand in events, which will not have direct operational effects but because of the fire-induced failure of safety related installations the plant will be shut down as a precautionary measure. These events are considered because they may have a not negligible influence on the frequency of core damage states in case of failures during the plant shut down because of the reduced redundancy of safety related systems. (orig.)
Development of transient initiating event frequencies for use in probabilistic risk assessments
International Nuclear Information System (INIS)
Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.
1985-05-01
Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors
Development of transient initiating event frequencies for use in probabilistic risk assessments
Energy Technology Data Exchange (ETDEWEB)
Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.
1985-05-01
Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors.
Diablo Canyon internal events PRA [Probabilistic Risk Assessment] review: Methodology and findings
International Nuclear Information System (INIS)
Fitzpatrick, R.G.; Bozoki, G.; Sabek, M.
1990-01-01
The review of the Diablo Canyon Probabilistic Risk Assessment (DCRPA) incorporated some new and innovative approaches. These were necessitated by the unprecedented size, scope and level of detail of the DCRPA, which was submitted to the NRC for licensing purposes. This paper outlines the elements of the internal events portion of the review citing selected findings to illustrate the various approaches employed. The paper also provides a description of the extensive and comprehensive importance analysis applied by BNL to the DCRPA model. Importance calculations included: top event/function level; individual split fractions; pair importances between frontline-support and support-support systems; system importance by initiator; and others. The paper concludes with a brief discussion of the effectiveness of the applied methodology. 3 refs., 5 tabs
International Nuclear Information System (INIS)
James, H.; Harris, M.J.; Hall, S.F.
1992-01-01
Probabilistic safety assessment (PSA) is used extensively in the nuclear industry. The main stages of PSA and the traditional event tree method are described. Focussing on hydrogen explosions, an event tree model is compared to a novel Markov model and a fault tree, and unexpected implication for accident mitigation is revealed. (author)
Review of the Brunswick Steam Electric Plant Probabilistic Risk Assessment
International Nuclear Information System (INIS)
Sattison, M.B.; Davis, P.R.; Satterwhite, D.G.; Gilmore, W.E.; Gregg, R.E.
1989-11-01
A review of the Brunswick Steam Electric Plant probabilistic risk Assessment was conducted with the objective of confirming the safety perspectives brought to light by the probabilistic risk assessment. The scope of the review included the entire Level I probabilistic risk assessment including external events. This is consistent with the scope of the probabilistic risk assessment. The review included an assessment of the assumptions, methods, models, and data used in the study. 47 refs., 14 figs., 15 tabs
Overview of the probabilistic risk assessment approach
International Nuclear Information System (INIS)
Reed, J.W.
1985-01-01
The techniques of probabilistic risk assessment (PRA) are applicable to Department of Energy facilities. The background and techniques of PRA are given with special attention to seismic, wind and flooding external events. A specific application to seismic events is provided to demonstrate the method. However, the PRA framework is applicable also to wind and external flooding. 3 references, 8 figures, 1 table
Badde, Stephanie; Heed, Tobias; Röder, Brigitte
2016-04-01
To act upon a tactile stimulus its original skin-based, anatomical spatial code has to be transformed into an external, posture-dependent reference frame, a process known as tactile remapping. When the limbs are crossed, anatomical and external location codes are in conflict, leading to a decline in tactile localization accuracy. It is unknown whether this impairment originates from the integration of the resulting external localization response with the original, anatomical one or from a failure of tactile remapping in crossed postures. We fitted probabilistic models based on these diverging accounts to the data from three tactile localization experiments. Hand crossing disturbed tactile left-right location choices in all experiments. Furthermore, the size of these crossing effects was modulated by stimulus configuration and task instructions. The best model accounted for these results by integration of the external response mapping with the original, anatomical one, while applying identical integration weights for uncrossed and crossed postures. Thus, the model explained the data without assuming failures of remapping. Moreover, performance differences across tasks were accounted for by non-individual parameter adjustments, indicating that individual participants' task adaptation results from one common functional mechanism. These results suggest that remapping is an automatic and accurate process, and that the observed localization impairments in touch result from a cognitively controlled integration process that combines anatomically and externally coded responses.
International Nuclear Information System (INIS)
Budnitz, R.J.; Lambert, H.E.
1990-01-01
The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally ''mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Budnitz, R.J.; Lambert, H.E. (Future Resources Associates, Inc., Berkeley, CA (USA))
1990-01-01
The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab.
Parolari, A.; Goulden, M.
2017-12-01
A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative
Analysis of external flooding events occurred in foreign nuclear power plant sites
International Nuclear Information System (INIS)
Li Dan; Cai Hankun; Xiao Zhi; An Hongzhen; Mao Huan
2013-01-01
This paper screens and studies 17 external flooding events occurred in foreign NPP sites, analysis the characteristic of external flooding events based on the source of the flooding, the impact on the building, systems and equipment, as well as the threat to nuclear safety. Furthermore, based on the experiences and lessons learned from Fukushima nuclear accident relating to external flooding and countermeasures carried out in the world, some suggestions are proposed in order to improve external flooding response capacity for Chinese NPPs. (authors)
The EPR-a comprehensive design concept against external events
International Nuclear Information System (INIS)
Stoll, U.; Waas, U.
2006-01-01
The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissibly affected by any external hazards that might be postulated for the intended site of the plant. In the design of the European Pressurized Water Reactor (EPR) particular attention was paid to external hazards such as earthquake, airplane crash, and explosion pressure wave. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The loads for the design basis airplane crash and - if required - for the design extension airplane crash as well as for external Explosion Pressure Wave are defined depending on site specific requirements. Protection against other external load cases such as extreme winds and external flooding is also included in the standard design
A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data
Kohl, B. C.; Given, J.
2017-12-01
The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in
International Nuclear Information System (INIS)
Figueroa, N.
1987-01-01
The plant response to the occurrence of the starting event 'total loss of electric power supply to class IV and class III' is analyzed. This involves the study of automatical actions of safety and process systems as well as the operator actions. The probabilistic evaluation of starting event frequency is performed through fault-tree techniques. The frequency of occurrence 'loss of electric power supply to class IV (λIV = 0.56/year) and the probability of failure to demand of 'reserve' generating groups (Pd III 6.79 x 10 -3 ) contribute to the mentioned frequency. As soon as the starting event occurs, the reactor power must be reduced to 0%, the fuel must be cooled through the thermo siphon and decay heat has to be removed. The events sequence analysis leads to the conclusion that the non shutting down of the reactor with any of the shutdown systems is 'incredible' (10 -6 /year). In all cases the fuel is cooled by building the thermo siphon except when a substantial inventory loss exist due to a closure failure of some valve of pressure and inventory control system. The order of magnitude of the failure of decay heat removal through the steam generators is 4 x 10 -4 . This removal would be assured by the emergency water system. Therefore, the frequency of the sequence of possible core meltdown, when the reactor does not shut down is: λ = 5 x 10 -9 /year and for the failure of heat removal: λ = 2 x 10 -6 /year. (Author)
International Nuclear Information System (INIS)
Tinnes, S.P.; Cramer, D.S.; Logan, V.E.; Topp, S.V.; Smith, J.A.; Brandyberry, M.D.
1990-01-01
This paper reports on a full-scope probabilistic risk assessment (PRA) performed for the Savannah River Site (SRS) production reactors. The Level 1 PRA for the K Reactor has been completed and includes the assessment of reactor systems response to accidents and estimates of the severe core melt frequency (SCMF). The internal events spectrum includes those events related directly to plant systems and safety functions for which transients or failures may initiate an accident
International Nuclear Information System (INIS)
Martins, Eduardo Ferraz
2015-01-01
The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)
From IPE [individual plant examinations] to IPEEE [individual plant examination of external events
International Nuclear Information System (INIS)
Newton, I.M.
1994-01-01
In addition to doing individual plant examinations (IPEs) which assess risk to nuclear plants from internal factors, all US plants are now also required to analyse external events and submit an IPEEE (Individual Plant Examination of External Events). Specifically, the IPEEEs require an assessment of plant-specific risks from the following types of initiating events: seismic events; fire; wind; tornadoes; flooding; accidents involving transportation or nearby facilities, such as oil refineries. (author)
Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling
Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.
2010-01-01
NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand
10 CFR 72.94 - Design basis external man-induced events.
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...
International Nuclear Information System (INIS)
Chen, J.T.; Connell, E.; Chokshi, N.
1997-01-01
As a result of the U.S. Nuclear Regulatory Commission (USNRC) initiated Individual plant Examination of External Events (IPEEE) program, every operating nuclear power reactor in the United States has performed an assessment of severe accident due to external events. This paper provides a summary of the preliminary insights gained through the review of 24 IPEEE submittals
Causal Learning from Probabilistic Events in 24-Month-Olds: An Action Measure
Waismeyer, Anna; Meltzoff, Andrew N.; Gopnik, Alison
2015-01-01
How do young children learn about causal structure in an uncertain and variable world? We tested whether they can use observed probabilistic information to solve causal learning problems. In two experiments, 24-month-olds observed an adult produce a probabilistic pattern of causal evidence. The toddlers then were given an opportunity to design…
García, Darío; Baquerizo, Asunción; Ortega, Miguel; Herrero, Javier; Ángel Losada, Miguel
2013-04-01
Torrential and heavy rains are frequent in Andalusia (Southern Spain) due to the characteristic Mediterranean climate (semi-arid areas). This, in combination with a massive occupation of floodable (river sides) and coastal areas, produces severe problems of management and damage to the population and social and economical activities when extreme events occur. Some of the most important problems are being produced during last years in Almería (Southeastern Andalusia). Between 27 and 28 September 2012 rainstorms characterized by 240mm in 24h (exceeding precipitation for a return period of 500 years) occurred. Antas River and Jático creek, that are normally dry, became raging torrents. The massive flooding of occupied areas resulted in eleven deaths and two missing in Andalucía, with a total estimated cost of all claims for compensation on the order of 197 million euros. This study presents a probabilistic flood forecasting tool including the effect of river and marine forcings. It is based on a distributed, physically-based hydrological model (WiMMed). For Almería the model has been calibrated with the largest event recorded in Cantoria gauging station (data since 1965) on 19 October 1973. It was then validated with the second strongest event (26 October 1977). Among the different results of the model, it can provide probability floods scenarios in Andalusia with up 10 days weather forecasts. The tool has been applied to Vera, a 15.000 inhabitants town located in the east of Almería along the Antas River at an altitude of 95 meters. Its main economic resource is the "beach and sun" based-tourism, which has experienced an enormous growth during last decades. Its coastal stretch has been completely built in these years, occupying floodable areas and constricting the channel and rivers mouths. Simulations of the model in this area for the 1973 event and published in March 2011 on the internet event already announced that the floods of September 2012 may occur.
IPEEE review of external events of the Asco I nuclear plant
International Nuclear Information System (INIS)
Aleman, A.; Canadell, F.; Beltran, F.; Pifarre, D.; Hernandez, H.; Gasca, C.
2012-01-01
During the risk analysis update of Asco NPP (2010), it has been carried out a review of the vulnerabilities against severe accidents caused by external events (individual Plant Examination of external Events, IPEEE). The assessment has includent analysis of accidents in industrial and military facilities nearby and transportation accidents (i.e., rail, road and aircraft impact) release of hazardous materials on site, external flooding, turbine missiles and strong winds. (Author)
Keen, A. S.; Lynett, P. J.; Ayca, A.
2016-12-01
Because of the damage resulting from the 2010 Chile and 2011 Japanese tele-tsunamis, the tsunami risk to the small craft marinas in California has become an important concern. The talk will outline an assessment tool which can be used to assess the tsunami hazard to small craft harbors. The methodology is based on the demand and structural capacity of the floating dock system, composed of floating docks/fingers and moored vessels. The structural demand is determined using a Monte Carlo methodology. Monte Carlo methodology is a probabilistic computational tool where the governing might be well known, but the independent variables of the input (demand) as well as the resisting structural components (capacity) may not be completely known. The Monte Carlo approach uses a distribution of each variable, and then uses that random variable within the described parameters, to generate a single computation. The process then repeats hundreds or thousands of times. The numerical model "Method of Splitting Tsunamis" (MOST) has been used to determine the inputs for the small craft harbors within California. Hydrodynamic model results of current speed, direction and surface elevation were incorporated via the drag equations to provide the bases of the demand term. To determine the capacities, an inspection program was developed to identify common features of structural components. A total of six harbors have been inspected ranging from Crescent City in Northern California to Oceanside Harbor in Southern California. Results from the inspection program were used to develop component capacity tables which incorporated the basic specifications of each component (e.g. bolt size and configuration) and a reduction factor (which accounts for the component reduction in capacity with age) to estimate in situ capacities. Like the demand term, these capacities are added probabilistically into the model. To date the model has been applied to Santa Cruz Harbor as well as Noyo River. Once
Probabilistic approach to external cloud dose calculations using onsite meteorological data
International Nuclear Information System (INIS)
Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.
1976-01-01
A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days
International Nuclear Information System (INIS)
Couto, A.J.; Perez, S.S.
1987-01-01
This work is part of a study on the service water systems of the Embalse nuclear power plant from a safety point of view. The faults of service water systems of high and low pressure that can lead to situations threatening the plant safety were analyzed in a previous report. The event 'total loss of low pressure service water' causes the largest number of such conditions. Such event is an operational incident that can lead to an accident situation due to faults in the required process systems or by omission of a procedure. The annual frequency of the event 'total loss of low pressure service water' is calculated. The main contribution comes from pump failure. The evaluation of the accident sequences shows that the most direct way to the liberation of fission products is the loss of steam generators as heat sink. The contributions to small and large LOCA and electric supply loss are analyzed. The sequence that leads to tritium release through boiling of moderator is also evaluated. (Author)
Probabilistic modelling of drought events in China via 2-dimensional joint copula
Ayantobo, Olusola O.; Li, Yi; Song, Songbai; Javed, Tehseen; Yao, Ning
2018-04-01
Probabilistic modelling of drought events is a significant aspect of water resources management and planning. In this study, popularly applied and several relatively new bivariate Archimedean copulas were employed to derive regional and spatial based copula models to appraise drought risk in mainland China over 1961-2013. Drought duration (Dd), severity (Ds), and peak (Dp), as indicated by Standardized Precipitation Evapotranspiration Index (SPEI), were extracted according to the run theory and fitted with suitable marginal distributions. The maximum likelihood estimation (MLE) and curve fitting method (CFM) were used to estimate the copula parameters of nineteen bivariate Archimedean copulas. Drought probabilities and return periods were analysed based on appropriate bivariate copula in sub-region I-VII and entire mainland China. The goodness-of-fit tests as indicated by the CFM showed that copula NN19 in sub-regions III, IV, V, VI and mainland China, NN20 in sub-region I and NN13 in sub-region VII are the best for modeling drought variables. Bivariate drought probability across mainland China is relatively high, and the highest drought probabilities are found mainly in the Northwestern and Southwestern China. Besides, the result also showed that different sub-regions might suffer varying drought risks. The drought risks as observed in Sub-region III, VI and VII, are significantly greater than other sub-regions. Higher probability of droughts of longer durations in the sub-regions also corresponds to shorter return periods with greater drought severity. These results may imply tremendous challenges for the water resources management in different sub-regions, particularly the Northwestern and Southwestern China.
International Nuclear Information System (INIS)
Layral, S.I.
1987-01-01
The aim of this study was to perform for the Embalse nuclear power plant, a probabilistic evaluation of loss-of-coolant accidents (LOCA) to identify the risks associated with them and to determine their acceptability in accordance with norms. This study includes all ruptures in the primary system that produce the automatic activation of 'emergency core cooling system'. Three starting events were selected for the probabilistic evaluation: 100% rupture of an input collector; 5% rupture of an input collector; 1.2% rupture of an input collector. At this stage the evaluation is focussed on the identification and quantization of the main failure sequences that follow a LOCA and lead to an uncontrolled reactor state or 'core meltdown'. The most important contribution to the core meltdown due to LOCA is the failure of supplies that are required for the emergency core cooling system. (Author)
International Nuclear Information System (INIS)
Holy, J.; Kolar, L.; Jaros, M.; Hladky, M.; Mlady, O.
2014-01-01
The relatively frequent natural external events are usually of minor safety importance, because the NPPs are, with a significant safety margin, constructed and operated to withstand the effects of them. Thus, risk analysis is typically devoted to the natural events of exceptional intensity, which mostly have not occurred up to now, but which still could happen with some low probability, but critical consequences. Since 'direct' plant specific data providing evidence about such events to occur is not at disposal, special data treatment and extrapolation methods have to be employed for frequency estimation. The paper summarizes possible approach to estimation of rate event frequency by means of extrapolation from available data and points out the potential problems and challenges encountered during the analysis. The general framework is commented in the presentation, regarding the effects of choice of probabilistic distribution (Gumbel distribution versus the others), methods of work with data records (To take out some observations and why?) and analysis of quality of input data sets (To mix the data sets from different sources or not? To use 'old' observations?) In the first part of the paper, the approach to creation of NPP Dukovany deterministic design basis regarding natural external events, which was used in past, is summarized. The second, major part of the paper, is devoted to involvement of the ideas of probabilistic safety assessment into safety assessment of external hazards, including such specific topics as addressing the quality of available data records, discussion on possible violation of common assumptions expected to be valid by the rules of statistical data analysis and the ways how to fix it, the choice of probabilistic distribution modeling data variability etc. The examples of results achieved for NPP Dukovany site in Czech republic are given in the final section. This paper represents a coordinated effort with participation of experts and staff
Procedures for the external event core damage frequency analyses for NUREG-1150
International Nuclear Information System (INIS)
Bohn, M.P.; Lambright, J.A.
1990-11-01
This report presents methods which can be used to perform the assessment of risk due to external events at nuclear power plants. These methods were used to perform the external events risk assessments for the Surry and Peach Bottom nuclear power plants as part of the NRC-sponsored NUREG-1150 risk assessments. These methods apply to the full range of hazards such as earthquakes, fires, floods, etc. which are collectively known as external events. The methods described in this report have been developed under NRC sponsorship and represent, in many cases, both advancements and simplifications over techniques that have been used in past years. They also include the most up-to-date data bases on equipment seismic fragilities, fire occurrence frequencies and fire damageability thresholds. The methods described here are based on making full utilization of the power plant systems logic models developed in the internal events analyses. By making full use of the internal events models one obtains an external event analysis that is consistent both in nomenclature and in level of detail with the internal events analyses, and in addition, automatically includes all the appropriate random and tests/maintenance unavailabilities as appropriate. 50 refs., 9 figs., 11 tabs
Probabilistic methods used in NUSS
International Nuclear Information System (INIS)
Fischer, J.; Giuliani, P.
1985-01-01
Probabilistic considerations are used implicitly or explicitly in all technical areas. In the NUSS codes and guides the two areas of design and siting are those where more use is made of these concepts. A brief review of the relevant documents in these two areas is made in this paper. It covers the documents where either probabilistic considerations are implied or where probabilistic approaches are recommended in the evaluation of situations and of events. In the siting guides the review mainly covers the area of seismic hydrological and external man-made events analysis, as well as some aspects of meteorological extreme events analysis. Probabilistic methods are recommended in the design guides but they are not made a requirement. There are several reasons for this, mainly lack of reliable data and the absence of quantitative safety limits or goals against which to judge the design analysis. As far as practical, engineering judgement should be backed up by quantitative probabilistic analysis. Examples are given and the concept of design basis as used in NUSS design guides is explained. (author)
Omira, Rachid; Baptista, Maria Ana; Matias, Luis
2015-04-01
This study constitutes the first assessment of probabilistic tsunami inundation in the NE Atlantic region, using an event-tree approach. It aims to develop a probabilistic tsunami inundation approach for the NE Atlantic coast with an application to two test sites of ASTARTE project, Tangier-Morocco and Sines-Portugal. Only tsunamis of tectonic origin are considered here, taking into account near-, regional- and far-filed sources. The multidisciplinary approach, proposed here, consists of an event-tree method that gathers seismic hazard assessment, tsunami numerical modelling, and statistical methods. It presents also a treatment of uncertainties related to source location and tidal stage in order to derive the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height during a given return period. We derive high-resolution probabilistic maximum wave heights and flood distributions for both test-sites Tangier and Sines considering 100-, 500-, and 1000-year return periods. We find that the probability that a maximum wave height exceeds 1 m somewhere along the Sines coasts reaches about 55% for 100-year return period, and is up to 100% for 1000-year return period. Along Tangier coast, the probability of inundation occurrence (flow depth > 0m) is up to 45% for 100-year return period and reaches 96% in some near-shore costal location for 500-year return period. Acknowledgements: This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV.2013.6.4-3).
Omira, R.; Matias, L.; Baptista, M. A.
2016-12-01
This study constitutes a preliminary assessment of probabilistic tsunami inundation in the NE Atlantic region. We developed an event-tree approach to calculate the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height for a given exposure time. Only tsunamis of tectonic origin are considered here, taking into account local, regional, and far-field sources. The approach used here consists of an event-tree method that gathers probability models for seismic sources, tsunami numerical modeling, and statistical methods. It also includes a treatment of aleatoric uncertainties related to source location and tidal stage. Epistemic uncertainties are not addressed in this study. The methodology is applied to the coastal test-site of Sines located in the NE Atlantic coast of Portugal. We derive probabilistic high-resolution maximum wave amplitudes and flood distributions for the study test-site considering 100- and 500-year exposure times. We find that the probability that maximum wave amplitude exceeds 1 m somewhere along the Sines coasts reaches about 60 % for an exposure time of 100 years and is up to 97 % for an exposure time of 500 years. The probability of inundation occurrence (flow depth >0 m) varies between 10 % and 57 %, and from 20 % up to 95 % for 100- and 500-year exposure times, respectively. No validation has been performed here with historical tsunamis. This paper illustrates a methodology through a case study, which is not an operational assessment.
International Nuclear Information System (INIS)
Burgazzi, Luciano
2014-01-01
This note endeavors to address some significant issues revealed by the Fukushima accident in Japan in 2011, such as the analysis of various dependency aspects arisen in the light of the external event PSA framework, as the treatment of the correlated hazards. To this aim some foundational notions to implement the PSA models related to specific aspects, like the external hazard combination, e.g., earthquake and tsunami as at the Fukushima accident, and the external hazard-caused internal events, e.g., seismic induced fire, are proposed and discussed to be incorporated within the risk assessment structure. Risk assessment of external hazards is required and utilized as an integrated part of PRA for operating and new reactor units. In the light of the Fukushima accident, of special interest are correlated events, whose modelling is proposed in the present study, in the form of some theoretical concepts, which lay the foundations for the PSA framework implementation. An applicative example is presented for illustrative purposes, since the analysis is carried out on the basis of generic numerical values assigned to an oversimplified model and results are achieved without any baseline comparison. Obviously the first step aimed at the process endorsement is the analysis of all available information in order to determine the level of applicability of the observed specific plant site events to the envisaged model and the statistical correlation analysis for event occurrence data that can be used as part of this process. Despite these drawbacks that actually do not qualify the achieved results, the present work represents an exploratory study aimed at resolving current open issues to be resolved in the PSA, like topics related to unanticipated scenarios: the combined external hazards of the earthquake and tsunami in Fukushima, external hazards causing internal events, such as seismic induced fire. These topics are to be resolved among the other ones as emerging from the
International Nuclear Information System (INIS)
Tinnes, S.P.; Cramer, D.S.; Logan, V.E.; Topp, S.V.; Smith, J.A.; Brandyberry, M.D.
1990-01-01
A full-scope probabilistic risk assessment (PRA) is being performed for the Savannah River site (SRS) production reactors. The Level 1 PRA for the K Reactor has been completed and includes the assessment of reactor systems response to accidents and estimates of the severe core melt frequency (SCMF). The internal events spectrum includes those events related directly to plant systems and safety functions for which transients or failures may initiate an accident. The SRS PRA has three principal objectives: improved understanding of SRS reactor safety issues through discovery and understanding of the mechanisms involved. Improved risk management capability through tools for assessing the safety impact of both current standard operations and proposed revisions. A quantitative measure of the risks posed by SRS reactor operation to employees and the general public, to allow comparison with declared goals and other societal risks
AP1000R design robustness against extreme external events - Seismic, flooding, and aircraft crash
International Nuclear Information System (INIS)
Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.
2012-01-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000 R nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is
Energy Technology Data Exchange (ETDEWEB)
Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)
2012-07-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel
International Nuclear Information System (INIS)
Durant, W.S.; robinette, R.J.; Kirchner, J.R.
1994-03-01
In essence, this study was envisioned as the ''combination'' of existing accident dose and risk calculations from safety analyses of individual facilities. However, because of the extended time period over which the safety analyses were prepared, calculational assumptions and methodologies differed between the analyses. The scope of this study therefore included the standardization of assumptions and calculations as necessary to insure that the analytical logic was consistent for all the facilities. Each of the nonseismic external events considered in the analyses are addressed in individual sections in this report. In Section 2, extreme straight-line winds are examined. Section 3 addresses tornadoes, and Section 4 addresses other external events [floods, other extreme weather events (lightning, hail, and extremes in temperature or precipitation), vehicle impact, accidents involving adjacent facilities, aircraft impact, and meteorite impact]. Section 5 provides a summary of the general conclusions of the report
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events.
Feller, Liviu; Khammissa, Razia A G; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan
2016-01-01
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events
Directory of Open Access Journals (Sweden)
Liviu Feller
2016-01-01
Full Text Available Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
International Nuclear Information System (INIS)
Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.
1985-11-01
A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs
Extreme external events in the design and assessment of nuclear power plants
International Nuclear Information System (INIS)
2003-03-01
The analysis of feedback experience from the operation of nuclear power plants (NPPs) in the past 20 years shows few cases of degradation of the plant safety initiated by external events. However, when these have occurred, the consequences have been serious, involving challenges to the defence in depth of the plant. Part of the problem involves the definition of the design basis parameters for some scenarios and differences among regulators on the methods for the protection of operational NPPs in relation to external events. This results in different engineering practices in Member States for the siting and design of NPPs. In the framework of the present revision of the IAEA safety standards on siting and design of NPPs, many initiatives have been implemented by the IAEA in recent years aimed at a systematic analysis of engineering practices in Member States. The most recent event in this connection was a Technical Committee Meeting (TCM) on Structural Safety of NPPs in Relation to Extreme External Loads, organized with the specific objective of evaluating the state of the art of NPP design in relation to external events. Such an analysis provided a technical background for the development of a common technical basis for an integrated approach in site evaluation, design and operation in relation to extreme external events. The scope included new and existing plants, as they are required to meet the same general safety principles, in spite of their peculiarities. The objective of this publication is to provide a technical background to drive regulators, plant owners and designers in the definition of a consistent strategy in selected safety issues on site evaluation, design and operation in relation to extreme external events. This publication is also of support to the IAEA in the development of safety standards since many Safety Guides dealing with related topics are under periodic review. Four major tasks were identified to comply with these general objectives
3D Simulation of External Flooding Events for the RISMC Pathway
International Nuclear Information System (INIS)
Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad; Smith, Curtis; Lin, Linyu
2015-01-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.
3D Simulation of External Flooding Events for the RISMC Pathway
Energy Technology Data Exchange (ETDEWEB)
Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ramprasad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lin, Linyu [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.
