WorldWideScience

Sample records for external dc electric

  1. Quality electricity lines of external power systems electric traction DC

    Directory of Open Access Journals (Sweden)

    A.V. Petrov

    2012-08-01

    Full Text Available The results of studies that compare and analyze the numerical values of some key indicators quality electricity in the lines of the external power supply system the electric traction DC. As a supplement are additional and fundamental values of energy losses in them.

  2. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  3. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  4. A Plasma-Based DC-DC Electrical Transformer

    Science.gov (United States)

    Nebel, Richard; Finn, John

    2013-10-01

    Previous work has indicated that it may be possible to make DC-DC electrical transformers using plasmas. The mechanism is an MHD electromagnetic relaxation process induced by helical electrodes. This process is now being tested on the Bismark device at Tibbar Technologies.

  5. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    Science.gov (United States)

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  6. DC Power System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-11-01

    Full Text Available In recent years, environmental and energy problem has become one of the world's hot spot problems. Today, the road cars not only consume a lot of oil resource, but also cause serious pollution to human survival environment. Therefore, to save energy and protect environment, a green environmental friendly electric car instead of fuel car will be needed for sustainable development of the society. Electric vehicle has no pollution, low noise, high efficiency, diversification, simple structure and convenient maintaining; the development of green cleaning electric vehicle is the trend, and the inevitable choice. The power supply system of electric vehicle can be divided into three parts, the battery charging system, motor drive system and dc load power supply system. This paper mainly studies the dc load power supply system. Main function is to convert the high-voltage of the battery in the electric vehicle into low voltage output, provide the power supply for the low voltage dc load, including the car safety system, windshield wiper system, audio system. On the basis of the analysis of the parameters, this article designs the converter, sets up the principle prototype, analyzes the experimental results and finally makes conclusion. The vehicle power supply is green, environment friendly, high-efficiency, digital and intelligent.    

  7. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  8. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  9. Classification of electrical discharges in DC Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srutarshi, E-mail: sruban.stephens@gmail.com [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deb, A.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Rajan, Rehim N. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kishore, N.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-08-11

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  10. Classification of electrical discharges in DC Accelerators

    Science.gov (United States)

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.

    2016-08-01

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  11. Universality of DC electrical conductivity from holography

    Science.gov (United States)

    Ge, Xian-Hui; Sin, Sang-Jin; Wu, Shao-Feng

    2017-04-01

    We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries breaking systems via the holographic duality. This formula states that the ratio of the determinant of the dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit has a universal value. As explicit illustrations, we give several examples elucidating the validation of this formula: We construct an anisotropic black brane solution, which yields linear in temperature for the in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can be realized. 1). For Z (ϕ) = 1 and d ≥ 3, isotropic black branes in the AdS space cannot be utilized to realize linear temperature resistivity in the zero-charges limit. Nevertheless, anisotropic black branes are good candidates in model-building of holographic strange metals. 2). For d + 1-dimensional spatially isotropic Lifshitz black holes with Z (ϕ) = 1 in the absence of hyperscaling violation, this relation indicates that σii|qi=0 =[ 4 π / (d + z - 1) ] d - 3T (d - 3) / z, which is consistent with what obtained in Refs. [23,24] based on a universal scaling relation hypothesis: σ (ω = 0) =T (d - 3) / z Θ (0), where z is a dynamical critical exponent and Θ (ω) is a frequency dependent function. 3). This relation applies to shear viscosity-bound and electrical conductivity-bound violated systems, for example, systems considered in [20,25,26]. In [27], the authors conjectured that for the case d = 3, there exists a lower bound of dc electrical conductivity ∏iσii > 1. But it was soon found that this bound can be violated by a special coupling between the linear axion fields and the U (1) gauge field [25,26]. The structure of this paper is organized as follows. In section 2, we present our main results by writing

  12. Electronically commutated dc motors for electric vehicles

    Science.gov (United States)

    Maslowski, E. A.

    1981-01-01

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  13. Characteristics of DC electric fields at dipolarization fronts

    Science.gov (United States)

    Laakso, Harri; Escoubet, Philippe; Masson, Arnaud

    2016-04-01

    We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.

  14. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  15. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  16. Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2014-01-01

    Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.

  17. Electrical Anomalies Observed During DC3

    Science.gov (United States)

    Lang, Timothy J.; Rutledge, Steven A.; Dolan, Brenda; Krehbiel, Paul; Rison, William; Lindsey, Daniel T.; Lyons, Walt

    2013-01-01

    The primary scientific goals of DC3 involved improving our understanding of the chemical impacts of thunderstorms and their anvils. However, the Colorado domain provided opportunities to study other interesting phenomena, including the potential impacts of smoke ingestion on convection and thunderstorms, electrification processes in smoke plumes and pyrocumulonimbus clouds, and the production of sprites by unconventional thunderstorm.

  18. Synthesis of zirconium oxynitride in air under DC electric fields

    Science.gov (United States)

    Morisaki, Nobuhiro; Yoshida, Hidehiro; Matsui, Koji; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2016-08-01

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  19. Quantitative Outgassing studies in DC Electrical breakdown

    CERN Document Server

    Levinsen, Yngve Inntjore; Calatroni, Sergio; Taborelli, Mauro; Wünsch, Walter

    2010-01-01

    Breakdown in the accelerating structures sets an important limit to the performance of the CLIC linear collider. Vacuum degradation and subsequent beam instability are possible outcomes of a breakdown if too much gas is released from the cavity surface. Quantitative data of gas released by breakdowns are provided for copper (milled Cu-OFE, as-received and heat-treated), and molybdenum. These data are produced in a DC spark system based on a capacitance charged at fixed energy, and will serve as a reference for the vacuum design of the CLIC accelerating structures.

  20. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  1. Temporal analysis of moving dc electric fields in aquatic media

    Science.gov (United States)

    Hofmann, Michael H.; Wilkens, Lon A.

    2005-03-01

    Many aquatic vertebrates can sense the weak electric fields generated by other animals and may also sense geoelectric or electromagnetic phenomena for use in orientation. All these sources generate stationary (dc) fields. In addition, fields from animals are modulated by respiration and other body movements. Since electroreceptors are insensitive to a pure dc field, it has been suggested that the ac modulation carries most of the relevant information for electrosensory animals. However, in a natural situation pure dc fields are rare since any relative movement between source and receiver will transform a dc field into a time varying signal. In this paper, we will describe the properties of such signals and how they are filtered at the first stage of electrosensory information processing in the brain. We will show that the signal perceived by an animal traversing a dc electric field contains all the information necessary to reconstruct the distance to the source and that the signal conditioning algorithms are perfectly adapted to preserve such information.

  2. Report on Non-Contact DC Electric Field Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  3. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    Science.gov (United States)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  4. Synthesis of zirconium oxynitride in air under DC electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa, E-mail: yamataka@numse.nagoya-u.ac.jp [Department of Quantum Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8603 (Japan); Yoshida, Hidehiro [National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047 (Japan); Matsui, Koji [Inorganic Materials Research Laboratory, Tosoh Corporation, 4560 Kaisei-cho, Shunan, Yamaguchi 746-8501 (Japan)

    2016-08-22

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  5. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  6. Effects of resistive bodies on DC electrical soundings

    Directory of Open Access Journals (Sweden)

    L. Alfano

    1996-06-01

    Full Text Available Some deep DC electrical soundings, performed in alpine and apenninic areas with the continuous polar dipole-dipole spread, show apparent resistivity curves with positive slopes. Measured values of apparent resistivity reach 30000 Wm. Applying the "surface charges" method we developed three dimensional mathematical models, by means of which we can state simple rules for determining the minimum extensions of the deep resistive bodies, fundamental information for a more precise interpretation of the field results.

  7. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    Science.gov (United States)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  8. Estimation of Bidirectional Buck/boost DC/DC Converters with Electric Double-Layer Capacitors for Energy Storage Systems

    Science.gov (United States)

    Funabiki, Shigeyuki; Yamamoto, Masayoshi

    Renewable energy such as wind force and solar light has collected the attention as alternative energy sources of fossil fuel. An energy storage system with an electric double-layer capacitor (EDLC), which balances the demand and supply power, is required in order to introduce the electric power generating system that utilizes renewable energy. Currently, the research and development of these energy storage systems are actively carried out. In the energy storage system with an EDLC, the DC/DC converter having the function of the bidirectional power flow and the buck/boost performance is essential as an interface and power control circuit. There are two types of the bidirectional buck/boost DC/DC converters. One type consists of two buck/boost DC/DC converters with one reactor. The other type consists of two sets of two-quadrant DC/DC converters with one reactor. This paper discusses the comparison of these types of DC/DC converters with bidirectional power flow and buck/boost performance. The two types of DC/DC converters are estimated for their application to the energy storage system with the EDLC. As the voltage endurance of the device is lower and the mean current is smaller in the latter type of converter despite of having twice the number of devices compared to the former, the latter type of converter has the advantage of a smaller reactor, i.e., core volume and loss, and lower loss in the converter.

  9. Polariton spectrum of a bounded antiferromagnet with a center of antisymmetry in an external electric field oriented normally to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, D. V.; Savchenko, A. S.; Tarasenko, S. V., E-mail: tarasen@mail.fti.ac.donetsk.ua [National Academy of Sciences of Ukraine, Donetsk Physics and Engineering Institute (Ukraine)

    2009-12-15

    The features of transmission of TE and TM polaritons through an interface between magnetic and nonmagnetic media and their localization at the interface in an external dc electric field have been studied. This field is directed along the hard magnetization axis. The magnetic medium is an easy-plane tetragonal antiferromagnet; it is odd with respect to inversion. A magnetic plate and a 1D magnetic photonic crystal in an external dc electric field, oriented normally to the interface, are considered.

  10. DC Electrical Ageing of XLPE under Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Fadila Benlizidia Lalam

    2017-01-01

    Full Text Available The experimental electrical ageing, of cross-linked polyethylene films 100 μm thick, was investigated under high hydrostatic pressure of 300 bar and at atmospheric pressure. The tests are conducted on direct current (dc for up to 1000 h ageing and at temperature of 70°C. The use of the Weibull statistic, with the estimation of confidence bounds at 90%, has shown that the hydrostatic pressure has a real effect on the lifetime. These lifetime data are qualitatively analyzed with the inverse power model. It was found that thermally activated process is able to describe the pressure effect on the electrical ageing of XLPE.

  11. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  12. Cold atmospheric plasma jet in an axial DC electric field

    Science.gov (United States)

    Lin, Li; Keidar, Michael

    2016-08-01

    Cold atmospheric plasma (CAP) jet is currently intensively investigated as a tool for new and potentially transformative cancer treatment modality. However, there are still many unknowns about the jet behavior that requires attention. In this paper, a helium CAP jet is tested in an electrostatic field generated by a copper ring. Using Rayleigh microwave scattering method, some delays of the electron density peaks for different ring potentials are observed. Meanwhile, a similar phenomenon associated with the bullet velocity is found. Chemical species distribution along the jet is analyzed based on the jet optical emission spectra. The spectra indicate that a lower ring potential, i.e., lower DC background electric field, can increase the amount of excited N2, N2+, He, and O in the region before the ring, but can decrease the amount of excited NO and HO almost along the entire jet. Combining all the results above, we discovered that an extra DC potential mainly affects the temporal plasma jet properties. Also, it is possible to manipulate the chemical compositions of the jet using a ring with certain electric potentials.

  13. The Chaotic-Based Control of Three-Port Isolated Bidirectional DC/DC Converters for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-01-01

    Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.

  14. Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation.

    Science.gov (United States)

    Yu, Kai; Wang, Jiang; Deng, Bin; Wei, Xile

    2013-06-01

    Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.

  15. AN ASSESSMENT OF HIGH-VOLTAGE DC ELECTRICAL POWER IN AIRCRAFT ELECTRICAL SYSTEMS.

    Science.gov (United States)

    If the presently installed three-phase ac transmission system on aircraft were replaced by a higher voltage dc ( HVDC ) transmission using a ground...from one- to two-thirds of the total electrical system weight. HVDC may have some disadvantages such as higher short-circuit currents, some increase in

  16. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  17. Structural and electrical properties of DC sputtered molybdenum films

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G.; Grizalez, M.; Hernandez, L.C. [Laboratorio de Celdas Solares, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    1998-02-27

    A method is described for the fabrication of low-resistivity molybdenum films on soda-lime glass substrates. Films have been deposited using a DC magnetron sputtering system with a S-gun configuration, and have been characterized through X-ray diffraction, electrical conductivity, and Hall mobility measurements. The influence of the deposition parameters on both the resistivity of the Mo and on the contact resistivity of the Mo/CuInSe{sub 2}/Mo structure has been studied. Values of resistivity ranging from 1.2x10{sup -5} to 36x10{sup -5} {Omega} cm and of contact resistivity ranging from 0.025 to 0.15 {Omega} cm{sup 2} were found

  18. DC electrical conductivity study of cerium doped conducting glass systems

    Science.gov (United States)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  19. Analysis of Abnormal Modes of Hoisting DC Electric Drive System

    Directory of Open Access Journals (Sweden)

    Kosmas Zdrozis

    2010-01-01

    Full Text Available Problem statement: Host number of publications in which special attention was given to the behavior of the hoisting drives in abnormal modes was found. The effect of the failure of the main power supply on the electrical and mechanical parts of the hoisting drive when the motor is operating in the regenerative braking mode was not enough studied. Approach: In this study, the effect of the failure of the main power supply on the electrical and mechanical parts of the hoisting drive when the motor was operating in the regenerative braking mode and give recommendations and solutions to minimize the negative consequences of that abnormal mode. A special comprehensive mathematical mode was developed. The model comprised different submodels that describe the real operation of the power supply, four-quadrant thyristor AC/DC dual converter, firing system, protective devices and mechanism including the elastic elements like ropes and long shafts. This comprehensive model was used to study the behavior of the drive and choose the optimum protective device against the corresponding abnormal mode. Results: The failure of the supplying voltage of the dc hoisting drive at power regeneration leads to a significant increase in the motor armature current due to the formed closed loop comprising the armature winding, pair of thyristors and the secondary coil of the supplying transformer, in this mode the converter counter EMF will disappear. The protective device should protect the converter and the motor against such abnormal mode. The produced inrush current in role generates a huge motor torque that result in possible ropes and crane boom deformation, thus the mechanism design should include such possible abnormal mode. Conclusion: These results were implemented in the design of a special fast-responding circuit breaker which guarantees the exclusion of the armature current increase in the mentioned mode.

  20. An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

    2008-01-01

    An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.

  1. Electricity generation and environmental externalities: Case studies, September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  2. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  3. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    Science.gov (United States)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  4. Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC)

    OpenAIRE

    Ferreres, F; Valentão, P; Llorach, R.; Pinheiro, C.; Cardoso, L; Pereira, J.A.; Seabra, R.M.; Andrade, P.B.

    2005-01-01

    Glycosylated kaempferol derivatives from the external leaves of tronchuda cabbage ( Brassica oleracea L. var. costataDC) characterized by reversed-phase HPLC-DAD-MS/MS-ESI were kaempferol 3- Osophorotrioside- 7-O-glucoside, kaempferol 3-O- (methoxycaffeoyl/caffeoyl)sophoroside-7- O-glucoside, kaempferol 3-O-sophoroside-7-O-glucoside, kaempferol 3-O-sophorotrioside-7-O-sophoroside, kaempferol 3- O-sophoroside-7- O-sophoroside, kaempferol 3- O-tetraglucoside-7- O-sophoroside, kaempf...

  5. 76 FR 20968 - Application To Export Electric Energy; DC Energy Texas, LLC

    Science.gov (United States)

    2011-04-14

    ... Application To Export Electric Energy; DC Energy Texas, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... application from DCE Texas requesting authority to transmit electric energy from the United States to...

  6. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... Application To Export Electric Energy; DC Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Energy to transmit electric energy from the United States to Canada as a power marketer for a...

  7. Pure quadratic or higher-order optical effects in anisotropic crystals induced by external dc fields and probed by a single low-intensity plane electromagnetic wave

    Science.gov (United States)

    Melnichuk, Mike; Wood, Lowell T.

    2017-07-01

    The determination of a clear theoretical demarcation between a true or a false quadratic or higher-order low-intensity optical effect induced by an externally applied static or quasistatic (dc) vector field in anisotropic crystals is the scope of the present work. A complete set of necessary and sufficient conditions required for the practical possibility of direct detection, measurement, and tabulation of only those pure optical contributions is finally obtained. The dc electro-optic effect stands out as the most representative of all of these low-power dc optical effects. However, although the dc Kerr effect remains the main topic of application of the analytical treatment developed in this work, the current theoretical formalism is extended to include other dc conventional crystal optics effects, such as electrogyration, electroabsorption, and externally induced ray or energy propagation. Even more, the theoretical conditions are further generalized to apply to any pure higher-order crystal optics effect induced by external dc fields. These can be electric, magnetic, force, and even temperature or concentration gradient fields. The current treatment does not extend to multiple-beam high-intensity nonlinear optics effects induced by optical (ac) fields. Compared to previously published expressions, a more general Fresnel equation is also provided here together with the most general Jones vectors describing the eigenpolarizations of the single probing beam of light. All the generalizations and extensions mentioned in this article are valid as long as the field-dependent coefficients of the particular optical effect under consideration satisfy the equation of a positive-definite complex Hermitian form.