Basic Safety Considerations for Nuclear Power Plant Dealing with External Human Induced Events
Energy Technology Data Exchange (ETDEWEB)
Salem, W., E-mail: wafaasalem21@yahoo.com [Nuclear and Radiological Regulatory Authority (Egypt)
2014-10-15
Facilities and human activities in the region in which a nuclear power plant is located may under some conditions affect its safety. The potential sources of human induced events external to the plant should be identified and the severity of the possible resulting hazard phenomena should be evaluated to derive the appropriate design bases for the plant. They should also be monitored and periodically assessed over the lifetime of the plant to ensure that consistency with the design assumptions is maintained. External human induced events that could affect safety should be investigated in the site evaluation stage for every nuclear power plant site. The region is required to be examined for facilities and human activities that have the potential, under certain conditions, to endanger the nuclear power plant over its entire lifetime. Each relevant potential source is required to be identified and assessed to determine the potential interactions with personnel and plant items important to safety. (author)
Market response to external events and interventions in spherical minority games
International Nuclear Information System (INIS)
Papadopoulos, P; Coolen, A C C
2008-01-01
We solve the dynamics of large spherical minority games (MG) in the presence of non-negligible time-dependent external contributions to the overall market bid. The latter represent the actions of market regulators or other major natural or political events that impact on the market. In contrast to non-spherical MGs, the spherical formulation allows one to derive closed dynamical order parameter equations in an explicit form and work out the market's response to such events fully analytically. We focus on a comparison between the response to stationary versus oscillating market interventions, and reveal profound and partially unexpected differences in terms of transition lines and the volatility
External Events Excluding Earthquakes in the Design of Nuclear Power Plants. Safety Guide
International Nuclear Information System (INIS)
2008-01-01
This Safety Guide provides recommendations and guidance on design for the protection of nuclear power plants from the effects of external events (excluding earthquakes), i.e. events that originate either off the site or within the boundaries of the site but from sources that are not directly involved in the operational states of the nuclear power plant units. In addition, it provides recommendations on engineering related matters in order to comply with the safety objectives and requirements established in the IAEA Safety Requirements publication, Safety of Nuclear Power Plants: Design. It is also applicable to the design and safety assessment of items important to the safety of land based stationary nuclear power plants with water cooled reactors. Contents: 1. Introduction; 2. Application of safety criteria to the design; 3. Design basis for external events; 4. Aircraft crash; 5. External fire; 6. Explosions; 7. Asphyxiant and toxic gases; 8. Corrosive and radioactive gases and liquids; 9. Electromagnetic interference; 10. Floods; 11. Extreme winds; 12. Extreme meteorological conditions; 13. Biological phenomena; 14. Volcanism; 15. Collisions of floating bodies with water intakes and UHS components; Annex I: Aircraft crashes; Annex II: Detonation and deflagration; Annex III: Toxicity limits.
Near-term probabilistic forecast of significant wildfire events for the Western United States
Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly
2016-01-01
Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...
Procedure for conducting probabilistic safety assessment: level 1 full power internal event analysis
Energy Technology Data Exchange (ETDEWEB)
Jung, Won Dae; Lee, Y. H.; Hwang, M. J. [and others
2003-07-01
This report provides guidance on conducting a Level I PSA for internal events in NPPs, which is based on the method and procedure that was used in the PSA for the design of Korea Standard Nuclear Plants (KSNPs). Level I PSA is to delineate the accident sequences leading to core damage and to estimate their frequencies. It has been directly used for assessing and modifying the system safety and reliability as a key and base part of PSA. Also, Level I PSA provides insights into design weakness and into ways of preventing core damage, which in most cases is the precursor to accidents leading to major accidents. So Level I PSA has been used as the essential technical bases for risk-informed application in NPPs. The report consists six major procedural steps for Level I PSA; familiarization of plant, initiating event analysis, event tree analysis, system fault tree analysis, reliability data analysis, and accident sequence quantification. The report is intended to assist technical persons performing Level I PSA for NPPs. A particular aim is to promote a standardized framework, terminology and form of documentation for PSAs. On the other hand, this report would be useful for the managers or regulatory persons related to risk-informed regulation, and also for conducting PSA for other industries.
External flooding event analysis in a PWR-W with MAAP5
International Nuclear Information System (INIS)
Fernandez-Cosials, Mikel Kevin; Jimenez, Gonzalo; Barreira, Pilar; Queral, Cesar
2015-01-01
Highlights: • External flooding preceded by a SCRAM is simulated with MAAP5.01. • Sensitivities include AFW-TDP, SLOCA and operator preventive actions. • SLOCA flow is the dominant factor in the sequences. • Vessel failure is avoidable with operator preventive actions. - Abstract: The Fukushima accident has drawn attention even more to the importance of external events and loss of energy supply on safety analysis. Since 2011, several Station Blackout (SBO) analyses have been done for all type of reactors. The most post-Fukushima studies analyze a pure and straight SBO transient, but the Fukushima accident was more complex than a standard SBO. At Fukushima accident, the SBO was a consequence of an external flooding from the tsunami and occurred 40 min after an emergency shutdown (SCRAM) caused by the earthquake. The first objective of this paper is to assume the consequences of an external flooding accident in a PWR site caused by a river flood, a dam break or a tsunami, where all the plant is damaged, not only the diesel generators. The second objective is to analyze possible actions to be performed in the time between the earthquake event (that causes a SCRAM) and the external flooding arrival, which could be applicable to accidents such as dam failures or river flooding in order to avoid more severe consequences, delay the core damage and improve the accident management. The results reveal how the actuation of the different systems and equipments affect the core damage time and how some actions could delay the core damage time enough to increase the possibility of AC power recovery
Effects of hypnagogic imagery on the event-related potential to external tone stimuli.
Michida, Nanae; Hayashi, Mitsuo; Hori, Tadao
2005-07-01
The purpose of this study was to examine the influence of hypnagogic imagery on the information processes of external tone stimuli during the sleep onset period with the use of event-related potentials. Event-related potentials to tone stimuli were compared between conditions with and without the experience of hypnagogic imagery. To control the arousal level when the tone was presented, a certain criterion named the electroencephalogram stage was used. Stimuli were presented at electroencephalogram stage 4, which was characterized by the appearance of a vertex sharp wave. Data were collected in the sleep laboratory at Hiroshima University. Eleven healthy university and graduate school students participated in the study. N/A. Experiments were performed at night. Reaction times to tone stimuli were measured, and only trials with shorter reaction times than 5000 milliseconds were analyzed. Electroencephalograms were recorded from Fz, Cz, Pz, Oz, T5 and T6. There were no differences in reaction times and electroencephalogram spectra between the conditions of with and without hypnagogic imagery. These results indicated that the arousal levels were not different between the 2 conditions. On the other hand, the N550 amplitude of the event-related potentials in the imagery condition was lower than in the no-imagery condition. The decrease in the N550 amplitude in the imagery condition showed that experiences of hypnagogic imagery exert some influence on the information processes of external tone stimuli. It is possible that the processing of hypnagogic imagery interferes with the processing of external stimuli, lowering the sensitivity to external stimuli.
Arenal-type pyroclastic flows: A probabilistic event tree risk analysis
Meloy, Anthony F.
2006-09-01
A quantitative hazard-specific scenario-modelling risk analysis is performed at Arenal volcano, Costa Rica for the newly recognised Arenal-type pyroclastic flow (ATPF) phenomenon using an event tree framework. These flows are generated by the sudden depressurisation and fragmentation of an active basaltic andesite lava pool as a result of a partial collapse of the crater wall. The deposits of this type of flow include angular blocks and juvenile clasts, which are rarely found in other types of pyroclastic flow. An event tree analysis (ETA) is a useful tool and framework in which to analyse and graphically present the probabilities of the occurrence of many possible events in a complex system. Four event trees are created in the analysis, three of which are extended to investigate the varying individual risk faced by three generic representatives of the surrounding community: a resident, a worker, and a tourist. The raw numerical risk estimates determined by the ETA are converted into a set of linguistic expressions (i.e. VERY HIGH, HIGH, MODERATE etc.) using an established risk classification scale. Three individually tailored semi-quantitative risk maps are then created from a set of risk conversion tables to show how the risk varies for each individual in different areas around the volcano. In some cases, by relocating from the north to the south, the level of risk can be reduced by up to three classes. While the individual risk maps may be broadly applicable, and therefore of interest to the general community, the risk maps and associated probability values generated in the ETA are intended to be used by trained professionals and government agencies to evaluate the risk and effectively manage the long-term development of infrastructure and habitation. With the addition of fresh monitoring data, the combination of both long- and short-term event trees would provide a comprehensive and consistent method of risk analysis (both during and pre-crisis), and as such
External man-induced events in relation to nuclear power plant design
International Nuclear Information System (INIS)
1982-01-01
This Guide deals with the basic design requirements for nuclear power plants, and presents a general design approach for protection against the effects of man-induced events. Section 2 discusses the general design approach. Section 3 outlines the development of the basic information necessary for an evaluation of the adequacy of a design against the effects of aircraft crashes, fires, explosions, and the release of toxic gases or corrosive substances. Section 4 outlines the design logic for protection against external man-induced events. It indicates possible methods of ensuring overall plant safety, including protection against possible secondary effects. Included for each event are: a methodology for calculating the design input parameters from the data generated in the siting study, system protection considerations from the effects of this man-induced event, and criteria for judging the adequacy of the protection provided. Specific design guidance related to acts of sabotage is not provided in this Guide. It should be recognized, however, that for certain situations such acts can be important to safety and could constitute the controlling postulated initiating event for design. The list of events covered is not necessarily complete. However, important events on which enough work has already been done in various Member States to enable their effects to be converted into generally accepted design parameters are included. In addition, other man-induced events such as dam ruptures, ship collisions, construction accidents and the like are identified but no general guidelines for design can be specified for these at present. These events need to be considered on an ad hoc basis, in order to arrive at design input parameters for them
OVERVIEW OF THE ACTIVITIES OF THE NUCLEAR ENERGY AGENCY WORKING GROUP ON EXTERNAL EVENTS
Energy Technology Data Exchange (ETDEWEB)
Nakoski, John A.; Smith, Curtis L.; Kim, Min Kyu
2016-10-01
The Orgranisation for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) has established a Working Group on External Events (WGEV) that provides a forum for subject matter experts from the nuclear industry and regulators to improve the understanding and treatment of external hazards that would support the continued safety performance of nuclear installations, and improve the effectiveness of regulatory practices, in NEA member countries. This report provides a description of the ongoing work of the WGEV. The work of the WGEV includes the collection of information and conducting a workshop on severe weather and storm surge that brought together a diverse group of subject matter experts to identify commendable practices related to the treatment of severe weather and storm surge consideration in regulatory and operational decision-making. Other work of the WGEV includes looking at science-based screening of external events that are factored into decisions on the safe operation of nuclear facilities; and identification of commendable practices and knowledge gaps on riverine flooding.
iROCS: Integrated accident management framework for coping with beyond-design-basis external events
International Nuclear Information System (INIS)
Kim, Jaewhan; Park, Soo-Yong; Ahn, Kwang-Il; Yang, Joon-Eon
2016-01-01
Highlights: • An integrated mitigating strategy to cope with extreme external events, iROCS, is proposed. • The strategy aims to preserve the integrity of the reactor vessel as well as core cooling. • A case study for an extreme damage state is performed to assess the effectiveness and feasibility of candidate mitigation strategies under an extreme event. - Abstract: The Fukushima Daiichi accident induced by the Great East Japan earthquake and tsunami on March 11, 2011, poses a new challenge to the nuclear society, especially from an accident management viewpoint. This paper presents a new accident management framework called an integrated, RObust Coping Strategy (iROCS) to cope with beyond-design-basis external events (BDBEEs). The iROCS approach is characterized by classification of various plant damage conditions (PDCs) that might be impacted by BDBEEs and corresponding integrated coping strategies for each of PDCs, aiming to maintain and restore core cooling (i.e., to prevent core damage) and to maintain the integrity of the reactor pressure vessel if it is judged that core damage may not be preventable in view of plant conditions. From a case study for an extreme damage condition, it showed that candidate accident management strategies should be evaluated from the viewpoint of effectiveness and feasibility against accident scenarios and extreme damage conditions of the site, especially when employing mobile or portable equipment under BDBEEs within the limited time available to achieve desired goals such as prevention of core damage as well as a reactor vessel failure.
International Nuclear Information System (INIS)
Kalinich, D.A.; Thomas, J.K.; Gough, S.T.; Bailey, R.T.; Kearnaghan, D.P.
1995-01-01
In the Defense Waste Processing Facility (DWPF) Safety Analysis Reports (SARs) for the Savannah River Site (SRS), risk-based perspectives have been included per US Department of Energy (DOE) Order 5480.23. The NUREG-1150 Level 2/3 Probabilistic Risk Assessment (PRA) methodology was selected as the basis for calculating facility risk. The backbone of this methodology is the generation of an Accident Progression Event Tree (APET), which is solved using the EVNTRE computer code. To support the development of the DWPF APET, deterministic modeling of accident phenomena was necessary. From these analyses, (1) accident progressions were identified for inclusion into the APET; (2) branch point probabilities and any attendant parameters were quantified; and (3) the radionuclide releases to the environment from accidents were determined. The phenomena of interest for accident progressions included explosions, fires, a molten glass spill, and the response of the facility confinement system during such challenges. A variety of methodologies, from hand calculations to large system-model codes, were used in the evaluation of these phenomena
External main-induced events in relation to nuclear power plant siting
International Nuclear Information System (INIS)
1981-01-01
This safety Guide recomments procedures and provides information for use in implementing that part of the code of safety in Nuclear Power Plant Siting (IAEA Safety Series No. 50-C-S) which concerns man-induced events external to the plant, up to the evaluation of corresponding design basis parameters. Like the code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing codes of practice and safety Guides relating to land-based stationary thermal neutron power plants
Hazard analysis of typhoon-related external events using extreme value theory
Energy Technology Data Exchange (ETDEWEB)
Kim, Yo Chan; Jang, Seung Cheol [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Tae Jin [Dept. of Industrial Information Systems Engineering, Soongsil University, Seoul (Korea, Republic of)
2015-02-15
After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.
Significant aspects of the external event analysis methodology of the Jose Cabrera NPP PSA
International Nuclear Information System (INIS)
Barquin Duena, A.; Martin Martinez, A.R.; Boneham, P.S.; Ortega Prieto, P.
1994-01-01
This paper describes the following advances in the methodology for Analysis of External Events in the PSA of the Jose Cabrera NPP: In the Fire Analysis, a version of the COMPBRN3 CODE, modified by Empresarios Agrupados according to the guidelines of Appendix D of the NUREG/CR-5088, has been used. Generic cases were modelled and general conclusions obtained, applicable to fire propagation in closed areas. The damage times obtained were appreciably lower than those obtained with the previous version of the code. The Flood Analysis methodology is based on the construction of event trees to represent flood propagation dependent on the condition of the communication paths between areas, and trees showing propagation stages as a function of affected areas and damaged mitigation equipment. To determine temporary evolution of the flood area level, the CAINZO-EA code has been developed, adapted to specific plant characteristics. In both the Fire and Flood Analyses a quantification methodology has been adopted, which consists of analysing the damages caused at each stage of growth or propagation and identifying, in the Internal Events models, the gates, basic events or headers to which safe failure (probability 1) due to damages is assigned. (Author)
International Nuclear Information System (INIS)
Purba, Julwan Hendry
2014-01-01
Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment
International Nuclear Information System (INIS)
Hellander, Juho
2014-01-01
Fennovoima is constructing a new nuclear power plant on a greenfield site in Northern Finland. Various evaluations for site-specific hazards are needed to ensure sufficient plant design basis values, proper design solutions and to provide input for the PRA model. This paper presents the general process used in identifying the relevant site-specific external hazards. The applicable legislative requirements, guides and standards regarding external hazards and external event PRA shall be identified. Based on these, an initial comprehensive list of events should be compiled. The initial list shall be filtered to exclude irrelevant events. Events can be screened out if the probability is very low or if the consequences are only mild. Events with similar consequences should be combined. Events can be grouped in several ways, and in this paper the risks are categorized into events related to air, water bodies, ground and human behaviour. In addition, the simultaneously occurring combinations of events should be identified. The paper also summarizes some hazard studies already performed and required in the future in Fennovoima's project. A comprehensive study is ongoing related to earthquake risks. The study aims at identifying all relevant seismic sources and taking into account various expert opinions in seismic modelling. Also frazil ice and anchor ice studies are being performed to eliminate the risk of cooling water intake blockage due to ice. In addition, some other study areas are mentioned. This paper presented a list of Finnish and international guides and standards useful in evaluating external hazards. Also a methodology was presented to identify and screen site-specific hazards in a new nuclear power plant project. The screened list of relevant events for the Hanhikivi site requiring further studies was presented. Also the studies needed in different phases of a new nuclear power plant project were discussed. Some specific studies regarding earthquakes and
Steeger, Christine M.; Cook, Emily C.; Connell, Christian M.
2016-01-01
This study investigated the associations between stressful family life events and adolescent externalizing and internalizing behaviors, and the interactive effects of family life events and cortisol reactivity on problem behaviors. In a sample of 100 mothers and their adolescents (M age = 15.09; SD age = 0.98; 68% girls), adolescent cortisol reactivity was measured in response to a mother-adolescent conflict interaction task designed to elicit a stress response. Mothers reported on measures of family life events and adolescent problem behaviors. Results indicated that a heightened adolescent cortisol response moderated the relations between stressful family life events and both externalizing and internalizing behaviors. Results support context-dependent theoretical models, suggesting that for adolescents with higher cortisol reactivity (compared to those with lower cortisol reactivity), higher levels of stressful family life events were associated with greater problem behaviors, whereas lower levels of stressful family life events were related to fewer problem behaviors. PMID:26961703
Probabilistic logics and probabilistic networks
Haenni, Rolf; Wheeler, Gregory; Williamson, Jon; Andrews, Jill
2014-01-01
Probabilistic Logic and Probabilistic Networks presents a groundbreaking framework within which various approaches to probabilistic logic naturally fit. Additionally, the text shows how to develop computationally feasible methods to mesh with this framework.
Morgeson, Frederick P
2005-05-01
Relatively little empirical research has been conducted on external leaders of self-managing teams. The integration of functional leadership theory with research on team routines suggests that leaders can intervene in teams in several different ways, and the effectiveness of this intervention depends on the nature of the events the team encounters. External team leaders from 3 organizations first described a series of events (N=117), and leaders and team members then completed surveys to quantitatively describe the events. Results indicated that leader preparation and supportive coaching were positively related to team perceptions of leader effectiveness, with preparation becoming more strongly related to effectiveness as event novelty increased. More active leader intervention activities (active coaching and sense making) were negatively related to satisfaction with leadership yet were positively related to effectiveness as events became more disruptive.
Energy Technology Data Exchange (ETDEWEB)
Kang, D. J.; Kim, K. Y.; Yang, J. E
2001-03-01
In this study, for the major safety systems of Ulchin Units 3/4, we quantify the risk on the change of AOT and the PM during power operation to identify the effects on the results of external events PSA when nuclear power plant changes such as allowed outage time are requested. The systems for which the risks on the change of allowed outage time are quantified are High Pressure Safety Injection System (HPSIS), Containment Spray System (CSS), and Emergency Diesel Generator (EDG). The systems for which the risks on the PM during power operation are Low Pressure Safety Injection System (LPSIS), CSS, EDG, Essential Service Water System (ESWS). Following conclusions can be obtained through this study: 1)The increase of core damage frequency ({delta}CDF) on the change of AOT and the conditional core damage probability (CCDP) on the on-line PM of each system are differently quantified according to the cases of considering only internal events or only external events. . 2)It is expected that the quantification of risk including internal and external events is advantageous for the licensee of NPP if the regulatory acceptance criteria for the technical specification changes are relatively set up. However, it is expected to be disadvantageous for the licensee if the acceptance criteria are absolutely set up. 3)It is expected that the conduction on the quantification of only a fire event is sufficient when the quantification of external events PSA model is required for the plant changes of Korea Standard NPPs. 4)It is expected that the quantification of the increase of core damage frequency and the incremental conditional core damage probability on technical specification changes are not needed if the quantification results of those considering only internal events are below regulatory acceptance criteria and the external events PSA results are not greatly affected by the system availability. However, it is expected that the quantification of risk considering external events
International Nuclear Information System (INIS)
Kang, D. J.; Kim, K. Y.; Yang, J. E.
2001-03-01
In this study, for the major safety systems of Ulchin Units 3/4, we quantify the risk on the change of AOT and the PM during power operation to identify the effects on the results of external events PSA when nuclear power plant changes such as allowed outage time are requested. The systems for which the risks on the change of allowed outage time are quantified are High Pressure Safety Injection System (HPSIS), Containment Spray System (CSS), and Emergency Diesel Generator (EDG). The systems for which the risks on the PM during power operation are Low Pressure Safety Injection System (LPSIS), CSS, EDG, Essential Service Water System (ESWS). Following conclusions can be obtained through this study: 1)The increase of core damage frequency (ΔCDF) on the change of AOT and the conditional core damage probability (CCDP) on the on-line PM of each system are differently quantified according to the cases of considering only internal events or only external events. . 2)It is expected that the quantification of risk including internal and external events is advantageous for the licensee of NPP if the regulatory acceptance criteria for the technical specification changes are relatively set up. However, it is expected to be disadvantageous for the licensee if the acceptance criteria are absolutely set up. 3)It is expected that the conduction on the quantification of only a fire event is sufficient when the quantification of external events PSA model is required for the plant changes of Korea Standard NPPs. 4)It is expected that the quantification of the increase of core damage frequency and the incremental conditional core damage probability on technical specification changes are not needed if the quantification results of those considering only internal events are below regulatory acceptance criteria and the external events PSA results are not greatly affected by the system availability. However, it is expected that the quantification of risk considering external events on
International Nuclear Information System (INIS)
Pleskunas, R.J.
2015-01-01
In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink
The external costs of low probability-high consequence events: Ex ante damages and lay risks
International Nuclear Information System (INIS)
Krupnick, A.J.; Markandya, A.; Nickell, E.
1994-01-01
This paper provides an analytical basis for characterizing key differences between two perspectives on how to estimate the expected damages of low probability - high consequence events. One perspective is the conventional method used in the U.S.-EC fuel cycle reports [e.g., ORNL/RFF (1994a,b]. This paper articulates another perspective, using economic theory. The paper makes a strong case for considering this, approach as an alternative, or at least as a complement, to the conventional approach. This alternative approach is an important area for future research. I Interest has been growing worldwide in embedding the external costs of productive activities, particularly the fuel cycles resulting in electricity generation, into prices. In any attempt to internalize these costs, one must take into account explicitly the remote but real possibilities of accidents and the wide gap between lay perceptions and expert assessments of such risks. In our fuel cycle analyses, we estimate damages and benefits' by simply monetizing expected consequences, based on pollution dispersion models, exposure-response functions, and valuation functions. For accidents, such as mining and transportation accidents, natural gas pipeline accidents, and oil barge accidents, we use historical data to estimate the rates of these accidents. For extremely severe accidents--such as severe nuclear reactor accidents and catastrophic oil tanker spills--events are extremely rare and they do not offer a sufficient sample size to estimate their probabilities based on past occurrences. In those cases the conventional approach is to rely on expert judgments about both the probability of the consequences and their magnitude. As an example of standard practice, which we term here an expert expected damage (EED) approach to estimating damages, consider how evacuation costs are estimated in the nuclear fuel cycle report
The external costs of low probability-high consequence events: Ex ante damages and lay risks
Energy Technology Data Exchange (ETDEWEB)
Krupnick, A J; Markandya, A; Nickell, E
1994-07-01
This paper provides an analytical basis for characterizing key differences between two perspectives on how to estimate the expected damages of low probability - high consequence events. One perspective is the conventional method used in the U.S.-EC fuel cycle reports [e.g., ORNL/RFF (1994a,b]. This paper articulates another perspective, using economic theory. The paper makes a strong case for considering this, approach as an alternative, or at least as a complement, to the conventional approach. This alternative approach is an important area for future research. I Interest has been growing worldwide in embedding the external costs of productive activities, particularly the fuel cycles resulting in electricity generation, into prices. In any attempt to internalize these costs, one must take into account explicitly the remote but real possibilities of accidents and the wide gap between lay perceptions and expert assessments of such risks. In our fuel cycle analyses, we estimate damages and benefits' by simply monetizing expected consequences, based on pollution dispersion models, exposure-response functions, and valuation functions. For accidents, such as mining and transportation accidents, natural gas pipeline accidents, and oil barge accidents, we use historical data to estimate the rates of these accidents. For extremely severe accidents--such as severe nuclear reactor accidents and catastrophic oil tanker spills--events are extremely rare and they do not offer a sufficient sample size to estimate their probabilities based on past occurrences. In those cases the conventional approach is to rely on expert judgments about both the probability of the consequences and their magnitude. As an example of standard practice, which we term here an expert expected damage (EED) approach to estimating damages, consider how evacuation costs are estimated in the nuclear fuel cycle report.
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Hak; Lee, Jae Jong; Kim, Myung Ki [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2013-10-15
In this study, how to develop FLEX strategy for beyond-design-basis external events for U. S. NRC design certification is examined. The development method of FLEX strategy for U. S. NRC design certification is examined. The applicants should make unit-specific FLEX strategy and establish the minimum coping capabilities consistent with unit-specific evaluation of the potential impacts and responses to BDBEEs. NEI 12-06 outlines the process to define and deploy the diverse and flexible mitigation strategies(FLEX strategy) that will increase defense-in-depth for beyond-design-basis scenarios to address the extended loss of alternating current (ac) power (ELAP) and loss of normal access to the ultimate heat sink (LUHS) occurring simultaneously at all units on a site. The order (EA-12-049) is issued to all reactor licensees, including holders of active, Construction Permit (CP) holders, and Combined License (COL) holders. Applicants for the new reactor design certification should prepare and submit FLEX strategy for NRC staff's review. Site-specific data related with the new reactor can't be determined during the new reactor design certification applications so that the unit-specific FLEX strategy should be developed.
International Nuclear Information System (INIS)
Kim, Dong Hak; Lee, Jae Jong; Kim, Myung Ki
2013-01-01
In this study, how to develop FLEX strategy for beyond-design-basis external events for U. S. NRC design certification is examined. The development method of FLEX strategy for U. S. NRC design certification is examined. The applicants should make unit-specific FLEX strategy and establish the minimum coping capabilities consistent with unit-specific evaluation of the potential impacts and responses to BDBEEs. NEI 12-06 outlines the process to define and deploy the diverse and flexible mitigation strategies(FLEX strategy) that will increase defense-in-depth for beyond-design-basis scenarios to address the extended loss of alternating current (ac) power (ELAP) and loss of normal access to the ultimate heat sink (LUHS) occurring simultaneously at all units on a site. The order (EA-12-049) is issued to all reactor licensees, including holders of active, Construction Permit (CP) holders, and Combined License (COL) holders. Applicants for the new reactor design certification should prepare and submit FLEX strategy for NRC staff's review. Site-specific data related with the new reactor can't be determined during the new reactor design certification applications so that the unit-specific FLEX strategy should be developed
Energy Technology Data Exchange (ETDEWEB)
Canadell, F.; Aleman, A.; Beltran, F.; Pifarre, D.; Hernandez, H.; Gasca, C.
2011-07-01
Within the process of maintaining and updating the risk analysis of the NPP Asco, results from the review of the vulnerability study of the plant against severe accidents caused by external success (Individual Plant Examination of External Events, IPEEE).
Zhou, Qing; Wang, Yun; Deng, Xianli; Eisenberg, Nancy; Wolchik, Sharlene A.; Tein, Jenn-Yun
2008-01-01
The relations of parenting and temperament (effortful control and anger/frustration) to children's externalizing problems were examined in a 3.8-year longitudinal study of 425 native Chinese children (6-9 years) from Beijing. Children's experience of negative life events and coping efficacy were examined as mediators in the parenting- and…
Energy Technology Data Exchange (ETDEWEB)
Martins, Eduardo Ferraz
2015-04-01
The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)
Energy Technology Data Exchange (ETDEWEB)
Hernandez, H.; Gasca, C.; Beltran, F.; Salvat, M.; Pifarre, D.; Canadell, F.; Aleman, A.
2010-07-01
Within the process of maintaining and updating the risk analysis of CN Vandellos II, results from the review of the study of vulnerability of the plant against severe accidents caused by external events (Individual Plant Examination on Extornal Events, IPEEE).
International Nuclear Information System (INIS)
Chen, J.T.; Chokshi, N.C.; Kenneally, R.M.; Kelly, G.B.; Beckner, W.D.; McCracken, C.; Murphy, A.J.; Reiter, L.; Jeng, D.
1991-06-01
Based on a Policy statement on Severe Accidents, the licensee of each nuclear power plant is requested to perform an individual plant examination. The plant examination systematically looks for vulnerabilities to severe accidents and cost-effective safety improvements that reduce or eliminate the important vulnerabilities. This document presents guidance for performing and reporting the results of the individual plant examination of external events (IPEEE). The guidance for reporting the results of the individual plant examination of internal events (IPE) is presented in NUREG-1335. 53 refs., 1 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Aleman, A.; Canadell, F.; Beltran, F.; Pifarre, D.; Hernandez, H.; Gasca, C.