  8. DC-DC converters in distributed photovoltaic electricity system. Analysis, control and design

    Energy Technology Data Exchange (ETDEWEB)

    Huusari, J.

    2012-10-15

    This thesis presents a comprehensive review on switched-mode converters in terms of dynamic behavior and practical limitations that arise from the fundamental properties of the electrical sources and loads, control engineering principles and topological properties of the converters. The main focus is on analyzing the behavior of a single converter used to interface a photovoltaic generator into a high-voltage dc link. The main objective is to introduce interfacing principles with numerous examples and a thorough discussion. The interfacing of photovoltaic generators by means of switched-mode converters has proven to be problematic according to numerous scientific publications indicating operational disadvantages and anomalies. The output characteristics of the photovoltaic generator, which are bound to varying environmental conditions, introduce design challenges. It has been recognized recently that the photovoltaic generator does not contain similar electrical behavior as conventional electrical sources, most notably due to its limited-power characteristics, yielding two distinctive operating regions. Yet, the constraints arising from the properties of the source have not been completely recognized, although the effect of these constraints can be seen from the published research results. When switched-mode converters are used to adapt individual photovoltaic modules into larger system by connecting converters in series or in parallel, severe operational limitations are observed. On the other hand, if the photovoltaic generator is substituted with a source that does not contain similar characteristics, observations may lead to misconclusions as the effect of the photovoltaic generator is not properly modeled. Therefore, claims that are not valid for actual applications with photovoltaic generators may be presented and widely accepted. This thesis presents methods to perform proper analysis of switched-mode converters implemented in distributed photovoltaic

  9. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  10. Usage of a dc-to-dc converter for voltage adaption between energy storage and propulsion system in electric or hybrid vehicles; Einsatz eines DC/DC-Wandlers zur Spannungsanpassung zwischen Antrieb und Energiespeicher in Elektro- und Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenen, Timo

    2011-07-01

    Every time a new hybrid or electrical vehicle is developed, different topologies are compared to achieve the best results regarding weight costs and efficiency. The integration of a dc-to-dc converter between the battery stack and the power train is a frequently discussed alternative because the preferred voltage of the inverter and machine are often higher than the voltage of the battery stack. Within this thesis this approach was studied in detail and compared with the conventional concept without using a dc-to-dc converter. Therefore the influence of the dc-link voltage on the components like battery stack, machine, inverter and dc-to-dc converter was investigated. A change of the dc-link voltage leads to changes inside the components which affect weight, surface of the semiconductor devices and efficiency. This correlation could be used to develop a simulation process which optimizes the dc-link voltage regarding the programmed targets. In hybrid and electrical vehicles low weight and minimum costs are important and were defined as the main targets to achieve. The vantages which arise by using a dc-to-dc converter can be opposed to the disadvantages which also occur. The additional degree of freedom caused by the dc-to-dc converter shall be used. To achieve the best results regarding efficiency, the dc-link voltage has to be adapted to the operating point of the machine. First of all the dc-to-dc converter is an additional component with its weight, volume and losses. By the increased dc-link voltage on the drive train side, the size of the semiconductor devices inside the inverter could be reduced. Therefore the number of windings inside the machine has to be adapted accordingly. Also the wiring could be decreased based on the reduced currents. Overall there is still a higher weight and volume caused by the dc-to-dc converter. Also the efficiency map is influenced by the dc-to-dc converter. In the base speed region the dc-to-dc converter leads to a higher

  11. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  12. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  13. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Swaroop, K.; Somashekarappa, H. M., E-mail: carrtmu@gmail.com [Centre for Application of Radioisotopes and Radiation Technology (CARRT), USIC, Mangalore University, Mangalagangotri-574199, Karnataka (India); Naveen, C. S.; Jayanna, H. S. [Department of PG Studies and Research in Physics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka (India)

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  14. A Robust Fuzzy Sliding Mode Controller Synthesis Applied on Boost DC-DC Converter Power Supply for Electric Vehicle Propulsion System

    Directory of Open Access Journals (Sweden)

    Boumediène Allaoua

    2013-01-01

    Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

  15. Students' Reasoning When Tackling Electric Field and Potential in Explanation of DC Resistive Circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro

    2017-01-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…

  16. Cholesteric elastomers in external mechanical and electric fields

    Science.gov (United States)

    Menzel, Andreas M.; Brand, Helmut R.

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  17. Estimation of Faults in DC Electrical Power System

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper demonstrates a novel optimizationbased approach to estimating fault states in a DC power system. The model includes faults changing the circuit topology...

  18. Formation of Organized Protein Thin Films with External Electric Field.

    Science.gov (United States)

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  19. A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity

    Directory of Open Access Journals (Sweden)

    V. M. Sorokin

    2007-01-01

    Full Text Available The influence of variations in conductivity and external electric current variations in the lower atmosphere on DC electric field over a seismic region is investigated. The external current is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. This effect is related with the occurrence of ionization source due to seismic-related emanation of radon and other radioactive elements into the lower atmosphere. An increase in atmosphere radioactivity level results in the appearance of additional sources of ionization, and altitude dependence of the ion formation rate is calculated. Ionization source varies the atmospheric conductivity and the external current through appearance of ions with equilibrium number density and their adhesion to aerosols. We have calculated the perturbation of conductivity and external electric current as a function of altitude. Variation of conductivity and external current in the lower atmosphere leads to a perturbation of electric current which flows in the global atmosphere-ionosphere circuit. Finally, perturbations of DC electric field both on the Earth's surface and in the ionosphere are estimated.

  20. External costs of electricity; Les couts externes de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Rabl, A. [Ecole des Mines de Paris, 75 (France); Spadaro, J.V. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2005-07-01

    This article presents a synthesis of the ExternE project (External costs of Energy) of the European community about the external costs of power generation. Pollution impacts are calculated using an 'impact pathways' analysis, i.e. an analysis of the emission - dispersion - dose-response function - cost evaluation chain. Results are presented for different fuel cycles (with several technological variants) with their confidence intervals. The environmental impact costs are particularly high for coal: for instance, in France, for coal-fired power plants it is of the same order as the electricity retail price. For natural gas, this cost is about a third of the one for coal. On the contrary, the environmental impact costs for nuclear and renewable energies are low, typically of few per cent of the electricity price. The main part of these costs corresponds to the sanitary impacts, in particular the untimely mortality. In order to avoid any controversy about the cost evaluation of mortality, the reduction of the expectation of life due to the different fuel cycles is also indicated and the risks linked with nuclear energy are presented using several comparisons. (J.S.)

  1. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  2. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  3. Study of DC and AC electric field effect on Pisum sativum seeds growth

    Science.gov (United States)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  4. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    Science.gov (United States)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  5. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Cho, Jeon-Wook; Ryoo, Hee-Suk [Korea Electrotechnology Research Institute, Changwon, Gyungnam 641-120 (Korea, Republic of); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2013-11-15

    Highlights: •The electrical conductivity of PPLP in LN{sub 2} was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN{sub 2}). Electrical conductivity of PPLP in LN{sub 2} has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN{sub 2} were presented in this paper. Based on the experimental works, DC electric

  6. SIMULATION MODELS OF HEAVY TRUCKS TRAFFIC CONTROL WITH ELECTRIC DC DRIVE

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2015-01-01

    Full Text Available A model of the straight course of movement of the mobile machine with a traction electric motor DC. Traffic management controller provides a closed classical scheme with feedback. The mathematical model of the electric DC motor with the energy dissipation in the rotor bearings. Design scheme of mobile machines include speed dial controller, traction electric motor, gearbox, transmission and progressively moving mass on the elastic­dissipative wheel. The results of the simulation of the machine in the form of temporary processes of change control signals, voltage and current in the windings of the motor and traction power developed on the wheel.

  7. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    Science.gov (United States)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  8. Bidirectional DC-DC converter fed drive for electric vehicle system

    African Journals Online (AJOL)

    ATHARVA

    This can be applied in Hybrid Electric Vehicle (HEVs) with a battery as an energy ... However the high initial cost of BFEVs as well as its short driving range has ... drive system reduces the system complexity, cost and size of a purely electric ...

  9. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  10. Classical chaos in one-dimensional hydrogen in strong dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Humm, D.C.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (US))

    1989-10-01

    We analyze the effect of a dc electric field on classical chaos in one-dimensional hydrogen in a microwave field in the {ital n} nonmixing regime and also in the inter-{ital n}-mixing regime where significant dc field-induced ionization occurs. We study the ac field-induced nonlinear classical resonances, the threshold of chaos, and the number of states trapped in the resonances. In the strong-{ital n}-mixing and ionizing regime (unclamping dc field), we find the chaotic dynamics depend sharply on the dc field and the number of states trapped in the resonances, allowing the system to undergo a transition from a regime of classical behavior to a regime of uniquely quantum behavior as the dc field is changed. We show that ionization by classical chaos competes favorably with ionization by tunneling in the transition region, and that tunneling allows very sensitive spectroscopy of this region.

  11. Electric compressor with high-speed brushless DC motor; E-Kompressor mit buerstenlosem Gleichstrommotor

    Energy Technology Data Exchange (ETDEWEB)

    Biwersi, Stephan; Tavernier, Stephan; Equoy, Samuel [Moving Magnet Technologies (MMT), Besancon (France)

    2012-12-01

    Moving Magnet Technologies (MMT) from Besancon in France has developed a highly efficient brushless DC motor that is especially suitable for use in electrically supported compressors. It helps to further minimise so-called turbo lag in supercharged internal combustion engines. The following report presents technical details of the electric motor and practical results in combination with an electrically driven compressor. MMT was supported by Swissauto in designing the supercharging system.

  12. Nucleation of lysozyme crystals under external electric and ultrasonic fields

    Science.gov (United States)

    Nanev, Christo N.; Penkova, Anita

    2001-11-01

    Preferred orientation along c-axis of hen-egg-white lysozyme (HEWL) crystals has been observed in an external electric field. Besides, the HEWL crystals grew predominantly on the cathode side of the glass cell. These facts were explained on the basis of a concept for specific spatial distribution of the positive electric charges on the individual HEWL molecules, and thus attributed to the (preferred) orientation of individual HEWL molecules in the solution, under these conditions. Ultrasonic field redoubles the nucleation rate of HEWL crystals, but does not change the number of building units in the critical nucleus. Taking into account the intermolecular binding energy, we conclude that ultrasonic field accelerates nucleation due to breaking of the protein crystals.

  13. Method for Estimating Low-Frequency Return Current of DC Electric Railcar

    Science.gov (United States)

    Hatsukade, Satoru

    The Estimation of the harmonic current of railcars is necessary for achieving compatibility between train signaling systems and railcar equipment. However, although several theoretical analyses methods for estimating the harmonic current of railcars using switching functions exist, there are no theoretical analysis methods estimating a low-frequency current at a frequency less than the power converter's carrier frequency. This paper describes a method for estimating the spectrum (frequency and amplitude) of the low-frequency return current of DC electric railcars. First, relationships between the return current and characteristics of the DC electric railcars, such as mass and acceleration, are determined. Then, the mathematical (not numerical) calculation results for low-frequency current are obtained from the time-current curve for a DC electric railcar by using Fourier series expansions. Finally, the measurement results clearly show the effectiveness of the estimation method development in this study.

  14. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  15. Effects of dc electric fields on multiphoton ionization of rubidium atoms at low and high densities

    Science.gov (United States)

    Hammer, Nathan I.; Compton, Robert N.

    2001-08-01

    Multiphoton ionization (MPI) of rubidium atoms at both low (atomic beam) and high (heat pipe) densities is studied using a tunable OPO laser. At high Rb densities ionization of the laser excited ns, np, and nd states occurs both through photoionization and collisional ionization. Excitation of the np states is found to be induced by the external electric field at both low and high densities. In addition, np signal is also seen at very low (E→0) fields in the heat pipe, providing evidence for collision mixing as well as field mixing. At low densities, signal for the high np states initially increases with applied field, but soon saturates (i.e. becomes field independent) while the signal for high nd states decreases with increasing field. At low Rb densities strong resonance features are observed in the energy region between the zero field limit (IP) and the field ionization limit. These features, as well as the field ionization threshold, are found to be dependent upon the angle between the laser polarization and the direction of the applied dc field. Evidence for tunneling through the barrier created by the -e2/r-eEr potential is also presented for ns and nd states.

  16. Electro-worming: The Behaviors of Caenorhabditis (C.) elegans in DC and AC Electric Fields

    CERN Document Server

    Chuang, Han-Sheng; Dabbish, Nooreen; Bau, Haim

    2010-01-01

    The video showcases how C. elegans worms respond to DC and AC electrical stimulations. Gabel et al (2007) demonstrated that in the presence of DC and low frequency AC fields, worms of stage L2 and larger propel themselves towards the cathode. Rezai et al (2010) have demonstrated that this phenomenon, dubbed electrotaxis, can be used to control the motion of worms. In the video, we reproduce Rezai's experimental results. Furthermore, we show, for the first time, that worms can be trapped with high frequency, nonuniform electric fields. We studied the effect of the electric field on the nematode as a function of field intensity and frequency and identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) avoid blue light, indicating that at least some of the nervous system functions remain unimpaired in the presence of the electric field. DEP is useful to dynamically confine nematodes for observati...

  17. Crystalline polarity of ZnO thin films deposited under dc external bias on various substrates

    Science.gov (United States)

    Ohsawa, Takeo; Tsunoda, Kei; Dierre, Benjamin; Zellhofer, Caroline; Grachev, Sergey; Montigaud, Hervé; Ishigaki, Takamasa; Ohashi, Naoki

    2017-04-01

    Effects of the nature of substrates, either crystalline or non-crystalline, on the structure and properties of ZnO films deposited by sputtering were investigated. This study focuses mainly on the role of the external electric bias applied to substrates during magnetron sputtering deposition in controlling crystalline polarity, i.e., Zn-face or O-face, and the resulting film properties. It was found that polarity control was achieved on silica and silicon substrates but not on sapphire substrates. The substrate bias did influence the lattice parameters in the structural formation; however, the selection of the substrate type had a significant influence on the defect structures and the film properties.

  18. DC measurement of electrical contacts between strands in superconducting cables for the LHC main magnets

    CERN Document Server

    Richter, D; Depond, J M; Leroy, D; Oberli, L R

    1996-01-01

    In the LHC main magnets, using Rutherford type cable, the eddy current loss and dynamic magnetic field error depend largely on the electrical resistance between crossing (Rc) and adjacent (Ra) strands. Cables made of strands with pre-selected coatings have been studied at low temperature using a DC electrical method. The significance of the inter-strand contact is explained. The properties of resistive barriers, the DC method used for the resistance measurement on the cable, and sample preparation are described. Finally the resistances are presented under various conditions, and the effect is discussed that the cable treatment has on the contact resistance.

  19. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    Science.gov (United States)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  20. FC/Battery Power Management for Electric Vehicle Based Interleaved DC-DC Boost Converter Topology

    OpenAIRE

    Benrabah, Ali; Khoucha, Farid; Herizi, Omar; Benbouzid, Mohamed; Kheloui, Abdelaziz

    2013-01-01

    International audience; Due to the fact that the environmental issues have become more serious recently, interest in renewable energy systems, such as, fuel-cells (FCs) has increased steadfastly. Among many types of FCs, proton exchange membrane FC (PEMFC) is one of the most promising power sources due to its advantages, such as, low operation temperature, high power density and low emission. However, using only PEMFC for electric vehicle may not be feasible to satisfy the peak demand changes...

  1. AC and DC Electrical Conductivity Measurements on Glycine Family of Nonlinear Optical (NLO Single Crystals

    Directory of Open Access Journals (Sweden)

    Suresh Sagadevan

    2014-04-01

    Full Text Available In the present work, the AC/DC conductivity studies were carried out on Glycine family of NLO single crystals such as Trisglycine Zinc Chloride (TGZC, Triglycine Acetate (TGAc and Glycine Lithium Sulphate (GLS. The AC conductivity measurements were carried out using HIOKI 3532-50 LCR HITESTER in the frequency range of 50 Hz to 5 MHz for the grown NLO single crystals. The DC electrical conductivity measurements were also carried out for the crystals using the conventional two – probe technique in the temperature range of 313 – 423 K. The present study indicates that both the AC and DC conductivity of the samples increase with the increase in temperature. The activation energies were also calculated from AC/DC conductivity studies.

  2. Scientific Laboratory Platform for Testing the Electric Vehicle Equipped with DC Drive

    Directory of Open Access Journals (Sweden)

    Brazis V.

    2014-12-01

    Full Text Available The authors present a test platform for the low-power DC electric motor of a traction vehicle or a high-power motor scaled in the traction and braking modes. The load emulator of the traction drive is made using an induction motor controlled by a frequency converter. A microcontroller controls the bi-directional DC/DC converter and sends a speed reference signal to the frequency converter. The test bench is meant for determination of the power consumption by motor in various speed cycles, and will be used to demonstrate the operation of electric vehicle to students and to investigate the charging/discharging strategies of energy sources.

  3. DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Rowland, D.

    2009-01-01

    Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density.

  4. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    OpenAIRE

    Rafael Vargas-Bernal; Gabriel Herrera-Pérez; Ma. Elena Calixto-Olalde; Margarita Tecpoyotl-Torres

    2013-01-01

    The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to identify main design parameters that more efficiently control the electrical properties of the materials to be developed. In this paper, four different models used for modeling DC electrical conductivi...