2012-07-01
During the risk analysis update of Asco PP (2010), it has been carried out a review of the vulnerabilities against severe accidents caused by external events (individual Plant Examination of external Events, IPEEE). The assessment has included analysis of accidents in industrial and military facilities nearby and transportation accidents (i.e., rail, road and aircraft impact) release of hazardous materials on site, external flooding, turbine missiles and strong winds. (Author)
International Nuclear Information System (INIS)
Forester, J.; Yakle, J.; Whitehead, D.; Darby, J.
1993-01-01
Sandia National Laboratories was tasked by the US Nuclear Regulatory Commission to perform a Probabilistic Risk Assessment (PRA) of a boiling water reactor (BWR) during low power and shutdown (LP ampersand S) conditions. The plant chosen for the study was Grand Gulf Nuclear Station (GGNS), a BWR 6. In performing the analysis, it was found that in comparison with full-power PRAs, the low decay heat levels present during LP ampersand S conditions result in a relatively large number of ways by which cooling can be provided to the core. In addition, because of the less stringent requirements imposed on system configurations possible is large and the availability of plant systems is more difficult to specify. These aspects of the LP ampersand S environment led to the development and use of ''generic'' event trees in performing the analysis. The use of ''generic'' event trees, in turn, had a significant impact on the nature of the human reliability analysis (HRA) that was performed. This paper describes the development of the event trees for the LP ampersand S PRA and important aspects of the resulting HRA
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events
Feller, Liviu; Khammissa, Razia A. G.; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan
2016-01-01
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resor...
Probabilistic safety assessment for high-level waste tanks at Hanford
International Nuclear Information System (INIS)
Sullivan, L.H.; MacFarlane, D.R.; Stack, D.W.
1996-01-01
Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA), including consideration of external events, for the 18 tank farms at the Hanford Tank Farm (HTF). This work was sponsored by the Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM)
Wakker, P.P.; Thaler, R.H.; Tversky, A.
1997-01-01
textabstractProbabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in the premium to compensate for a 1% default risk. While these preferences are intuitively appealing they are difficult to reconcile with expected utility theory. Under highly plausible assumptions about the utility function, willingness to pay for probabilistic i...
Rusgiyarto, Ferry; Sjafruddin, Ade; Frazila, Russ Bona; Suprayogi
2017-06-01
Increasing container traffic and land acquisition problem for terminal expansion leads to usage of external yard in a port buffer area. This condition influenced the terminal performance because a road which connects the terminal and the external yard was also used by non-container traffic. Location choice problem considered to solve this condition, but the previous research has not taken account a stochastic condition of container arrival rate and service time yet. Bi-level programming framework was used to find optimum location configuration. In the lower-level, there was a problem to construct the equation, which correlated the terminal operation and the road due to different time cycle equilibrium. Container moves from the quay to a terminal gate in a daily unit of time, meanwhile, it moves from the terminal gate to the external yard through the road in a minute unit of time. If the equation formulated in hourly unit equilibrium, it cannot catch up the container movement characteristics in the terminal. Meanwhile, if the equation formulated in daily unit equilibrium, it cannot catch up the road traffic movement characteristics in the road. This problem can be addressed using simulation model. Discrete Event Simulation Model was used to simulate import container flow processes in the container terminal and external yard. Optimum location configuration in the upper-level was the combinatorial problem, which was solved by Full Enumeration approach. The objective function of the external yard location model was to minimize user transport cost (or time) and to maximize operator benefit. Numerical experiment was run for the scenario assumption of two container handling ways, three external yards, and thirty-day simulation periods. Jakarta International Container Terminal (JICT) container characteristics data was referred for the simulation. Based on five runs which were 5, 10, 15, 20, and 30 repetitions, operation one of three available external yards (external yard
Extremely intense (SML ≤–2500 nT substorms: isolated events that are externally triggered?
Directory of Open Access Journals (Sweden)
B. T. Tsurutani
2015-05-01
Full Text Available We examine particularly intense substorms (SML ≤–2500 nT, hereafter called "supersubstorms" or SSS events, to identify their nature and their magnetic storm dependences. It is found that these intense substorms are typically isolated events and are only loosely related to magnetic storms. SSS events can occur during super (Dst ≤–250 nT and intense (−100 nT ≥ Dst >–250 magnetic storms. SSS events can also occur during nonstorm (Dst ≥–50 nT intervals. SSSs are important because the strongest ionospheric currents will flow during these events, potentially causing power outages on Earth. Several SSS examples are shown. SSS events appear to be externally triggered by small regions of very high density (~30 to 50 cm−3 solar wind plasma parcels (PPs impinging upon the magnetosphere. Precursor southward interplanetary magnetic fields are detected prior to the PPs hitting the magnetosphere. Our hypothesis is that these southward fields input energy into the magnetosphere/magnetotail and the PPs trigger the release of the stored energy.
Topics in Probabilistic Judgment Aggregation
Wang, Guanchun
2011-01-01
This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…
Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.
2017-12-01
Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.
Mera, R. J.; Allen, M. R.; Mote, P.; Ekwurzel, B.; Frumhoff, P. C.; Rupp, D. E.
2015-12-01
Heat waves in the western US have become progressively more severe due to increasing relative humidity and nighttime temperatures, increasing the health risks of vulnerable portions of the population, including Latino farmworkers in California's Central Valley and other socioeconomically disadvantaged communities. Recent research has shown greenhouse gas emissions doubled the risk of the hottest summer days during the 2000's in the Central Valley, increasing public health risks and costs, and raising the question of which parties are responsible for paying these costs. It has been argued that these costs should not be taken up solely by the general public through taxation, but that additional parties can be considered, including multinational corporations who have extracted and marketed a large proportion of carbon-based fuels. Here, we apply probabilistic event attribution (PEA) to assess the contribution of emissions traced to the world's 90 largest major industrial carbon producers to the severity and frequency of these extreme heat events. Our research uses very large ensembles of regional climate model simulations to calculate fractional attribution of policy-relevant extreme heat variables. We compare a full forcings world with observed greenhouse gases, sea surface temperatures and sea ice extent to a counter-factual world devoid of carbon pollution from major industrial carbon producers. The results show a discernable fraction of record-setting summer temperatures in the western US during the 2000's can be attributed to emissions sourced from major carbon producers.
DEFF Research Database (Denmark)
Jensen, Finn Verner; Lauritzen, Steffen Lilholt
2001-01-01
This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs.......This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs....
Wakker, P.P.; Thaler, R.H.; Tversky, A.
1997-01-01
Probabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in premium to compensate for a 1% default risk. These observations cannot be
P.P. Wakker (Peter); R.H. Thaler (Richard); A. Tversky (Amos)
1997-01-01
textabstractProbabilistic insurance is an insurance policy involving a small probability that the consumer will not be reimbursed. Survey data suggest that people dislike probabilistic insurance and demand more than a 20% reduction in the premium to compensate for a 1% default risk. While these
Assessment of Vulnerabilities of Operating Nuclear Power Plants to Extreme External Events
International Nuclear Information System (INIS)
2017-12-01
The Fukushima Daiichi accident showed the need to explore scenarios where external hazards exceed the design basis. Knowledge of plant behaviour along those scenarios helps improve global safety, since the weak points can be identified and measures to limit the progression of potential accidents or to mitigate their consequences can be introduced. Based on an IAEA methodology document for Member States issued in 2011, the current publication expands the previous version by giving a more comprehensive approach and introducing the enhancements that could be identified from the research developments and practical applications in the recent years.
International Nuclear Information System (INIS)
Lopes, J.P.G.
1986-01-01
In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt
International Nuclear Information System (INIS)
2003-03-01
The design of nuclear facilities other than nuclear power plants in relation to external events is not a well harmonized practice around the world. Traditionally, the design of these facilities has either been left to the provisions collected in national building codes and other industrial codes not specifically intended for nuclear facilities, or it has been the subject of complex analyses of the type usually performed for nuclear power plants. The IAEA has recently started a programme of development of safety standards for such facilities. The need to define the appropriate safety requirements for nuclear installations prompted a generic review of siting and design approaches for these facilities in relation to external events. Therefore the assessment methods for siting and design were reviewed by the engineering community to provide the overall design of such facilities with the necessary reliability level. This report aims to provide guidelines for the assessment of the safety of nuclear facilities other than nuclear power plants in relation to external events through the application of simplified methods and procedures for their siting and design. The approach adopted is both simplified and conservative compared with that used for power reactors. It seeks to provide a rational balance for a suitable combination of sustainable effort in site investigations and refinement in design procedures, compatible with the assigned safety objectives. This publication is related to IAEA-TECDOC-348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985) which focused on the seismic design of nuclear facilities with limited radioactive inventory. After some 17 years, parts of IAEA-TECDOC-348 needed modification, as new operational data have become available from many facilities. In addition, sophisticated design methodologies are now more easily obtainable, and experts felt that the trade-off between sustainable investment in the
Emotional inertia and external events: The roles of exposure, reactivity, and recovery.
Koval, Peter; Brose, Annette; Pe, Madeline L; Houben, Marlies; Erbas, Yasemin; Champagne, Dominique; Kuppens, Peter
2015-10-01
Increased moment-to-moment predictability, or inertia, of negative affect has been identified as an important dynamic marker of psychological maladjustment, and increased vulnerability to depression in particular. However, little is known about the processes underlying emotional inertia. The current article examines how the emotional context, and people's responses to it, are related to emotional inertia. We investigated how individual differences in the inertia of negative affect (NA) are related to individual differences in exposure, reactivity, and recovery from emotional events, in daily life (assessed using experience sampling) as well as in the lab (assessed using an emotional film-clip task), among 200 participants commencing their first year of tertiary education. This dual-method approach allowed us to assess affective responding on different timescales, and in response to standardized as well as idiographic emotional stimuli. Our most consistent finding, across both methods, was that heightened NA inertia is related to decreased NA recovery following negative stimuli, suggesting that higher levels of inertia may be mostly driven by impairments in affect repair following negative events. (c) 2015 APA, all rights reserved).
Probabilistic analysis of canister inserts for spent nuclear fuel
Energy Technology Data Exchange (ETDEWEB)
Dillstroem, Peter [Det Norske Veritas, Stockholm (Sweden)
2005-10-01
In this study, probabilistic analysis of canister inserts for spent nuclear fuel has been performed. The main conclusions are: 1. For the baseline case, the probability of failure is insignificant ({approx} 2x10{sup -9}). This is the case even though several conservative assumptions have been made both in underlying deterministic analysis and in the probabilistic analysis. 2. The initiation event dominates (over the local collapse event) when the external pressure is below the baseline case (p = 44 MPa). The local collapse event dominates when the external pressure is above the baseline case. 3. The local collapse event is strongly dependent of the assumed external pressure. 4. The analysis of collapse only considers the first local collapse event, total collapse of the insert will occur at a much higher pressure. 5. The resulting probabilities are more dependent on the assumption regarding the eccentricity of the cassette than the assumption regarding outer corner radius of the profiles for steel section cassette. The results indicate that the maximum allowed eccentricity should not be larger than 5 mm. 6. The probability of initiation of crack growth is calculated using a defect distribution where one assumes the existence of one crack-like defect. A simple scaling argument can be applied to consider the number of defects through the thickness.
Probabilistic analysis of canister inserts for spent nuclear fuel
International Nuclear Information System (INIS)
Dillstroem, Peter
2005-10-01
In this study, probabilistic analysis of canister inserts for spent nuclear fuel has been performed. The main conclusions are: 1. For the baseline case, the probability of failure is insignificant (∼ 2x10 -9 ). This is the case even though several conservative assumptions have been made both in underlying deterministic analysis and in the probabilistic analysis. 2. The initiation event dominates (over the local collapse event) when the external pressure is below the baseline case (p = 44 MPa). The local collapse event dominates when the external pressure is above the baseline case. 3. The local collapse event is strongly dependent of the assumed external pressure. 4. The analysis of collapse only considers the first local collapse event, total collapse of the insert will occur at a much higher pressure. 5. The resulting probabilities are more dependent on the assumption regarding the eccentricity of the cassette than the assumption regarding outer corner radius of the profiles for steel section cassette. The results indicate that the maximum allowed eccentricity should not be larger than 5 mm. 6. The probability of initiation of crack growth is calculated using a defect distribution where one assumes the existence of one crack-like defect. A simple scaling argument can be applied to consider the number of defects through the thickness
International Nuclear Information System (INIS)
Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael
2016-06-01
The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.
International Nuclear Information System (INIS)
Budnitz, R.J.; Smith, P.
1996-01-01
Within the scope of the TC Project RER/9/035, a review mission visited Ljubljana, Slovenia, 19-23 February 1996. Two outside experts, Messrs. R.J. Budnitz (USA) and Paul Smith (USA), as well as a staff member, A. Guerpinar (ESS-NSNI) took part in the review. The purpose of the mission was to assist the Slovenian Nuclear Safety Administration to review the external events PSA prepared by Krsko NPP consultants Westinghouse Energy Systems Europe and EQE International. Another seismic safety review was performed concurrently in Ljubljana involving the investigations in relation to the tectonic stability and reassessment of the design basis ground motion characterization for the Krsko NPP site
ASAMPSA-E guidance for level 2 PSA Volume 2. Implementing external Events modelling in Level 2 PSA
International Nuclear Information System (INIS)
Cazzoli, E.; Vitazkova, J.; Loeffler, H.; Burgazzi, L.
2016-01-01
The objective of the present document is to provide guidance on the implementation of external events into an 'extended' L2 PSA. It has to be noted that L2 PSA addresses issues beginning with fuel degradation and ending with the release of radionuclides into the environment. Therefore, the present document may touch upon, but does not evaluate explicitly issues that involve events or phenomena which occur before the fuel begins to degrade. Following the accident at Fukushima Dai-ichi, the nuclear safety community has realized that much attention should be given to the areas of operator interventions and accidents that may develop at the same time in more than one unit if they are initiated by one or more common external events. For this reason and to fulfill the PSA end-users' wish list (as reflected by an ASAMPSA-E survey), the attention is mostly focused on interface between L1 and L2 PSA, fragility analysis, human response analysis and some consideration is given to L2 PSA modeling of severe accidents for multiple unit sites, even though it is premature to provide extensive guidance in this area. The following recommendations, mentioned in various sections within this document, are summarized here: 1. Vulnerability/fragility analyses should be performed with respect to all external hazards and all structures, systems and components potentially affected that could be relevant to L2 PSA, 2. Importance should be given to the assessment of human performance following extreme external events; for extreme circumstances with high stress level, low confidence is justified for SAM human interventions and for such conditions, human interventions could be analyzed as sensitivity cases only in L2 PSA, 3. Results presentation should include assessment of total risk measures compared with risk targets able to assess all contributions to the risk and to judge properly the safety, 4. Total risk measures shall be associated to appropriate information on all
van de Sandt, Femke; Umans, Victor
2009-10-01
The incidence of acute cardiac events - including out-of-hospital cardiac arrest - may be increased in visitors of large sports stadiums when compared with the general population. This study sought to investigate the incidence of acute cardiac events inside large Dutch football stadiums, as well as the emergency response systems deployed in these stadiums and the success rate for in-stadium resuscitation. Retrospective cohort study using a questionnaire sent to the 20 Dutch stadiums that hosted professional matches during the 2006-2007 and 2007-2008 football seasons. Stadium capacity ranged from 3600 to 51 600 spectators. Nearly 13 million spectators attended 686 'Eredivisie' (Honorary Division) and European football matches. All stadiums distribute multiple emergency medical teams among the spectators. Eighty-five percent of the stadiums have an ambulance standby during matches, 95% of the stadiums were equipped with automated external defibrillators (AEDs) during the study period. On an average, one AED was available for every 7576 spectators (range 1800-29 600). Ninety-three cardiac events were reported (7.3 per 1 million spectators). An AED was used 22 times (1.7 per 1 million spectators). Resuscitation was successful in 18 cases (82%, 95% confidence interval: 61-93). The incidence of out-of-hospital cardiac arrest inside large football stadiums in the Netherlands, albeit increased when compared with the general population, is low. The success rate for in-stadium resuscitation by medical teams equipped with AEDs is high. Dutch stadiums appear vigilant in regard to acute cardiac events. This report highlights the importance of adequate emergency medical response systems (including AEDs) in large sports venues.
Directory of Open Access Journals (Sweden)
Starry H. Rampengan
2013-08-01
Full Text Available Background: Chronic heart failure (CHF is a slowly progressive disease with high morbidity and mortality; therefore, the management using pharmacological treatments frequently fails to improve outcome. Enhanced external counterpulsation (EECP, a non-invasive treatment, may serve as alternative treatment for heart failure. This study was aimed to evaluate the influence of EECP on myeloperoxidase (MPO as inflammatory marker as well as cardiac events outcome.Methods: This was an open randomized controlled clinical trial on 66 CHF patients visiting several cardiovascular clinics in Manado between January-December 2012. The subjects were randomly divided into two groups, i.e. the group who receive EECP therapy and those who did not receive EECP therapy with 33 patients in each group. Myeloperoxidase (MPO as inflammatory marker was examined at baseline and after 6 months of observation. Cardiovascular events were observed as well after 6 months of observation. Unpaired t-test was use to analyze the difference of MPO between the two groups, and chi-square followed by calculation of relative risk were used for estimation of cardiovascular event outcomes.Results: MPO measurement at baseline and after 6 months in EECP group were 643.16 ± 239.40 pM and 422.31 ± 156.26 pM, respectively (p < 0.001. Whereas in non EECP group, the MPO values were 584.69 ± 281.40 pM and 517.64 ± 189.68 pM, repectively (p = 0.792. MPO reduction was observed in all patients of EECP group and in 13 patients (48% of non-EECP group (p < 0.001. Cardiovascular events were observed in 7 (21.21% and 15 (45.45% of patients in EECP and non-EECP groups, respectively (p = 0.037.Conclusion: EECP therapy significantly decreased the level of MPO as inflammatory marker and this decrease was correlated with the reduction of cardiovascular events in CHF patients. (Med J Indones. 2013;22:152-60. doi: 10.13181/mji.v22i3.584Keywords: CHF, cardiovascular events, EECP, myeloperoxidase
Recent developments in the external hazard risk assessment in Ukraine
International Nuclear Information System (INIS)
2000-01-01
Ukrainian legislation prescribes safety analysis reports for all operating and future NPPs. Apart from main report they must include: safety analysis supplement; design basis accident analysis; beyond design basis accident analysis; probabilistic safety assessment (PSA); technical; substantiation of safety. Regulatory requirements to PSA contents cover the criteria for core damage frequency and large radioactive release frequency. Initiating events taken into account are internal events; internal hazards and external hazards. External hazards to be considered are seismic events, external fires, external floods, extreme ambient temperatures, aircraft crashes, etc. Current status of PSA development is related to operating WWER-440 and WWER-1000 NPPs and NPPs under construction. This presentation describes in detail the external hazard risk assessment for South Ukraine including methodology applied and expected future activities
International Nuclear Information System (INIS)
Wang, Chih-Ping; Thorne, Richard; Liu, Terry Z.; Hartinger, Michael D.; Nagai, Tsugunobu
2017-01-01
We investigate a quiet time event of magnetospheric Pc5 ultralow-frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5–2 mHz and 3.5–4 mHz, were observed over a large radial distance range from r ~ 5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5–4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to interplanetary magnetic field (IMF) discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, K-H-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment
Schmidt, F.; Liu, S.
2016-12-01
Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties
Probabilistic Model Development
Adam, James H., Jr.
2010-01-01
Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.
Bod, R.; Heine, B.; Narrog, H.
2010-01-01
Probabilistic linguistics takes all linguistic evidence as positive evidence and lets statistics decide. It allows for accurate modelling of gradient phenomena in production and perception, and suggests that rule-like behaviour is no more than a side effect of maximizing probability. This chapter
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Burcharth, H. F.
This chapter describes how partial safety factors can be used in design of vertical wall breakwaters and an example of a code format is presented. The partial safety factors are calibrated on a probabilistic basis. The code calibration process used to calibrate some of the partial safety factors...
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
Probabilistic Logic and Probabilistic Networks
Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J.
2009-01-01
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches
Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping
2016-12-01
The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.
Sommer, Jordana L; Mota, Natalie; Edmondson, Donald; El-Gabalawy, Renée
2018-05-10
The current study compared physical and mental health characteristics and quality of life of illness-induced posttraumatic stress disorder (PTSD) versus those with PTSD due to external traumatic events in a population-based sample. PTSD was assessed with the Alcohol Use Disorder and Associated Disabilities Interview Schedule (AUDADIS-5) using DSM-5 criteria in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions. Participants with past-year PTSD (n = 1779) were categorized into two groups: illness-induced (6.5%) and other trauma-induced PTSD (92.9%) based on index trauma. Group differences in physical health, mental health, and quality of life were estimated using multiple logistic and linear regressions with adjustment for demographics and medical morbidity. Compared to PTSD due to external events, illness-induced PTSD had higher rates of life-threatening illness in the past year. Illness-induced PTSD compared to PTSD due to external events was associated with reduced odds of depressive/bipolar disorders and antisocial personality disorder, but increased odds of cannabis use disorder. The groups did not differ on quality of life after accounting for medical morbidity. Illness-induced PTSD is common among American adults and has a similar impact on quality of life as PTSD due to external events, but may have distinct mental health correlates. Copyright © 2018 Elsevier Inc. All rights reserved.
Probabilistic escalation modelling
Energy Technology Data Exchange (ETDEWEB)
Korneliussen, G.; Eknes, M.L.; Haugen, K.; Selmer-Olsen, S. [Det Norske Veritas, Oslo (Norway)
1997-12-31
This paper describes how structural reliability methods may successfully be applied within quantitative risk assessment (QRA) as an alternative to traditional event tree analysis. The emphasis is on fire escalation in hydrocarbon production and processing facilities. This choice was made due to potential improvements over current QRA practice associated with both the probabilistic approach and more detailed modelling of the dynamics of escalating events. The physical phenomena important for the events of interest are explicitly modelled as functions of time. Uncertainties are represented through probability distributions. The uncertainty modelling enables the analysis to be simple when possible and detailed when necessary. The methodology features several advantages compared with traditional risk calculations based on event trees. (Author)
Syed Ali, M; Vadivel, R; Saravanakumar, R
2018-06-01
This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Probabilistic safety assessment for Hanford high-level waste tanks
International Nuclear Information System (INIS)
MacFarlane, D.R.; Stack, D.S.; Kindinger, J.P.; Deremer, R.K.
1995-01-01
This paper gives results from the first comprehensive level-3 probabilistic safety assessment (PSA), including consideration of external events, for the Hanford tank farm (HTF). This work was sponsored by the U.S. Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM). At the HTF, there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/saltcake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is ∼60 million gal, containing ∼200 million Ci of radioactivity
Prospects for probabilistic safety assessment
International Nuclear Information System (INIS)
Hirschberg, S.
1992-01-01
This article provides some reflections on future developments of Probabilistic Safety Assessment (PSA) in view of the present state of the art and evaluates current trends in the use of PSA for safety management. The main emphasis is on Level 1 PSA, although Level 2 aspects are also highlighted to some extent. As a starting point, the role of PSA is outlined from a historical perspective, demonstrating the rapid expansion of the uses of PSA. In this context the wide spectrum of PSA applications and the associated benefits to the users are in focus. It should be kept in mind, however, that PSA, in spite of its merits, is not a self-standing safety tool. It complements deterministic analysis and thus improves understanding and facilitating prioritization of safety issues. Significant progress in handling PSA limitations - such as reliability data, common-cause failures, human interactions, external events, accident progression, containment performance, and source-term issues - is described. This forms a background for expected future developments of PSA. Among the most important issues on the agenda for the future are PSA scope extensions, methodological improvements and computer code advancements, and full exploitation of the potential benefits of applications to operational safety management. Many PSA uses, if properly exercised, lead to safety improvements as well as major burden reductions. The article provides, in addition, International Atomic Energy Agency (IAEA) perspective on the topics covered, as reflected in the current PSA programs of the agency. 74 refs., 6 figs., 1 tab
Development of Quantitative Framework for Event Significance Evaluation
International Nuclear Information System (INIS)
Lee, Durk Hun; Kim, Min Chull; Kim, Inn Seock
2010-01-01
There is an increasing trend in quantitative evaluation of the safety significance of operational events using Probabilistic Safety Assessment (PSA) technique. An integrated framework for evaluation of event significance has been developed by Korea Institute of Nuclear Safety (KINS), which consists of an assessment hierarchy and a number of matrices. The safety significance of various events, e.g., internal or external initiating events that occurred during at-power or shutdown conditions, can be quantitatively analyzed using this framework, and then, the events rated according to their significance. This paper briefly describes the basic concept of the integrated quantitative framework for evaluation of event significance, focusing on the assessment hierarchy
Application of probabilistic precipitation forecasts from a ...
African Journals Online (AJOL)
2014-02-14
Feb 14, 2014 ... Application of probabilistic precipitation forecasts from a deterministic model ... aim of this paper is to investigate the increase in the lead-time of flash flood warnings of the SAFFG using probabilistic precipitation forecasts ... The procedure is applied to a real flash flood event and the ensemble-based.
International Nuclear Information System (INIS)
Lewe, C.K.; Coffey, R.S.; Goodwin, E.F.; Maltese, J.G.; Pyatt, D.W.
1978-01-01
A method of applying the probabilistic accident event tree methodology to safety assessments of a nuclear powered Ultra Large Crude Carrier is presented. Also presented are the procedures by which an external accident initiating event, such as a ship collision, may be correlated with the probabilities of damage to the ship's safety systems and to their ultimate availabilities to perform required safety functions
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
Energy Technology Data Exchange (ETDEWEB)
Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.
Directory of Open Access Journals (Sweden)
Mikaël Cozic
2016-11-01
Full Text Available The modeling of awareness and unawareness is a significant topic in the doxastic logic literature, where it is usually tackled in terms of full belief operators. The present paper aims at a treatment in terms of partial belief operators. It draws upon the modal probabilistic logic that was introduced by Aumann (1999 at the semantic level, and then axiomatized by Heifetz and Mongin (2001. The paper embodies in this framework those properties of unawareness that have been highlighted in the seminal paper by Modica and Rustichini (1999. Their paper deals with full belief, but we argue that the properties in question also apply to partial belief. Our main result is a (soundness and completeness theorem that reunites the two strands—modal and probabilistic—of doxastic logic.
Notes on the regional workshop on modelling of external hazards. Working material. V. II
International Nuclear Information System (INIS)
2000-01-01
This book is a collection of reports presented by the participants of the TC project dealing with probabilistic safety assessment of external events mostly earthquakes and floods. Some of the papers deal with air crush events as well. Experiences and developments of the PSA in participating countries are at different stages of implementation and need upgrading and improvements. The majority of the NPPs mentioned are WWER type NPPs
Probabilistic reasoning in data analysis.
Sirovich, Lawrence
2011-09-20
This Teaching Resource provides lecture notes, slides, and a student assignment for a lecture on probabilistic reasoning in the analysis of biological data. General probabilistic frameworks are introduced, and a number of standard probability distributions are described using simple intuitive ideas. Particular attention is focused on random arrivals that are independent of prior history (Markovian events), with an emphasis on waiting times, Poisson processes, and Poisson probability distributions. The use of these various probability distributions is applied to biomedical problems, including several classic experimental studies.
Probabilistic Tsunami Hazard Analysis
Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.
2006-12-01
The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes
Gottlieb, G
1998-10-01
The central dogma of molecular biology holds that "information" flows from the genes to the structure of the proteins that the genes bring about through the formula DNA-->RNA-->Protein. In this view, a set of master genes activates the DNA necessary to produce the appropriate proteins that the organism needs during development. In contrast to this view, probabilistic epigenesis holds that necessarily there are signals from the internal and external environment that activate DNA to produce the appropriate proteins. To support this view, a substantial body of evidence is reviewed showing that external environmental influences on gene activation are normally occurring events in a large variety of organisms, including humans. This demonstrates how genes and environments work together to produce functional organisms, thus extending the author's model of probabilistic epigenesis.
Wijnhoven, Alphonsus B.J.M.; Bloemen, Oscar
2014-01-01
Many publications in sentiment mining provide new techniques for improved accuracy in extracting features and corresponding sentiments in texts. For the external validity of these sentiment reports, i.e., the applicability of the results to target audiences, it is important to well analyze data of
Implications of probabilistic risk assessment
International Nuclear Information System (INIS)
Cullingford, M.C.; Shah, S.M.; Gittus, J.H.