  5. Green's functions in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, S.M.

    1979-04-01

    An approach to quantum electrodynamics in an intense electromagnetic field was proposed in Ref. 1 (E. S. Fradkin and D. M. Gitman, Preprint, MIT, 1978). In the case when the vacuum is unstable with respect to electron-positron pair production, an entire series of various Green's functions in an external classical field enters into the theory. In the present study these Green's functions are calculated for the case of a constant homogeneous electric field. The results are presented in the form of contour integrals over the proper time. The operator representations of the Green's functions in this field are given. Only scalar QED is considered.

  6. Combined photovoltaic/thermal solar array dc electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, J.S. Jr.

    1981-12-01

    An electrical model of a combined photovoltaic/thermal solar array has been developed to predict the steady state behavior of the line currents, power output and array voltage. The effects of temperature on the solar cell characteristics is included in the analysis. The model includes line isolation diodes and ''open cell'' bypass diodes. A numerical procedure based on the Contraction Mapping Fixed Point Theorem is used to solve the associated nonlinear equations. 6 refs.

  7. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. 电动汽车用数字型直流-直流转换器设计%Design of digital DC-DC converter for electric vehicles

    Institute of Scientific and Technical Information of China (English)

    滕聪; 黄金强; 禄盛; 黄智宇

    2012-01-01

    The electric vehicle may win an opportunity due to the pollution of traditional vehicles. The DC-DC converter is an important device for the popularity of electric vehicles, in order to absorb the advantages of digital converter and meet the requirement of wide-range input voltage, the concept of digital DC-DC converters for electric vehicle has been a research subject in EVs area. However, this method requires high dynamic response and wide-range input voltage. A two-stage DC-DC converter controlled by automotive MCU and software was presented, based on the simulation result of small-signal model. The component parameters and test results were described. The results show that the DC-DC converter controlled by digital chip is a real-time programmability, and can meet the requirements of electric vehicles.%随着传统汽车污染的不断增加,以电动汽车为代表的新能源汽车迎来了机遇.而直流-直流( DC-DC)转换器是电动汽车中不可缺少的一种装置.为了吸纳数字型转换器的优点,以及符合宽范围输入电压的要求,电动汽车中用数字型DC-DC转换器已经成为新能源汽车领域中一个热门研究.然而,这种方法需要快速的动态响应.因此,根据其小信号模型仿真结果设计了一个两级转换拓扑的DC-DC转换器,并且设计了基于汽车级数字芯片控制的硬件电路平台和软件算法程序,并给出了DC-DC转换器的元件参数及测试结果.结果表明由数字芯片控制的DC-DC转化器是实时可编程的,也满足汽车电子的要求.

  9. Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels.

    Science.gov (United States)

    Wang, Lixia; Jiang, Yaoping; Lin, Youhui; Pang, Jie; Liu, Xiang Yang

    2016-05-20

    Konjac glucomannan-tungsten (KGM-T) hydrogel of electrochemical reversibility was successfully produced under DC electric fields in the presence of sodium tungstate. The structure and the effects of sodium tungstate concentration, KGM concentration, voltage and electric processing time on the rheological properties of the gels were investigated. pH experiments showed that KGM sol containing Na2WO4·2H2O in the vicinity of the positive electrode became acidic and the negative electrode basic after the application of DC electric fields. Under acid conditions, WO4(2-) ions transformed into isopoly-tungstic acid ions. FTIR and Raman studies indicated that isopoly-tungstic acid ions absorbed on KGM molecular chain and cross-linked with -OH groups at C-6 position on sugar units of KGM. Frequency sweep data showed with increasing sodium tungstate concentration, voltage, and electric processing time, the viscoelastic moduli, i.e., the storage and the loss moduli of the gel increased, whereas an increase in KGM concentration led to a decrease in gel viscoelastic moduli. The temperature sweep measurements indicated the obtained gel exhibited high thermal stability. Finally, the mechanism of gel formation was proposed. Our work may pave the way to use DC electric fields for the design and development of KGM gels as well as polysaccharide gels.

  10. Optimization of Electrical System for a Large DC Offshore Wind Farm by Genetic Algorithm

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    This paper proposes an optimization platform based on Genetic Algorithm, where the main components of the electrical system of a wind farm and key technical specifications are used as input parameters and the topology of the electrical system is to be optimized for a minimum cost and high...... reliability. A method to encode and decode an electrical system is studied. The reliability evaluation for a given network is also investigated. Genetic Algorithm is implemented to find the optimum network design for a large DC wind farm. It is concluded that different topologies may cause very different cost...... and reliability, and the Genetic Algorithm is capable of finding the optimum solution....

  11. Optimization of Electrical System for a Large DC Offshore Wind Farm by Genetic Algorithm

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    This paper proposes an optimization platform based on Genetic Algorithm, where the main components of the electrical system of a wind farm and key technical specifications are used as input parameters and the topology of the electrical system is to be optimized for a minimum cost and high...... reliability. A method to encode and decode an electrical system is studied. The reliability evaluation for a given network is also investigated. Genetic Algorithm is implemented to find the optimum network design for a large DC wind farm. It is concluded that different topologies may cause very different cost...... and reliability, and the Genetic Algorithm is capable of finding the optimum solution....

  12. Magnetotelluric and DC electrical soundings in the Po plain (Veneto region)

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, L.; Giudici, M. [Milan Univ. (Italy). Dip. di Scienze della Terra, Sezione di geofisica; Zaja, A. [Padua Univ. (Italy). Dip. di Geologia, Paleontologia e Geofisica

    1998-08-01

    Eleven MT soundings and two dipole-dipole electrical soundings were carried out in the area of the Po plain south of the town of Padua. MT soundings were performed in the frequency band from 100 to 1/64 Hz; DC soundings were achieved, respectively with a 2000 and 4000 m length of the array. The electrical interpretative models show a predominant monoclinical tectonic behaviour with an evident deepening of the resistive basement toward NE. The joint use of the two electrical techniques defined the geological and structural setting up to a depth of 2 km in a highly conductive area.

  13. Studies for Characterisation of Electrical Properties of DC Collection System in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Chen, Yu-Hsing; Dincan, Catalin Gabriel; Olsen, Rolant Joannesarson

    2016-01-01

    of the MVDC power collection, regardless of choice of turbine converter circuit, MVDC cable configuration, use of DC circuit breakers, substation converter circuit, control and protection. The paper presents the necessary list of studies, and includes examples of simulation results for an exemplary MVDC wind......Offshore HVDC-connected wind farms where the wind plant power collection network becomes DC, rather than AC, offer reduced electrical losses, lower equipment ratings potentially leading to lower bill-of-material cost, and undiminished functionality. However, no standards exist for an offshore...

  14. Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Fabrice Locment

    2015-05-01

    Full Text Available This paper focuses on the evaluation of theoretical and numerical aspects related to an original DC microgrid power architecture for efficient charging of plug-in electric vehicles (PEVs. The proposed DC microgrid is based on photovoltaic array (PVA generation, electrochemical storage, and grid connection; it is assumed that PEVs have a direct access to their DC charger input. As opposed to conventional power architecture designs, the PVA is coupled directly on the DC link without a static converter, which implies no DC voltage stabilization, increasing energy efficiency, and reducing control complexity. Based on a real-time rule-based algorithm, the proposed power management allows self-consumption according to PVA power production and storage constraints, and the public grid is seen only as back-up. The first phase of modeling aims to evaluate the main energy flows within the proposed DC microgrid architecture and to identify the control structure and the power management strategies. For this, an original model is obtained by applying the Energetic Macroscopic Representation formalism, which allows deducing the control design using Maximum Control Structure. The second phase of simulation is based on the numerical characterization of the DC microgrid components and the energy management strategies, which consider the power source requirements, charging times of different PEVs, electrochemical storage ageing, and grid power limitations for injection mode. The simulation results show the validity of the model and the feasibility of the proposed DC microgrid power architecture which presents good performance in terms of total efficiency and simplified control.

  15. 三重交错并联DC/DC变换器设计%Design of a triple interleaving DC/DC converter of composite power electric cars

    Institute of Scientific and Technical Information of China (English)

    张智林; 张彦会; 张群

    2012-01-01

    DC/DC变换器是复合电源电动汽车的重要组成部分之一,为了提高DC/DC变换器的功率密度,DC/DC变换器正在向高频化发展,研究在单相DC/DC变换器的基础上,设计了一种三重交错并联DC/DC变换器,可以提高系统的开关频率、降低纹波电压,从而减小滤波器的体积、提高功率密度.最后通过Simulink进仿真分析,结果表明:三重交错并联DC/DC变换器的纹波电压明显小于单相DC/DC变换器,有利于功率密度的提高.%DC/DC converter is the important part of composite power electric cars. In order to improve the power density of DC/DC converter, high frequency is required. This paper designs a triple inter/earing DC/DC converter based on the single phase DC/DC converter. It can reduce the ripple voltage effectively, reduce the volume of the filter and improve the switch frequency of the system. Finally, through the simulation analysis, the results show that the system efficiency of the triple interleaving DC/DC converter is better than the single phase DC/DC converter, thus the power density is increased.

  16. Externalities of energy use, analyzed for shipping and electricity generation

    Science.gov (United States)

    Thomson, Heather

    Energy use is central to the modern lifestyle, but producing this energy often comes at an environmental cost. The three studies in this paper look at the tradeoffs involved in energy production. The first looks at transitioning marine vessels to natural gas from current distillate fuels. While natural gas will reduce local air pollutants, such as sulfur oxides and particulate matter, the implications for greenhouse gases depend on how the natural gas is extracted, processed, distributed, and used. Applying a "technology warming potential" (TWP) approach, natural gas as a marine fuel achieves climate parity within 30 years for diesel ignited engines, though it could take up to 190 years to reach climate parity with conventional fuels in a spark ignited engine. Movement towards natural gas as a marine fuel continues to progress, and conditions exist in some regions to make a near-term transition to natural gas feasible. The second study looks at externalities associated with electricity generation. The impact on the surrounding community is one concern when siting new electricity generating facilities. A survey was conducted of residents living near an industrial scale wind turbine and a coal-fired power plant to determine their visual and auditory effects on the residents. Results concluded that respondents living near the wind turbine were in favor of the facility. They were willing to pay an average of 2.56 a month to keep the turbine in its current location. Respondents living near the coal plant were opposed to the facility. They were willing to spend 1.82 a month to have the facility removed. The third study presents a cost effectiveness analysis of three of the main fuels used for electricity generation, namely coal, natural gas, and wind. This analysis adds social costs to the private costs traditionally utilized by investors making decisions. It utilizes previous research on visual and auditory amenity and disamenity values as well as recent published

  17. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  18. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer;

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi......-input converter is capable of bi-directional operation and is responsible for power diversification and optimization. A fixed switching frequency strategy is considered to control its operating modes. A portion of New York City Cycle that includes these operation modes is used to perform the analyses....

  19. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  20. A Study on Electrically Conducting Magnesia—carbon Bricks for DC EAF

    Institute of Scientific and Technical Information of China (English)

    TONGXiaojun; YANLiyi; 等

    1998-01-01

    This paper gives a brief introduction to a kind of special refractories for DC EAF-electrically conducting magnesia-carbon bricks.The application of the conductive magnesia-carbon brick as a hearth electrode is a trend of development in DC arc furnace hearth bootom because of its features of anti corrosion and easy repatching,This is a proven process already available abroad.After a study of teh effect of different amount of graphite added and pretreating temperatures on the eletric-conductivity of magnesia-carbon bricks it has been found that for a balance between electric and thermal conductivities,the proper amount of graphite to be added should be 8%-14% and the pretreatment at temperature of 1300-1500℃ will result in the formation inside the magnesia-carbon bricks of a continuous three-dimensional network of graphite and semi-coke,thus making the brick conductive.

  1. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  2. Effect of DC bias on electrical conductivity of nanocrystalline α-CuSCN

    Directory of Open Access Journals (Sweden)

    T. Prakash

    2011-06-01

    Full Text Available The grain boundary space charge depletion layer in nanocrystalline alpha phase CuSCN is investigated by studying electrical properties using impedance spectroscopic analysis in frequency domain. The measurements were performed at room temperature in wide frequency range 1 Hz to 1 MHz under various DC bias applied voltages ranges from 0 V to -2.1 V. The effect of bias on grain and grain boundary contribution electrical conductivity has been investigated by equivalent circuit model using non-linear least squares (NLLS fitting of the impedance data. Three order of magnitude variation of grain boundary conductivity was observed for varying 0 V to -2.1 V. Variations in the σac clearly elucidate the DC bias is playing crucial role on grain boundary double Schottky barriers of nanocrystalline α-CuSCN.

  3. The textural properties and microstructure of konjac glucomannan - tungsten gels induced by DC electric fields.

    Science.gov (United States)

    Wang, Lixia; Zhuang, Yuanhong; Li, Jingliang; Pang, Jie; Liu, Xiangyang

    2016-12-01

    Konjac glucomannan - tungsten (KGM-T) gels were successfully prepared under DC electric fields, in the presence of sodium tungstate. The textural properties and microstructure of the gels were investigated by Texture Analyzer, Rheometer and SEM. Based on the response surface methodology (RSM) results, the optimum conditions for KGM-T gel springiness is 0.32% sodium tungstate concentration, 0.54% KGM concentration, 24.66V voltage and 12.37min treatment time. Under these conditions, the maximum springiness value of KGM-T gel is 1.21mm. Steady flow measurement indicated that KGM-T gel showed characteristic non-Newtonian pseudoplastic behaviour, with low flow behaviour indexes in the shear thinning region. SEM demonstrated the porosity of the freeze-dried samples. These findings may pave the way to use DC electric fields for the design and development of KGM gels and to apply KGM gels for practical applications.

  4. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  5. D.C. electrical conductivity measurements on ADP single crystals added with simple organic compounds

    Indian Academy of Sciences (India)

    A Anne Assencia; C Mahadevan

    2005-08-01

    Pure and impurity added (with urea and thiourea) ADP single crystals were grown by the free evaporation method. D.C. electrical conductivity measurements were carried out along both the unique axis and perpendicular directions at various temperatures ranging from 40–150°C by the conventional two-probe method. Activation energies were also determined. The present study indicates that the conductivity increases with the increase in impurity concentration and temperature.

  6. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    Directory of Open Access Journals (Sweden)

    Rafael Vargas-Bernal

    2013-01-01

    Full Text Available The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to identify main design parameters that more efficiently control the electrical properties of the materials to be developed. In this paper, four different models used for modeling DC electrical conductivity of carbon nanotube-polymer composites are studied with the aim of obtaining a complete list of design parameters that allow guarantying to the designer an increase in electrical properties of the composite by means of carbon nanotubes.

  7. Feasibility Study of a 270V DC Flat Cable Aircraft Electrical Power Distribution System.

    Science.gov (United States)

    1982-01-01

    POWER CABLE (27&A) 62 SPLICE ENVIRGNIMENT FIREWALL PENETRATION SPLICE I CU/2 C Fi gure 3.5.9.9 High, AmpacitY F/at Cable Replacemnt Harness InstallatiOn...NADC-82023-60 FEASIBILITY STUDY OF A.270V 0C FLAT CABLE AIRCRAFT ELECTRICAL POWER DISTRIBUTION SYSTEM SM.J. Musga R. J. Rinehart Boeing Aerospace Co...PERIOD COVEIRED FEASIBILITY STUDY OF A 270V DC FLAT CABLE Final Report AIRCRAFT ELECTRICAL POWER DISTRIBUTION SYSTEM 30 Dec. 1980 to Jan. 19824

  8. Influence of a Weak DC Electric Field on Root Meristem Architecture

    Science.gov (United States)

    Wawrecki, Wojciech; Zagórska-Marek, Beata

    2007-01-01

    Background and Aims Electric fields are an important environmental factor that can influence the development of plants organs. Such a field can either inhibit or stimulate root growth, and may also affect the direction of growth. Many developmental processes directly or indirectly depend upon the activity of the root apical meristem (RAM). The aim of this work was to examine the effects of a weak electric field on the organization of the RAM. Methods Roots of Zea mays seedlings, grown in liquid medium, were exposed to DC electric fields of different strengths from 0·5 to 1·5 V cm−1, with a frequency of 50 Hz, for 3 h. The roots were sampled for anatomical observation immediately after the treatment, and after 24 and 48 h of further undisturbed growth. Key Results DC fields of 1 and 1·5 V cm−1 resulted in noticeable changes in the cellular pattern of the RAM. The electric field activated the quiescent centre (QC): the cells of the QC penetrated the root cap junction, disturbing the organization of the closed meristem and changing it temporarily into the open type. Conclusions Even a weak electric field disturbs the pattern of cell divisions in plant root meristem. This in turn changes the global organization of the RAM. A field of slightly higher strength also damages root cap initials, terminating their division. PMID:17686761

  9. Influence of a weak DC electric field on root meristem architecture.

    Science.gov (United States)

    Wawrecki, Wojciech; Zagórska-Marek, Beata

    2007-10-01

    Electric fields are an important environmental factor that can influence the development of plants organs. Such a field can either inhibit or stimulate root growth, and may also affect the direction of growth. Many developmental processes directly or indirectly depend upon the activity of the root apical meristem (RAM). The aim of this work was to examine the effects of a weak electric field on the organization of the RAM. Roots of Zea mays seedlings, grown in liquid medium, were exposed to DC electric fields of different strengths from 0.5 to 1.5 V cm(-1), with a frequency of 50 Hz, for 3 h. The roots were sampled for anatomical observation immediately after the treatment, and after 24 and 48 h of further undisturbed growth. DC fields of 1 and 1.5 V cm(-1) resulted in noticeable changes in the cellular pattern of the RAM. The electric field activated the quiescent centre (QC): the cells of the QC penetrated the root cap junction, disturbing the organization of the closed meristem and changing it temporarily into the open type. Even a weak electric field disturbs the pattern of cell divisions in plant root meristem. This in turn changes the global organization of the RAM. A field of slightly higher strength also damages root cap initials, terminating their division.