1987-01-01
Probabilistic risk assessment (PRA) is an analytical process that quantifies the likelihoods, consequences and associated uncertainties of the potential outcomes of postulated events. Starting with planned or normal operation, probabilistic risk assessment covers a wide range of potential accidents and considers the whole plant and the interactions of systems and human actions. Probabilistic risk assessment can be applied in safety decisions in design, licensing and operation of industrial facilities, particularly nuclear power plants. The proceedings include a review of PRA procedures, methods and technical issues in treating uncertainties, operating and licensing issues and future trends. Risk assessment for specific reactor types or components and specific risks (eg aircraft crashing onto a reactor) are used to illustrate the points raised. All 52 articles are indexed separately. (U.K.)
Next-generation probabilistic seismicity forecasting
Energy Technology Data Exchange (ETDEWEB)
Hiemer, S.
2014-07-01
The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a
Next-generation probabilistic seismicity forecasting
International Nuclear Information System (INIS)
Hiemer, S.
2014-01-01
The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a
Directory of Open Access Journals (Sweden)
Igor V. Karyakin
2016-02-01
Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.
RELAP5/MOD3.3 Analysis of the Loss of External Power Event with Safety Injection Actuation
Directory of Open Access Journals (Sweden)
Andrej Prošek
2018-01-01
Full Text Available The code assessment typically comprises basic tests cases, separate effects test, and integral effects tests. On the other hand, the thermal hydraulic system codes like RELAP5/MOD3.3 are primarily intended for simulation of transients and accidents in light water reactors. The plant measured data come mostly from startup tests and operational events. Also, for operational events the measured plant data may not be sufficient to explain all details of the event. The purpose of this study was therefore besides code assessment to demonstrate that simulations can be very beneficial for deep understanding of the plant response and further corrective measures. The abnormal event with reactor trip and safety injection signal actuation was simulated with the latest RELAP5/MOD3.3 Patch 05 best-estimate thermal hydraulic computer code. The measured and simulated data agree well considering the major plant system responses and operator actions. This suggests that the RELAP5 code simulation is good representative of the plant response and can complement not available information from plant measured data. In such a way, an event can be better understood.
Probabilistic safety analysis procedures guide
International Nuclear Information System (INIS)
Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.
1984-01-01
A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study
An overview-probabilistic safety analysis for research reactors
International Nuclear Information System (INIS)
Liu Jinlin; Peng Changhong
2015-01-01
For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)
Probabilistic biological network alignment.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.
International Nuclear Information System (INIS)
Haasl, D.; Young, J.
1985-08-01
This course will employ a combination of lecture material and practical problem solving in order to develop competence and understanding of th principles and techniques of event tree and fault tree analysis. The role of these techniques in the overall context of PRA will be described. The emphasis of this course will be on the basic, traditional methods of event tree and fault tree analysis
Schweizer, B
2005-01-01
Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.
Ignorability in Statistical and Probabilistic Inference
DEFF Research Database (Denmark)
Jaeger, Manfred
2005-01-01
When dealing with incomplete data in statistical learning, or incomplete observations in probabilistic inference, one needs to distinguish the fact that a certain event is observed from the fact that the observed event has happened. Since the modeling and computational complexities entailed...
Probabilistic safety analysis procedures guide, Sections 8-12. Volume 2, Rev. 1
International Nuclear Information System (INIS)
McCann, M.; Reed, J.; Ruger, C.; Shiu, K.; Teichmann, T.; Unione, A.; Youngblood, R.
1985-08-01
A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. The first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. This second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given
Probabilistic safety analysis procedures guide. Sections 1-7 and appendices. Volume 1, Revision 1
International Nuclear Information System (INIS)
Bari, R.A.; Buslik, A.J.; Cho, N.Z.
1985-08-01
A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. This first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. The second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given
Probabilistic solution of the Dirac equation
International Nuclear Information System (INIS)
Blanchard, P.; Combe, P.
1985-01-01
Various probabilistic representations of the 2, 3 and 4 dimensional Dirac equation are given in terms of expectation with respect to stochastic jump processes and are used to derive the nonrelativistic limit even in the presence of an external electromagnetic field. (orig.)
International Nuclear Information System (INIS)
Sperbeck, Silvio; Strack, Christian; Thuma, Gernot
2013-11-01
The aim of the analyses on natural hazards described in this report was to evaluate the advantages of innovative hazard assessment methods available today over the hazard assessment methods commonly applied for German nuclear power plant sites in the past. For each hazard under consideration (earthquake, flooding, and wind loads) it has been assessed whether the new methods provide additional insights that could call for their mandatory application in future site specific hazard assessments. If no additional insights are gained, the hitherto applied methods can be considered adequate according to today's standards. In the context of this work, no areas could be identified where the hazard assessment methods stipulated in German (nuclear) regulations are generally inadequate. These methods that are commonly applied in practice do not seem to be prone to significantly underestimate the site specific hazard. Nevertheless, some newer methods allow for more precise (reduction of uncertainties) and more comprehensive (consideration of additional hazard characteristics) hazard assessments. Therefore, depending on the hazard under consideration, it could be advisable to supplement future site specific hazard assessments by some additional analyses. As the methods for some of these additional analyses are not yet fully developed, further research will be necessary to enable these amendments.
International Nuclear Information System (INIS)
Park, S. Y.; Kim, T. W.; Ha, K. S.; Lee, B. Y.
2009-03-01
The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the PSA domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of KALIMER-600 reactor. An applicability of the PSA of the PRISM plant to the KALIMER-600 has been studied. The study is confined to a core damage event tree analysis which is a part of a level 2 PSA. Assuming that the accident types, which can be developed from level 1 PSA, are same as the PRISM PRA, core damage categories are defined and core damage event trees are developed for the KALIMER-600 reactor. Fission product release fractions of the core damage categories and branch probabilities of the core damage event trees are referred from the PRISM PRA temporarily. Plant specific data will be used during the detail analysis
Energy Technology Data Exchange (ETDEWEB)
Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael
2016-06-15
The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.
International Nuclear Information System (INIS)
Riyadi, Eko H.
2014-01-01
Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events
Energy Technology Data Exchange (ETDEWEB)
Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)
2014-09-30
Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.
Computer codes for level 1 probabilistic safety assessment
International Nuclear Information System (INIS)
1990-06-01
Probabilistic Safety Assessment (PSA) entails several laborious tasks suitable for computer codes assistance. This guide identifies these tasks, presents guidelines for selecting and utilizing computer codes in the conduct of the PSA tasks and for the use of PSA results in safety management and provides information on available codes suggested or applied in performing PSA in nuclear power plants. The guidance is intended for use by nuclear power plant system engineers, safety and operating personnel, and regulators. Large efforts are made today to provide PC-based software systems and PSA processed information in a way to enable their use as a safety management tool by the nuclear power plant overall management. Guidelines on the characteristics of software needed for management to prepare a software that meets their specific needs are also provided. Most of these computer codes are also applicable for PSA of other industrial facilities. The scope of this document is limited to computer codes used for the treatment of internal events. It does not address other codes available mainly for the analysis of external events (e.g. seismic analysis) flood and fire analysis. Codes discussed in the document are those used for probabilistic rather than for phenomenological modelling. It should be also appreciated that these guidelines are not intended to lead the user to selection of one specific code. They provide simply criteria for the selection. Refs and tabs
Energy Technology Data Exchange (ETDEWEB)
Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang-Jun [KHNP CRI, Daejeon (Korea, Republic of); Hong, Soon-Joon; Hwang, Su-Hyun; Lee, Byung-Chul; Park, Kang-Min [FNC Tech. Co., Yongin (Korea, Republic of)
2015-10-15
Westinghouse developed and connected emergency operating procedures into a set of FLEX Support Guidelines(FSGs). This paper explains that Korean WH(Westinghouse) type nuclear power plants develop emergency operating strategies for ELAP(extended loss of all AC power), which include guidelines to use permanent and portable equipment as necessary to prevent core damage until AC power is restored from a reliable alternate source of AC power. The Korean emergency operating response strategies were developed to cope with a ELAP such as Fukushima event. The strategies include guidelines to prevent fuel damage using the FLEX equipment. Operators should take actions to prepare FLEX equipment within license basis SBO coping time. The loss of all AC power has been analyzed to identify the behavior of major NSSS process variables using RELAP computer code. The accident analysis showed that the plant does not result in fuel damage in 72 hours after an ELAP if operators take actions to cool RCS with opening of SG ADV in 5 gpm seal leak case. In this scenario, because ELAP is in process and all power cannot be used, operator should operate the FLEX equipment in order to actuate active equipment using the EOP fo SBO response. This strategy will prevent entering SAMG because this actions result in core cooling and stay in core exit temperature less than 650 .deg. C. Korean emergency operating guidelines(EOGs) will be developed using this strategies for response to the BDBEE.
Learning Probabilistic Logic Models from Probabilistic Examples.
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2008-10-01
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
A logic for inductive probabilistic reasoning
DEFF Research Database (Denmark)
Jaeger, Manfred
2005-01-01
Inductive probabilistic reasoning is understood as the application of inference patterns that use statistical background information to assign (subjective) probabilities to single events. The simplest such inference pattern is direct inference: from '70% of As are Bs" and "a is an A" infer...... that a is a B with probability 0.7. Direct inference is generalized by Jeffrey's rule and the principle of cross-entropy minimization. To adequately formalize inductive probabilistic reasoning is an interesting topic for artificial intelligence, as an autonomous system acting in a complex environment may have...... to base its actions on a probabilistic model of its environment, and the probabilities needed to form this model can often be obtained by combining statistical background information with particular observations made, i.e., by inductive probabilistic reasoning. In this paper a formal framework...
International Nuclear Information System (INIS)
Zio, E.; Ferrario, E.
2013-01-01
We consider a critical plant exposed to risk from external events. We propose an original framework of analysis, which extends the boundaries of the study to the interdependent infrastructures which support the plant. For the purpose of clearly illustrating the conceptual framework of system-of-systems analysis, we work out a case study of seismic risk for a nuclear power plant embedded in the connected power and water distribution, and transportation networks which support its operation. The technical details of the systems considered (including the nuclear power plant) are highly simplified, in order to preserve the purpose of illustrating the conceptual, methodological framework of analysis. Yet, as an example of the approaches that can be used to perform the analysis within the proposed framework, we consider the Muir Web as system analysis tool to build the system-of-systems model and Monte Carlo simulation for the quantitative evaluation of the model. The numerical exercise, albeit performed on a simplified case study, serves the purpose of showing the opportunity of accounting for the contribution of the interdependent infrastructure systems to the safety of a critical plant. This is relevant as it can lead to considerations with respect to the decision making related to safety critical-issues. -- Highlights: ► We consider a critical plant exposed to risk from external events. ► We consider also the interdependent infrastructures that support the plant. ► We use Muir Web as system analysis tool to build the system-of-systems model. ► We use Monte Carlo simulation for the quantitative evaluation of the model. ► We find that the interdependent infrastructures should be considered as they can be a support for the critical plant safety
International Nuclear Information System (INIS)
Kostarev, V.
1999-01-01
This progress report was produced within the frame of IAEA research project on screening the hazards for NPP with bank type reactor. It covers the following tasks; development of the model for the primary loop system of RBMK; developing the models for safety related equipment of RBMK; developing of models for safety related models of EGP-6 type reactor (Bilibinskaya Nuclear Co-generated heat and Power Plant); and probabilistic assessment of NPP safety on aircraft impact
The EBR-II Probabilistic Risk Assessment: Results and insights
International Nuclear Information System (INIS)
Hill, D.J.; Ragland, W.A.; Roglans, J.
1993-01-01
This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1. 6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The probability of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquake) is 3.6 10 -6 yr -1 . overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double, vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability
Probabilistic Logical Characterization
DEFF Research Database (Denmark)
Hermanns, Holger; Parma, Augusto; Segala, Roberto
2011-01-01
Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....
Conditional Probabilistic Population Forecasting
Sanderson, W.C.; Scherbov, S.; O'Neill, B.C.; Lutz, W.
2003-01-01
Since policy makers often prefer to think in terms of scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy makers it allows them to answer "what if"...
Conditional probabilistic population forecasting
Sanderson, Warren; Scherbov, Sergei; O'Neill, Brian; Lutz, Wolfgang
2003-01-01
Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them...
Conditional Probabilistic Population Forecasting
Sanderson, Warren C.; Scherbov, Sergei; O'Neill, Brian C.; Lutz, Wolfgang
2004-01-01
Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because...
Duplicate Detection in Probabilistic Data
Panse, Fabian; van Keulen, Maurice; de Keijzer, Ander; Ritter, Norbert
2009-01-01
Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused
Probabilistic assessment of SGTR management
International Nuclear Information System (INIS)
Champ, M.; Cornille, Y.; Lanore, J.M.
1989-04-01
In case of steam generator tube rupture (SGTR) event, in France, the mitigation of accident relies on operator intervention, by applying a specific accidental procedure. A detailed probabilistic analysis has been conducted which required the assessment of the failure probability of the operator actions, and for that purpose it was necessary to estimate the time available for the operator to apply the adequate procedure for various sequences. The results indicate that by taking into account the delays and the existence of adequate accidental procedures, the risk is reduced to a reasonably low level
Probabilistic risk assessment: Number 219
International Nuclear Information System (INIS)
Bari, R.A.
1985-01-01
This report describes a methodology for analyzing the safety of nuclear power plants. A historical overview of plants in the US is provided, and past, present, and future nuclear safety and risk assessment are discussed. A primer on nuclear power plants is provided with a discussion of pressurized water reactors (PWR) and boiling water reactors (BWR) and their operation and containment. Probabilistic Risk Assessment (PRA), utilizing both event-tree and fault-tree analysis, is discussed as a tool in reactor safety, decision making, and communications. (FI)
Probabilistic safety analysis using microcomputer
International Nuclear Information System (INIS)
Futuro Filho, F.L.F.; Mendes, J.E.S.; Santos, M.J.P. dos
1990-01-01
The main steps of execution of a Probabilistic Safety Assessment (PSA) are presented in this report, as the study of the system description, construction of event trees and fault trees, and the calculation of overall unavailability of the systems. It is also presented the use of microcomputer in performing some tasks, highlightning the main characteristics of a software to perform adequately the job. A sample case of fault tree construction and calculation is presented, using the PSAPACK software, distributed by the IAEA (International Atomic Energy Agency) for training purpose. (author)
Probabilistic fuzzy systems as additive fuzzy systems
Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.
2014-01-01
Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the
Application of probabilistic precipitation forecasts from a ...
African Journals Online (AJOL)
Application of probabilistic precipitation forecasts from a deterministic model towards increasing the lead-time of flash flood forecasts in South Africa. ... The procedure is applied to a real flash flood event and the ensemble-based rainfall forecasts are verified against rainfall estimated by the SAFFG system. The approach ...
Probabilistic safety assessment goals in Canada
International Nuclear Information System (INIS)
Snell, V.G.
1986-01-01
CANDU safety philosphy, both in design and in licensing, has always had a strong bias towards quantitative probabilistically-based goals derived from comparative safety. Formal probabilistic safety assessment began in Canada as a design tool. The influence of this carried over later on into the definition of the deterministic safety guidelines used in CANDU licensing. Design goals were further developed which extended the consequence/frequency spectrum of 'acceptable' events, from the two points defined by the deterministic single/dual failure analysis, to a line passing through lower and higher frequencies. Since these were design tools, a complete risk summation was not necessary, allowing a cutoff at low event frequencies while preserving the identification of the most significant safety-related events. These goals gave a logical framework for making decisions on implementing design changes proposed as a result of the Probabilistic Safety Analysis. Performing this analysis became a regulatory requirement, and the design goals remained the framework under which this was submitted. Recently, there have been initiatives to incorporate more detailed probabilistic safety goals into the regulatory process in Canada. These range from far-reaching safety optimization across society, to initiatives aimed at the nuclear industry only. The effectiveness of the latter is minor at very low and very high event frequencies; at medium frequencies, a justification against expenditures per life saved in other industries should be part of the goal setting
International Nuclear Information System (INIS)
Dupuy, Patricia; Delafond, Carine; Dubois, Alexandre
2015-01-01
Following the events at Fukushima, the Institute for Radiological Protection and Nuclear Safety (IRSN) has been strongly involved in a series of reviews related to the robustness of French nuclear power plants in case of 'rare and severe' external hazards. These reviews included in particular the 'stress tests' performed in 2011 as required by the European Commission. Those reviews, and the proposal made by EDF to reinforce NPPs robustness in such situation, led to the introduction of the concept of a hardened safety core (HSC) to avoid massive releases and prolonged effects in the environment in case of rare and severe natural hazards. This concept will be explained in the paper and the new specific electrical equipment as well as the interfaces with the existing electrical distribution required to implement this HSC will be explained. As the detailed design, manufacturing and installation of the HSC in all NPP sites will take several years, temporary measures have been adopted. This paper will also present the electrical sources and the distribution related to those temporary measures. The specific situation of the new built EPR reactor in Flamanville is also addressed. Lastly, in complement to the above on-site design provisions, a Nuclear Rapid Response Force has been set up by EDF to bring off-site support to French NPPs in case of emergency. The paper will describe the type of electrical equipment to be delivered and the principle for distributing the electrical power to the required loads. (authors)
Probabilistic Structural Analysis Program
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Probabilistic precursor analysis - an application of PSA
International Nuclear Information System (INIS)
Hari Prasad, M.; Gopika, V.; Sanyasi Rao, V.V.S.; Vaze, K.K.
2011-01-01
Incidents are inevitably part of the operational life of any complex industrial facility, and it is hard to predict how various contributing factors combine to cause the outcome. However, it should be possible to detect the existence of latent conditions that, together with the triggering failure(s), result in abnormal events. These incidents are called precursors. Precursor study, by definition, focuses on how a particular event might have adversely developed. This paper focuses on the events which can be analyzed to assess their potential to develop into core damage situation and looks into extending Probabilistic Safety Assessment techniques to precursor studies and explains the benefits through a typical case study. A preliminary probabilistic precursor analysis has been carried out for a typical NPP. The major advantages of this approach are the strong potential for augmenting event analysis which is currently carried out purely on deterministic basis. (author)
Probabilistic programmable quantum processors
International Nuclear Information System (INIS)
Buzek, V.; Ziman, M.; Hillery, M.
2004-01-01
We analyze how to improve performance of probabilistic programmable quantum processors. We show how the probability of success of the probabilistic processor can be enhanced by using the processor in loops. In addition, we show that an arbitrary SU(2) transformations of qubits can be encoded in program state of a universal programmable probabilistic quantum processor. The probability of success of this processor can be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results can be generalized also for qudits. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
The characterisation and evaluation of uncertainty in probabilistic risk analysis
International Nuclear Information System (INIS)
Parry, G.W.; Winter, P.W.
1980-10-01
The sources of uncertainty in probabilistic risk analysis are discussed using the event/fault tree methodology as an example. The role of statistics in quantifying these uncertainties is investigated. A class of uncertainties is identified which is, at present, unquantifiable, using either classical or Bayesian statistics. It is argued that Bayesian statistics is the more appropriate vehicle for the probabilistic analysis of rare events and a short review is given with some discussion on the representation of ignorance. (author)
Using PROGUMBEL to predict extreme external hazards during nuclear power plant construction
International Nuclear Information System (INIS)
Diburg, S.; Hoelscher, N.; Niemann, H.J.; Meiswinkel, R.
2010-01-01
Safety considerations concerning the construction of power plants, supporting structure planning, safety concept and structural design require reliable data on external events, their incidence probability and characteristic parameters. The basis for supporting structure calculations based on probabilistic reliability considerations is the knowledge on the statistical distribution or the incidence frequency of specific phenomena and their characteristic basic variables. The extreme value statistics software PRO GUMBEL is the extended version of the original GUMBEL software used for seismic assessments. The authors describe the features of the software, that covers seismic events, flooding and extreme storms.
Heijman, W.J.M.
2007-01-01
The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities
Probabilistic Infinite Secret Sharing
Csirmaz, László
2013-01-01
The study of probabilistic secret sharing schemes using arbitrary probability spaces and possibly infinite number of participants lets us investigate abstract properties of such schemes. It highlights important properties, explains why certain definitions work better than others, connects this topic to other branches of mathematics, and might yield new design paradigms. A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a colle...
Probabilistic Programming (Invited Talk)
Yang, Hongseok
2017-01-01
Probabilistic programming refers to the idea of using standard programming constructs for specifying probabilistic models from machine learning and statistics, and employing generic inference algorithms for answering various queries on these models, such as posterior inference and estimation of model evidence. Although this idea itself is not new and was, in fact, explored by several programming-language and statistics researchers in the early 2000, it is only in the last few years that proba...
Energy Technology Data Exchange (ETDEWEB)
Tward, Jonathan D., E-mail: Jonathan.Tward@hci.utah.edu [Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah (United States); Jarosek, Stephanie; Chu, Haitao [University of Minnesota, Minneapolis, Minnesota (United States); Thorpe, Cameron; Shrieve, Dennis C. [Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah (United States); Elliott, Sean [University of Minnesota, Minneapolis, Minnesota (United States)
2016-08-01
Purpose: Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Methods and Materials: Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results–Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, and the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Results: Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Conclusions: Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus
International Nuclear Information System (INIS)
Tward, Jonathan D.; Jarosek, Stephanie; Chu, Haitao; Thorpe, Cameron; Shrieve, Dennis C.; Elliott, Sean
2016-01-01
Purpose: Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Methods and Materials: Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results–Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, and the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Results: Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Conclusions: Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus
Tward, Jonathan D; Jarosek, Stephanie; Chu, Haitao; Thorpe, Cameron; Shrieve, Dennis C; Elliott, Sean
2016-08-01
Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results-Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, and the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus EBRT) increases the risk of severe UAEs compared with HDR
Probabilistic Safety Assessment Of It TRIGA Mark-II Reactor
International Nuclear Information System (INIS)
Ergun, E; Kadiroglu, O.S.
1999-01-01
The probabilistic safety assessment for Istanbul Technical University (ITU) TRIGA Mark-II reactor is performed. Qualitative analysis, which includes fault and event trees and quantitative analysis which includes the collection of data for basic events, determination of minimal cut sets, calculation of quantitative values of top events, sensitivity analysis and importance measures, uncertainty analysis and radiation release from fuel elements are considered
A study of risk evaluation methodology selection for the external hazards
International Nuclear Information System (INIS)
Kuramoto, Takahiro; Yamaguchi, Akira; Narumiya, Yosiyuki
2014-01-01
Since the accident at Fukushima Daiichi Nuclear Power Plant caused by the Great East Japan Earthquake in March 2011, there has been growing demands for assessing the effects of external hazards, including natural events, such as earthquake and tsunami, and external human behaviors, and taking actions to address those external hazards. The newly established Japanese regulatory requirements claim design considerations associated with external hazards. The primary objective of the risk assessment for external hazards is to establish countermeasures against such hazards rather than grasping the risk figures. Therefore, applying detailed risk assessment methods, such as probabilistic risk assessment (PRA), to all the external hazards is not always the most appropriate. Risk assessment methods can vary in types including qualitative evaluation, hazard analysis (analyzing hazard frequencies or their influence), and margin assessment. To resolve these issues, a process has been established that enables us to identify the external hazards in a comprehensive and systematic manner, which have potential risks leading to core damage and to select an appropriate evaluation method according to the risks associated with each of the external hazards. This paper discusses the comprehensive and systematic identification process for the external hazards which have potential risks leading to core damage, and the approaches of selecting an appropriate evaluation method for each external hazard. This paper also describes some applications of specific risk evaluation methods. (author)
Use and Communication of Probabilistic Forecasts.
Raftery, Adrian E
2016-12-01
Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications.
Use and Communication of Probabilistic Forecasts
Raftery, Adrian E.
2015-01-01
Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don’t need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications. PMID:28446941
Probabilistic Modeling of the Renal Stone Formation Module
Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.
2013-01-01
The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously
International Nuclear Information System (INIS)
Kelly, G.; Barrett, R.; Buslik, A.
1986-06-01
In 1981, the US Nuclear Regulatory Commission (NRC) requested Northeast Utilities to perform a design-specific probabilistic safety study (PSS) for Millstone Nuclear Power Station, Unit No. 3 (Millstone 3). In 1983, Northeast Utilities submitted the Millstone 3 Probabilistic Safety Study for review by the NRC staff. The NRC staff prepared the Millstone 3 Risk Evaluation Report, which discusses the findings regarding the PSS. The PSS estimates that the mean annual core damage frequency due to internal and external events is 5 x 10 -5 and 2 x 10 -5 , respectively. The NRC staff's Risk Evaluation Report estimates that the mean annual core damage frequency is about 2 x 10 -4 for internal events and lies between 1 x 10 -5 and 2 x 10 -4 for external events. The NRC staff estimates that station blackout dominates internal and external event core damage frequencies. The staff recommends that Northeast Utilities perform an engineering analysis on upgrading the diesel generator lube oil cooler anchorage system and on adding a manually operated, AC-independent containment spray system. The staff also recommends that Northeast Utilities prepare two emergency procedures (loss of room cooling and relay chatter due to an earthquake) to help reduce uncertainties. (Subsequent to the completion of this document, Northeast Utilities and the NRC staff have continued a dialogue regarding station blackout from events other than earthquakes. Both Northeast Utilities and the staff have performed additional evaluations, which have drawn their results closer together. Final requirements, if any, for the prevention or mitigation of station blackout from events other than earthquakes have not yet been determined.) 26 refs., 16 tabs
Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona
2016-06-01
Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a 'black box' research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. © The Author 2015; Published by Oxford University Press on behalf of the International Epidemiological Association.
Formalizing Probabilistic Safety Claims
Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.
2011-01-01
A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.
Procedures for conducting probabilistic safety assessments of nuclear power plants (Level 1)
International Nuclear Information System (INIS)
1992-01-01
This report provides guidance for conducting a Level 1 of probabilistic safety assessment (PSA), that is a PSA concerned with events leading to core damage. The scope of this report is confined to internal initiating events (excluding internal fires and floods). A particular aim is to promote a standardized framework, terminology and form of documentation for PSAs so as to facilitate external review of the results of such studies. The report is divided into the following major sections: management and organization; identification of sources of radioactive releases and accident initiators; accident sequence modelling; data assessment and parameter estimation; accident sequence quantification; documentation of the analysis: display and interpretation of result. 45 refs, 7 figs, 23 tabs
Review insights on the probabilistic risk assessment for the Limerick Generating Station
International Nuclear Information System (INIS)
1984-08-01
In recognition of the high population density around the Limerick Generating Station site and the proposed power level, the Philadelphia Electric Company, in response to NRC staff requests, conducted and submitted between March 1981 and November 1983 a probabilistic risk assessment (PRA) on internal event contributors and a severe accident risk assessment on external event contributors to assess risks posed by operation of the plant. The applicant has developed perspectives using PRA models on the safety profile of the Limerick plant and has altered the plant design to reduce accident vulnerabilities identified in these PRAs. The staff's review of the Limerick PRA has particularly emphasized the dominant accident sequences and the resulting insights into demonstration of compliance with regulatory requirments, unique design features and major plant vulnerabilities to assess the need for any additional measures to further improve the safety of the LGS. The staff's review insights and PRA safety review conclusions are presented in this report
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Mardare, Radu Iulian; Xue, Bingtian
2016-01-01
We introduce a version of the probabilistic µ-calculus (PMC) built on top of a probabilistic modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of good...... metaproperties. Firstly, we prove the decidability of satisﬁability checking by establishing the small model property. An algorithm for deciding the satisﬁability problem is developed. As a second major result, we provide a complete axiomatization for the alternation-free fragment of PMC. The completeness proof...
Probabilistic conditional independence structures
Studeny, Milan
2005-01-01
Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach.The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets.Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given.In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence.The necessary elementary mathematical notions are recalled in an appendix.
Probabilistic approach to mechanisms
Sandler, BZ
1984-01-01
This book discusses the application of probabilistics to the investigation of mechanical systems. The book shows, for example, how random function theory can be applied directly to the investigation of random processes in the deflection of cam profiles, pitch or gear teeth, pressure in pipes, etc. The author also deals with some other technical applications of probabilistic theory, including, amongst others, those relating to pneumatic and hydraulic mechanisms and roller bearings. Many of the aspects are illustrated by examples of applications of the techniques under discussion.