  10. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  11. Capture of water-borne colloids in granular beds using external electric fields: improving removal of Cryptosporidium parvum.

    Science.gov (United States)

    Kulkarni, Pramod; Dutari, Gabriel; Weingeist, David; Adin, Avner; Haught, Roy; Biswas, Pratim

    2005-03-01

    Suboptimal coagulation in water treatment plants often results in reduced removal efficiency of Cryptosporidium parvum oocysts by several orders of magnitude (J. AWWA 94(6) (2002) 97, J. AWWA 93(12) (2001) 64). The effect of external electric field on removal of C. parvum oocysts in packed granular beds was studied experimentally. A cylindrical configuration of electrodes, with granular media in the annular space was used. A negative DC potential was applied to the central electrode. No coagulants or flocculants were used and filtration was performed with and without application of an electric field to obtain improvement in removal efficiency. Results indicate that removal of C. parvum increased from 10% to 70% due to application of field in fine sand media and from 30% to 96% in MAGCHEM media. All other test particles (Kaolin and polystyrene latex microspheres) used in the study also exhibited increased removal in the presence of an electric field. Single collector efficiencies were also computed using approximate trajectory analysis, modified to account for the applied external electric field. The results of these calculations were used to qualitatively explain the trends in the experimental observations.

  12. Novel Radio on Fiber Access Eliminating External Electric Power Supply at Base Station

    Institute of Scientific and Technical Information of China (English)

    Tetsuya; Miki; Katsuyasu; Kawano; Nobuo; Nakajima; Naoto; Kishi; Masaru; Miyamoto; Tetsu; Aoki

    2003-01-01

    A novel Radio On Fiber(ROF) access is proposed and demonstrated which enables the pico-cell Base Station (BS) for high-speed wireless communications to eliminate external electric power supply facilities. We demonstrated 2.4-GHz band radio signal transmission through the BS without external electric power supply. The electrical power used for BS circuit is feeded by optical power over optical fiber from central station.

  13. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  14. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

    Science.gov (United States)

    McWilliams, Brandon; Yu, Jian; Kellogg, Frank; Kilczewski, Steven

    2017-02-01

    Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

  15. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

    Science.gov (United States)

    McWilliams, Brandon; Yu, Jian; Kellogg, Frank; Kilczewski, Steven

    2016-11-01

    Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

  16. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  17. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  18. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  19. The ac and dc electric field meters developed for the US Department of Energy

    Science.gov (United States)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  20. Progress on advanced dc and ac induction drives for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  1. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics

  2. The Effect of External Factors on Consumption Electricity Loads Forecasting using Fuzzy Takagi-Sugeno Kang

    Directory of Open Access Journals (Sweden)

    Gayatri Dwi Santika

    2017-03-01

    Full Text Available This study applied Fuzzy Inference System Sugeno to forecast electrical load by considering the external factors. To see the accuracy of forecasting using Fuzzy Inference System Sugeno, then a comparison between the forecasting results of Fuzzy Inference System Sugeno using historical data with Fuzzy Inference System Sugeno using external factors was done. By using external factors method, resulted the smallest RMSE of 0762 and using historical data obtained error (RMSE of 1028. The results of the study came to the conclusion that Fuzzy Inference System Sugeno method using external factors to forecast the consumption of electrical load gives a better result than Fuzzy Inference System Sugeno using only historical data.

  3. Bandgap engineering of rippled MoS2 monolayer under external electric field

    Science.gov (United States)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng; Feng, Ji

    2013-04-01

    In this letter we propose a universal strategy combining external electric field with the ripple of membrane to tune the bandgap of semiconducting atomic monolayer. By first-principles calculations we show that the bandgap of rippled MoS2 monolayer can be tuned in a large range by vertical external electric field, which is expected to have little effect on MoS2 monolayer. This phenomenon can be explained from charge redistribution under external electric field by a simple model. This may open an avenue of optimizing monolayer MoS2 for electronic and optoelectronic applications by surface patterning.

  4. Simulational studies of epitaxial semiconductor superlattices: Quantum dynamical phenomena in ac and dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Using high-accuracy numerical methods the author investigates the dynamics of independent electrons in both ideal and realistic superlattices subject to arbitrary ac and/or dc electric fields. For a variety of superlattice potentials, optically excited initial wave packets, and combinations of ac and dc electric fields, he numerically solves the time-dependent Schroedinger equation. In the case of ideal periodic superlattice potentials, he investigates a long list of dynamical phenomena involving multiple miniband transitions and time-dependent electric fields. These include acceleration effects associated with interminiband transitions in strong fields, Zener resonances between minibands, dynamic localization with ac fields, increased single-miniband transport with an auxiliary resonant ac field, and enhanced or suppressed interminiband probability exchange using an auxiliary ac field. For all of the cases studied, the resulting time-dependent wave function is analyzed by projecting the data onto convenient orthonormal bases. This allows a detailed comparison with approximately analytic treatments. In an effort to explain the rapid decay of experimentally measured Bloch oscillation (BO) signals the author incorporates a one-dimensional representation of interface roughness (IR) into their superlattice potential. He shows that as a result of IR, the electron dynamics can be characterized in terms of many discrete, incommensurate frequencies near the Block frequency. Chapters 2, 3, 4 and 5 have been removed from this report and will be processed separately.

  5. Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.

    2009-01-01

    DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients

  6. Numerical simulation of a backward-facing step flow in a microchannel with external electric field

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2015-03-01

    Full Text Available A backward-facing step flow in the microchannel with external electric field was investigated numerically by a high-order accuracy upwind compact difference scheme in this work. The Poisson–Boltzmann and Navier–Stokes equations were computed by the high-order scheme, and the results confirmed the ability of the new solver in simulation of micro-scale electric double layer effects. The flow fields were displayed for different Reynolds numbers; the positions of the vortex saddle point of model with external electric field and model without external electric field were compared. The average velocity increases linearly with the electric field intensity; however, the Joule heating effects cannot be neglected when the electric field intensity increases to a certain level.

  7. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  8. Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-hua; JIN Zhi-jian; ZHU Zi-shu

    2006-01-01

    A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.

  9. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.

    Science.gov (United States)

    Greenebaum, Ben

    2015-12-01

    The prime goal of this work was to model essentially steady (DC) fields from electrodes, implanted in several ways, which have been suggested as possible means to encourage nerve fiber regrowth in spinal cord injuries. A simplified model of the human spinal cord in the lumbar region and the SEMCAD-X computer program were used to calculate electric field and current density patterns from electrodes outside vertebrae and those inserted extradurally within the spinal canal. DC electric fields guide nerve growth in developing organisms and in vitro. They also have been shown to encourage healing of injured peripheral nerves, and application of a longitudinal field has been used in attempts to bridge spinal cord injuries. When calculated results are scaled to the experimental level used in the literature, all modeled electrodes produced fields in the spinal cord below fields needed in the literature for stimulation of spinal as well as peripheral nerve growth in vitro, in dogs, and in a published clinical human trial. The highly-conducting cerebrospinal fluid appeared to provide effective shielding; there was also a very high degree of polarization at electrodes. © 2015 Wiley Periodicals, Inc.

  10. Stainless steel surface wettability control via laser ablation in external electric field

    Science.gov (United States)

    Serkov, A. A.; Shafeev, G. A.; Barmina, E. V.; Loufardaki, A.; Stratakis, E.

    2016-12-01

    Laser ablation of stainless steel in external electric field (up to 10 kV/cm) is experimentally studied. The dependencies of both morphology and chemical properties of surface structures on laser parameters and electric field strength are investigated. Surface wettability properties of the laser-treated samples are considered by means of contact angle measurement. It is shown that under certain conditions laser irradiation in external electric field can render the surface superhydrophobic. Influence of electric field on the laser surface treatment is discussed on basis of its impact on melt solidification and oxidation processes.

  11. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Science.gov (United States)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  12. Students' reasoning when tackling electric field and potential in explanation of dc resistive circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guisasola, Jenaro

    2017-06-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge is essential to help instructors design and implement new teaching approaches that encourage students to articulate the macroscopic and microscopic levels of description. A questionnaire with an emphasis on explanations was used to analyze students' reasoning. In this analysis of students' reasoning in the microscopic and macroscopic modeling processes in a dc circuit, we refer to epistemological studies of scientific explanations. We conclude that the student explanations fall into three main categories of reasoning. The vast majority of students employ an explanatory model based on simple or linear causality and on relational reasoning. Moreover, around a third of students use a relational reasoning that relates two magnitudes current and resistance or conductivity of the material, which is included in a macroscopic explanatory model based on Ohm's law and the conservation of the current. In addition, few students situate the explanations at the microscopic level (charges or electrons) with unidirectional cause-effect reasoning. This study looks at a number of aspects that have been little mentioned in previous research at the university level, about the reasoning types students use when establishing macro-micro relationships and some possible difficulties with complex reasoning.

  13. The Effect of External Factors on Consumption Electricity Loads Forecasting using Fuzzy Takagi-Sugeno Kang

    National Research Council Canada - National Science Library

    Gayatri Dwi Santika; wayan f mahmudy

    2017-01-01

    .... The results of the study came to the conclusion that Fuzzy Inference System Sugeno method using external factors to forecast the consumption of electrical load gives a better result than Fuzzy...

  14. Research on a Bi-Directional DC-DC Converter Applied in Electric Vehicle%一种应用于电动汽车的双向DC/DC变换器研究

    Institute of Scientific and Technical Information of China (English)

    陈灵敏

    2009-01-01

    In this paper, topology structures of four non-isolated bi-directional DC/DC converter are analyzed and com-pared. A DC-DC converter-interleaving Buck-Boost is designed aiming at the environment protection and storage battery performance of hybrid electric vehicle(HEV). And the working principle of this converter is presented. The theory is testi-fied through a 3 000 W experiment prototype.%分析和比较了四种非隔离型双向DC/DE变换器的拓扑结构.针对目前广泛使用的混合动力电动汽车存在的环保问题和电池性能问题设计了一种双向DC/DC变换器一两相交错双向DC/DC变换器,论述了其工作原理,并通过一台3 000 W的样机验证了理论的正确性.

  15. Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields

    Directory of Open Access Journals (Sweden)

    Chen Dafeng

    2009-01-01

    Full Text Available Abstract We report a microfluidic device for rapid and efficient concentration of micro/nanoparticles with direct current dielectrophoresis (DC DEP. The concentrator is composed of a series of microchannels constructed with PDMS-insulating microstructures for efficiently focusing the electric field in the flow direction to provide high field strength and gradient. The location of the trapped and concentrated particles depends on the strength of the electric field applied. Both ‘streaming DEP’ and ‘trapping DEP’ simultaneously take place within the concentrator at different regions. The former occurs upstream and is responsible for continuous transport of the particles, whereas the latter occurs downstream and rapidly traps the particles delivered from upstream. The performance of the device is demonstrated by successfully concentrating fluorescent nanoparticles. The described microfluidic concentrator can be implemented in applications where rapid concentration of targets is needed such as concentrating cells for sample preparation and concentrating molecular biomarkers for detection.

  16. Processes in suspensions of nanocomposite microcapsules exposed to external electric fields

    Science.gov (United States)

    Ermakov, A. V.; Lomova, M. V.; Kim, V. P.; Chumakov, A. S.; Gorbachev, I. A.; Gorin, D. A.; Glukhovskoy, E. G.

    2016-04-01

    Microcapsules with and without magnetite nanoparticles incorporated in the polyelectrolyte shell were prepared. The effect of external electric field on the nanocomposite polyelectrolyte microcapsules containing magnetite nanoparticles in the shell was studied in this work as a function of the electric field strength. Effect of electric fields on polyelectrolyte microcapsules and the control over integrity of polyelectrolyte microcapsules with and without inorganic nanoparticles by constant electric field has been investigated. Beads effect, aggregation and deformations of nanocomposite microcapsule shell in response to electric field were observed by confocal laser scanning microscopy (CLSM). Thus, a new approach for effect on the nanocomposite microcapsule, including opening microcapsule shell by an electric field, was demonstrated. These results can be used for creation of new systems for drug delivery systems with controllable release by external electric field.

  17. Directing migration of endothelial progenitor cells with applied DC electric fields.

    Science.gov (United States)

    Zhao, Zhiqiang; Qin, Lu; Reid, Brian; Pu, Jin; Hara, Takahiko; Zhao, Min

    2012-01-01

    Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

  18. INDICATORS OF QUALITY OF ELECTRIC ENERGY IN THE ELECTRIC TRACTION DC

    Directory of Open Access Journals (Sweden)

    A. V. Petrov

    2010-04-01

    Full Text Available The research results showing an opportunity to use a power quality rating in a system of direct current electric traction on a traction substation input and output are stated. It is demonstrated that these ratings essentially simplify the quality analysis of power coming into traction circuits.

  19. Electrical Energy Quality Studies in 3 kV DC Electric Traction Systems for Different Schemes of Connection Traction Substation to Power Utility System

    Directory of Open Access Journals (Sweden)

    Pavel Jankowski

    2004-01-01

    Full Text Available The paper present aspects of DC electric traction system influence on electric energetic system. Study is based on modeling and simulation of electrified railway line. After simulation, there was performed analysis of energy quality, whitch using results of simulation and supply systems parameters.

  20. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  1. Effects of high external electric fields on protein conformation

    Science.gov (United States)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  2. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    Science.gov (United States)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-12-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  3. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    Science.gov (United States)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-01-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  4. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Science.gov (United States)

    2010-10-01

    ... inserted in ferrous pipe, each pipeline must be electrically isolated from metallic casings that are a part of the underground system. However, if isolation is not achieved because it is impractical, other... tower footings, ground cables or counterpoise, or in other areas where fault currents or unusual risk...

  5. Surface paraconductivity induced by an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, B.Y. (Jack and Pearl Resnik Institute of Advance Technology, Physics Department, Bar-Ilan University, Ramat Gan 52900 (Israel))

    1993-12-01

    The fluctuating properties of the surface superconducting layers created by an electric field perpendicular to the surface are investigated. Shifts of the critical temperature, heat capacity, and the conductivity above the critical temperature have been calculated for arbitrary relations between the screening and coherence lengths.

  6. CONTROLLING SMALL MOVEMENTS OF ULTRA PRECISE DC ELECTRIC DRIVE WITH ELASTIC SHAFTING

    Directory of Open Access Journals (Sweden)

    Dobrobaba Y. P.

    2015-10-01

    Full Text Available Control of the movement and positioning are the most intensive tasks of automatic control and regulation. However, these problems must be solved in the automation objects such as assembly and production lines, manufacturing machines, conveyors, hoisting machines, packaging machines, filling lines for liquids, metal-working machines. One problem lies in the fact that all the real drives are connected to the actuators with not perfectly tough shafting, but has some elasticity. This leads to the difficulty of motion of the executive body of the drive automatic control systems which consists of signal source generating signal due optimum speed diagrams for small movements of electric drive’s actuating device and automatic regulation system, which allows to work out optimum speed diagrams for small movements of electric drive’s actuating device with ultra-precision. In this article were developed optimum speed diagram for small movements of ultra-precise electric drive with elastic shafting. Were have identified all parameters of diagrams and its range of existence and also developed a device for generating the optimum speed diagram for small movements of ultra-precise electric drive with elastic shafting. The implementation of the proposed hardware software complex will significantly improve the accuracy of motion actuators of various ultra- precise DC drives

  7. CONTROL OF MEDIUM MOVEMENTS OF ULTRA PRECISE DC ELECTRIC DRIVE WITH ELASTIC SHAFTING

    Directory of Open Access Journals (Sweden)

    Dobrobaba Y. P.

    2015-12-01

    Full Text Available Control of the movement and positioning are the most intensive tasks of automatic control and regulation. However, these problems must be solved in the automation objects such as assembly and production lines, manufacturing machines, conveyors, hoisting machines, packaging machines, filling lines for liquids, metal-working machines. One problem lies in the fact that all the real drives are connected to the actuators with not perfectly tough shafting, but has some elasticity. This leads to the difficulty of motion of the executive body of the drive automatic control systems which consists of signal source generating signal due optimum speed diagrams for medium movements of electric drive’s actuating device and automatic regulation system, which allows to work out optimum speed diagrams for medium movements of electric drive’s actuating device with ultra-precision. In this article were developed optimum speed diagram for medium movements of ultra-precise electric drive with elastic shafting. Were identified all parameters of diagrams and its range of existence. Also developed device for generating the optimum speed diagram for medium movements of ultra-precise electric drive with elastic shafting. Implementation of the proposed hardware software complex will significantly improve the accuracy of motion actuators of various ultra- precise DC drives

  8. A Theoretical Analysis of Sideband Harmonics on the Inverter DC-link Current for an Electric Railcar

    Science.gov (United States)

    Ogawa, Tomoyuki; Wakao, Shinji; Taufiq, Jat; Kondo, Keiichiro; Terauchi, Nobuo

    The harmonics of the return current may interfere with the signaling current along with the rails. In this paper, we present the theoretical studies of the return current harmonics in the inverter-controlled DC electric railcar, aiming at contributing future work to improve the compatibility with the signaling current. We theoretically derive sideband harmonics of the DC-link current. Then, in order to verify the theoretical study, we experimentally measure the harmonics and numerically simulate the harmonics. As a result, we concluded the theoretical DC-link current is enough accurate to be utilized for the future improvement of the inverter harmonics current.