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
A Probabilistic Analysis of the Sacco and Vanzetti Evidence
Kadane, Joseph B
2011-01-01
A Probabilistic Analysis of the Sacco and Vanzetti Evidence is a Bayesian analysis of the trial and post-trial evidence in the Sacco and Vanzetti case, based on subjectively determined probabilities and assumed relationships among evidential events. It applies the ideas of charting evidence and probabilistic assessment to this case, which is perhaps the ranking cause celebre in all of American legal history. Modern computation methods applied to inference networks are used to show how the inferential force of evidence in a complicated case can be graded. The authors employ probabilistic assess
Probabilistic systems coalgebraically: A survey
Sokolova, Ana
2011-01-01
We survey the work on both discrete and continuous-space probabilistic systems as coalgebras, starting with how probabilistic systems are modeled as coalgebras and followed by a discussion of their bisimilarity and behavioral equivalence, mentioning results that follow from the coalgebraic treatment of probabilistic systems. It is interesting to note that, for different reasons, for both discrete and continuous probabilistic systems it may be more convenient to work with behavioral equivalence than with bisimilarity. PMID:21998490
International Nuclear Information System (INIS)
Kwag, Shinyoung; Gupta, Abhinav
2017-01-01
Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.
Energy Technology Data Exchange (ETDEWEB)
Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)
2017-04-15
Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.
Progress for the Industry Application External Hazard Analyses Early Demonstration
Energy Technology Data Exchange (ETDEWEB)
Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Bhandari, Bishwo [Idaho State Univ., Pocatello, ID (United States); Sludern, Daniel [Idaho State Univ., Pocatello, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States); Sampath, Ram [Centroid PIC, Idaho Falls, ID (United States)
2015-09-01
This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communication and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.
Probabilistic Survivability Versus Time Modeling
Joyner, James J., Sr.
2016-01-01
This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.
Confluence reduction for probabilistic systems
Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
In this presentation we introduce a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We proved that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Probabilistic simple sticker systems
Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod
2017-04-01
A model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, was introduced by by L. Kari, G. Paun, G. Rozenberg, A. Salomaa, and S. Yu in the paper entitled DNA computing, sticker systems and universality from the journal of Acta Informatica vol. 35, pp. 401-420 in the year 1998. A sticker system uses the Watson-Crick complementary feature of DNA molecules: starting from the incomplete double stranded sequences, and iteratively using sticking operations until a complete double stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rules generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of sticker systems. Recently, a variant of restricted sticker systems, called probabilistic sticker systems, has been introduced [4]. In this variant, the probabilities are initially associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the computation of the string. Strings for the language are selected according to some probabilistic requirements. In this paper, we study fundamental properties of probabilistic simple sticker systems. We prove that the probabilistic enhancement increases the computational power of simple sticker systems.
Visualizing Probabilistic Proof
Guerra-Pujol, Enrique
2015-01-01
The author revisits the Blue Bus Problem, a famous thought-experiment in law involving probabilistic proof, and presents simple Bayesian solutions to different versions of the blue bus hypothetical. In addition, the author expresses his solutions in standard and visual formats, i.e. in terms of probabilities and natural frequencies.
Memristive Probabilistic Computing
Alahmadi, Hamzah
2017-10-01
In the era of Internet of Things and Big Data, unconventional techniques are rising to accommodate the large size of data and the resource constraints. New computing structures are advancing based on non-volatile memory technologies and different processing paradigms. Additionally, the intrinsic resiliency of current applications leads to the development of creative techniques in computations. In those applications, approximate computing provides a perfect fit to optimize the energy efficiency while compromising on the accuracy. In this work, we build probabilistic adders based on stochastic memristor. Probabilistic adders are analyzed with respect of the stochastic behavior of the underlying memristors. Multiple adder implementations are investigated and compared. The memristive probabilistic adder provides a different approach from the typical approximate CMOS adders. Furthermore, it allows for a high area saving and design exibility between the performance and power saving. To reach a similar performance level as approximate CMOS adders, the memristive adder achieves 60% of power saving. An image-compression application is investigated using the memristive probabilistic adders with the performance and the energy trade-off.
DEFF Research Database (Denmark)
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper reviews the development of the probabilistic load flow (PLF) techniques. Applications of the PLF techniques in different areas of power system steady-state analysis are also discussed. The purpose of the review is to identify different available PLF techniques and their corresponding...
Transitive probabilistic CLIR models.
Kraaij, W.; de Jong, Franciska M.G.
2004-01-01
Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The
The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety
International Nuclear Information System (INIS)
Hill, D.J.; Ragland, W.A.; Roglans, J.
1998-01-01
This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability
The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety
Energy Technology Data Exchange (ETDEWEB)
Hill, D J; Ragland, W A; Roglans, J
1998-11-01
This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10{sup -6} yr{sup -1}, even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10{sup -6} yr{sup -1} and the contribution of seismic events is 1.7 10{sup -5} yr{sup -1}. Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability.
The EBR-II probabilistic risk assessment lessons learned regarding passive safety
International Nuclear Information System (INIS)
Hill, D.J.; Ragland, W.A.; Roglans, J.
1994-01-01
This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability
Reasoning about complex probabilistic concepts in childhood.
Fisk, John E; Bury, Angela S; Holden, Rachel
2006-12-01
The competencies of children, particularly their understanding of the more complex probabilistic concepts, have not been thoroughly investigated. In the present study participants were required to choose the more likely of two events, a single event, and a joint event (conjunctive or disjunctive). It was predicted that the operation of the representativeness heuristic would result in erroneous judgements when children compared an unlikely component event with a likely-unlikely conjunction (the conjunction fallacy) and when a likely component event was compared to a likely-unlikely disjunction. The results supported the first prediction with both older children aged between 9 and 10 years and younger children aged between 4 and 5 committing the conjunction fallacy. However, the second prediction was not confirmed. It is proposed that the basis of representativeness judgements may differ between the conjunctive and disjunctive cases with absolute frequency information possibly playing a differential role.
Probabilistic assessment of faults
International Nuclear Information System (INIS)
Foden, R.W.
1987-01-01
Probabilistic safety analysis (PSA) is the process by which the probability (or frequency of occurrence) of reactor fault conditions which could lead to unacceptable consequences is assessed. The basic objective of a PSA is to allow a judgement to be made as to whether or not the principal probabilistic requirement is satisfied. It also gives insights into the reliability of the plant which can be used to identify possible improvements. This is explained in the article. The scope of a PSA and the PSA performed by the National Nuclear Corporation (NNC) for the Heysham II and Torness AGRs and Sizewell-B PWR are discussed. The NNC methods for hazards, common cause failure and operator error are mentioned. (UK)
Geothermal probabilistic cost study
Energy Technology Data Exchange (ETDEWEB)
Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-08-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)
Probabilistic approaches to recommendations
Barbieri, Nicola; Ritacco, Ettore
2014-01-01
The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robus
Probabilistic liver atlas construction.
Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E
2017-01-13
Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Probabilistic safety assessment - regulatory perspective
International Nuclear Information System (INIS)
Solanki, R.B.; Paul, U.K.; Hajra, P.; Agarwal, S.K.
2002-01-01
Full text: Nuclear power plants (NPPs) have been designed, constructed and operated mainly based on deterministic safety analysis philosophy. In this approach, a substantial amount of safety margin is incorporated in the design and operational requirements. Additional margin is incorporated by applying the highest quality engineering codes, standards and practices, and the concept of defence-in-depth in design and operating procedures, by including conservative assumptions and acceptance criteria in plant response analysis of postulated initiating events (PIEs). However, as the probabilistic approach has been improved and refined over the years, it is possible for the designer, operator and regulator to get a more detailed and realistic picture of the safety importance of plant design features, operating procedures and operational practices by using probabilistic safety assessment (PSA) along with the deterministic methodology. At present, many countries including USA, UK and France are using PSA insights in their decision making along with deterministic basis. India has also made substantial progress in the development of methods for carrying out PSA. However, consensus on the use of PSA in regulatory decision-making has not been achieved yet. This paper emphasises on the requirements (e.g.,level of details, key modelling assumptions, data, modelling aspects, success criteria, sensitivity and uncertainty analysis) for improving the quality and consistency in performance and use of PSA that can facilitate meaningful use of the PSA insights in the regulatory decision-making in India. This paper also provides relevant information on international scenario and various application areas of PSA along with progress made in India. The PSA perspective presented in this paper may help in achieving consensus on the use of PSA for regulatory / utility decision-making in design and operation of NPPs
Probabilistic Seismic Hazard Analysis for Yemen
Directory of Open Access Journals (Sweden)
Rakesh Mohindra
2012-01-01
Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.
A methodology for reviewing probabilistic risk assessments
International Nuclear Information System (INIS)
Derby, S.L.
1983-01-01
The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase
Exact and approximate probabilistic symbolic execution for nondeterministic programs
DEFF Research Database (Denmark)
Luckow, Kasper Søe; Păsăreanu, Corina S.; Dwyer, Matthew B.
2014-01-01
Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probab...... Java programs. We show that our algorithms significantly improve upon a state-of-the-art statistical model checking algorithm, originally developed for Markov Decision Processes....... probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also...
Review of the Diablo Canyon probabilistic risk assessment
International Nuclear Information System (INIS)
Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.
1994-08-01
This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program
Some probabilistic aspects of fracture
International Nuclear Information System (INIS)
Thomas, J.M.
1982-01-01
Some probabilistic aspects of fracture in structural and mechanical components are examined. The principles of fracture mechanics, material quality and inspection uncertainty are formulated into a conceptual and analytical framework for prediction of failure probability. The role of probabilistic fracture mechanics in a more global context of risk and optimization of decisions is illustrated. An example, where Monte Carlo simulation was used to implement a probabilistic fracture mechanics analysis, is discussed. (orig.)
Development of probabilistic methods for safety assessment of nuclear power plants
International Nuclear Information System (INIS)
Schott, H.; Berg, H.P.
1998-01-01
Since its introduction by the German Risk Study, Probabilistic Safety Assessment (PSA) has developed in Germany to a valuable tool in regulatory decision-making. Plant specific PSAs of Level 1+ are now conducted for all nuclear power plants in the frame of Periodic Safety Reviews. This paper is devoted to the description or key elements set out in the regulatory guidelines for PSA-Level 1+ and the corresponding technical documents and the further development of PSA methodology in the Federal Republic of Germany. In the course of the next years it is intended to make progress in the modeling of common cause failures, human reliability evaluation, reduction of uncertainties in PSA modeling techniques and data estimation, analysis of low power and shut down states as well as in reaching a mature methodology for inclusion of external events into the analysis. (author)
International Nuclear Information System (INIS)
2016-10-01
This publication supersedes IAEA-TECDOC-1511, Determining the Quality of Probabilistic Safety Assessment (PSA) for Applications in Nuclear Power Plants (published in 2006), which provided detailed information on technical features of a restricted scope PSA aimed at analysing only internal initiating events caused by random component failures and human errors, and accident sequences that may lead to reactor core damage during operation. The present publication extends the scope of the PSA to cover a broader range of internal and external hazards, and low power and shutdown modes of nuclear power plant operation. In addition, some PSA aspects relevant to lessons learned from the accident at the Fukushima Daiichi nuclear power plant are also considered
The NUREG-1150 probabilistic risk assessment for the Sequoyah nuclear plant
International Nuclear Information System (INIS)
Gregory, J.J.; Breeding, R.J.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Murfin, W.B.
1992-01-01
This paper summarizes the findings of the probabilistic risk assessment (PRA) for Unit 1 of the Sequoyah Nuclear Plant performed in support of NUREG-1150. The emphasis is on the 'back-end' analyses, the accident progression, source term, and consequence analyses, and the risk results obtained when the results of these analyses are combined with the accident frequency analysis. The results of this PRA indicate that the offsite risk from internal initiating events at Sequoyah are quite low with respect to the safety goals. The containment appears likely to withstand the loads that might be placed upon it if the reactor vessel fails. A good portion of the risk, in this analysis, comes from initiating events which bypass the containment. These events are estimated to have a relatively low frequency of occurrence, but their consequences are quite large. Other events that contribute to offsite risk involve early containment failures that occur during degradation of the core or near the time of vessel breach. Considerable uncertainty is associated with the risk estimates produced in this analysis. Offsite risk from external initiating events was not included in this analysis. (orig.)
Probabilistic safety assessment past, present and future. An IAEA perspective
International Nuclear Information System (INIS)
Lederman, L.; Niehaus, F.; Tomic, B.
1996-01-01
Despite the high level of development that probabilistic safety assessment (PSA) methods have reached, a number of issues place constraints on its use in supporting decision making on safety matters. A recent publication of the International Nuclear Safety Advisory Group (INSAG) represents an important step in reaching international consensus on the use of PSA. PSA is ''strongly encouraged'' by INSAG; however, it is noted that ''PSA methodology is not sufficiently mature for its present status to be frozen''. The main aspects of the report are discussed in this paper. The paper next discusses three main categories of PSA application, namely the adequacy of design and procedures, optimization of operational activities and regulatory applications. For each of the applications, the objectives, specific modelling requirements and the prospects for implementation are presented. Consistent with its statutory functions, an important aspect of the work of the IAEA is to reach international consensus on the possibilities of and limitations on the use of PSA methods. Whereas past efforts have been concentrated on promotion and assistance to perform Level 1 PSAs, work is now extending with emphasis on PSA applications, Level 2 and Level 3 analysis, external events and shutdown risks. The main elements of IAEA's PSA Programme are discussed. Finally some challenges related to the use of PSA in the backfitting of nuclear power plants in Eastern Europe and countries of the former USSR are addressed. (orig.)
Recent case studies and advancements in probabilistic risk assessment
International Nuclear Information System (INIS)
Garrick, B.J.
1985-01-01
During the period from 1977 to 1984, Pickard, Lowe and Garrick, Inc., had the lead in preparing several full scope probabilistic risk assessments for electric utilities. Five of those studies are discussed from the point of view of advancements and lessons learned. The objective and trend of these studies is toward utilization of the risk models by the plant owners as risk management tools. Advancements that have been made are in presentation ad documentation of the PRAs, generation of more understandable plant level information, and improvements in methodology to facilitate technology transfer. Specific areas of advancement are in the treatment of such issues as dependent failures, human interaction, and the uncertainty in the source term. Lessons learned cover a wide spectrum and include the importance of plant specific models for meaningful risk management, the role of external events in risk, the sensitivity of contributors to choice of risk index, and the very important finding that the public risk is extremely small. The future direction of PRA is to establish less dependence on experts for in-plant application. Computerizing the PRAs such that they can be accessed on line and interactively is the key
Probabilistic safety assessment
International Nuclear Information System (INIS)
Hoertner, H.; Schuetz, B.
1982-09-01
For the purpose of assessing applicability and informativeness on risk-analysis methods in licencing procedures under atomic law, the choice of instruments for probabilistic analysis, the problems in and experience gained in their application, and the discussion of safety goals with respect to such instruments are of paramount significance. Naturally, such a complex field can only be dealt with step by step, making contribution relative to specific problems. The report on hand shows the essentials of a 'stocktaking' of systems relability studies in the licencing procedure under atomic law and of an American report (NUREG-0739) on 'Quantitative Safety Goals'. (orig.) [de
Probabilistic methods for physics
International Nuclear Information System (INIS)
Cirier, G
2013-01-01
We present an asymptotic method giving a probability of presence of the iterated spots of R d by a polynomial function f. We use the well-known Perron Frobenius operator (PF) that lets certain sets and measure invariant by f. Probabilistic solutions can exist for the deterministic iteration. If the theoretical result is already known, here we quantify these probabilities. This approach seems interesting to use for computing situations when the deterministic methods don't run. Among the examined applications, are asymptotic solutions of Lorenz, Navier-Stokes or Hamilton's equations. In this approach, linearity induces many difficult problems, all of whom we have not yet resolved.
Quantum probability for probabilists
Meyer, Paul-André
1993-01-01
In recent years, the classical theory of stochastic integration and stochastic differential equations has been extended to a non-commutative set-up to develop models for quantum noises. The author, a specialist of classical stochastic calculus and martingale theory, tries to provide anintroduction to this rapidly expanding field in a way which should be accessible to probabilists familiar with the Ito integral. It can also, on the other hand, provide a means of access to the methods of stochastic calculus for physicists familiar with Fock space analysis.
Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization
Voet, van der H.; Slob, W.
2007-01-01
A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a
Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects
Nagpal, V. K.
1985-01-01
A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.
Malicki, Julian; Bly, Ritva; Bulot, Mireille; Godet, Jean-Luc; Jahnen, Andreas; Krengli, Marco; Maingon, Philippe; Prieto Martin, Carlos; Przybylska, Kamila; Skrobała, Agnieszka; Valero, Marc; Jarvinen, Hannu
2017-04-01
To describe the current status of implementation of European directives for risk management in radiotherapy and to assess variability in risk management in the following areas: 1) in-country regulatory framework; 2) proactive risk assessment; (3) reactive analysis of events; and (4) reporting and learning systems. The original data were collected as part of the ACCIRAD project through two online surveys. Risk assessment criteria are closely associated with quality assurance programs. Only 9/32 responding countries (28%) with national regulations reported clear "requirements" for proactive risk assessment and/or reactive risk analysis, with wide variability in assessment methods. Reporting of adverse error events is mandatory in most (70%) but not all surveyed countries. Most European countries have taken steps to implement European directives designed to reduce the probability and magnitude of accidents in radiotherapy. Variability between countries is substantial in terms of legal frameworks, tools used to conduct proactive risk assessment and reactive analysis of events, and in the reporting and learning systems utilized. These findings underscore the need for greater harmonisation in common terminology, classification and reporting practices across Europe to improve patient safety and to enable more reliable inter-country comparisons. Copyright © 2017 Elsevier B.V. All rights reserved.
A General Framework for Probabilistic Characterizing Formulae
DEFF Research Database (Denmark)
Sack, Joshua; Zhang, Lijun
2012-01-01
Recently, a general framework on characteristic formulae was proposed by Aceto et al. It offers a simple theory that allows one to easily obtain characteristic formulae of many non-probabilistic behavioral relations. Our paper studies their techniques in a probabilistic setting. We provide...... a general method for determining characteristic formulae of behavioral relations for probabilistic automata using fixed-point probability logics. We consider such behavioral relations as simulations and bisimulations, probabilistic bisimulations, probabilistic weak simulations, and probabilistic forward...
Probabilistic pathway construction.
Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha
2011-07-01
Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.
Probabilistic risk assessment methodology
International Nuclear Information System (INIS)
Shinaishin, M.A.
1988-06-01
The objective of this work is to provide the tools necessary for clear identification of: the purpose of a Probabilistic Risk Study, the bounds and depth of the study, the proper modeling techniques to be used, the failure modes contributing to the analysis, the classical and baysian approaches for manipulating data necessary for quantification, ways for treating uncertainties, and available computer codes that may be used in performing such probabilistic analysis. In addition, it provides the means for measuring the importance of a safety feature to maintaining a level of risk at a Nuclear Power Plant and the worth of optimizing a safety system in risk reduction. In applying these techniques so that they accommodate our national resources and needs it was felt that emphasis should be put on the system reliability analysis level of PRA. Objectives of such studies could include: comparing systems' designs of the various vendors in the bedding stage, and performing grid reliability and human performance analysis using national specific data. (author)
Probabilistic population aging
2017-01-01
We merge two methodologies, prospective measures of population aging and probabilistic population forecasts. We compare the speed of change and variability in forecasts of the old age dependency ratio and the prospective old age dependency ratio as well as the same comparison for the median age and the prospective median age. While conventional measures of population aging are computed on the basis of the number of years people have already lived, prospective measures are computed also taking account of the expected number of years they have left to live. Those remaining life expectancies change over time and differ from place to place. We compare the probabilistic distributions of the conventional and prospective measures using examples from China, Germany, Iran, and the United States. The changes over time and the variability of the prospective indicators are smaller than those that are observed in the conventional ones. A wide variety of new results emerge from the combination of methodologies. For example, for Germany, Iran, and the United States the likelihood that the prospective median age of the population in 2098 will be lower than it is today is close to 100 percent. PMID:28636675
Probabilistic cellular automata.
Agapie, Alexandru; Andreica, Anca; Giuclea, Marius
2014-09-01
Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.
Quantum probabilistic logic programming
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Probabilistic risk assessment methodology
Energy Technology Data Exchange (ETDEWEB)
Shinaishin, M A
1988-06-15
The objective of this work is to provide the tools necessary for clear identification of: the purpose of a Probabilistic Risk Study, the bounds and depth of the study, the proper modeling techniques to be used, the failure modes contributing to the analysis, the classical and baysian approaches for manipulating data necessary for quantification, ways for treating uncertainties, and available computer codes that may be used in performing such probabilistic analysis. In addition, it provides the means for measuring the importance of a safety feature to maintaining a level of risk at a Nuclear Power Plant and the worth of optimizing a safety system in risk reduction. In applying these techniques so that they accommodate our national resources and needs it was felt that emphasis should be put on the system reliability analysis level of PRA. Objectives of such studies could include: comparing systems' designs of the various vendors in the bedding stage, and performing grid reliability and human performance analysis using national specific data. (author)
Probabilistic studies of accident sequences
International Nuclear Information System (INIS)
Villemeur, A.; Berger, J.P.
1986-01-01
For several years, Electricite de France has carried out probabilistic assessment of accident sequences for nuclear power plants. In the framework of this program many methods were developed. As the interest in these studies was increasing and as adapted methods were developed, Electricite de France has undertaken a probabilistic safety assessment of a nuclear power plant [fr
Compression of Probabilistic XML documents
Veldman, Irma
2009-01-01
Probabilistic XML (PXML) files resulting from data integration can become extremely large, which is undesired. For XML there are several techniques available to compress the document and since probabilistic XML is in fact (a special form of) XML, it might benefit from these methods even more. In
Probabilistic Structural Analysis Theory Development
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Probabilistic seismic hazards: Guidelines and constraints in evaluating results
International Nuclear Information System (INIS)
Sadigh, R.K.; Power, M.S.
1989-01-01
In conducting probabilistic seismic hazard analyses, consideration of the dispersion as well as the upper bounds on ground motion is of great significance. In particular, the truncation of ground motion levels at some upper limit would have a major influence on the computed hazard at the low-to-very-low probability levels. Additionally, other deterministic guidelines and constraints should be considered in evaluating the probabilistic seismic hazard results. In contrast to probabilistic seismic hazard evaluations, mean plus one standard deviation ground motions are typically used for deterministic estimates of ground motions from maximum events that may affect a structure. To be consistent with standard deterministic maximum estimates of ground motions values should be the highest level considered for the site. These maximum values should be associated with the largest possible event occurring at the site. Furthermore, the relationships between the ground motion level and probability of exceedance should reflect a transition from purely probabilistic assessments of ground motion at high probability levels where there are multiple chances for events to a deterministic upper bound ground motion at very low probability levels where there is very limited opportunity for maximum events to occur. In Interplate Regions, where the seismic sources may be characterized by a high-to-very-high rate of activity, the deterministic bounds will be approached or exceeded by the computer probabilistic hazard values at annual probability of exceedance levels typically as high as 10 -2 to 10 -3 . Thus, at these or lower values probability levels, probabilistically computed hazard values could be readily interpreted in the light of the deterministic constraints
Level-1 seismic probabilistic risk assessment for a PWR plant
International Nuclear Information System (INIS)
Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro
2014-01-01
In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be
Bounding probabilistic safety assessment probabilities by reality
International Nuclear Information System (INIS)
Fragola, J.R.; Shooman, M.L.
1991-01-01
The investigation of the failure in systems where failure is a rare event makes the continual comparisons between the developed probabilities and empirical evidence difficult. The comparison of the predictions of rare event risk assessments with historical reality is essential to prevent probabilistic safety assessment (PSA) predictions from drifting into fantasy. One approach to performing such comparisons is to search out and assign probabilities to natural events which, while extremely rare, have a basis in the history of natural phenomena or human activities. For example the Segovian aqueduct and some of the Roman fortresses in Spain have existed for several millennia and in many cases show no physical signs of earthquake damage. This evidence could be used to bound the probability of earthquakes above a certain magnitude to less than 10 -3 per year. On the other hand, there is evidence that some repetitive actions can be performed with extremely low historical probabilities when operators are properly trained and motivated, and sufficient warning indicators are provided. The point is not that low probability estimates are impossible, but continual reassessment of the analysis assumptions, and a bounding of the analysis predictions by historical reality. This paper reviews the probabilistic predictions of PSA in this light, attempts to develop, in a general way, the limits which can be historically established and the consequent bounds that these limits place upon the predictions, and illustrates the methodology used in computing such limits. Further, the paper discusses the use of empirical evidence and the requirement for disciplined systematic approaches within the bounds of reality and the associated impact on PSA probabilistic estimates
Dynamical systems probabilistic risk assessment
Energy Technology Data Exchange (ETDEWEB)
Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-03-01
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Assessing performance and validating finite element simulations using probabilistic knowledge
Energy Technology Data Exchange (ETDEWEB)
Dolin, Ronald M.; Rodriguez, E. A. (Edward A.)
2002-01-01
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.
Methodology and results of the seismic probabilistic safety assessment of Krsko nuclear power plant
International Nuclear Information System (INIS)
Vermaut, M.K.; Monette, P.; Campbell, R.D.
1995-01-01
A seismic IPEEE (Individual Plant Examination for External Events) was performed for the Krsko plant. The methodology adopted is the seismic PSA (Probabilistic Safety Assessment). The Krsko NPP is located on a medium to high seismicity site. The PSA study described here includes all the steps in the PSA sequence, i.e. reassessment of the site hazard, calculation of plant structures response including soil-structure interaction, seismic plant walkdowns, probabilistic seismic fragility analysis of plant structures and components, and quantification of seismic core damage frequency (CDF). Also relay chatter analysis and soil stability studies were performed. The seismic PSA described here is limited to the analysis of CDF (level I PSA). The subsequent determination and quantification of plant damage states, containment behaviour and radioactive releases to the outside (level 2 PSA) have been performed for the Krsko NPP but are not further described in this paper. The results of the seismic PSA study indicate that, with some upgrades suggested by the PSA team, the seismic induced CDF is comparable to that of most US and Western Europe NPPs. (author)
Characterizing the topology of probabilistic biological networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software
Computer aided probabilistic assessment of containment integrity
International Nuclear Information System (INIS)
Tsai, J.C.; Touchton, R.A.
1984-01-01
In the probabilistic risk assessment (PRA) of a nuclear power plant, there are three probability-based techniques which are widely used for event sequence frequency quantification (including nodal probability estimation). These three techniques are the event tree analysis, the fault tree analysis and the Bayesian approach for database development. In the barrier analysis for assessing radionuclide release to the environment in a PRA study, these techniques are employed to a greater extent in estimating conditions which could lead to failure of the fuel cladding and the reactor coolant system (RCS) pressure boundary, but to a lesser degree in the containment pressure boundary failure analysis. The main reason is that containment issues are currently still in a state of flux. In this paper, the authors describe briefly the computer programs currently used by the nuclear industry to do event tree analyses, fault tree analyses and the Bayesian update. The authors discuss how these computer aided probabilistic techniques might be adopted for failure analysis of the containment pressure boundary
Probabilistic methodology for turbine missile risk analysis
International Nuclear Information System (INIS)
Twisdale, L.A.; Dunn, W.L.; Frank, R.A.
1984-01-01
A methodology has been developed for estimation of the probabilities of turbine-generated missile damage to nuclear power plant structures and systems. Mathematical models of the missile generation, transport, and impact events have been developed and sequenced to form an integrated turbine missile simulation methodology. Probabilistic Monte Carlo techniques are used to estimate the plant impact and damage probabilities. The methodology has been coded in the TURMIS computer code to facilitate numerical analysis and plant-specific turbine missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and probabilities have been estimated for a hypothetical nuclear power plant case study. (orig.)
Quantitative analysis of probabilistic BPMN workflows
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2012-01-01
We present a framework for modelling and analysis of realworld business workflows. We present a formalised core subset of the Business Process Modelling and Notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... of events, reward-based properties and best- and worst- case scenarios. We develop a simple example of medical workflow and demonstrate the utility of this analysis in accurate provisioning of drug stocks. Finally, we suggest a path to building upon these techniques to cover the entire BPMN language, allow...
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
International Nuclear Information System (INIS)
Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav
2016-01-01
Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
Energy Technology Data Exchange (ETDEWEB)
Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.
Representation of human behaviour in probabilistic safety analysis
International Nuclear Information System (INIS)
Whittingham, R.B.
1991-01-01
This paper provides an overview of the representation of human behaviour in probabilistic safety assessment. Human performance problems which may result in errors leading to accidents are considered in terms of methods of identification using task analysis, screening analysis of critical errors, representation and quantification of human errors in fault trees and event trees and error reduction measures. (author) figs., tabs., 43 refs
Dynamic Fault Diagnosis for Nuclear Installation Using Probabilistic Approach
International Nuclear Information System (INIS)
Djoko Hari Nugroho; Deswandri; Ahmad Abtokhi; Darlis
2003-01-01
Probabilistic based fault diagnosis which represent the relationship between cause and consequence of the events for trouble shooting is developed in this research based on Bayesian Networks. Contribution of on-line data comes from sensors and system/component reliability in node cause is expected increasing the belief level of Bayesian Networks. (author)
On the Measurement and Properties of Ambiguity in Probabilistic Expectations
Pickett, Justin T.; Loughran, Thomas A.; Bushway, Shawn
2015-01-01
Survey respondents' probabilistic expectations are now widely used in many fields to study risk perceptions, decision-making processes, and behavior. Researchers have developed several methods to account for the fact that the probability of an event may be more ambiguous for some respondents than others, but few prior studies have empirically…
Probabilistic fracture finite elements
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Probabilistic retinal vessel segmentation
Wu, Chang-Hua; Agam, Gady
2007-03-01
Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.
Probabilistic sensory recoding.
Jazayeri, Mehrdad
2008-08-01
A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.
Quantification of human reliability in probabilistic safety assessment
International Nuclear Information System (INIS)
Hirschberg, S.; Dankg, Vinh N.
1996-01-01
Human performance may substantially influence the reliability and safety of complex technical systems. For this reason, Human Reliability Analysis (HRA) constitutes an important part of Probabilistic Safety Assessment (PSAs) or Quantitative Risk Analyses (QRAs). The results of these studies as well as analyses of past accidents and incidents clearly demonstrate the importance of human interactions. The contribution of human errors to the core damage frequency (CDF), as estimated in the Swedish nuclear PSAs, are between 15 and 88%. A survey of the FRAs in the Swiss PSAs shows that also for the Swiss nuclear power plants the estimated HE contributions are substantial (49% of the CDF due to internal events in the case of Beznau and 70% in the case of Muehleberg; for the total CDF, including external events, 25% respectively 20%). Similar results can be extracted from the PSAs carried out for French, German, and US plants. In PSAs or QRAs, the adequate treatment of the human interactions with the system is a key to the understanding of accident sequences and their relative importance to overall risk. The main objectives of HRA are: first, to ensure that the key human interactions are systematically identified and incorporated into the safety analysis in a traceable manner, and second, to quantify the probabilities of their success and failure. Adopting a structured and systematic approach to the assessment of human performance makes it possible to provide greater confidence that the safety and availability of human-machine systems is not unduly jeopardized by human performance problems. Section 2 discusses the different types of human interactions analysed in PSAs. More generally, the section presents how HRA fits in the overall safety analysis, that is, how the human interactions to be quantified are identified. Section 3 addresses the methods for quantification. Section 4 concludes the paper by presenting some recommendations and pointing out the limitations of the
Probabilistic brains: knowns and unknowns
Pouget, Alexandre; Beck, Jeffrey M; Ma, Wei Ji; Latham, Peter E
2015-01-01
There is strong behavioral and physiological evidence that the brain both represents probability distributions and performs probabilistic inference. Computational neuroscientists have started to shed light on how these probabilistic representations and computations might be implemented in neural circuits. One particularly appealing aspect of these theories is their generality: they can be used to model a wide range of tasks, from sensory processing to high-level cognition. To date, however, these theories have only been applied to very simple tasks. Here we discuss the challenges that will emerge as researchers start focusing their efforts on real-life computations, with a focus on probabilistic learning, structural learning and approximate inference. PMID:23955561
A Methodology for Probabilistic Accident Management
International Nuclear Information System (INIS)
Munteanu, Ion; Aldemir, Tunc
2003-01-01
While techniques have been developed to tackle different tasks in accident management, there have been very few attempts to develop an on-line operator assistance tool for accident management and none that can be found in the literature that uses probabilistic arguments, which are important in today's licensing climate. The state/parameter estimation capability of the dynamic system doctor (DSD) approach is combined with the dynamic event-tree generation capability of the integrated safety assessment (ISA) methodology to address this issue. The DSD uses the cell-to-cell mapping technique for system representation that models the system evolution in terms of probability of transitions in time between sets of user-defined parameter/state variable magnitude intervals (cells) within a user-specified time interval (e.g., data sampling interval). The cell-to-cell transition probabilities are obtained from the given system model. The ISA follows the system dynamics in tree form and braches every time a setpoint for system/operator intervention is exceeded. The combined approach (a) can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of possible system states in view of these uncertainties; (b) allows flexibility in system representation; (c) yields the lower and upper bounds on the estimated values of state variables/parameters as well as their expected values; and (d) leads to fewer branchings in the dynamic event-tree generation. Using a simple but realistic pressurizer model, the potential use of the DSD-ISA methodology for on-line probabilistic accident management is illustrated
Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference
DEFF Research Database (Denmark)
Jaeger, Manfred
2004-01-01
We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic ...
Initiating events frequency determination
International Nuclear Information System (INIS)
Simic, Z.; Mikulicic, V.; Vukovic, I.
2004-01-01
The paper describes work performed for the Nuclear Power Station (NPS). Work is related to the periodic initiating events frequency update for the Probabilistic Safety Assessment (PSA). Data for all relevant NPS initiating events (IE) were reviewed. The main focus was on events occurring during most recent operating history (i.e., last four years). The final IE frequencies were estimated by incorporating both NPS experience and nuclear industry experience. Each event was categorized according to NPS individual plant examination (IPE) initiating events grouping approach. For the majority of the IE groups, few, or no events have occurred at the NPS. For those IE groups with few or no NPS events, the final estimate was made by means of a Bayesian update with general nuclear industry values. Exceptions are rare loss-of-coolant-accidents (LOCA) events, where evaluation of engineering aspects is used in order to determine frequency.(author)
Probabilistic Open Set Recognition
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary
Engineering aspects of probabilistic risk assessment
International Nuclear Information System (INIS)
vonHerrmann, J.L.; Wood, P.J.
1984-01-01
Over the last decade, the use of probabilistic risk assessment (PRA) in the nuclear industry has expanded significantly. In these analyses the probabilities of experiencing certain undesired events (for example, a plant accident which results in damage to the nuclear fuel) are estimated and the consequences of these events are evaluated in terms of some common measure. These probabilities and consequences are then combined to form a representation of the risk associated with the plant studied. In the relatively short history of probabilistic risk assessment of nuclear power plants, the primary motivation for these studies has been the quantitative assessment of public risk associated with a single plant or group of plants. Accordingly, the primary product of most PRAs performed to date has been a 'risk curve' in which the probability (or expected frequency) of exceeding a certain consequence level is plotted against that consequence. The most common goal of these assessments has been to demonstrate the 'acceptability' of the calculated risk by comparison of the resultant risk curve to risk curves associated with other plants or with other societal risks. Presented here are brief descriptions of some alternate applications of PRAs, a discussion of how these other applications compare or contrast with the currently popular uses of PRA, and a discussion of the relative benefits of each
Probabilistic broadcasting of mixed states
International Nuclear Information System (INIS)
Li Lvjun; Li Lvzhou; Wu Lihua; Zou Xiangfu; Qiu Daowen
2009-01-01
It is well known that the non-broadcasting theorem proved by Barnum et al is a fundamental principle of quantum communication. As we are aware, optimal broadcasting (OB) is the only method to broadcast noncommuting mixed states approximately. In this paper, motivated by the probabilistic cloning of quantum states proposed by Duan and Guo, we propose a new way for broadcasting noncommuting mixed states-probabilistic broadcasting (PB), and we present a sufficient condition for PB of mixed states. To a certain extent, we generalize the probabilistic cloning theorem from pure states to mixed states, and in particular, we generalize the non-broadcasting theorem, since the case that commuting mixed states can be exactly broadcast can be thought of as a special instance of PB where the success ratio is 1. Moreover, we discuss probabilistic local broadcasting (PLB) of separable bipartite states
Evaluation of Probabilistic Disease Forecasts.
Hughes, Gareth; Burnett, Fiona J
2017-10-01
The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.
14th International Probabilistic Workshop
Taerwe, Luc; Proske, Dirk
2017-01-01
This book presents the proceedings of the 14th International Probabilistic Workshop that was held in Ghent, Belgium in December 2016. Probabilistic methods are currently of crucial importance for research and developments in the field of engineering, which face challenges presented by new materials and technologies and rapidly changing societal needs and values. Contemporary needs related to, for example, performance-based design, service-life design, life-cycle analysis, product optimization, assessment of existing structures and structural robustness give rise to new developments as well as accurate and practically applicable probabilistic and statistical engineering methods to support these developments. These proceedings are a valuable resource for anyone interested in contemporary developments in the field of probabilistic engineering applications.
Cumulative Dominance and Probabilistic Sophistication
Wakker, P.P.; Sarin, R.H.
2000-01-01
Machina & Schmeidler (Econometrica, 60, 1992) gave preference conditions for probabilistic sophistication, i.e. decision making where uncertainty can be expressed in terms of (subjective) probabilities without commitment to expected utility maximization. This note shows that simpler and more general
Probabilistic simulation of fermion paths
International Nuclear Information System (INIS)
Zhirov, O.V.
1989-01-01
Permutation symmetry of fermion path integral allows (while spin degrees of freedom are ignored) to use in its simulation any probabilistic algorithm, like Metropolis one, heat bath, etc. 6 refs., 2 tabs
Probabilistic modeling of timber structures
DEFF Research Database (Denmark)
Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro
2007-01-01
The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...
International Nuclear Information System (INIS)
Maeda, K.; Abe, H.; Hirokawa, N.; Satou, C.
2015-01-01
We have performed internal and external event probabilistic risk assessments (PRA) for boiling water reactor power nuclear plants to identify the important accident sequence groups and to evaluate the effectiveness of the additional severe accident measures, regarding to the new regulatory requirements implemented after the accident at Fukushima Daiichi Nuclear Power Station in Japan in 2011. In addition, we will further update our PRA by extracting problems and improvements from the current PRA, by catching up the state-of-the-art knowledge, modern PRA methodologies in order to contribute voluntarily to safety improvement as well as to comply with regulations. In this document, prior to the extensive PRA updates, we would describe technical contents and qualitative results about PRA updates that have been performed preliminary so far, especially about the external event (seismic) PRA and how to model the additionally deployed severe accident measures (e.g. power supply car, fire engine) so that they can be function external hazards, such as component failure rate of equipment, human reliability 'out of control room', and mission time extension. (authors)
Performing Probabilistic Risk Assessment Through RAVEN
Energy Technology Data Exchange (ETDEWEB)
A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. Kinoshita
2013-06-01
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data mining module
GUI program to compute probabilistic seismic hazard analysis
International Nuclear Information System (INIS)
Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.
2005-12-01
The first stage of development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface (GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The first part has developed and others are developing now in this term. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within the limits of the possibility
GUI program to compute probabilistic seismic hazard analysis
International Nuclear Information System (INIS)
Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.
2006-12-01
The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility
Lessons learned from external hazards
Energy Technology Data Exchange (ETDEWEB)
Peinador, Miguel; Zerger, Benoit [European Commisison Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Ramos, Manuel Martin [European Commission Joint Research Centre, Brussels (Belgium). Nuclear Safety and Security Coordination; Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)
2014-01-15
This paper presents a study performed by the European Clearinghouse of the Joint Research Centre on Operational Experience for nuclear power plants in cooperation with IRSN and GRS covering events reported by nuclear power plants in relation to external hazards. It summarizes the review of 235 event reports from 3 different databases. The events were grouped in 9 categories according to the nature of the external hazard involved, and the specific lessons learned and recommendations that can be derived from each of these categories are presented. Additional 'cross-cutting' recommendations covering several or all the external hazards considered are also discussed. These recommendations can be useful in preventing this type of events from happening again or in limiting their consequences. The study was launched in 2010 and therefore it does not cover the Fukushima event. This paper presents the main findings and recommendations raised by this study. (orig.)
De la Sen, M.
2015-01-01
In the framework of complete probabilistic metric spaces and, in particular, in probabilistic Menger spaces, this paper investigates some relevant properties of convergence of sequences to probabilistic α-fuzzy fixed points under some types of probabilistic contractive conditions.
Analysis of truncation limit in probabilistic safety assessment
International Nuclear Information System (INIS)
Cepin, Marko
2005-01-01
A truncation limit defines the boundaries of what is considered in the probabilistic safety assessment and what is neglected. The truncation limit that is the focus here is the truncation limit on the size of the minimal cut set contribution at which to cut off. A new method was developed, which defines truncation limit in probabilistic safety assessment. The method specifies truncation limits with more stringency than presenting existing documents dealing with truncation criteria in probabilistic safety assessment do. The results of this paper indicate that the truncation limits for more complex probabilistic safety assessments, which consist of larger number of basic events, should be more severe than presently recommended in existing documents if more accuracy is desired. The truncation limits defined by the new method reduce the relative errors of importance measures and produce more accurate results for probabilistic safety assessment applications. The reduced relative errors of importance measures can prevent situations, where the acceptability of change of equipment under investigation according to RG 1.174 would be shifted from region, where changes can be accepted, to region, where changes cannot be accepted, if the results would be calculated with smaller truncation limit
External hazards analysis approach to level 1 PSA of Mochovce NPP - Slovakia
International Nuclear Information System (INIS)
Stojka, Tibor
2000-01-01
Analyses of external events had been first time performed at the design stage of the Mochovce NPP showing sufficiently low contribution of external hazards to core damage frequency. But, based on IAEA document 'Safety problems of WWER-440/213 NPPs and the categorization' (IAEA-EBP-WWER-03, 1996), the need of new reassessment arose due to discrepancy of some origin recommendations in compare with present IAEA ones. Mochovce NPP Nuclear Safety Improvements Program elaborated at the same time included the IAEA recommendations and following improvements were proposed to perform in context of external events. 1. Seismic project and new locality seismic evaluation This safety improvement includes also some 'on site' technical improvements in seismic stability of structures and equipment. 2. Unit specific analyses of extreme meteorologic conditions. This safety improvement focuses on impact of feasible extreme conditions on NPP systems caused by rain, snow and hail storms, frost, winds, low and high temperatures. 3. Analyses of external hazards caused by humans. In this safety improvement were specified: feasible sources of explosions; analyses of hydrogen, gas and propane-calor gas depots; air crash risk. The results of these implemented safety improvements were considered in the PSA study. The External hazards analysis is also part of Level 1 PSA Mochovce NPP performed by PSA Department of VUJE Trnava Inc., Engineering, Design and Research Organization, Slovakia. Some partial analyses are performed in cooperation with following companies DS and S - SAIC, USA and Geophysical Institute Academy of Science, Slovakia Relko, Slovakia. Basic documents are: NUREG/CR-2300 'PRA Procedures Guide - A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants' and IAEA SS No. 50-P-7 'Treatment of External Hazards in PSA for NPPs. The external hazards analysis consists of following parts: 1. Geography and plant locality; 2. Nearby industry; 3. Extreme
Probabilistic numerical discrimination in mice.
Berkay, Dilara; Çavdaroğlu, Bilgehan; Balcı, Fuat
2016-03-01
Previous studies showed that both human and non-human animals can discriminate between different quantities (i.e., time intervals, numerosities) with a limited level of precision due to their endogenous/representational uncertainty. In addition, other studies have shown that subjects can modulate their temporal categorization responses adaptively by incorporating information gathered regarding probabilistic contingencies into their time-based decisions. Despite the psychophysical similarities between the interval timing and nonverbal counting functions, the sensitivity of count-based decisions to probabilistic information remains an unanswered question. In the current study, we investigated whether exogenous probabilistic information can be integrated into numerosity-based judgments by mice. In the task employed in this study, reward was presented either after few (i.e., 10) or many (i.e., 20) lever presses, the last of which had to be emitted on the lever associated with the corresponding trial type. In order to investigate the effect of probabilistic information on performance in this task, we manipulated the relative frequency of different trial types across different experimental conditions. We evaluated the behavioral performance of the animals under models that differed in terms of their assumptions regarding the cost of responding (e.g., logarithmically increasing vs. no response cost). Our results showed for the first time that mice could adaptively modulate their count-based decisions based on the experienced probabilistic contingencies in directions predicted by optimality.
Probabilistic Design and Analysis Framework
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
MODELING PROBABILISTIC CONFLICT OF TECHNOLOGICAL SYSTEMS
Directory of Open Access Journals (Sweden)
D. B. Desyatov
2015-01-01
Full Text Available Recently for the study of conflict increasingly used method of mathematical optical modeling. Its importance stems from the fact that experimental research such conflicts rather time-consuming and complex. However, existing approaches to the study of conflict do not take into account the stochastic nature of the systems, suffers from conceptual incompleteness. There is a need to develop models, algorithms and principles, in order to assess the conflict, to choose conflict resolution to ensure that not the worst of conditions. For stochastic technological systems as a utility function, we consider the probability of achieving a given objective. We assume that some system S1 is in conflict with the system S2, (SR2R К SR1R, if q(SR1R,SR2R probabilistic conflict of the second kind (А К2 B, if P(A/B
events, achieving some target States. Then-when, if and joint dependent random events, then the probability the conflict between events (And In can be defined in two ways: Definition 1. Between A and b is observed probabilistic conflict of the first kind (А К1 B, if P(A/B
Probabilistic study of cascading failures in complex interdependent lifeline systems
International Nuclear Information System (INIS)
Hernandez-Fajardo, Isaac; Dueñas-Osorio, Leonardo
2013-01-01
The internal complexity of lifeline systems and their standing interdependencies can operate in conjunction to amplify the negative effects of external disruptions. This paper introduces a simulation-based methodology to evaluate the joint impact of interdependence, component fragilities, and cascading failures in systemic fragility estimates. The proposed strategy uses a graph model of interdependent networks, an enhanced betweenness centrality for cascading failures approximation, and an interdependence model accounting for coupling uncertainty in the simulation of damage propagation for probabilistic performance assessment. This methodology is illustrated through its application to a realistic set of power and water networks subjected to earthquake scenarios and random failures. Test case results reveal two key insights: (1) the intensity of a perturbation influences interdependent systemic fragility by shaping the magnitudes of initial component damage and, sometimes counter-intuitively, the subsequent interdependence effects and (2) increasing local redundancy mitigates the effects of interdependence on systemic performance, but such intervention is incapable of eliminating interdependent effects completely. The previous insights provide basic guidelines for the design of systemic retrofitting policies. Additionally, the limitations of local capacity redundancy as a fragility control measure highlight the need for a critical assessment of intervention strategies in distributed infrastructure networks. Future work will assess the fragility-reduction efficiency of strategies involving informed manipulation of individual systemic topologies and the interdependence interfaces connecting them. - Highlights: ► An new simulation methodology effectively produces interdependent fragility assessments, IFAs. ► IFAs include perturbation action, cascading failures, and interdependent effects. ► Method tested using coupled networks exposed to earthquake and random
A methodology for reviewing Probabilistic Risk Assessments
International Nuclear Information System (INIS)
Derby, S.L.
1983-01-01
The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase. The value of this procedure comes from having a systematic framework for the PRA review. Practical constraints limit the time and qualified people needed for an adequate review. Having the established framework from this procedure as a starting point, reviewers can focus most of their attention on the accuracy and the completeness of the calculation. Time wasted at the start of the review is reduced by first using this procedure to sort through the technical details of the PRA and to reconstruct the risk estimate from dominant contributions
Probabilistic safety assessment activities at Ignalina NPP
International Nuclear Information System (INIS)
Bagdonas, A.
1999-01-01
The Barselina Project was initiated in the summer 1991. The project was a multilateral co-operation between Lithuania, Russia and Sweden up until phase 3, and phase 4 has been performed as a bilateral between Lithuania and Sweden. The long-range objective is to establish common perspectives and unified bases for assessment of severe accident risks and needs for remedial measures for the RBMK reactors. During phase 3, from 1993 to 1994, a full scope Probabilistic Safety Analysis (PSA) model of the Ignalina Nuclear Power Plant unit 2 was developed to identify possible safety improvement of risk importance. The probabilistic methodology was applied on a plant specific basis for a channel type reactor of RBMK design. During phase 4, from 1994 to 1996, the PSA was further developed, taking into account plant changes, improved modelling methods and extended plant information concerning dependencies (area events, dynamic effects, electrical and signal dependencies). The model reflected the plant status before the outage 1996. During phase 4+, 1998 to 1999 the PSA model was upgraded taking into account the newest plant modifications. The new PSA model of CPS/AZRT was developed. Modelling was based on the Single Failure Analysis
Characterizing Topology of Probabilistic Biological Networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-09-06
Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.
CANDU 6 probabilistic safety study summary
International Nuclear Information System (INIS)
1988-07-01
This report summarizes the methodology, phenomenology and results relevent to the assessment of severe events in a CANDU 6 (formerly designated CANDU 600) station. The station design being analysed is based on a CANDU 6 Mark I currently operating in Canada. This evaluation includes event frequency and fission product release assessments but does not include assessment of radiation dose to the public, so that the information is equivalent to a level 2 Probabilistic Risk Assessment (PRA). The study has shown that the predicted overall average frequency for core melt in a CANDU 6 Mark I is 4.4 x 10 -6 events/year. This low frequency is, in large part due to the heavy water moderator which acts as a heat sink, prevents UO 2 melting and maintains core geometry for many events which could otherwise result in a core melt. The consequences for most core melts will be limited to the release of a fraction of noble gases and organic iodides. Other isotopes will be condensed or dissolved in the containment atmosphere and are ultimately retained in the pool of water in the basement where they are unavailable for release. Most core melts (∼ 90%) can be mitigated by operator action so that there is no danger of consequential damage to the containment structure and leak tightness. The frequency and consequences of less likely, more severe core melt sequences are also discussed in this report and shown to be small contributors to public risk
Probabilistic coding of quantum states
International Nuclear Information System (INIS)
Grudka, Andrzej; Wojcik, Antoni; Czechlewski, Mikolaj
2006-01-01
We discuss the properties of probabilistic coding of two qubits to one qutrit and generalize the scheme to higher dimensions. We show that the protocol preserves the entanglement between the qubits to be encoded and the environment and can also be applied to mixed states. We present a protocol that enables encoding of n qudits to one qudit of dimension smaller than the Hilbert space of the original system and then allows probabilistic but error-free decoding of any subset of k qudits. We give a formula for the probability of successful decoding
Probabilistic methods in combinatorial analysis
Sachkov, Vladimir N
2014-01-01
This 1997 work explores the role of probabilistic methods for solving combinatorial problems. These methods not only provide the means of efficiently using such notions as characteristic and generating functions, the moment method and so on but also let us use the powerful technique of limit theorems. The basic objects under investigation are nonnegative matrices, partitions and mappings of finite sets, with special emphasis on permutations and graphs, and equivalence classes specified on sequences of finite length consisting of elements of partially ordered sets; these specify the probabilist
Probabilistic Modeling of Timber Structures
DEFF Research Database (Denmark)
Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro
2005-01-01
The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...... proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for components and connections. The recommended...
Probabilistic Criticality Consequence Evaluation
International Nuclear Information System (INIS)
P. Gottlieb; J.W. Davis; J.R. Massari
1996-01-01
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality. The purpose of this analysis is to extend the prior estimates of increased radionuclide inventory (Refs. 5.52 and 5.54), for both internal and external criticality. This analysis, and similar estimates and refinements to be completed before the end of fiscal year 1997, will be provided as input to Total System Performance Assessment-Viability Assessment (TSPA-VA) to demonstrate compliance with the repository performance objectives
Convex sets in probabilistic normed spaces
International Nuclear Information System (INIS)
Aghajani, Asadollah; Nourouzi, Kourosh
2008-01-01
In this paper we obtain some results on convexity in a probabilistic normed space. We also investigate the concept of CSN-closedness and CSN-compactness in a probabilistic normed space and generalize the corresponding results of normed spaces
Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Shouno, Hayaru; Okada, Masato; Titterington, D M
2004-01-01
We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation
Energy Technology Data Exchange (ETDEWEB)
Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi
2016-11-15
Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.
International Nuclear Information System (INIS)
Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi
2016-01-01
Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.
The Contrast Effect in Temporal and Probabilistic Discounting
Chen, Cheng; He, Guibing
2016-01-01
In this information age, messages related to time, and uncertainty surround us. At the same time, our daily lives are filled with decisions accompanied by temporal delay or uncertainty. Will such information influence our temporal and probabilistic discounting? The authors address this question from the perspectives of decision by sampling (DbS) theory and psychological distance theory. Studies 1 and 2 investigated the effect of contextual messages on temporal discounting and probabilistic discounting, respectively. The results indicated that participants who memorized messages about long-term and low-probability events rated delay or uncertainty as mentally closer and exhibited a less degree of value discounting than those who memorized messages regarding short-term and high-probability events. In addition, a sense of distance from present or reality mediated the effect of contextual messages on value discounting. The implications of the current findings for theory and applications are discussed. PMID:27014122
Augmenting Probabilistic Risk Assesment with Malevolent Initiators
International Nuclear Information System (INIS)
Smith, Curtis; Schwieder, David
2011-01-01
As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.
Constrained mathematics evaluation in probabilistic logic analysis
Energy Technology Data Exchange (ETDEWEB)
Arlin Cooper, J
1998-06-01
A challenging problem in mathematically processing uncertain operands is that constraints inherent in the problem definition can require computations that are difficult to implement. Examples of possible constraints are that the sum of the probabilities of partitioned possible outcomes must be one, and repeated appearances of the same variable must all have the identical value. The latter, called the 'repeated variable problem', will be addressed in this paper in order to show how interval-based probabilistic evaluation of Boolean logic expressions, such as those describing the outcomes of fault trees and event trees, can be facilitated in a way that can be readily implemented in software. We will illustrate techniques that can be used to transform complex constrained problems into trivial problems in most tree logic expressions, and into tractable problems in most other cases.
Development of probabilistic risk analysis library
International Nuclear Information System (INIS)
Soga, Shota; Kirimoto, Yukihiro; Kanda, Kenichi
2015-01-01
We developed a library that is designed to perform level 1 Probabilistic Risk Analysis using Binary Decision Diagram (BDD). In particular, our goal is to develop a library that will allow Japanese electric utilities to take the advantages of BDD that can solve Event Tree (ET) and Fault Tree (FT) models analytically. Using BDD, the library supports negation in FT which allows more flexible modeling of ET/FT. The library is written by C++ within an object-oriented framework using open source software. The library itself is a header-only library so that Japanese electric utilities can take advantages of its transparency to speed up development and to build their own software for their specific needs. In this report, the basic capabilities of the library is briefly described. In addition, several applications of the library are demonstrated including validation of MCS evaluation of PRA model and evaluation of corrective and preventive maintenance considering common cause failure. (author)
Probabilistic risk analysis for nuclear power plants
International Nuclear Information System (INIS)
Hauptmanns, U.
1988-01-01
Risk analysis is applied if the calculation of risk from observed failures is not possible, because events contributing substantially to risk are too seldom, as in the case of nuclear reactors. The process of analysis provides a number of benefits. Some of them are listed. After this by no means complete enumeration of possible benefits to be derived from a risk analysis. An outline of risk studiesd for PWR's with some comments on the models used are given. The presentation is indebted to the detailed treatment of the subject given in the PRA Procedures Guide. Thereafter some results of the German Risk Study, Phase B, which is under way are communicated. The paper concludes with some remarks on probabilistic considerations in licensing procedures. (orig./DG)
Probabilistic relationships in acceptable risk studies
International Nuclear Information System (INIS)
Benjamin, J.R.