  9. Simulations of polymer brushes with charged end monomers under external electric fields

    Science.gov (United States)

    Ding, Huanda; Duan, Chao; Tong, Chaohui

    2017-01-01

    Using Langevin dynamics simulations, the response of neutral polymer brushes with charged terminal monomers to external electric fields has been investigated. The external electric field is equivalent to the field generated by the opposite surface charges on two parallel electrodes. The effects of charge valence of terminal monomers on the structure of double layers and overall charge balance near the two electrodes were examined. Using the charge density distributions obtained from simulations, the total electric field normal to the electrodes was calculated by numerically solving the Poisson equation. Under external electric fields, the total electric field across the two electrodes is highly non-uniform and in certain regions within the brush, the total electric field nearly vanishes. The probability distribution of electric force acting on one charged terminal monomer was obtained from simulations and how it affects the probability density distribution of terminal monomers was analyzed. The response of polymer brushes with charged terminal monomers to a strongly stretching external electric field was compared with that of uniformly charged polymer brushes.

  10. Current characteristic signals of aqueous solution transferring through microfluidic channel under non-continuous DC electric field

    Directory of Open Access Journals (Sweden)

    HongWei Ma

    2014-10-01

    Full Text Available The surface effect is becoming apparently significant as the miniaturization of fluidic devices. In the micro/nanochannel fluidics, the electrode surface effects have the same important influence on the current signals as the channel surface effects. In this paper, when aqueous solution are driven with non-continuous DC electric field force, the characteristics of current signals of the fluid transferring through microfluidic channel are systematically studied. Six modes of current signal are summarized, and some new significant phenomena are found, e.g. there exists a critical voltage at which the steady current value equals to zero; the absolute value of the steady current decreases at first, however, it increases with the external voltage greater than the critical voltage as the electrode area ratio of cathode and anode is 10 and 20; the critical voltage increases with the enhancing of electrode area ratio of cathode and anode and solution pH, while it decreases with the raising of ion concentration. Finally, the microscopic mechanism of the electrode surface charge effects is discussed preliminarily. The rules will be helpful for detecting and manipulating single biomolecules in the micro/nanofluidic chips and biosensors.

  11. Externally imposed electric field enhances plant root tip regeneration

    Science.gov (United States)

    Kral, Nicolas; Hanna Ougolnikova, Alexandra

    2016-01-01

    Abstract In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two‐fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role. PMID:27606066

  12. Verification and Analysis of Implementing Virtual Electric Devices in Circuit Simulation of Pulsed DC Electrical Devices in the NI MULTISIM 10.1 Environment

    Directory of Open Access Journals (Sweden)

    V. A. Solov'ev

    2015-01-01

    Full Text Available The paper presents the analysis results of the implementation potential and evaluation of the virtual electric devices reliability when conducting circuit simulation of pulsed DC electrical devices in the NI Multisim 10.1environment. It analyses metrological properties of electric measuring devices and sensors of the NI Multisim 10.1environment. To calculate the reliable parameters of periodic non-sinusoidal electrical values based on their physical feasibility the mathematical expressions have been defined.To verify the virtual electric devices a circuit model of the power section of buck DC converter with enabled devices under consideration at its input and output is used as a consumer of pulse current of trapezoidal or triangular form. It is used as an example to show a technique to verify readings of virtual electric measuring devices in the NI Multisim 10.1environment.It is found that when simulating the pulsed DC electric devices to measure average and RMS voltage supply and current consumption values it is advisable to use the probe. Electric device power consumption read from the virtual power meter is equal to its average value, and its displayed power factor is inversely proportional to the input current form factor. To determine the RMS pulsed DC current by ammeter and multi-meter it is necessary to measure current by these devices in DC and AC modes, and then determine the RMS value of measurement results.Virtual electric devices verification has proved the possibility of their application to determine the energy performance of transistor converters for various purposes in the circuit simulation in the NI 10.1 Multisim environment, thus saving time of their designing.

  13. The influence of strong electric fields on the DC conductivity of the composite cellulose, insulating oil, and water nanoparticles

    Science.gov (United States)

    Kierczyński, Konrad; Żukowski, Paweł

    2016-12-01

    The paper presents investigated the dependencies of DC conductivity electrical pressboard impregnated insolating oil of moisture content and electric field strength. The studies were conducted for measuring temperature in the range of 20 °C to 80 °C and the electric field intensity in the range of 10 kV/m to 1000 kV/m. With approximate waveforms in double logarithmic coordinates conductivity depending on the intensity of the electric field exponential function determined coefficients of determination R2. The value of this ratio is close to unity, which provides high accuracy measurements of conductivity and the exact stability and temperature measurements. It was found that changes in the electric field intensity will decrease the activation energy of conductivity of about 0.01 eV, thus increasing the DC conductivity of about 1.5 times.

  14. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  15. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  16. STATISTIC, PROBABILISTIC, CORRELATION AND SPECTRAL ANALYSES OF REGENERATIVE BRAKING CURRENT OF DC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2014-04-01

    Full Text Available Purpose. Defining and analysis of the probabilistic and spectral characteristics of random current in regenerative braking mode of DC electric rolling stock are observed in this paper. Methodology. The elements and methods of the probability theory (particularly the theory of stationary and non-stationary processes and methods of the sampling theory are used for processing of the regenerated current data arrays by PC. Findings. The regenerated current records are obtained from the locomotives and trains in Ukraine railways and trams in Poland. It was established that the current has uninterrupted and the jumping variations in time (especially in trams. For the random current in the regenerative braking mode the functions of mathematical expectation, dispersion and standard deviation are calculated. Histograms, probabilistic characteristics and correlation functions are calculated and plotted down for this current too. It was established that the current of the regenerative braking mode can be considered like the stationary and non-ergodic process. The spectral analysis of these records and “tail part” of the correlation function found weak periodical (or low-frequency components which are known like an interharmonic. Originality. Firstly, the theory of non-stationary random processes was adapted for the analysis of the recuperated current which has uninterrupted and the jumping variations in time. Secondly, the presence of interharmonics in the stochastic process of regenerated current was defined for the first time. And finally, the patterns of temporal changes of the correlation current function are defined too. This allows to reasonably apply the correlation functions method in the identification of the electric traction system devices. Practical value. The results of probabilistic and statistic analysis of the recuperated current allow to estimate the quality of recovered energy and energy quality indices of electric rolling stock in the

  17. Development of dielectrophoresis separator with an insulating porous membrane using DC-Offset AC Electric Fields.

    Science.gov (United States)

    Hakoda, Masaru

    2016-09-01

    Our previous studies revealed that the dielectrophoresis method is effective for separating cells having different dielectric properties. The purpose of this study was to evaluate the separation characteristics of two kinds of cells by direct current (DC) voltage offset/alternating current (AC) voltage using an insulating porous membrane dielectrophoretic separator. The separation device gives dielectrophoretic (DEP) force and electrophoretic (EP) force to dispersed particles by applying the DC-offset AC voltage. This device separates cells of different DEP properties by adopting a structure in which only the parallel plate electrodes and the insulating porous membrane are disposed in the flow path through which the cell-suspension flows. The difference in the retention ratios of electrically homogeneous 4.5 μm or 20.0 μm diameter standard particles was a maximum of 82 points. Furthermore, the influences of the AC voltage or offset voltage on the retention ratios of mouse hybridoma 3-2H3 cells and horse red blood cells (HRBC) were investigated. The difference in the retention ratio of the two kinds of cells was a maximum of 56 points. The separation efficiency of this device is expected to be improved by changing the device shape, number of pores, and pore placement. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1292-1300, 2016.

  18. External heating of electrical cables and auto-ignition investigation.

    Science.gov (United States)

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The relaxation of a prolate leaky dielectric drop in a uniform DC electric field

    Science.gov (United States)

    Khair, Aditya; Lanauze, Javier; Walker, Lynn

    2015-11-01

    We quantify the relaxation of a prolate leaky dielectric drop upon removal of a uniform DC electric field. Experiments consisting of a castor oil drop suspended in a silicone oil are compared against boundary integral simulations that account for transient charging of the interface. Charge relaxation causes a marked asymmetry in the drop evolution during deformation and relaxation. In particular, during relaxation a prolate to oblate shape transition is observed before the drop recovers its equilibrium spherical shape. Furthermore, the high field strengths utilized in the experiments yield a fast drop relaxation in comparison with the transient development towards the steady deformation. The storage and release of capacitive energy and capillary energy is then quantified during deformation and relaxation, respectively. Finally, we present computational results for a drop that does not relax back to its initial spherical shape upon removal of the field; rather, the drop breaks up.

  20. Bandgap engineering of different stacking WS2 bilayer under an external electric field

    Science.gov (United States)

    Li, Wei; Wang, Tianxing; Dai, Xianqi; Wang, Xiaolong; Zhai, Caiyun; Ma, Yaqiang; Chang, Shanshan

    2016-01-01

    Effective modulation of physical properties via external control is a tantalizing possibility that would bring two-dimensional material-based electronics a step closer. By means of density functional theory calculations, we systematically examined the effect of external electric field on the bandgap of different stacking WS2 bilayer. It shows that for all cases, the most stable stacking order is the AB conformation, followed by the AA‧ stacking fault, which is by only 2.06 meV/supercell less stable than AB. The band gaps of both AB and AA‧ configurations decrease monotonically with an increasing vertical external electric field strength except for external electric field along -z direction in the AB conformation. Applying external electric field along +z direction and -z directions has different effects on the band gap of AB conformation, while it has the same effect on the AA‧ configuration. The different effects are caused by the spontaneous electrical polarization existing between the two monolayers of AB conformation. This may provide a new perspective on the formation of WS2-based electronic and optoelectronic devices.

  1. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions.

    Science.gov (United States)

    Wu, Dan; Ma, Xiuli; Lin, Francis

    2013-01-01

    Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

  2. DC electrical conductivity, thermoelectric power measurements of TiO{sub 2}-substituted lead vanadate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, K.V. [Department of Engineering Physics, GITAM College of Engineering, Gandhinagar Campus, Rushikonda, Visakhapatnam 530 045 (India)]. E-mail: kv_ramesh5@yahoo.co.in; Sastry, D.L. [Department of Physics, Andhra University, Visakhapatnam 530 003 (India)]. E-mail: Sastry_dl@yahoo.co.in

    2007-01-01

    Glasses of the system x(TiO{sub 2})(50-x)PbO:50V{sub 2}O{sub 5} were prepared by melt-quench process in the range x=0-15 mole%. Measurements are reported for DC electrical conductivity as well as thermoelectrical power for the above compositions in the temperature range 27-227 deg. C. The experimental results are analyzed with reference to various theoretical models proposed for DC electrical conduction in amorphous semiconductors. The analysis shows that at high temperatures, the temperature dependence of DC conductivity is consistent with Mott's model of phonon-assisted hopping conduction, variable range hopping mechanism and Schnakenberg's model mechanism. The high-temperature thermoelectric power (TEP) was satisfactorily explained by Heikes' relation and the data also showed evidence of small polaron formation in these glasses. Thermo EMF measurements indicate that all the glass samples including unsubstituted lead metavanadate are n-type at room temperature. As temperature is increased TiO{sub 2}-substituted samples change from n-type to p-type. When Heike's formula is applied to all the systems at room temperature, the amount of disorder was found to be the same in all the systems. When Emin's formula is used for the estimation of W {sub D}, the activation energy due to disorder, in TiO{sub 2}-substituted samples, unusually large values of W {sub D} ({approx}0.6 eV) are obtained. The present results indicate that the Emin's formula cannot be directly used to estimate the disorder energy in TiO{sub 2}-substituted lead vanadates. The temperature-dependent change of sign of the TEP S, in these systems may arise due to change in V{sup 4+}/V{sup 5+} ratio with the change of temperature or due to the onset of band type of conduction as in MnO or other extrinsic compensated semi-conductors.

  3. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2017-01-01

    This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...... the proposed control strategy, first a general nonlinear modeling of a DC-Microgrid based on related DC-DC converters to each DC power sources is introduced. Secondly, a power management strategy based on fuzzy control for regulating the power flow between the hybrid DC sources, PEVs is proposed. Third...

  4. Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eum [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-10-15

    DC electrical outputs of a piezoelectric vibration energy harvester by nonlinear rectifying circuitry can hardly be obtained either by any mathematical models developed so far or by finite element analysis. To address the issue, this work used an equivalent electrical circuit model and newly developed an algorithm to efficiently identify relevant circuit parameters of arbitrarily-shaped cantilevered piezoelectric energy harvesters. The developed algorithm was then realized as a dedicated software module by adopting ANSYS finite element analysis software for the parameters identification and the Tcl/Tk programming language for a graphical user interface and linkage with ANSYS. For verifications, various AC electrical outputs by the developed software were compared with those by traditional finite element analysis. DC electrical outputs through rectifying circuitry were also examined for varying values of the smoothing capacitance and load resistance.

  5. Environmental benefits of electrical vehicles : externalities appeased with the use of lithium batteries

    OpenAIRE

    Lamjon, Leonardo Moreno

    2012-01-01

    Road transportation creates several negative externalities; these are a key development challenge. The most important of which are environmental pollution, greenhouse gas emissions, congestion (time delay and extra fuel consumption), impacts in human health, noise, etc. Based on the existing literature and theory, the author illustrates different the characteristics and magnitude of externalities associated with the use of road transportation and in what extent electric vehicles based on l...

  6. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  7. Effect of external electric field on Cyclodextrin-Alcohol adducts: A DFT study

    Indian Academy of Sciences (India)

    Kundan Baruah; Pradip Kr Bhattacharyya

    2015-06-01

    Effect of external electric fields on the interaction energy between cyclodextrin and alcohol was analyzed in the light of density functional theory (DFT) and density functional reactivity theory (DFRT). Stability of the cyclodextrin-alcohol adducts was measured in terms of DFT based reactivity descriptor, global hardness, electrophilicity, and energy of the HOMO. Stability of adducts was observed to be sensitive towards the strength as well as direction of the applied external electric field. In addition, reactivity pattern follows the maximum hardness and minimum electrophilicity principles.

  8. An overview of the electricity externality analysis in South Africa within the international context

    Directory of Open Access Journals (Sweden)

    George A. Thopil

    2010-10-01

    Full Text Available Externalities are an integral part of South Africa’s electricity power generation sector as the country is highly dependent on coal as the primary fuel source. While there have been significant efforts to account for the constantly increasing externalities in developed countries, it has not been the case in the developing world. This paper attempts to observe the trend of externalities research in South Africa’s power generation sector and to analyse the gaps by placing externality research in context with other studies performed internationally. A statistical analysis adjusted for currency conversions puts into perspective the range of externalities. It also provides an overview of South Africa’s energy supply and demand scene, with emphasis on the role of coal in the electricity sector. The paper provides motivation to perform a revised externality analysis along international lines. The aim is to add to the body of literature on externality studies in South Africa by providing an updated comparative analysis. This will enable future research to contextualise studies that were performed during different time periods.

  9. Charging electric vehicles. Protection against electric shock by DC fault current sensor units; Laden von Elektrofahrzeugen. Schutz gegen elektrischen Schlag durch DC-Fehlerstromsensorik

    Energy Technology Data Exchange (ETDEWEB)

    Hofheinz, Wolfgang; Sellner, Harald; Moell, Winfried [Bender GmbH und Co. KG, Gruenberg (Germany)

    2012-10-15

    In electromobility subjects a mutual exchange of information and the necessary knowledge transfer between power suppliers and vehicle developers are essential and the results are implemented into the standards. Protection against electric shock, for example, is particularly important in charging electric vehicles. Since decades, the Bender company are experts in the field of 'electrical safety'. This article facilitates a closer look at the specific electrical safety aspects when charging an electric vehicle. (orig.)

  10. Possible role of external radial electric field on ion heating in an FRC

    Science.gov (United States)

    Gupta, Deepak; Trask, E.; Korepanov, S.; Granstedt, E.; Osin, D.; Roche, T.; Deng, B.; Beall, M.; Zhai, K.; TAE Team

    2016-10-01

    In C-2/C-2U FRCs, a radial electric field is applied by either plasma guns or biased electrodes inside the divertors, at both ends of the machine. The electric field plays an important role in stabilizing the FRC; thus, providing a favorable target condition to a neutral beam injection. In addition, it is also observed that the application of radial electric field may lead to a heating of ions. Radial profile of impurity ion emission, azimuthal velocity and temperature are measured under different configurations. The conditions and evidences of ion heating due to the electric field biasing will be presented and discussed. Radial momentum balance equation of oxygen impurity ions is used with these measurements to estimate the radial electric field profile. Parameters affecting the ion heating due to biasing will also be discussed with some correlations. The external radial electric field is planned to be applied by biased electrodes and plasma guns in C-2W inner/outer divertors.