1977-01-01
Acceptable risk studies involve uncertainties in future events: consequences and associated values, the acceptability levels, and the future decision environment. Probabilistic procedures afford the basic analytical tool to study the influence of each of these parameters on the acceptable risk decision, including their interrelationships, and combinations. A series of examples are presented in the paper in increasing complexity to illustrate the principles involved and to quantify the relationships to the acceptable risk decision. The basic objective of such studies is to broaden the scientific basis of acceptable risk decision making. It is shown that rationality and consistency in decision making is facilitated by such studies and that rather simple relationships exist in many situations of interest. The variation in criteria associated with an increase in the state of knowledge or change in the level of acceptability is also discussed
Probabilistic relationships in acceptable risk studies
International Nuclear Information System (INIS)
Benjamin, J.R.
1977-01-01
Acceptable risk studies involve uncertainties in future events; consequences and associated values, the acceptability levels, and the future decision environment. Probabilistic procedures afford the basic analytical tool to study the influence of each of these parameters on the acceptable risk decision, including their interrelationships, and combinations. A series of examples are presented in the paper in increasing complexity to illustrate the principles involved and to quantify the relationships to the acceptable risk decision. The basic objective of such studies is to broaden the scientific basis of acceptable risk decision making. It is shown that rationality and consistency in decision making is facilitated by such studies and that rather simple relationships exist in many situations of interest. The variation in criteria associated with an increase in the state of knowledge or change in the level of acceptability is also discussed. (Auth.)
Quantitative analysis of probabilistic BPMN workflows
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2012-01-01
We present a framework for modelling and analysis of realworld business workflows. We present a formalised core subset of the Business Process Modelling and Notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... of events, reward-based properties and best- and worst- case scenarios. We develop a simple example of medical workflow and demonstrate the utility of this analysis in accurate provisioning of drug stocks. Finally, we suggest a path to building upon these techniques to cover the entire BPMN language, allow...... for more complex annotations and ultimately to automatically synthesise workflows by composing predefined sub-processes, in order to achieve a configuration that is optimal for parameters of interest....
Perceptual learning as improved probabilistic inference in early sensory areas.
Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre
2011-05-01
Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.
Confluence Reduction for Probabilistic Systems (extended version)
Timmer, Mark; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis
2010-01-01
This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the
Probabilistic Role Models and the Guarded Fragment
DEFF Research Database (Denmark)
Jaeger, Manfred
2004-01-01
We propose a uniform semantic framework for interpreting probabilistic concept subsumption and probabilistic role quantification through statistical sampling distributions. This general semantic principle serves as the foundation for the development of a probabilistic version of the guarded fragm...... fragment of first-order logic. A characterization of equivalence in that logic in terms of bisimulations is given....
Probabilistic role models and the guarded fragment
DEFF Research Database (Denmark)
Jaeger, Manfred
2006-01-01
We propose a uniform semantic framework for interpreting probabilistic concept subsumption and probabilistic role quantification through statistical sampling distributions. This general semantic principle serves as the foundation for the development of a probabilistic version of the guarded fragm...... fragment of first-order logic. A characterization of equivalence in that logic in terms of bisimulations is given....
International Nuclear Information System (INIS)
Siu, Nathan
2014-01-01
The aim of this presentation was to present objectives and main observations from two recent important events: - a multi-agency PFHA workshop, which was organized by the NRC in Rockville, MD, USA on 29-31 January 2013 with the aim to share information on extreme flood assessments and PSA, and to discuss ways to develop PFHA for PSAs; this workshop highlighted commonalities between the PFHA and PSA communities, the complementarity between deterministic and probabilistic approaches, the need for multi-disciplinary teams, and the need for imagination when performing PFHA; and - the PSAM Topical Conference held in Tokyo, Japan, on April 15-17, 2013 and dedicated to sharing lessons and on-going activities relevant to the Fukushima Dai-ichi reactor accidents; in particular the lessons for safety professionals and risk-informed decision makers (e.g., the need to challenge assumptions and to listen to experts and interact with international community). One notable observation was the recurring nature of some of these issues as many relevant conclusions had been made following previous operating events (e.g., after the Blayais flooding event in 1999). For example, the Blayais event highlighted the possibility that a common mode of degradation of the safety level could simultaneously impact all the units at a site, weaknesses in the site protection against external flooding and the need to manage the release of water collected in the flooded facilities. This underscores the need to fully consider the lessons learned from operating experience
Against all odds -- Probabilistic forecasts and decision making
Liechti, Katharina; Zappa, Massimiliano
2015-04-01
In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.
Uncertainty propagation in probabilistic risk assessment: A comparative study
International Nuclear Information System (INIS)
Ahmed, S.; Metcalf, D.R.; Pegram, J.W.
1982-01-01
Three uncertainty propagation techniques, namely method of moments, discrete probability distribution (DPD), and Monte Carlo simulation, generally used in probabilistic risk assessment, are compared and conclusions drawn in terms of the accuracy of the results. For small uncertainty in the basic event unavailabilities, the three methods give similar results. For large uncertainty, the method of moments is in error, and the appropriate method is to propagate uncertainty in the discrete form either by DPD method without sampling or by Monte Carlo. (orig.)
Method and system for dynamic probabilistic risk assessment
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
Probabilistic safety assessment of the nuclear facilities in Cuba
International Nuclear Information System (INIS)
Rivero O, J.J.; Salomon L, J.
1991-01-01
During 1986-1990 basis were established for further developing probabilistic safety assessment (PSA) of Juragua NPP. A team work was consolidated and carried out the preliminary studies of the small break LOCA initiating event. A significant achievement was the creation of the ANCON code, which allows the evaluation of complex fault trees in personal computers, and has been applied in PSA modelling, and specialist qualification. The paper describes the main results and future activities in this field. (author)
Making Probabilistic Relational Categories Learnable
Jung, Wookyoung; Hummel, John E.
2015-01-01
Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate…
Probabilistic inductive inference: a survey
Ambainis, Andris
2001-01-01
Inductive inference is a recursion-theoretic theory of learning, first developed by E. M. Gold (1967). This paper surveys developments in probabilistic inductive inference. We mainly focus on finite inference of recursive functions, since this simple paradigm has produced the most interesting (and most complex) results.
Probabilistic Approaches to Video Retrieval
Ianeva, Tzvetanka; Boldareva, L.; Westerveld, T.H.W.; Cornacchia, Roberto; Hiemstra, Djoerd; de Vries, A.P.
Our experiments for TRECVID 2004 further investigate the applicability of the so-called “Generative Probabilistic Models to video retrieval��?. TRECVID 2003 results demonstrated that mixture models computed from video shot sequences improve the precision of “query by examples��? results when
Sound Probabilistic #SAT with Projection
Directory of Open Access Journals (Sweden)
Vladimir Klebanov
2016-10-01
Full Text Available We present an improved method for a sound probabilistic estimation of the model count of a boolean formula under projection. The problem solved can be used to encode a variety of quantitative program analyses, such as concerning security of resource consumption. We implement the technique and discuss its application to quantifying information flow in programs.
Methodology for Selecting Initiating Events and Hazards for Consideration in an Extended PSA
International Nuclear Information System (INIS)
Wielenberg, A.; Hage, M.; Loeffler, H.; Alzbutas, R.; Apostol, M.; Bareith, A.; Siklossy, T.; Brac, P.; Burgazzi, L.; Cazzoli, E.; Vitazkova, J.; Cizelj, L.; Prosek, A.; Volkanovski, A.; Hashimoto, K.; Godefroy, F.; Gonzalez, M.; Groudev, P.; Kolar, L.; Kumar, M.; Nitoi, M.; Raimond, E.
2016-01-01
An extended PSA applies to a site of one or several Nuclear Power Plant unit(s) and its environment. It intends to calculate the risk induced by the main sources of radioactivity (reactor core and spent fuel storages) on the site, taking into account all operating states for each main source and all possible relevant accident initiating events (both internal and external) affecting one unit or the whole site. The combination between hazards or initiating events and their impact on a unit or the whole site is a crucial issue for an extended PSA. The report tries to discuss relevant methodologies for this purpose. The report proposes a methodology to select initiating events and hazards for the development of an extended PSA. The proposed methodology for initiating events identification, screening and bounding analysis for an extended PSA consists of four major steps: 1. A comprehensive identification of events and hazards and their respective combinations applicable to the plant and site. Qualitative screening criteria will be applied, 2. The calculation of initial (possibly conservative) frequency claims for events and hazards and their respective combinations applicable to the plant and the site. Quantitative screening criteria will be applied, 3. An impact analysis and bounding assessment for all applicable events and scenarios. Events are either screened out from further more detailed analysis, or are assigned to a bounding event (group), or are retained for detailed analysis, 4. The probabilistic analysis of all retained (bounding) events at the appropriate level of detail. (authors)
Probabilistic uniformities of uniform spaces
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Lopez, J.; Romaguera, S.; Sanchis, M.
2017-07-01
The theory of metric spaces in the fuzzy context has shown to be an interesting area of study not only from a theoretical point of view but also for its applications. Nevertheless, it is usual to consider these spaces as classical topological or uniform spaces and there are not too many results about constructing fuzzy topological structures starting from a fuzzy metric. Maybe, H/{sup o}hle was the first to show how to construct a probabilistic uniformity and a Lowen uniformity from a probabilistic pseudometric /cite{Hohle78,Hohle82a}. His method can be directly translated to the context of fuzzy metrics and allows to characterize the categories of probabilistic uniform spaces or Lowen uniform spaces by means of certain families of fuzzy pseudometrics /cite{RL}. On the other hand, other different fuzzy uniformities can be constructed in a fuzzy metric space: a Hutton $[0,1]$-quasi-uniformity /cite{GGPV06}; a fuzzifiying uniformity /cite{YueShi10}, etc. The paper /cite{GGRLRo} gives a study of several methods of endowing a fuzzy pseudometric space with a probabilistic uniformity and a Hutton $[0,1]$-quasi-uniformity. In 2010, J. Guti/'errez Garc/'{/i}a, S. Romaguera and M. Sanchis /cite{GGRoSanchis10} proved that the category of uniform spaces is isomorphic to a category formed by sets endowed with a fuzzy uniform structure, i. e. a family of fuzzy pseudometrics satisfying certain conditions. We will show here that, by means of this isomorphism, we can obtain several methods to endow a uniform space with a probabilistic uniformity. Furthermore, these constructions allow to obtain a factorization of some functors introduced in /cite{GGRoSanchis10}. (Author)
A probabilistic strategy for parametric catastrophe insurance
Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin
2017-04-01
Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss
A probabilistic Hu-Washizu variational principle
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
International Nuclear Information System (INIS)
Dvorzhak, Alla; Mora, Juan C.; Robles, Beatriz
2016-01-01
Potential exposures are those that may occur as a result of unanticipated operational performance or accidents. Potential exposure situations are probabilistic in nature because they depend on uncertain events such as equipment failure, operator errors or external initiators beyond the control of the operator. Consequently, there may exist a range of possible radiological impacts that need to be considered. In this paper a Level 3 Probabilistic Safety Assessment (PSA) for a hypothetical scenario relevant to Innovative Nuclear Energy Systems (INS) was conducted using computer code MACCS (MELCOR Accident Consequence Code Systems). The acceptability of an INS was analyzed taking into account the general requirement that relocation or evacuation measures must not be necessary beyond the site boundary. In addition, deterministic modeling of the accident consequences for the critical meteorological conditions was carried out using the JRODOS decision support system (Real-time On-line Decision Support system for off-site emergency management in Europe). The approach used for dose and risk assessment from potential exposure of accidental releases and their comparison with acceptance criteria are presented. The methodology described can be used as input to the licensing procedure and engineering design considerations to help satisfy relevant health and environmental impact criteria for fission or fusion nuclear installations. - Highlights: • PSA Level-3 based on WinMACCS code is carried out for accidental release. • Family curves of percentiles for radiation exposure doses are constructed. • Risk indicators for potential exposure are defined. • Using of risk acceptance curve criteria is proposed for decision making process.
Reliability and Probabilistic Risk Assessment - How They Play Together
Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang
2015-01-01
PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will
Dey, Mahua; Stadnik, Agnieszka; Riad, Fady; Zhang, Lingjiao; McBee, Nichol; Kase, Carlos; Carhuapoma, J Ricardo; Ram, Malathi; Lane, Karen; Ostapkovich, Noeleen; Aldrich, Francois; Aldrich, Charlene; Jallo, Jack; Butcher, Ken; Snider, Ryan; Hanley, Daniel; Ziai, Wendy; Awad, Issam A
2015-03-01
Retrospective series report varied rates of bleeding and infection with external ventricular drainage (EVD). There have been no prospective studies of these risks with systematic surveillance, threshold definitions, or independent adjudication. To analyze the rate of complications in the ongoing Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR III) trial, providing a comparison with a systematic review of complications of EVD in the literature. Patients were prospectively enrolled in the CLEAR III trial after placement of an EVD for obstructive intraventricular hemorrhage and randomized to receive recombinant tissue-type plasminogen activator or placebo. We counted any detected new hemorrhage (catheter tract hemorrhage or any other distant hemorrhage) on computed tomography scan within 30 days from the randomization. Meta-analysis of published series of EVD placement was compiled with STATA software. Growing or unstable hemorrhage was reported as a cause of exclusion from the trial in 74 of 5707 cases (1.3%) screened for CLEAR III. The first 250 patients enrolled have completed adjudication of adverse events. Forty-two subjects (16.8%) experienced ≥1 new bleeds or expansions, and 6 of 250 subjects (2.4%) suffered symptomatic hemorrhages. Eleven cases (4.4%) had culture-proven bacterial meningitis or ventriculitis. Risks of bleeding and infection in the ongoing CLEAR III trial are comparable to those previously reported in EVD case series. In the present study, rates of new bleeds and bacterial meningitis/ventriculitis are very low despite multiple daily injections, blood in the ventricles, the use of thrombolysis in half the cases, and generalization to >60 trial sites.
Contribution of operating feedback to probabilistic safety studies
International Nuclear Information System (INIS)
Guio, J.M. de; Lannoy, A.
1992-03-01
This paper presents the method used for PWR unit operation feedback analysis and its contribution to probabilistic safety studies. The targets were as follows: - use of failure data banks to assess reliability parameters, - use of event data banks to identify and quantify main system initiating events, - determination of a standard operating profile. These studies, performed in the context of nuclear power plant safety programs, prove useful not only to safety engineers but also to equipment experts, designers, operators and maintenance specialists. They constitute basic data for studies in all these areas or the departure point for new investigations. (authors). 3 figs., 3 tabs., 3 refs
Energy Technology Data Exchange (ETDEWEB)
Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)
2017-03-15
Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.
International Nuclear Information System (INIS)
Yee, Eric
2017-01-01
Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered
Probabilistic costing of transmission services
International Nuclear Information System (INIS)
Wijayatunga, P.D.C.
1992-01-01
Costing of transmission services of electrical utilities is required for transactions involving the transport of energy over a power network. The calculation of these costs based on Short Run Marginal Costing (SRMC) is preferred over other methods proposed in the literature due to its economic efficiency. In the research work discussed here, the concept of probabilistic costing of use-of-system based on SRMC which emerges as a consequence of the uncertainties in a power system is introduced using two different approaches. The first approach, based on the Monte Carlo method, generates a large number of possible system states by simulating random variables in the system using pseudo random number generators. A second approach to probabilistic use-of-system costing is proposed based on numerical convolution and multi-area representation of the transmission network. (UK)
Probabilistic Design of Wind Turbines
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Toft, H.S.
2010-01-01
Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....
Advances in probabilistic risk analysis
International Nuclear Information System (INIS)
Hardung von Hardung, H.
1982-01-01
Probabilistic risk analysis can now look back upon almost a quarter century of intensive development. The early studies, whose methods and results are still referred to occasionally, however, only permitted rough estimates to be made of the probabilities of recognizable accident scenarios, failing to provide a method which could have served as a reference base in calculating the overall risk associated with nuclear power plants. The first truly solid attempt was the Rasmussen Study and, partly based on it, the German Risk Study. In those studies, probabilistic risk analysis has been given a much more precise basis. However, new methodologies have been developed in the meantime, which allow much more informative risk studies to be carried out. They have been found to be valuable tools for management decisions with respect to backfitting, reinforcement and risk limitation. Today they are mainly applied by specialized private consultants and have already found widespread application especially in the USA. (orig.) [de
Using Physical Context-Based Authentication against External Attacks: Models and Protocols
Directory of Open Access Journals (Sweden)
Wilson S. Melo
2018-01-01
Full Text Available Modern systems are increasingly dependent on the integration of physical processes and information technologies. This trend is remarkable in applications involving sensor networks, cyberphysical systems, and Internet of Things. Despite its complexity, such integration results in physical context information that can be used to improve security, especially authentication. In this paper, we show that entities sharing the same physical context can use it for establishing a secure communication channel and protecting each other against external attacks. We present such approach proposing a theoretical model for generating unique bitstreams. Two different protocols are suggested. Each one is evaluated using probabilistic analysis and simulation. In the end, we implement the authentication mechanism in a case study using networks radio signal as physical event generator. The results demonstrate the performance of each of the protocols and their suitability for applications in real world.
Probabilistic risk assessment of HTGRs
International Nuclear Information System (INIS)
Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.
1980-08-01
Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the US Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed
Probabilistic methods for rotordynamics analysis
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Probabilistic analysis and related topics
Bharucha-Reid, A T
1983-01-01
Probabilistic Analysis and Related Topics, Volume 3 focuses on the continuity, integrability, and differentiability of random functions, including operator theory, measure theory, and functional and numerical analysis. The selection first offers information on the qualitative theory of stochastic systems and Langevin equations with multiplicative noise. Discussions focus on phase-space evolution via direct integration, phase-space evolution, linear and nonlinear systems, linearization, and generalizations. The text then ponders on the stability theory of stochastic difference systems and Marko
Probabilistic analysis and related topics
Bharucha-Reid, A T
1979-01-01
Probabilistic Analysis and Related Topics, Volume 2 focuses on the integrability, continuity, and differentiability of random functions, as well as functional analysis, measure theory, operator theory, and numerical analysis.The selection first offers information on the optimal control of stochastic systems and Gleason measures. Discussions focus on convergence of Gleason measures, random Gleason measures, orthogonally scattered Gleason measures, existence of optimal controls without feedback, random necessary conditions, and Gleason measures in tensor products. The text then elaborates on an
Probabilistic risk assessment of HTGRs
International Nuclear Information System (INIS)
Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.
1981-01-01
Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the U.S. Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed. (author)
Validation of the probabilistic approach for the analysis of PWR transients
International Nuclear Information System (INIS)
Amesz, J.; Francocci, G.F.; Clarotti, C.
1978-01-01
This paper reviews the pilot study at present being carried out on the validation of probabilistic methodology with real data coming from the operational records of the PWR power station at Obrigheim (KWO, Germany) operating since 1969. The aim of this analysis is to validate the a priori predictions of reactor transients performed by a probabilistic methodology, with the posteriori analysis of transients that actually occurred at a power station. Two levels of validation have been distinguished: (a) validation of the rate of occurrence of initiating events; (b) validation of the transient-parameter amplitude (i.e., overpressure) caused by the above mentioned initiating events. The paper describes the a priori calculations performed using a fault-tree analysis by means of a probabilistic code (SALP 3) and event-trees coupled with a PWR system deterministic computer code (LOOP 7). Finally the principle results of these analyses are presented and critically reviewed
Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment
Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.
2016-01-01
Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.
Application of probabilistic risk based optimization approaches in environmental restoration
International Nuclear Information System (INIS)
Goldammer, W.
1995-01-01
The paper presents a general approach to site-specific risk assessments and optimization procedures. In order to account for uncertainties in the assessment of the current situation and future developments, optimization parameters are treated as probabilistic distributions. The assessments are performed within the framework of a cost-benefit analysis. Radiation hazards and conventional risks are treated within an integrated approach. Special consideration is given to consequences of low probability events such as, earthquakes or major floods. Risks and financial costs are combined to an overall figure of detriment allowing one to distinguish between benefits of available reclamation options. The probabilistic analysis uses a Monte Carlo simulation technique. The paper demonstrates the applicability of this approach in aiding the reclamation planning using an example from the German reclamation program for uranium mining and milling sites
Probabilistic Modelling of Robustness and Resilience of Power Grid Systems
DEFF Research Database (Denmark)
Qin, Jianjun; Sansavini, Giovanni; Nielsen, Michael Havbro Faber
2017-01-01
The present paper proposes a framework for the modeling and analysis of resilience of networked power grid systems. A probabilistic systems model is proposed based on the JCSS Probabilistic Model Code (JCSS, 2001) and deterministic engineering systems modeling techniques such as the DC flow model...... cascading failure event scenarios (Nan and Sansavini, 2017). The concept of direct and indirect consequences proposed by the Joint Committee on Structural Safety (JCSS, 2008) is utilized to model the associated consequences. To facilitate a holistic modeling of robustness and resilience, and to identify how...... these characteristics may be optimized these characteristics, the power grid system is finally interlinked with its fundamental interdependent systems, i.e. a societal model, a regulatory system and control feedback loops. The proposed framework is exemplified with reference to optimal decision support for resilience...
A framework for the probabilistic analysis of meteotsunamis
Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.
2014-01-01
A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.
Probabilistic finite elements for fracture mechanics
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan
Energy Technology Data Exchange (ETDEWEB)
Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-09-01
Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).
International Nuclear Information System (INIS)
Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa
2014-01-01
Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)
Staged decision making based on probabilistic forecasting
Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris
2016-04-01
Flood forecasting systems reduce, but cannot eliminate uncertainty about the future. Probabilistic forecasts explicitly show that uncertainty remains. However, as - compared to deterministic forecasts - a dimension is added ('probability' or 'likelihood'), with this added dimension decision making is made slightly more complicated. A technique of decision support is the cost-loss approach, which defines whether or not to issue a warning or implement mitigation measures (risk-based method). With the cost-loss method a warning will be issued when the ratio of the response costs to the damage reduction is less than or equal to the probability of the possible flood event. This cost-loss method is not widely used, because it motivates based on only economic values and is a technique that is relatively static (no reasoning, yes/no decision). Nevertheless it has high potential to improve risk-based decision making based on probabilistic flood forecasting because there are no other methods known that deal with probabilities in decision making. The main aim of this research was to explore the ways of making decision making based on probabilities with the cost-loss method better applicable in practice. The exploration began by identifying other situations in which decisions were taken based on uncertain forecasts or predictions. These cases spanned a range of degrees of uncertainty: from known uncertainty to deep uncertainty. Based on the types of uncertainties, concepts of dealing with situations and responses were analysed and possible applicable concepts where chosen. Out of this analysis the concepts of flexibility and robustness appeared to be fitting to the existing method. Instead of taking big decisions with bigger consequences at once, the idea is that actions and decisions are cut-up into smaller pieces and finally the decision to implement is made based on economic costs of decisions and measures and the reduced effect of flooding. The more lead-time there is in
A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 3: Appendices
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
The third volume of the Probabilistic Safety Assessment contains supporting information for the PSA as follows: Appendix C (continued) with details of the system analysis and reports for the system/top event models; Appendix D with results of the specific engineering analyses of internal initiating events; Appendix E, containing supporting data for the human performance assessment,; Appendix F with details of the estimation of the frequency of leaks at HIFAR and Appendix G, containing event sequence model and quantification results
Probabilistic Harmonic Modeling of Wind Power Plants
DEFF Research Database (Denmark)
Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg
2017-01-01
A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...
Students’ difficulties in probabilistic problem-solving
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
Probabilistic Flood Defence Assessment Tools
Directory of Open Access Journals (Sweden)
Slomp Robert
2016-01-01
institutions managing flood the defences, and not by just a small number of experts in probabilistic assessment. Therefore, data management and use of software are main issues that have been covered in courses and training in 2016 and 2017. All in all, this is the largest change in the assessment of Dutch flood defences since 1996. In 1996 probabilistic techniques were first introduced to determine hydraulic boundary conditions (water levels and waves (wave height, wave period and direction for different return periods. To simplify the process, the assessment continues to consist of a three-step approach, moving from simple decision rules, to the methods for semi-probabilistic assessment, and finally to a fully probabilistic analysis to compare the strength of flood defences with the hydraulic loads. The formal assessment results are thus mainly based on the fully probabilistic analysis and the ultimate limit state of the strength of a flood defence. For complex flood defences, additional models and software were developed. The current Hydra software suite (for policy analysis, formal flood defence assessment and design will be replaced by the model Ringtoets. New stand-alone software has been developed for revetments, geotechnical analysis and slope stability of the foreshore. Design software and policy analysis software, including the Delta model, will be updated in 2018. A fully probabilistic method results in more precise assessments and more transparency in the process of assessment and reconstruction of flood defences. This is of increasing importance, as large-scale infrastructural projects in a highly urbanized environment are increasingly subject to political and societal pressure to add additional features. For this reason, it is of increasing importance to be able to determine which new feature really adds to flood protection, to quantify how much its adds to the level of flood protection and to evaluate if it is really worthwhile. Please note: The Netherlands
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2017-10-30
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)
Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete
2017-01-01
The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.
Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101
Energy Technology Data Exchange (ETDEWEB)
MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)
1994-05-01
Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.
Problems of probabilistic safety assessment after Fukushima Daiichi nuclear power plant accident
International Nuclear Information System (INIS)
Sugiyama, Naoki
2011-01-01
Probabilistic safety assessment (PSA) methodology to assure nuclear safety is had great expectations of lessons learned from Fukushima Daiichi nuclear power plant (NPP) accident and on the other hand this accident made actualized technical problems of PSA. Effectiveness of current PSA methodology for risk assessment was confirmed by comparing the accident development with accident scenario of PSA and equipment failure rate. From a viewpoint of nuclear safety objective and defense in depth approach of IAEA, technical problems of PSA were (1) extension of PSA for spent fuel pool and waste disposal system as well as level 3PSA for broader environmental contamination and (2) overlapping of accident scenario of plural unit site, balance of high quality plant management and preceding negation, treatment of uncertainty of external events, severe accident measure and human reliability analysis and reflection of disaster prevention capability to level 3PSA. In order to upgrade PSA technology, six proposals were described for nuclear safety and defense in depth, comprehensive evaluation scope and catch-up of latest technology, necessity of strategic preparation of PSA standard, human resources fostering and risk communication. (T. Tanaka)
Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101
International Nuclear Information System (INIS)
MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.
1994-05-01
Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (open-quotes burpsclose quotes) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity
Aging in probabilistic safety assessment
International Nuclear Information System (INIS)
Jordan Cizelj, R.; Kozuh, M.
1995-01-01
Aging is a phenomenon, which is influencing on unavailability of all components of the plant. The influence of aging on Probabilistic Safety Assessment calculations was estimated for Electrical Power Supply System. The average increase of system unavailability due to aging of system components was estimated and components were prioritized regarding their influence on change of system unavailability and relative increase of their unavailability due to aging. After the analysis of some numerical results, the recommendation for a detailed research of aging phenomena and its influence on system availability is given. (author)
Probabilistic accident sequence recovery analysis
International Nuclear Information System (INIS)
Stutzke, Martin A.; Cooper, Susan E.
2004-01-01
Recovery analysis is a method that considers alternative strategies for preventing accidents in nuclear power plants during probabilistic risk assessment (PRA). Consideration of possible recovery actions in PRAs has been controversial, and there seems to be a widely held belief among PRA practitioners, utility staff, plant operators, and regulators that the results of recovery analysis should be skeptically viewed. This paper provides a framework for discussing recovery strategies, thus lending credibility to the process and enhancing regulatory acceptance of PRA results and conclusions. (author)
Axiomatisation of fully probabilistic design
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Kroupa, Tomáš
2012-01-01
Roč. 186, č. 1 (2012), s. 105-113 ISSN 0020-0255 R&D Projects: GA MŠk(CZ) 2C06001; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian decision making * Fully probabilistic design * Kullback–Leibler divergence * Unified decision making Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.643, year: 2012 http://library.utia.cas.cz/separaty/2011/AS/karny-0367271.pdf
Probabilistic Analysis of Crack Width
Directory of Open Access Journals (Sweden)
J. Marková
2000-01-01
Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.
Probabilistic approach to EMP assessment
International Nuclear Information System (INIS)
Bevensee, R.M.; Cabayan, H.S.; Deadrick, F.J.; Martin, L.C.; Mensing, R.W.
1980-09-01
The development of nuclear EMP hardness requirements must account for uncertainties in the environment, in interaction and coupling, and in the susceptibility of subsystems and components. Typical uncertainties of the last two kinds are briefly summarized, and an assessment methodology is outlined, based on a probabilistic approach that encompasses the basic concepts of reliability. It is suggested that statements of survivability be made compatible with system reliability. Validation of the approach taken for simple antenna/circuit systems is performed with experiments and calculations that involve a Transient Electromagnetic Range, numerical antenna modeling, separate device failure data, and a failure analysis computer program
Probabilistic risk assessment, Volume I
International Nuclear Information System (INIS)
Anon.
1982-01-01
This book contains 158 papers presented at the International Topical Meeting on Probabilistic Risk Assessment held by the American Nuclear Society (ANS) and the European Nuclear Society (ENS) in Port Chester, New York in 1981. The meeting was second in a series of three. The main focus of the meeting was on the safety of light water reactors. The papers discuss safety goals and risk assessment. Quantitative safety goals, risk assessment in non-nuclear technologies, and operational experience and data base are also covered. Included is an address by Dr. Chauncey Starr
International Nuclear Information System (INIS)
Zhou Zhongbao; Zhou Jinglun; Sun Quan
2007-01-01
Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)
Compression of Probabilistic XML Documents
Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice
Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.
Living probabilistic safety assessment (LPSA)
International Nuclear Information System (INIS)
1999-08-01
Over the past few years many nuclear power plant organizations have performed probabilistic safety assessments (PSAs) to identify and understand key plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. PSA is an effective tool for this purpose as it assists plant management to target resources where the largest benefit to plant safety can be obtained. However, any PSA which is to be used in this way must have a credible and defensible basis. Thus, it is very important to have a high quality 'living PSA' accepted by the plant and the regulator. With this background in mind, the IAEA has prepared this report on Living Probabilistic Safety Assessment (LPSA) which addresses the updating, documentation, quality assurance, and management and organizational requirements for LPSA. Deficiencies in the areas addressed in this report would seriously reduce the adequacy of the LPSA as a tool to support decision making at NPPs. This report was reviewed by a working group during a Technical Committee Meeting on PSA Applications to Improve NPP Safety held in Madrid, Spain, from 23 to 27 February 1998
Software for Probabilistic Risk Reduction
Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto
2004-01-01
A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.
Is Probabilistic Evidence a Source of Knowledge?
Friedman, Ori; Turri, John
2015-01-01
We report a series of experiments examining whether people ascribe knowledge for true beliefs based on probabilistic evidence. Participants were less likely to ascribe knowledge for beliefs based on probabilistic evidence than for beliefs based on perceptual evidence (Experiments 1 and 2A) or testimony providing causal information (Experiment 2B).…
Probabilistic Cue Combination: Less Is More
Yurovsky, Daniel; Boyer, Ty W.; Smith, Linda B.; Yu, Chen
2013-01-01
Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to perform non-normatively in prediction tasks. For example, in the "dilution effect,"…
Multiobjective optimal allocation problem with probabilistic non ...
African Journals Online (AJOL)
This paper considers the optimum compromise allocation in multivariate stratified sampling with non-linear objective function and probabilistic non-linear cost constraint. The probabilistic non-linear cost constraint is converted into equivalent deterministic one by using Chance Constrained programming. A numerical ...
Probabilistic reasoning with graphical security models
Kordy, Barbara; Pouly, Marc; Schweitzer, Patrick
This work provides a computational framework for meaningful probabilistic evaluation of attack–defense scenarios involving dependent actions. We combine the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. In order
Probabilistic Geoacoustic Inversion in Complex Environments
2015-09-30
Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is
Why do probabilistic finite element analysis ?
Thacker, Ben H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Branching bisimulation congruence for probabilistic systems
Trcka, N.; Georgievska, S.; Aldini, A.; Baier, C.
2008-01-01
The notion of branching bisimulation for the alternating model of probabilistic systems is not a congruence with respect to parallel composition. In this paper we first define another branching bisimulation in the more general model allowing consecutive probabilistic transitions, and we prove that
Probabilistic Reversible Automata and Quantum Automata
Golovkins, Marats; Kravtsev, Maksim
2002-01-01
To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different possible models of PRA and corresponding models of quantum finite automata. We also propose a classification of reversible finite 1-way automata.
Bisimulations meet PCTL equivalences for probabilistic automata
DEFF Research Database (Denmark)
Song, Lei; Zhang, Lijun; Godskesen, Jens Chr.
2013-01-01
Probabilistic automata (PAs) have been successfully applied in formal verification of concurrent and stochastic systems. Efficient model checking algorithms have been studied, where the most often used logics for expressing properties are based on probabilistic computation tree logic (PCTL) and its...
Error Discounting in Probabilistic Category Learning
Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.
2011-01-01
The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…
Probabilistic eruption forecasting at short and long time scales
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Consideration of aging in probabilistic safety assessment
International Nuclear Information System (INIS)
Titina, B.; Cepin, M.
2007-01-01
Probabilistic safety assessment is a standardised tool for assessment of safety of nuclear power plants. It is a complement to the safety analyses. Standard probabilistic models of safety equipment assume component failure rate as a constant. Ageing of systems, structures and components can theoretically be included in new age-dependent probabilistic safety assessment, which generally causes the failure rate to be a function of age. New age-dependent probabilistic safety assessment models, which offer explicit calculation of the ageing effects, are developed. Several groups of components are considered which require their unique models: e.g. operating components e.g. stand-by components. The developed models on the component level are inserted into the models of the probabilistic safety assessment in order that the ageing effects are evaluated for complete systems. The preliminary results show that the lack of necessary data for consideration of ageing causes highly uncertain models and consequently the results. (author)
Structural reliability codes for probabilistic design
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1997-01-01
probabilistic code format has not only strong influence on the formal reliability measure, but also on the formal cost of failure to be associated if a design made to the target reliability level is considered to be optimal. In fact, the formal cost of failure can be different by several orders of size for two...... different, but by and large equally justifiable probabilistic code formats. Thus, the consequence is that a code format based on decision theoretical concepts and formulated as an extension of a probabilistic code format must specify formal values to be used as costs of failure. A principle of prudence...... is suggested for guiding the choice of the reference probabilistic code format for constant reliability. In the author's opinion there is an urgent need for establishing a standard probabilistic reliability code. This paper presents some considerations that may be debatable, but nevertheless point...
Probabilistic finite element modeling of waste rollover
International Nuclear Information System (INIS)
Khaleel, M.A.; Cofer, W.F.; Al-fouqaha, A.A.
1995-09-01
Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ''rolls over'' and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described
A Probabilistic Asteroid Impact Risk Model
Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.
2016-01-01
Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.
Probabilistic methods in fire-risk analysis
International Nuclear Information System (INIS)
Brandyberry, M.D.
1989-01-01
The first part of this work outlines a method for assessing the frequency of ignition of a consumer product in a building and shows how the method would be used in an example scenario utilizing upholstered furniture as the product and radiant auxiliary heating devices (electric heaters, wood stoves) as the ignition source. Deterministic thermal models of the heat-transport processes are coupled with parameter uncertainty analysis of the models and with a probabilistic analysis of the events involved in a typical scenario. This leads to a distribution for the frequency of ignition for the product. In second part, fire-risk analysis as currently used in nuclear plants is outlines along with a discussion of the relevant uncertainties. The use of the computer code COMPBRN is discussed for use in the fire-growth analysis along with the use of response-surface methodology to quantify uncertainties in the code's use. Generalized response surfaces are developed for temperature versus time for a cable tray, as well as a surface for the hot gas layer temperature and depth for a room of arbitrary geometry within a typical nuclear power plant compartment. These surfaces are then used to simulate the cable tray damage time in a compartment fire experiment
Probabilistic risk assessment and its role in plant modifications
International Nuclear Information System (INIS)
Diederich, A.R.; McElroy, W.F.
1986-01-01
Electric Utilities today have a tool available to improve management's ability to evaluate nuclear power plant modifications (MODS). Probabilistic Risk Assessment (PRA), is a tool of choice since it can be applied to a specific situation such as MOD request review, bringing the perspectives of reliability, financial risk and consequences to the public in addition to the more rigid requirements like those associated with Quality Assurance or licensing criteria. The techniques used in the PRA process revolve about the creation and manipulation of Fault Trees and Event Trees, which are used to quantify the event sequences and reliability of plant systems in a logical framework. It is through these methods that chains of sequences, or events, are understood. The degree to which plant systems are modelled in the PRA can vary depending on resources and purpose. Philadelphia Elecrtric Company's PRA modelled ten (10) major systems but this number may increase during the application and updating process
Global Infrasound Association Based on Probabilistic Clutter Categorization
Arora, Nimar; Mialle, Pierrick
2016-04-01
The IDC advances its methods and continuously improves its automatic system for the infrasound technology. The IDC focuses on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold by identifying ways to refine signal characterization methodology and association criteria. An objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the reviewed event bulletins. Indeed, a considerable number of signal detections are due to local clutter sources such as microbaroms, waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NETVISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] Infrasound categorization Towards a statistics based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013
Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst
2015-04-01
The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological
Optimisation of test and maintenance based on probabilistic methods
International Nuclear Information System (INIS)
Cepin, M.
2001-01-01
This paper presents a method, which based on models and results of probabilistic safety assessment, minimises the nuclear power plant risk by optimisation of arrangement of safety equipment outages. The test and maintenance activities of the safety equipment are timely arranged, so the classical static fault tree models are extended with the time requirements to be capable to model real plant states. A house event matrix is used, which enables modelling of the equipment arrangements through the discrete points of time. The result of the method is determination of such configuration of equipment outages, which result in the minimal risk. Minimal risk is represented by system unavailability. (authors)
Probabilistic Flood Mapping using Volunteered Geographical Information
Rivera, S. J.; Girons Lopez, M.; Seibert, J.; Minsker, B. S.
2016-12-01
Flood extent maps are widely used by decision makers and first responders to provide critical information that prevents economic impacts and the loss of human lives. These maps are usually obtained from sensory data and/or hydrologic models, which often have limited coverage in space and time. Recent developments in social media and communication technology have created a wealth of near-real-time, user-generated content during flood events in many urban areas, such as flooded locations, pictures of flooding extent and height, etc. These data could improve decision-making and response operations as events unfold. However, the integration of these data sources has been limited due to the need for methods that can extract and translate the data into useful information for decision-making. This study presents an approach that uses volunteer geographic information (VGI) and non-traditional data sources (i.e., Twitter, Flicker, YouTube, and 911 and 311 calls) to generate/update the flood extent maps in areas where no models and/or gauge data are operational. The approach combines Web-crawling and computer vision techniques to gather information about the location, extent, and water height of the flood from unstructured textual data, images, and videos. These estimates are then used to provide an updated flood extent map for areas surrounding the geo-coordinate of the VGI through the application of a Hydro Growing Region Algorithm (HGRA). HGRA combines hydrologic and image segmentation concepts to estimate a probabilistic flooding extent along the corresponding creeks. Results obtained for a case study in Austin, TX (i.e., 2015 Memorial Day flood) were comparable to those obtained by a calibrated hydrologic model and had good spatial correlation with flooding extents estimated by the Federal Emergency Management Agency (FEMA).
Energy Technology Data Exchange (ETDEWEB)
Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2015-07-01
The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)
International Nuclear Information System (INIS)
Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.
2015-01-01
The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)
International Nuclear Information System (INIS)
2004-09-01
The efficient feedback of operating experience (OE) is a valuable source of information for improving the safety and reliability of nuclear power plants (NPPs). It is therefore essential to collect information on abnormal events from both internal and external sources. Internal operating experience is analysed to obtain a complete understanding of an event and of its safety implications. Corrective or improvement measures may then be developed, prioritized and implemented in the plant if considered appropriate. Information from external events may also be analysed in order to learn lessons from others' experience and prevent similar occurrences at our own plant. The traditional ways of investigating operational events have been predominantly qualitative. In recent years, a PSA-based method called probabilistic precursor event analysis has been developed, used and applied on a significant scale in many places for a number of plants. The method enables a quantitative estimation of the safety significance of operational events to be incorporated. The purpose of this report is to outline a synergistic process that makes more effective use of operating experience event information by combining the insights and knowledge gained from both approaches, traditional deterministic event investigation and PSA-based event analysis. The PSA-based view on operational events and PSA-based event analysis can support the process of operational event analysis at the following stages of the operational event investigation: (1) Initial screening stage. (It introduces an element of quantitative analysis into the selection process. Quantitative analysis of the safety significance of nuclear plant events can be a very useful measure when it comes to selecting internal and external operating experience information for its relevance.) (2) In-depth analysis. (PSA based event evaluation provides a quantitative measure for judging the significance of operational events, contributors to
Probabilistic cloning with supplementary information
International Nuclear Information System (INIS)
Azuma, Koji; Shimamura, Junichi; Koashi, Masato; Imoto, Nobuyuki
2005-01-01
We consider probabilistic cloning of a state chosen from a mutually nonorthogonal set of pure states, with the help of a party holding supplementary information in the form of pure states. When the number of states is 2, we show that the best efficiency of producing m copies is always achieved by a two-step protocol in which the helping party first attempts to produce m-1 copies from the supplementary state, and if it fails, then the original state is used to produce m copies. On the other hand, when the number of states exceeds two, the best efficiency is not always achieved by such a protocol. We give examples in which the best efficiency is not achieved even if we allow any amount of one-way classical communication from the helping party
Machine learning a probabilistic perspective
Murphy, Kevin P
2012-01-01
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic method...
Probabilistic analysis of modernization options
International Nuclear Information System (INIS)
Wunderlich, W.O.; Giles, J.E.
1991-01-01
This paper reports on benefit-cost analysis for hydropower operations, a standard procedure for reaching planning decisions. Cost overruns and benefit shortfalls are also common occurrences. One reason for the difficulty of predicting future benefits and costs is that they usually cannot be represented with sufficient reliability by accurate values, because of the many uncertainties that enter the analysis through assumptions on inputs and system parameters. Therefore, ranges of variables need to be analyzed instead of single values. As a consequence, the decision criteria, such as net benefit and benefit-cost ratio, also vary over some range. A probabilistic approach will be demonstrated as a tool for assessing the reliability of the results
Probabilistic assessments of fuel performance
International Nuclear Information System (INIS)
Kelppe, S.; Ranta-Puska, K.
1998-01-01
The probabilistic Monte Carlo Method, coupled with quasi-random sampling, is applied for the fuel performance analyses. By using known distributions of fabrication parameters and real power histories with their randomly selected combinations, and by making a large number of ENIGMA code calculations, one expects to find out the state of the whole reactor fuel. Good statistics requires thousands of runs. A sample case representing VVER-440 reactor fuel indicates relatively low fuel temperatures and mainly athermal fission gas release if any. The rod internal pressure remains typically below 2.5 MPa, which leaves a large margin to the system pressure of 12 MPa Gap conductance, an essential parameter in the accident evaluations, shows no decrease from its start-of-life value. (orig.)
Probabilistic Fatigue Damage Program (FATIG)
Michalopoulos, Constantine
2012-01-01
FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.
Probabilistic cloning of equidistant states
International Nuclear Information System (INIS)
Jimenez, O.; Roa, Luis; Delgado, A.
2010-01-01
We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.
A probabilistic model for snow avalanche occurrence
Perona, P.; Miescher, A.; Porporato, A.
2009-04-01
Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and
Probabilistic analysis of ''common mode failures''
International Nuclear Information System (INIS)
Easterling, R.G.
1978-01-01
Common mode failure is a topic of considerable interest in reliability and safety analyses of nuclear reactors. Common mode failures are often discussed in terms of examples: two systems fail simultaneously due to an external event such as an earthquake; two components in redundant channels fail because of a common manufacturing defect; two systems fail because a component common to both fails; the failure of one system increases the stress on other systems and they fail. The common thread running through these is a dependence of some sort--statistical or physical--among multiple failure events. However, the nature of the dependence is not the same in all these examples. An attempt is made to model situations, such as the above examples, which have been termed ''common mode failures.'' In doing so, it is found that standard probability concepts and terms, such as statistically dependent and independent events, and conditional and unconditional probabilities, suffice. Thus, it is proposed that the term ''common mode failures'' be dropped, at least from technical discussions of these problems. A corollary is that the complementary term, ''random failures,'' should also be dropped. The mathematical model presented may not cover all situations which have been termed ''common mode failures,'' but provides insight into the difficulty of obtaining estimates of the probabilities of these events
International Nuclear Information System (INIS)
Troncoso, M.; Oliva, G.
1993-01-01
The application of the methodology developed in the framework of the national plan of safety probabilistic analysis (APS) to the emergency feed water system for the failures of small LOCAS and external electrical supply loss in the nuclear power plant is illustrated in this work. The facilities created by the ARCON code to model the systems and its documentation are also expounded
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic machine learning and artificial intelligence
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic assessment of nuclear safety and safeguards
International Nuclear Information System (INIS)
Higson, D.J.
1987-01-01
Nuclear reactor accidents and diversions of materials from the nuclear fuel cycle are perceived by many people as particularly serious threats to society. Probabilistic assessment is a rational approach to the evaluation of both threats, and may provide a basis for decisions on appropriate actions to control them. Probabilistic method have become standard tools used in the analysis of safety, but there are disagreements on the criteria to be applied when assessing the results of analysis. Probabilistic analysis and assessment of the effectiveness of nuclear material safeguards are still at an early stage of development. (author)
Integrated Deterministic-Probabilistic Safety Assessment Methodologies
Energy Technology Data Exchange (ETDEWEB)
Kudinov, P.; Vorobyev, Y.; Sanchez-Perea, M.; Queral, C.; Jimenez Varas, G.; Rebollo, M. J.; Mena, L.; Gomez-Magin, J.
2014-02-01
IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses. (Author)
A History of Probabilistic Inductive Logic Programming
Directory of Open Access Journals (Sweden)
Fabrizio eRiguzzi
2014-09-01
Full Text Available The field of Probabilistic Logic Programming (PLP has seen significant advances in the last 20 years, with many proposals for languages that combine probability with logic programming. Since the start, the problem of learning probabilistic logic programs has been the focus of much attention. Learning these programs represents a whole subfield of Inductive Logic Programming (ILP. In Probabilistic ILP (PILP two problems are considered: learning the parameters of a program given the structure (the rules and learning both the structure and the parameters. Usually structure learning systems use parameter learning as a subroutine. In this article we present an overview of PILP and discuss the main results.
Probabilistic Rule Generator: A new methodology of variable-valued logic synthesis
International Nuclear Information System (INIS)
Lee, W.D.; Ray, S.R.
1986-01-01
A new methodology to synthesize variable-valued logic formulas from training data events is presented. Probablistic Rule Generator (PRG) employs not only information-theoretic entropy as a heuristic to capture a path expression but also multiple-valued logic to expand a captured complex. PRG is efficient for capturing major clusters in the event space, and is more general than previous methodologies in providing probabilistic features
Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor
International Nuclear Information System (INIS)
Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo
2009-01-01
After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)
French PWR nuclear power plants: Probabilistic studies of accident sequences and related findings
International Nuclear Information System (INIS)
Villemeur, A.; Moroni, J.M.; Berger, J.P.; Meslin, T.
1987-01-01
This paper presents the major studies performed in France by EDF in the framework of probabilistic studies. It describes the part played by these studies especially as regards: the assessment of the allowed outage time in the event of a safety component unavailability, the risk assessment in the event of a total loss of system (heat sink, electric power supplies, etc.). The specific features of the French 'living' PSA, now still in progress, are also presented. (orig./HSCH)
International Nuclear Information System (INIS)
Lofgren, E.V.
1985-08-01
This course in System Reliability and Analysis Techniques focuses on the probabilistic quantification of accident sequences and the link between accident sequences and consequences. Other sessions in this series focus on the quantification of system reliability and the development of event trees and fault trees. This course takes the viewpoint that event tree sequences or combinations of system failures and success are available and that Boolean equations for system fault trees have been developed and are available. 93 figs., 11 tabs
PROBABILISTIC RELATIONAL MODELS OF COMPLETE IL-SEMIRINGS
Tsumagari, Norihiro
2012-01-01
This paper studies basic properties of probabilistic multirelations which are generalized the semantic domain of probabilistic systems and then provides two probabilistic models of complete IL-semirings using probabilistic multirelations. Also it is shown that these models need not be models of complete idempotentsemirings.
A convergence theory for probabilistic metric spaces | Jäger ...
African Journals Online (AJOL)
We develop a theory of probabilistic convergence spaces based on Tardiff's neighbourhood systems for probabilistic metric spaces. We show that the resulting category is a topological universe and we characterize a subcategory that is isomorphic to the category of probabilistic metric spaces. Keywords: Probabilistic metric ...
Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems
Bernardo, Marco; Miculan, Marino
2016-01-01
Larsen and Skou characterized probabilistic bisimilarity over reactive probabilistic systems with a logic including true, negation, conjunction, and a diamond modality decorated with a probabilistic lower bound. Later on, Desharnais, Edalat, and Panangaden showed that negation is not necessary to characterize the same equivalence. In this paper, we prove that the logical characterization holds also when conjunction is replaced by disjunction, with negation still being not necessary. To this e...
On synchronous parallel computations with independent probabilistic choice
International Nuclear Information System (INIS)
Reif, J.H.
1984-01-01
This paper introduces probabilistic choice to synchronous parallel machine models; in particular parallel RAMs. The power of probabilistic choice in parallel computations is illustrate by parallelizing some known probabilistic sequential algorithms. The authors characterize the computational complexity of time, space, and processor bounded probabilistic parallel RAMs in terms of the computational complexity of probabilistic sequential RAMs. They show that parallelism uniformly speeds up time bounded probabilistic sequential RAM computations by nearly a quadratic factor. They also show that probabilistic choice can be eliminated from parallel computations by introducing nonuniformity
Probabilistic Counterfactuals: Semantics, Computation, and Applications
National Research Council Canada - National Science Library
Balke, Alexander
1997-01-01
... handled within the framework of standard probability theory. Starting with functional description of physical mechanisms, we were able to derive the standard probabilistic properties of Bayesian networks and to show: (1...
Multiobjective optimal allocation problem with probabilistic non ...
African Journals Online (AJOL)
user
The probabilistic non-linear cost constraint is converted into equivalent deterministic .... Further, in a survey the costs for enumerating a character in various strata are not known exactly, rather these are being ...... Naval Research Logistics, Vol.
Strategic Team AI Path Plans: Probabilistic Pathfinding
Directory of Open Access Journals (Sweden)
Tng C. H. John
2008-01-01
Full Text Available This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002, in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006. We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.
Probabilistic Meteorological Characterization for Turbine Loads
DEFF Research Database (Denmark)
Kelly, Mark C.; Larsen, Gunner Chr.; Dimitrov, Nikolay Krasimirov
2014-01-01
Beyond the existing, limited IEC prescription to describe fatigue loads on wind turbines, we look towards probabilistic characterization of the loads via analogous characterization of the atmospheric flow, particularly for today's "taller" turbines with rotors well above the atmospheric surface...
Probabilistic composition of preferences, theory and applications
Parracho Sant'Anna, Annibal
2015-01-01
Putting forward a unified presentation of the features and possible applications of probabilistic preferences composition, and serving as a methodology for decisions employing multiple criteria, this book maximizes reader insights into the evaluation in probabilistic terms and the development of composition approaches that do not depend on assigning weights to the criteria. With key applications in important areas of management such as failure modes, effects analysis and productivity analysis – together with explanations about the application of the concepts involved –this book makes available numerical examples of probabilistic transformation development and probabilistic composition. Useful not only as a reference source for researchers, but also in teaching classes of graduate courses in Production Engineering and Management Science, the key themes of the book will be of especial interest to researchers in the field of Operational Research.
Estimating software development project size, using probabilistic ...
African Journals Online (AJOL)
Estimating software development project size, using probabilistic techniques. ... of managing the size of software development projects by Purchasers (Clients) and Vendors (Development ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT
Comparing Categorical and Probabilistic Fingerprint Evidence.
Garrett, Brandon; Mitchell, Gregory; Scurich, Nicholas
2018-04-23
Fingerprint examiners traditionally express conclusions in categorical terms, opining that impressions do or do not originate from the same source. Recently, probabilistic conclusions have been proposed, with examiners estimating the probability of a match between recovered and known prints. This study presented a nationally representative sample of jury-eligible adults with a hypothetical robbery case in which an examiner opined on the likelihood that a defendant's fingerprints matched latent fingerprints in categorical or probabilistic terms. We studied model language developed by the U.S. Defense Forensic Science Center to summarize results of statistical analysis of the similarity between prints. Participant ratings of the likelihood the defendant left prints at the crime scene and committed the crime were similar when exposed to categorical and strong probabilistic match evidence. Participants reduced these likelihoods when exposed to the weaker probabilistic evidence, but did not otherwise discriminate among the prints assigned different match probabilities. © 2018 American Academy of Forensic Sciences.
Probabilistic methods in exotic option pricing
Anderluh, J.H.M.
2007-01-01
The thesis presents three ways of calculating the Parisian option price as an illustration of probabilistic methods in exotic option pricing. Moreover options on commidities are considered and double-sided barrier options in a compound Poisson framework.
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Do probabilistic forecasts lead to better decisions?
Directory of Open Access Journals (Sweden)
M. H. Ramos
2013-06-01
Full Text Available The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also started focusing attention on ways of communicating the probabilistic forecasts to decision-makers. Communicating probabilistic forecasts includes preparing tools and products for visualisation, but also requires understanding how decision-makers perceive and use uncertainty information in real time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision-makers. Answers were collected and analysed. In this paper, we present the results of this exercise and discuss if we indeed make better decisions on the basis of probabilistic forecasts.
Risk assessment using probabilistic standards
International Nuclear Information System (INIS)
Avila, R.
2004-01-01
A core element of risk is uncertainty represented by plural outcomes and their likelihood. No risk exists if the future outcome is uniquely known and hence guaranteed. The probability that we will die some day is equal to 1, so there would be no fatal risk if sufficiently long time frame is assumed. Equally, rain risk does not exist if there was 100% assurance of rain tomorrow, although there would be other risks induced by the rain. In a formal sense, any risk exists if, and only if, more than one outcome is expected at a future time interval. In any practical risk assessment we have to deal with uncertainties associated with the possible outcomes. One way of dealing with the uncertainties is to be conservative in the assessments. For example, we may compare the maximal exposure to a radionuclide with a conservatively chosen reference value. In this case, if the exposure is below the reference value then it is possible to assure that the risk is low. Since single values are usually compared; this approach is commonly called 'deterministic'. Its main advantage lies in the simplicity and in that it requires minimum information. However, problems arise when the reference values are actually exceeded or might be exceeded, as in the case of potential exposures, and when the costs for realizing the reference values are high. In those cases, the lack of knowledge on the degree of conservatism involved impairs a rational weighing of the risks against other interests. In this presentation we will outline an approach for dealing with uncertainties that in our opinion is more consistent. We will call it a 'fully probabilistic risk assessment'. The essence of this approach consists in measuring the risk in terms of probabilities, where the later are obtained from comparison of two probabilistic distributions, one reflecting the uncertainties in the outcomes and one reflecting the uncertainties in the reference value (standard) used for defining adverse outcomes. Our first aim
New probabilistic interest measures for association rules
Hahsler, Michael; Hornik, Kurt
2008-01-01
Mining association rules is an important technique for discovering meaningful patterns in transaction databases. Many different measures of interestingness have been proposed for association rules. However, these measures fail to take the probabilistic properties of the mined data into account. In this paper, we start with presenting a simple probabilistic framework for transaction data which can be used to simulate transaction data when no associations are present. We use such data and a rea...
Semantics of probabilistic processes an operational approach
Deng, Yuxin
2015-01-01
This book discusses the semantic foundations of concurrent systems with nondeterministic and probabilistic behaviour. Particular attention is given to clarifying the relationship between testing and simulation semantics and characterising bisimulations from metric, logical, and algorithmic perspectives. Besides presenting recent research outcomes in probabilistic concurrency theory, the book exemplifies the use of many mathematical techniques to solve problems in computer science, which is intended to be accessible to postgraduate students in Computer Science and Mathematics. It can also be us
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Probabilistic Analysis Methods for Hybrid Ventilation
DEFF Research Database (Denmark)
Brohus, Henrik; Frier, Christian; Heiselberg, Per
This paper discusses a general approach for the application of probabilistic analysis methods in the design of ventilation systems. The aims and scope of probabilistic versus deterministic methods are addressed with special emphasis on hybrid ventilation systems. A preliminary application...... of stochastic differential equations is presented comprising a general heat balance for an arbitrary number of loads and zones in a building to determine the thermal behaviour under random conditions....