  11. DC electrical conductivity measurements for pure and titanium oxide doped KDP Crystals grown by gel medium

    Science.gov (United States)

    Mareeswaran, S.; Asaithambi, T.

    2016-10-01

    Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.

  12. 80 MeV C6+ ion irradiation effects on the DC electrical characteristics of silicon NPN power transistors

    Science.gov (United States)

    Bharathi, M. N.; Pushpa, N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana

    2016-05-01

    The total dose effects of 80 MeV C6+ ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔIB = IBpost - IBpre), dc forward current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics (VCE-IC) were studied systematically before and after irradiation. The significant degradation in base current (IB) and hFE was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with 60C0 gamma irradiation results in the same dose range.

  13. A rapid two-dimensional data collection system for the study of ferroelectric materials under external applied electric fields.

    Science.gov (United States)

    Vergentev, Tikhon; Bronwald, Iurii; Chernyshov, Dmitry; Gorfman, Semen; Ryding, Stephanie H M; Thompson, Paul; Cernik, Robert J

    2016-10-01

    Synchrotron X-rays on the Swiss Norwegian Beamline and BM28 (XMaS) at the ESRF have been used to record the diffraction response of the PMN-PT relaxor piezoelectric 67% Pb(Mg1/3Nb2/3)O3-33% PbTiO3 as a function of externally applied electric field. A DC field in the range 0-18 kV cm(-1) was applied along the [001] pseudo-cubic direction using a specially designed sample cell for in situ single-crystal diffraction experiments. The cell allowed data to be collected on a Pilatus 2M area detector in a large volume of reciprocal space using transmission geometry. The data showed good agreement with a twinned single-phase monoclinic structure model. The results from the area detector were compared with previous Bragg peak mapping using variable electric fields and a single detector where the structural model was ambiguous. The coverage of a significantly larger section of reciprocal space facilitated by the area detector allowed precise phase analysis.

  14. A rapid two-dimensional data collection system for the study of ferroelectric materials under external applied electric fields

    Science.gov (United States)

    Vergentev, Tikhon; Bronwald, Iurii; Chernyshov, Dmitry; Gorfman, Semen; Ryding, Stephanie H. M.; Thompson, Paul; Cernik, Robert J.

    2016-01-01

    Synchrotron X-rays on the Swiss Norwegian Beamline and BM28 (XMaS) at the ESRF have been used to record the diffraction response of the PMN–PT relaxor piezoelectric 67% Pb(Mg1/3Nb2/3)O3–33% PbTiO3 as a function of externally applied electric field. A DC field in the range 0–18 kV cm−1 was applied along the [001] pseudo-cubic direction using a specially designed sample cell for in situ single-crystal diffraction experiments. The cell allowed data to be collected on a Pilatus 2M area detector in a large volume of reciprocal space using transmission geometry. The data showed good agreement with a twinned single-phase monoclinic structure model. The results from the area detector were compared with previous Bragg peak mapping using variable electric fields and a single detector where the structural model was ambiguous. The coverage of a significantly larger section of reciprocal space facilitated by the area detector allowed precise phase analysis. PMID:27738414

  15. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    2006-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from o

  16. Effect of an External Electric Field on Positronium Formation in Positron Spur

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1975-01-01

    The decrease of positronium (Ps) formation in condensed matter caused by the presence of an external electric field is discussed in terms of the spur reaction model of Ps formation. The rather few experimental results available are shown to be in good agreement with the predictions of the model...

  17. 基于模糊控制的电动车双向DC-DC变换器研究%Research on the Bi-Directional DC-DC Converter of the Electric Vehicle Based on the Fuzzy Control

    Institute of Scientific and Technical Information of China (English)

    崔雪; 郑翔; 穆佩红; 高雅洁

    2014-01-01

    为了延长车辆续航里程,提高蓄电池的使用寿命,使用超级电容作为辅助的能量源,控制超级电容的双向DC-DC变换器对直流母线进行能量的回馈和补充,提高了电动车电源系统效率。根据蓄电池和超级电容的剩余电量及负载瞬态功率需求,提出了一种模糊控制器改善双能量电动车DC-DC变换器性能的方法。模糊控制器根据车辆运行的不同工况,自动地决策出一个合理的输出电流,进而控制双向半桥Buck/Boost式变换器的电流环。实验结果说明了控制系统具有良好的动态性、可行性、有效性。%In order to prolong the driving range and the life cycle of the storage battery, ultracapcitor was used in this study as an auxiliary power source, the bi-directional DC-DC converter of the ultracapacitor was controlled to supplement the energy of the DC bus, and thus the efficiency of the electric vehicle power system was enhanced. Based on the dump energy of the storage battery and ultracapacitor and the need for load transient power, a method was proposed in this paper, in which a fuzzy controller was adopted to improve the performance of the bi-directional DC-DC converter of the electric vehicle. The fuzzy controller could automatically decide on proper output current according to different working conditions of the vehicle, and thereby control the current loop of the bi-directional half-bridge Buck/Boost converter. Simulation results proved that the control system was very dynamic, feasible and effective.

  18. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    Science.gov (United States)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  19. Exploring Strategies for Classification of External Stimuli Using Statistical Features of the Plant Electrical Response

    CERN Document Server

    Chatterjee, Shre Kumar; Maharatna, Koushik; Masi, Elisa; Santopolo, Luisa; Mancuso, Stefano; Vitaletti, Andrea

    2016-01-01

    Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the stimulus applied (causing the electrical signal). By using different discriminant analysis based classification techniques, we successfully establish that there is enough information in the raw electrical signal to classify the stimuli. In the process, we also propose two standard features which consistently give good classification results for three types of stimuli - Sodium Chloride (NaCl), Sulphuric Acid (H2SO4) and Ozone (O3). This may facilitate reduction in the complexity involved in computing all the features for online classification of similar external stimuli in future.

  20. Soybean Hydrophobic Protein Response to External Electric Field: A Molecular Modeling Approach

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-02-01

    Full Text Available The molecular dynamic (MD modeling approach was applied to evaluate the effect of an external electric field on soybean hydrophobic protein and surface properties. Nominal electric field strengths of 0.002 V/nm and 0.004 V/nm had no major effect on the structure and surface properties of the protein isolate but the higher electric field strength of 3 V/nm significantly affected the protein conformation and solvent accessible surface area. The response of protein isolate to various external field stresses demonstrated that it is necessary to gain insight into protein dynamics under electromagnetic fields in order to be able to develop the techniques utilizing them for food processing and other biological applications.

  1. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Barik, Ullash; Srinivasan, S.; Nagendra, C.L.; Subrahmanyam, A

    2003-04-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson.

  2. Advanced axial field D.C. motor development for electric passenger vehicle

    Science.gov (United States)

    Jones, W. J.

    1982-01-01

    A wound-field axial-flux dc motor was developed for an electric vehicle drive system. The motor is essentially an axial-flux version of the classical Gramme-ring winding motor, but the active conductors are recessed into slots cut into the two opposite faces of the laminated tape-wound core ring. Three motors were built and tested in the program. The second (functional) model was a six-pole machine which weighed 88.5 kg. It developed 16.9 km (33.0 hp), and a max speed of 4800 rpm. Full load efficiency was 92% and predicted SAE D-cycle efficiency was 88%. The last engineering) model was a 4-pole machine with compoles, allowing a weight reduction to 45 kg (100 lbs.) while addressing some manufacturability problems. The engineering model was rated at 13.2 kw (17.6 hp) at 3000 rpm, with a peak power of 19.8 km (26.4 hp) and a max speed of 7200 rpm. Initial test results on this motor showed poor commutation and efficiency; the program was terminated without resolution of these problems.

  3. A study on the DC-electrical and thermal conductivities of epoxy/ZnO composites doped with carbon black

    Science.gov (United States)

    Juwhari, Hassan K.; Zihlif, Awwad; Elimat, Ziad; Ragosta, Giuseppe

    2014-06-01

    Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements' distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.

  4. DNA transport in 20nm nanoslits by AC and DC electrical fields

    NARCIS (Netherlands)

    Salieb-Beugelaar, G.B.; Castillo-Fernandez, O.; Arundell, M.; Samitier, J.; Berg, van den A.; Eijkel, J.C.T.; Kim, T.S.; Lee, Y-S; Chung, T-D; Jeon, N.L.; Lee, S-H.; Suh, K-Y; Choo, J.; Kim, Y-K.

    2009-01-01

    We investigated the transport of λ-DNA in 20 nm nanoslits under the influence of applied AC and DC fields. At DC fields below 15 kV/m it was found that the addition of 1 kHz AC fields with maximum strengths between 10 and 200 kV/m significantly increased the mobility. At DC fields above 15 kV/m no i

  5. Development of Voltage Regulation Plan by Composing Subsystem with the SFES for DC On-line Electric Vehicle

    Science.gov (United States)

    Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.

    The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.

  6. Properties of a Si2N molecule under an external electric field

    Institute of Scientific and Technical Information of China (English)

    Xu Guo-Liang; Xie Hui-Xiang; Yuan Wei; Zhang Xian-Zhou; Liu Yu-Fang

    2012-01-01

    In the present work,we adopt the ccsd/6-31g(d)method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functioual method B3P86/6-31g(d)to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d)to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.

  7. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig (Germany); Kiselev, M. G. [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, Ivanovo (Russian Federation)

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  8. Low External Electric Field Periodic Poling of Thick LiTaO3

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A promising method of ferroelectric domain inverted structures was demonstrated, which allows us to fabricate thicker domain inverted patterns by applying a lower external electric field in LiTaO3 crystal. The external field for the domain reversal of the 1.5 mm thick LiTaO3 at 500 ℃ was only 6 V·mm-1, which is lower by three orders of magnitude than that in LiTaO3 crystal at room temperature. The process of the domain inversion structure was also studied. The fabrication techniques are based on controlled temperature and field duration time.

  9. Damage costs produced by electric power plants: an externality valuation in the Mexico City Metropolitan Area.

    Science.gov (United States)

    Macías, P; Islas, J

    2010-09-15

    This paper presents an estimate of the externalities produced in the Mexico City Metropolitan Area (MCMA) through the impacts on health caused by secondary pollutants attributed to seven electric power plants located outside this area. An original method was developed to make possible a simplified application of the impact pathway approach to estimate the damage costs in the specified area. Our estimate shows that the annual costs attributed to secondary pollutants total 71 million USD (min/max 20/258 million USD). Finally, this paper discusses basic ideas on the implications for energy policy arising from this exercise in externality valuation.

  10. Electron-positron pair production in space-time varying external electric fields

    CERN Document Server

    Aleksandrov, I A; Shabaev, V M

    2016-01-01

    The Schwinger mechanism of the electron-positron pair production in the presence of strong external electric fields is analyzed numerically for the case of one- and two-dimensional field configurations where the external field depends both on time and one spatial coordinate. In order to provide this analysis, a new efficient numerical approach was developed. The number of particles created is obtained numerically and also compared with the analytical results for several exactly solvable one-dimensional backgrounds. For the case of two-dimensional field configurations a few generic properties of pair-creation process are found. The method employed is described in detail.

  11. 适合于混合动力汽车新型双向DC/DC变换器研究%Study of One Bi-directional DC/DC Converter for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    胡建明

    2011-01-01

    首先介绍了一种混合动力汽车的基本电路,然后根据要求设计了一种双向变换器,它具有高功率传输能力和最小开关应力,适合于连接超级电容器来驱动混合动力汽车.与一些典型的隔离式双向DC/DC变换器相比,该变换器具有较低的设备应力,并且可通过相移加PWM控制,采用隔离变压器的漏感作为能量传输单元和控制变量.最后,实验波形证明该变换器能较好地应用于混合动力汽车.%The paper first introduces the basic drive system of a hybrid electric vehicle.Then the selection and design of aforementioned converter are proposed. The converter has high powerflow capability and minimum device stresses that can suitably interface a super capacitor with the drive train of a hybrid electric vehicle. Furthermore ,by comparing of the main characteristics and applications with some typical isolated bi-directional DC/DC converter, the proposed converter has low device rating and can be controlled by duty cycle and phase shift. At last,the most important characteristics of this converter is to uses the transformer leakage inductance as the primary energy transfer element and control parameters, the experimental waveforms are given to demonstrate the goodness of this novel topology which is in particular for hybrid electric vehicle.

  12. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field

    Science.gov (United States)

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.

  13. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field

    Science.gov (United States)

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636

  14. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field.

    Science.gov (United States)

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.

  15. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    Science.gov (United States)

    Onishi, Koichi; Kirimoto, Kenta; Sun, Yong

    2017-02-01

    A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  16. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    Directory of Open Access Journals (Sweden)

    Koichi Onishi

    2017-02-01

    Full Text Available A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  17. Electronic properties of pentaorgano[60]fullerenes under an external electric field

    Science.gov (United States)

    Furutani, Sho; Okada, Susumu

    2016-11-01

    The electronic properties of pentaorgano[60]fullerene under an external electric field were studied by combining the density functional theory with the effective screening medium method. Pentaorgano[60]fullerene possess a dipole moment because of their asymmetric molecular form owing to their five functionalized groups. When electrons and holes are injected into the molecule, the magnetic states of the molecule change from S = 1/2 to nonmagnetic and S = 1 triplet states for electron and hole doping, respectively. The asymmetric molecular shape causes the unusual distribution of the accumulated carriers depending on their mutual molecular arrangement in the electric field.

  18. Different configurations of laser vibrometry for quality control of electric motors with external rotor

    Science.gov (United States)

    Chiariotti, P.; Ciarmatori, R.; Castellini, P.; Bastari, A.; Paone, N.

    2012-06-01

    When designing a test bench for vibration based diagnostics of machines with external rotating parts, such as electric motors having a rotating external rotor, one may choose among single point vibrometry, rotational vibrometry or in-plane vibrometry. The paper discusses these different options, taking the assumption that the minimum number of measuring instruments is preferred when instrumenting a quality control system and provides an insight into advantages and limitations of each instrument. In particular the following issues are discussed: a) possible installation lay-outs; b) alignment problems (and possible advantages for diagnostics), c) typical signals and diagnostic features which can be observed. The research presented refers to electric motors for home appliances, but potentially has wider application fields to other rotating machines.

  19. External cost of coal based electricity generation:A tale of Ahmedabad city

    DEFF Research Database (Denmark)

    Mahapatra, Diptiranjan; Shukla, Priyadarshi; Dhar, Subash

    2012-01-01

    Electricity production causes unintended impacts.Theire xclusion by the market leads to suboptimal resource allocations.Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life-cycle ana......Electricity production causes unintended impacts.Theire xclusion by the market leads to suboptimal resource allocations.Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life......–response functions, we make an attempt to estimate the damages to human health, crops, and building materials resulting from the operation of coal power plants and its associated mines. Further, we use geographic information system to account for spatially dependent data. Finally, monetary values have been assigned...

  20. Si3O cluster: excited properties under external electric field and oxygen-deficient defect models

    Institute of Scientific and Technical Information of China (English)

    Xu Guo-Liang; Liu Xue-Feng; Xie Hui-Xiang; Zhang Xian-Zhou; Liu Yu-Fang

    2011-01-01

    This paper investigates the excited states of Si3O molecule by using the single-excitation configuration interaction and density functional theory. It finds that the visible light absorption spectrum of SisO molecule comprises the yellow and the purple light without external electric field, however all the visible light is included except the green light under the action of external electric field. Oxygen-deficient defects, which also can be found in Si3O molecule, have been used to explain the luminescence from silicon-based materials but the microstrnctures of the materials are still uncertain.Our results accord with the experimental values perfectly, this fact suggests that the structure of Si3O molecule is expected to be one of the main basic structures of the materials, so the oxygen-deficient defect structural model for Si3O molecule also has been provided to research the structures of materials.

  1. Electron-positron pair production in external electric fields varying both in space and time

    Science.gov (United States)

    Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.

    2016-09-01

    The Schwinger mechanism of electron-positron pair production in the presence of strong external electric fields is analyzed numerically for the case of one- and two-dimensional field configurations where the external field depends both on time and one spatial coordinate. In order to provide this analysis, a new efficient numerical approach is developed. The number of particles created is obtained numerically and also compared with the analytical results for several exactly solvable one-dimensional backgrounds. For the case of two-dimensional field configurations the effects of the spatial finiteness are examined, which confirms their importance and helps us to attest our approach further. The corresponding calculations are also performed for several more interesting and nontrivial combinations of temporal and spatial inhomogeneities. Finally, we discuss the case of a spatially periodic external field when the approach is particularly productive. The method employed is described in detail.

  2. Schwinger pair creation in Dirac semimetals in the presence of external magnetic and electric fields

    Science.gov (United States)

    Abramchuk, R. A.; Zubkov, M. A.

    2016-12-01

    We discuss the Schwinger pair creation process for the system of massless Dirac fermions in the presence of constant external magnetic and electric fields. The pair production rate remains finite unlike the vacuum decay rate. In the recently discovered Dirac semimetals, where the massless Dirac fermions emerge, this pair production may be observed experimentally through the transport properties. We estimate its contribution to the ordinary conductivity of the semimetals.

  3. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  4. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  5. DC source assemblies

    Science.gov (United States)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  6. A new surface-inset, permanent-magnet, brushless dc motor drive for electric vehicles

    OpenAIRE

    Chau, KT; J. Gan; Chan, CC; Jiang, JZ

    2000-01-01

    A new five-phase, surface-inset, permanent-magnet (PM), brushless dc motor drive is proposed in this paper. The motor drive has advantages of both the PM brushless dc motor drive and the dc series motor drive. The originlity is that the air-gap flux of the motor is generated by both the PM excitation and the specially controlled stator currents (two particular phases) under the same PM pole. The motor configuration and principle of operation are so unusual that the magnetic field distribution...

  7. First-principles study on magnetism of Ru monolayer under an external electric field

    Science.gov (United States)

    Kitaoka, Yukie; Imamura, Hiroshi

    Electric field control of magnetic properties such as magnetic moment and magnetic anisotropy has been attracted. For the 4 d TM films, on the other hand, it was recently reported that the ferromagnetism Pd thin-film is induced by application of an external electric field otherwise Pd thin-film shows paramagnetic. However, little attention has been paid to the magnetism of other 4 d TMs. Here, we investigate the magnetism of the free-standing Ru monolayer and that on MgO(001) substrate under an external electric field by using first-principles FLAPW method. We found that the free-standing Ru monolayer is ferromagnet with magnetic moment of 1.50 ¥muB /atom. The MA energy is 3.45 meV/atom, indicating perpendicular MA, at zero electric field (E=0) and increases up to 3.84 meV/atom by application of E=1 (V/¥AA). The Ru monolayer on MgO(001) substrate is also ferromagnet with magnetic moment of 0.89 ¥muB /atom. The MA energy is 1.49 meV/atom, indicating perpendicular MA, at E=0 and decreases to 1.33 meV/atom by application of E=1 (V/¥AA).

  8. Graphene nanoflakes in external electric and magnetic in-plane fields

    Energy Technology Data Exchange (ETDEWEB)

    Szałowski, Karol, E-mail: kszalowski@uni.lodz.pl

    2015-05-15

    The paper discusses the influence of the external in-plane electric and magnetic fields on the ground state spin phase diagram of selected monolayer graphene nanostructures. The calculations are performed for triangular graphene nanoflakes with armchair edges as well as for short pieces of armchair graphene nanoribbons with zigzag terminations. The mean field approximation (MFA) is employed to solve the Hubbard model. The total spin for both classes of nanostructures is discussed as a function of external fields for various structure sizes, for charge neutrality conditions as well as for weak charge doping. The variety of nonzero spin states is found and their stability ranges are determined. For some structures, the presence of antiferromagnetic orderings is predicted within the zero-spin phase. The process of magnetization of nanoflakes with magnetic field at constant electric field is also investigated, showing opposite effect of electric field at low and at high magnetic fields. - Highlights: • Magnetic ground-state phase diagram of graphene nanoflakes was constructed. • The combined effect of in-plane electric and magnetic fields on total spin was studied. • A rich phase diagram with both disordered and ordered (nonzero spin) phases was found. • The importance of size and edge geometry of the nanostructure was emphasized.

  9. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials.

  10. M/sub l/ = 1 photoionization spectrum of hydrogen in strong dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.; Ng, K.; Nayfeh, M.H.

    1987-10-15

    We present experimental and theoretical studies of the m/sub l/ = 1 photoionization channel of H(n = 2,m/sub l/ = 0) blue and red parabolic states in strong external electric fields in the energy region between the classical ionization threshold at E = -2 ..sqrt..F and the isolated-atom photoionization threshold at E = 0. Our results indicate that the ionization from the rapidly ionizing channels is concentrated away from but between the two thresholds. We also find that the fractions of the nuclear charge Z/sub 1/ = 0, (1/2, and 1 define two regions that classify the properties of the states. These results are in contrast to our previous results for the m/sub l/ = 0 channels where the ionization is concentrated at the two thresholds and the fractions Z/sub 1/ = 0, (1/4, (1/2, (3/4, and 1 define four quarters that classify the properties of these channels.

  11. Dielectric properties of KDP-type ferroelectric crystals in the presence of external electric field

    Indian Academy of Sciences (India)

    Trilok Chandra Upadhyay; Ramendra Singh Bhandari; Birendra Singh Semwal

    2006-09-01

    Considering external electric field as well as third- and fourth-order phonon anharmonic interaction terms in the pseudospin-lattice coupled mode (PLCM) model Hamiltonian for KDP-type ferroelectrics, expressions for field-dependent shift, width, renormalized soft mode frequency, Curie temperature, dielectric constant and dielectric loss are evaluated. For the calculation, method of statistical double-time temperature-dependent Green's function has been used. By fitting model values of physical quantities, temperature and electric field dependences of soft mode frequency, dielectric constant and loss have been calculated which compare well with experimental results of Baumgartner [8] and Choi and Lockwood [9]. Both dielectric constant and loss decrease with electric field.

  12. Calculation of the Helmholtz potential of an elastic strand in an external electric field.

    Science.gov (United States)

    Khaliullin, Renat N; Schieber, Jay D

    2011-02-14

    We derive from statistical mechanics the Gibbs free energy of an elastic random-walk chain affected by the presence of an external electric field. Intrachain charge interactions are ignored. In addition, we find two approximations of the Helmholtz potential for this system analogous to the gaussian and Cohen-Padé approximations for an elastic strand without the presence of an electric field. Our expressions agree well with exact numerical calculations of the potential in a wide range of conditions. Our analog of the gaussian approximation exhibits distortion of the monomer density due to the presence of the electric field, and our analog of the Cohen-Padé approximation additionally includes finite chain extensibility effects. The Helmholtz potential may be used in modeling the dynamics of electrophoresis experiments.

  13. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  14. Study of d.c. electrical conductivity of paranitroaniline doped (1 : 1) polyvinylchloride and poly(methyl methacrylate) polyblends

    Indian Academy of Sciences (India)

    R V Waghmare; N G Belsare; F C Raghuwanshi; S N Shilaskar

    2007-04-01

    Electrical properties of PVC, PMMA and their 1 : 1 polyblends, before and after adding paranitroaniline into them, have been investigated as a function of temperature, electric field and dopant concentration, to study the mechanism of electrical conduction. The current was measured by applying d.c. voltage in the range 25–800 V at various thermostatically controlled temperatures (313–373 K). The results obtained predict the Schottky–Richardson conduction mechanism to be operative and d.c. conductivity of the blend lies intermediate between those of individual components. Further, the conductivity of the blend increases with temperature and applied electric field and also with the increase in concentration of dopant. To identify the mechanism governing the conduction, the activation energies in low temperature (LTR) and high temperature (HTR) regions have been calculated. The dielectric constant of the sample at various temperatures have been calculated which increased with increase in temperature. This is indicative of the diffusion of ions in space charge polarization at higher temperature. The study of XRD and FTIR supports the changes occurring in the conductivity of the blend.

  15. External Electric Field-Assisted Laser Percussion Drilling for Highly Reflective Metals

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2013-01-01

    Full Text Available In this study, an external electric field was employed during the laser percussion drilling on highly reflective materials. The laser-produced plasma was sputtered substantially, and the charged ions in the plasma plume were drawn by the electrodes. Different configurations of plate electrodes were proposed and investigated in this work to provide a simple, low-cost method that allows expelling the laser-induced plasma during the percussion drilling process. The electric field resulted from the potential that was applied across the two electrodes. This electrical perturbation produced a uniform electric field when the laser-generated plasma was created in the plane plate-charged capacitor. The electric field with different electrode configurations applied to the charged particles that are carrying the electrons was also simulated in this work. All processing work was performed in air under standard atmospheric conditions and in the absence of assisting process gas. The depth of the holes drilled when various types of electrode configurations were used was measured, and the results were used to evaluate the percussion drilling rate. Results show that vaporized debris is expelled by the applied electric field; hence, in optimal configuration the penetration depth can be increased by up to 91.1%.

  16. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  17. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field

    Science.gov (United States)

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-02-01

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For

  18. Electronic properties of bilayer graphenes strongly coupled to interlayer stacking and an external electric field

    Science.gov (United States)

    Park, Changwon; Ryu, Junga; Hong, Suklyun; Sumpter, Bobby; Kim, Gunn; Yoon, Mina

    2015-03-01

    In the design of bilayer graphene (BLG)-based switching devices, it is critical to understand the complex stacking structures observed experimentally and their impact on the overall electronic properties. Using a maximally localized Wannier function, a highly accurate tight-binding Hamiltonian based on density functional theory was constructed and the stacking-dependent evolution of BLGs electronic band structures and their response to an external electric field were systematically investigated. Although the crossing band structures remain at any stacking configurations (i.e., no energy gap opens), the wavefunction characteristics around the Fermi level can differ qualitatively for different stackings. This difference is conveyed to energy gap opening properties in the presence of an external electric field. We, for the first time, established a phase diagram summarizing the stacking-dependent electronic structures of BLG, separating metallic and semiconducting characteristics for a given external field. The research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  19. Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid

    Directory of Open Access Journals (Sweden)

    Manuela Sechilariu

    2015-07-01

    Full Text Available In the context of sustainable buildings, this paper investigates power flow management for an isolated DC microgrid and focuses on efficiency and energy cost reduction by optimal scheduling. Aiming at high efficiency, the local produced power has to be used where, when, and how it is generated. Thus, based on photovoltaic sources, storage, and a biofuel generator, the proposed DC microgrid is coupled with the DC distribution network of the building. The DC bus distribution maximizes the efficiency of the overall production-consumption system by avoiding some energy conversion losses and absence of reactive power. The isolated DC microgrid aims to minimize the total energy cost and thus, based on forecasting data, a cost function is formulated. Using a mixed integer linear programming optimization, the optimal power flow scheduling is obtained which leads to an optimization-based strategy for real-time power balancing. Three experimental tests, operated under different meteorological conditions, validate the feasibility of the proposed control and demonstrate the problem formulation of minimizing total energy cost.

  20. Encaged molecules in external electric fields: A molecular "tug-of-war"

    Science.gov (United States)

    Gurav, Nalini D.; Gejji, Shridhar P.; Bartolotti, Libero J.; Pathak, Rajeev K.

    2016-08-01

    Response of polar molecules CH3OH and H2O2 and a non-polar molecule, CO2, as "guests" encapsulated in the dodecahedral water cage (H2O)20 "host," to an external, perturbative electric field is investigated theoretically. We employ the hybrid density-functionals M06-2X and ωB97X-D incorporating the effects of damped dispersion, in conjunction with the maug-cc-pVTZ basis set, amenable for a hydrogen bonding description. While the host cluster (cage) tends to confine the embedded guest molecule through cooperative hydrogen bonding, the applied electric field tends to rupture the cluster-composite by stretching it; these two competitive effects leading to a molecular "tug-of-war." The composite remains stable up to a maximal sustainable threshold electric field, beyond which, concomitant with the vanishing of the HOMO-LUMO gap, the field wins over and the cluster breaks down. The electric-field effects are gauged in terms of the changes in the molecular geometry of the confined species, interaction energy, molecular electrostatic potential surfaces, and frequency shifts of characteristic normal vibrations in the IR regime. Interestingly, beyond the characteristic threshold electric field, the labile, distorted host cluster fragmentizes, and the guest molecule still tethered to a remnant fragment, an effect attributed to the underlying hydrogen-bonded networks.

  1. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Science.gov (United States)

    Rajnak, M.; Timko, M.; Kopcansky, P.; Paulovicova, K.; Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R.; Avdeev, M. V.; Petrenko, V. I.; Feoktystov, A.

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance.

  2. Encaged molecules in external electric fields: a molecular `tug-of-war'

    Science.gov (United States)

    Pathak, Rajeev; Gurav, Nalini; Gejji, Shridhar; Bartolotti, Libero

    We investigate applying ab initio theoretical methods, the molecules Hydrogen peroxide, H2O2, and Methanol, CH3OH, encaged in hydrogen-bonded water ``buckyballs'' (H2O)20 , subjected to an externally applied electric field. While the water-cage (host) tends to confine the guest-molecule, the external electric field tends to stretch it along with its labile hydrogen-bonded host, resulting into a molecular `tug-of-war'. We appraise these two competing effects in terms of the extent of `screening' of the host by the cage and compare the response of the composite system in the form of the consequent structural mutations, redistributions in the electron density and the electrostatic potential leading to emergence and suppression of the covalent O-H characteristic frequency shifts in the infra-red vibrational spectrum. This study brings forth the cooperative effect of hydrogen-bonding up to a maximally sustainable threshold electric field, beyond which fragmentation of the water cage occurs. Partial support from The Center for Development in Advanced Computing (C-DAC) in terms of Computer time on the PARAM Supercomputing facility at Pune, MH, India, is gratefully acknowledged.

  3. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  4. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    Science.gov (United States)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2016-10-01

    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  5. Relaxation or breakup of a low-conductivity drop upon removal of a uniform dc electric field

    Science.gov (United States)

    Lanauze, Javier A.; Walker, Lynn M.; Khair, Aditya S.

    2016-07-01

    We quantify the dynamics of a prolate leaky dielectric drop upon removal of a uniform dc electric field. Experiments consisting of a castor oil drop suspended in silicone oil are compared against axisymmetric boundary integral computations that account for transient charging, or charge relaxation, of the interface. A temporal asymmetry between the drop deformation and relaxation processes is observed in the experiments and computations: The drop relaxes back to its spherical equilibrium shape faster than the time taken to achieve its steady-state deformation. During the deformation process, the electrical (Maxwell) stress deforms the drop along the direction of the applied field; it is counteracted by the capillary stress. During the relaxation process, i.e., after the field is removed, the electrical stress acts together with the capillary stress to quickly restore the drop back to equilibrium. This change in action of the electrical stress is responsible for the asymmetry between the drop deformation and relaxation. Notably, the electrical stress acts over the charge relaxation time scales of the fluids: Thus, counterintuitively, longer charging time scales yield faster drop relaxation. That is, the longer it takes for the interface to discharge, the faster the drop shape relaxes. We also present computational results for a drop that does not relax back to its initial spherical shape upon removal of the electric field; rather, the drop breaks up via an end-pinching mechanism.

  6. Novel synthesis and DC electrical studies of polyindole/poly(vinyl acetate) composite films

    Science.gov (United States)

    Bhagat, D. J.; Dhokane, G. R.

    2015-01-01

    Novel one pot synthesis of polyindole/poly(vinyl acetate) composite films was prepared chemically. The monomer indole was polymerized using oxidant cupric chloride. As-synthesized composites were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The DC conductivity measurements were done through two probe technique. The DC conductivity value was found to be 8.648 × 10-6 S/cm at 383 K. The transference number measurement shows that ionic conductivity was dominant over electronic conductivity.

  7. Electrical Characterization of 4H-SiC JFET Wafer: DC Parameter Variations for Extreme Temperature IC Design

    Science.gov (United States)

    Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.

    2014-01-01

    This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.

  8. Modeling of external electric field effect on the carbon and silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sorokina, Veronika, E-mail: ansonika@mail.ru [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 (Russian Federation); Nikiforov, Konstantin, E-mail: knikiforov@cc.spbu.ru [Saint Petersburg Electrotechnical University “LETI”, 5 Prof. Popova, St. Petersburg, 197376 (Russian Federation)

    2016-06-17

    Studying emission characteristics of nanotubes is extremely important for development of electronics. Compared to other electron sources nanotube-based field emitters allow obtaining significant emission currents at relatively low values of the applied field. It is possible due to their unique structure. This article is devoted to theoretical investigation how external electric field effects several samples of open single-wall nanotubes from carbon and silicon carbide. Total energies, dipole moments and band gaps for five types of nanotubes were calculated from the first principles. The numerical experiment results indicate the adequacy of modeling. It was concluded that considered configurations of achiral carbon nanotubes should be semiconductors.

  9. Transverse kinetics of a charged drop in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Komoshvili, K. [Ariel University (Israel)

    2016-01-22

    We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.

  10. Retention of nativelike conformation by proteins embedded in high external electric fields

    Science.gov (United States)

    Pompa, P. P.; Bramanti, A.; Maruccio, G.; Cingolani, R.; De Rienzo, F.; Corni, S.; Di Felice, R.; Rinaldi, R.

    2005-05-01

    In this Communication, we show that proteins embedded in high external electric fields are capable of retaining a nativelike fold pattern. We have tested the metalloprotein azurin, immobilized onto SiO2 substrates in air with proper electrode configuration, by applying static fields up to 106-107V/m. The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. Such results are also discussed and supported by theoretical predictions of the inner protein fields.

  11. Impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field

    Science.gov (United States)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Panevin, V. Yu.; Sofronov, A. N.; Melentyev, G. A.; Antonov, A. V.; Gavrilenko, V. I.; Andrianov, A. V.; Zakharyin, A. O.; Suihkonen, S.; Törma, P. T.; Ali, M.; Lipsanen, H.

    2009-12-01

    We report on the observation and experimental studies of impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field. The terahertz electroluminescence is observed in a wide range of doping levels (at noncompensated donor density from 4.5×1016 to 3.4×1018 cm-3). Spectra of terahertz luminescence and photoconductivity are studied by means of Fourier transform spectrometry. Distinctive features of the spectra can be assigned to intracenter electron transitions between excited and ground states of silicon and oxygen donors and to hot electron transitions to the donor states.

  12. Powers of Traction Rectifier Substation of DC ELectric Railways 3kV

    Directory of Open Access Journals (Sweden)

    Josef Palecek

    2004-01-01

    Full Text Available The article states main principles of dimensioning of traction supply stations DC traction current system. it also provides detailed results of the traction rectifier substation Ostrava-Svinov load measurement. The measured valued are subsequently used for calculation of characteristic coefficients, whitch make it possible to dimension rectifier groups.

  13. Performance test results for the Eaton dc development power train in an electric test bed vehicle

    Science.gov (United States)

    Crumley, R. L.; Donaldson, M. R.

    1987-09-01

    This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the U.S. Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile).

  14. Electrical penetration graphs of thrips revised: Combining DC- and AC-EPG signals

    NARCIS (Netherlands)

    Kindt, F.; Joosten, N.N.; Tjallingii, W.F.

    2006-01-01

    Within thrips feeding behaviour, sequences of four waveforms have been distinguished earlier in the DC-EPG, i.e. P, Q, R and S, representing mandibular stylet insertion, maxillary stylet insertion, ingestion, and repetitive mandibular insertion, respectively. During signal analysis it appeared that

  15. DC electric field measurement in the mid-latitude ionosphere by S-520-26 sounding rocket in Japan

    Science.gov (United States)

    Ishisaka, K.; Suda, K.; Sugai, M.; Takahashi, T.; Yamamoto, M.; Abe, T.; Watanabe, S.

    2012-12-01

    S-520-26 sounding rocket experiment was carried out at Uchinoura Space Center (USC) in Japan at 5:51 JST on 12 January, 2012. The purpose of this experiment is the investigation of the bonding process between the atmospheres and the plasma in the thermosphere. S-520-26 sounding rocket reached to an altitude of 298 km 278 seconds after a launch. The S-520-26 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure both DC and AC less than 200 Hz electric fields in the spin plane of the payload by using the double probe method. One of the probes is the inflatable tube structure antenna, called the ITA, with a length of 5 m (tip-to-tip). And ITA is very lightweight (12.5g per one boom). The ITA extended and worked without any problems. It was the first successful use of an inflatable structure as a flight antenna. Another one is the ribbon antenna with a length of 2 m (tip-to-tip). The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifiers using the floating (unbiased) double probe technique. The potential differences on the two main orthogonal axes were digitized on-board using 16-bit analog-digital converter, sampled at 800 samples/sec with low pass filter at cut-off frequency of 200 Hz. Results of DC electric fields measured by the EFD have the large sine waves that result from the payload rotation at the spin period. The largest contribution to the electric field measurements by double probes moving through the ionosphere at mid-latitudes is that due to the v x B fields created by their motion across the ambient magnetic field, where v is the rocket velocity in the Earth-fixed reference frame and B is the ambient magnetic field. The sum of the squares of the two components represents the magnitude of the DC electric field in the spin plane of the payload. These data reveal abrupt, large-scale variations which can immediately be attributed

  16. Hydrophilic quantum dots stability against an external low-strength electric field

    Energy Technology Data Exchange (ETDEWEB)

    Goftman, Valentina V., E-mail: Valentina.Goftman@UGent.be [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Pankratov, Vladislav A.; Markin, Alexey V. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Ginste, Dries Vande [IBCN/Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 B-Gent (Belgium); De Saeger, Sarah [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Goryacheva, Irina Yu. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Silica-coated and polymer-covered hydrophilic quantum dots are synthesized and characterized. • Impact of low-strength electric field is compared for both hydrophilic shells. • Silica shell protects the quantum dots fluorescent core when being subjected to a low-strength electric field. - Abstract: Since the stability of nanobiolabels plays a key role in their application, we thoroughly investigated how an external, low-strength electric field impacts on the fluorescent properties of hydrophilic quantum dots (QDs). Two fundamentally different approaches were applied to make the QDs water-soluble, i.e. ligand exchange (namely silica covering) and encapsulation with an amphiphilic polymer. It is shown that, even under a low-strength electric field, the polymer-coated QDs could lose 90% of their brightness because of the weak interaction between the QD's surface and the polymeric molecule. Silica-covered QDs, on the contrary, stay bright and stable owing to the covalently attached dense silica shell. These findings, which are clearly explained and illustrated in the present paper, are of critical importance in the context of hydrophilic QDs’ bioapplication.

  17. Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field

    Science.gov (United States)

    Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli

    2017-08-01

    Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.

  18. Technology and Key Strategy of IE4 Permanent Magnet Brushless DC Motor Drive for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Nitin Subramonium A K

    2017-03-01

    Full Text Available Environmental protection and energy conservations are the main concern of 21st century Asia Pacific developing countries. This concern has compelled to design and develop zero pollution road transportation Electric Vehicles (EVs. The EV system consist of energy storage devices such as battery, fuel cell, ultra-capacitors along with electric propulsion, body of the vehicle and energy management system with the diversified technology of electrical, electronics, mechanical, automotive and chemical engineering. The objective of electric vehicle is to produce commercial viable range, efficient performance, and comfort with safety and reliable operations at cheaper price than its counterpart the Internal Combustion Engine Vehicle (ICEV. The PMBLDC motors are the present choice of automobile industries and researchers because of its high power density, compact size, reliability, with noise free and minimum maintenance requirements. The present state of art Permanent Magnet Brushless DC (PMBLDC Motor drive for the electric vehicle application is studied / reviewed in this paper.. In addition the study also reveals the advancement of the Power Processing Unit (PPU which consists of Microelectronics and Controls (Me and C to produce the super-premium efficiency PMBLDC drive system for EV applications.

  19. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun, E-mail: xieyunxx@gdpu.edu.cn; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-30

    phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.

  20. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    Science.gov (United States)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  1. Internal and external influences on pro-environmental behavior: participation in a green electricity program

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.F.; Moore, M.R. [XENERGY, Inc., Burlington, MA (United States); Kotchen, M.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Economics; Michigan Univ., Ann Arbor, MI (United States). School of Natural Resources and Environment

    2003-09-15

    This paper integrates themes from psychology and economics to analyze pro-environmental behavior. Increasingly, both disciplines share an interest in understanding internal and external influences on behavior. In this study, we analyze data from a mail survey of participants and non-participants in a premium-priced, green electricity program. Internal variables consist of a newly developed scale for altruistic attitudes based on the Schwartz norm-activation model, and a modified version of the New Ecological Paradigm scale to measure environmental attitudes. External variables consist of household income and standard socio-demographic characteristics. The two internal variables and two external variables are significant in a logit model of the decision to participate in the program. We then focus on participants in the program and analyze their specific motives for participating. These include motives relating to several concerns: ecosystem health, personal health, environmental quality for residents in southeastern Michigan, global warming, and warm-glow (or intrinsic) satisfaction. In a statistical ranking of the importance of each motive, a biocentric motive ranks first, an altruistic motive ranks second, and an egoistic motive ranks third. (author)

  2. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    Science.gov (United States)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  3. Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate

    Energy Technology Data Exchange (ETDEWEB)

    Raghvendra; Singh, Rajesh Kumar; Singh, Prabhakar [Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi (India)

    2014-09-15

    One of the promising electrolyte materials for solid oxide fuel cells application, Sr- and Mg-doped lanthanum gallate La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-δ} (LSGM), is synthesized by conventional solid state ceramic route. X-ray Rietveld analysis confirms the formation of main orthorhombic phase at room temperature along with a few minor secondary phases. SEM micrograph reveals the grain and grainboundary morphology of the system. Electrical conductivity of the LSGM sample is measured in the temperature range 573-873 K and in the frequency range 20 Hz-1 MHz at a few small DC bias fields (at 0.0, 0.5, 1.0, 1.5 and 2.0 V). The conductivity spectra show power-law behaviour. Electrical conductivity of the sample is found to be weakly dependent on DC bias field. This is attributed to field-dependent bulk and grainboundary conduction processes. In the present system, under investigated bias field range, the possibility of formation of Schottky barrier is ruled out. The concept of grainboundary channel (pathway) modulation on the application of bias field is proposed. (orig.)

  4. Multi-field nanoindentation apparatus for measuring local mechanical properties of materials in external magnetic and electric fields

    CERN Document Server

    Zhou, Hao; Huang, Hu; Zhao, Hongwei; Li, Faxin; Fang, Daining

    2013-01-01

    Nano/micro-scale mechanical properties of multiferroic materials can be controlled by the external magnetic or electric field due to the coupling interaction. For the first time, a modularized multi-field nanoindentation apparatus for carrying out testing on materials in external magnetostatic/electrostatic field is constructed. Technical issues, such as the application of magnetic/electric field and the processes to diminish the interference between external fields and the other parts of the apparatus, are addressed. Tests on calibration specimen indicate the feasibility of the apparatus. The load-displacement curves of ferromagnetic, ferroelectric and magnetoelectric materials in the presence/absence of external fields reveal the small-scale magnetomechanical and electromechanical coupling, showing as the Delta-E and Delta-H effects, i.e. the magnetic/electric field induced changes in the apparent elastic modulus and indentation hardness.

  5. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  6. Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements

    Directory of Open Access Journals (Sweden)

    E. Dadrasnia

    2014-01-01

    Full Text Available Measuring the DC conductivity of very thin films could be rather difficult because of the electrical contact issue. This DC conductivity can, however, be extracted from noncontact measurements at GHz and THz frequencies using elaborated conductivity models that nicely fit the experimental data. Here we employ this technique to study the DC conductivity of fragile nanometer-thick films of multiwalled carbon nanotubes and monolayer graphene. The THz response of the films is measured by THz time-domain spectroscopy. We show that the THz conductivity of the samples is well fitted by either Drude-Lorentz model or Drude-Smith model, giving information on the physics of electrical conductivity in these materials. This extraction procedure is validated by the good agreement between the so-obtained DC conductivity and the one measured with a classical 4-point probe in-line contact method.

  7. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    Science.gov (United States)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  8. Change of Work Function of Pd, Ag, K on Al(001) as a Function of External Electric Field

    Institute of Scientific and Technical Information of China (English)

    侯柱峰; 黄美纯; 朱梓忠; 黄荣彬; 郑兰荪

    2001-01-01

    We present a local density functional calculation of the effect of an external electric field on the work function change of Pd and Ag adsorption on an Al(001) surface. The adsorption of K has also been considered for comparison. We found that the work functions for all the systems increased linearly when the strength of the external electric field was increased. Since the polarized electrons at the interstitial regions between the adsorbate and substrate for Pd/Al(001) and Ag/Al(001) react to the external electric field differently, the subtle differences between Pd/Al(001) and Ag/Al(001) bondings has been characterized through the comparison of the slopes of the work function change versus electric field.

  9. Effect of external electric field on morphology of copper phthalocyanine-fullerene blended films during annealing

    Science.gov (United States)

    Parhi, Anukul Prasad; Iyer, S. Sundar Kumar

    2016-03-01

    The thin-film morphology and segregated phases of constituents in blends of organic semiconductors play an important role in determining the performance of devices fabricated with these constituents. In this study, we explored the effect of an external electric field applied during annealing on the morphology and phase of blended films of two popular organic semiconductors, copper pthalocyanine (CuPc) and buckminsterfullerene (C60). Films of different blend ratios annealed at various temperatures in both the presence and absence of an electric field were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. The characteristics of annealed pristine CuPc films were also included for comparison. The observed changes in the properties of the blended films following the annealing, including the abrupt phase segregation of the blended constituents in the films, are discussed. The polarizability of the molecules was calculated using density functional theory (DFT) to explain the interaction, stacking, and segregation of the molecules in the blend. The results showed that application of an electric field during annealing of the blended films is an additional control parameter that can help tune the properties of the blended film. [Figure not available: see fulltext.

  10. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.

    Science.gov (United States)

    Kelly, Catherine M; Northey, Thomas; Ryan, Kate; Brooks, Bernard R; Kholkin, Andrei L; Rodriguez, Brian J; Buchete, Nicolae-Viorel

    2015-01-01

    Aromatic peptides including diphenylalanine (FF) have the capacity to self-assemble into ordered, biocompatible nanostructures with piezoelectric properties relevant to a variety of biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we examine the response of FF monomers to the application of a constant external electric field over a range of intensities. We probe the aggregation mechanism of FF peptides, and find that the presence of even relatively weak fields can accelerate ordered aggregation, primarily by facilitating the alignment of individual molecular dipole moments. This is modulated by the conformational response of individual FF peptides (e.g., backbone stretching) and by the cooperative alignment of neighboring FF and water molecules. These observations may facilitate future studies on the controlled formation of nanostructured aggregates of piezoelectric peptides and the understanding of their electro-mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Energy consumption in Hodgkin–Huxley type fast spiking neuron model exposed to an external electric field

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-09-01

    Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.

  12. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    Science.gov (United States)

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

  13. Shaft Voltage and Life of Bearing electric-erosion for the Brushless DC Motor

    Science.gov (United States)

    Maetani, Tatsuo; Isomura, Yoshinori; Komiyama, Hiroshi; Morimoto, Shigeo

    This paper describes the life of noise of bearing electro-erosion in the shaft voltage of brushless DC motors. We confirmed that shaft voltage is suppressed to equal to or less than the dielectric breakdown voltage of bearing lubricant in the insulated rotor proposed for suppression of shaft voltage. However, since bearing electro-erosion appears over time along with the deterioration of noise performance, the threshold of the shaft voltage to secure noise performance over long periods of time is necessary. Therefore, the threshold of the shaft voltage that influences the life of noise was obtained in acceleration tests.

  14. Medidas de resistividade elétrica DC em sólidos: como efetuálas corretamente DC electrical resistivity measurements in solids: how to proceed correctly

    Directory of Open Access Journals (Sweden)

    Emerson M. Girotto

    2002-07-01

    Full Text Available This paper deals with the most common methods for determining the dc electrical resistivity in solid materials. A brief overview of the fundamental concepts related to the electrical resistivity on materials is introduced. Undoubtedly, the most common and useful procedure to determine the electrical resistivity (rho is the fourpoint probe method. Some crucial mistakes regarding the experimental procedure and the appropriated correction factors are found in the literature. Thus, the correction factor for the most common sample geometries were gathered and revised in order to provide an easy way to use and apply them.

  15. External conditions and structure development in the Norwegian electricity supply; Rammebetingelser og strukturutvikling

    Energy Technology Data Exchange (ETDEWEB)

    Thommessen; Krefting; Greve; Lund

    1997-12-31

    In Norway, an act of 1996 implied a total reform of the taxation system for electricity suppliers. Publicly owned utilities are also subject to this act. The problem discussed in this report is whether energy political goals about fewer and larger units are weakened or strengthened because of today`s taxation rules. The taxation rules are considered only in relation to any structural changes. The external conditions that can affect the structural development are: (1) duties and licences, (2) concessionary rules, (3) regulation of network tariffs, (4) judicial problems of competition, (5) judicial problems of company. They are discussed in detail. The general conclusion is that the design and practice of public regulations strongly interfere with and affect the incentives and possibility for a restructuring of the power sector. 1 table

  16. Molecular dynamics simulation study on behaviors of liquid 1,2-dichioroethane under external electric fields

    Institute of Scientific and Technical Information of China (English)

    杜志强; 陈正隆

    2003-01-01

    Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 108 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 1012 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.

  17. Molecular dynamics simulation study on behaviors of liquid 1,2-dichloroethane under external electric fields

    Institute of Scientific and Technical Information of China (English)

    杜志强; 陈正隆

    2003-01-01

    Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 108 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 1012 Hz .The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6 in the strong direct current field.

  18. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  19. Ion-cage interpretation for the structural and dynamic changes of ionic liquids under an external electric field.

    Science.gov (United States)

    Shi, Rui; Wang, Yanting

    2013-05-01

    In many applications, ionic liquids (ILs) work in a nonequilibrium steady state driven by an external electric field. However, how the electric field changes the structure and dynamics of ILs and its underlying mechanism still remain poorly understood. In this paper, coarse-grained molecular dynamics simulations were performed to investigate the structure and dynamics of 1-ethyl-3-methylimidazolium nitrate ([EMIm][NO3]) under a static electric field. The ion cage structure was found to play an essential role in determining the structural and dynamic properties of the IL system. With a weak or moderate electric field (0-10(7) V/m), the external electric field is too weak to modify the ion cage structure in an influential way and thus the changes of structural and dynamic properties are negligible. With a strong electric field (10(7)-10(9) V/m) applied, ion cages expand and deform apparently, leading to the increase of ion mobility and self-diffusion coefficient with electric field, and the self-diffusion of ions along the electric field becomes faster than the other two directions due to the anisotropic deformation of ion cages. In addition, the Einstein relation connecting diffusion and mobility breaks down at strong electric fields, and it also breaks down for a single ion species even at moderate electric fields (linear-response region).

  20. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-05

    Under an electric field, ions in the reaction zone of a flame generate a bulk flow motion called ionic wind. Because the majority of ions are positive, ionic wind is commonly considered to be unidirectional toward the cathode. A more thorough understanding of the effects of electric fields on flames could be obtained by clarifying the role of minor negative ions in the ionic wind. Here, we report on the effects of direct current on nonpremixed counterflow flames by visualizing the ionic wind. We found that the original flow field separates near the flame when it locates at a flow stagnation plane, resulting in a double-stagnant flow configuration. This evidences a bidirectional ionic wind blowing from the flame to both the cathode and the anode due to the positive and the negative ions, respectively. Meanwhile, an electric body force pulls the flame toward the cathode. Thus, the electric field affects the strain rate and the axial location of the stoichiometry, which are important for characterizing nonpremixed counterflow flames. In addition, measurement of the electric current density roughly showed a nearly saturated current when these flames restabilized under relatively high voltage. Detailed explanations of flame behavior, electric currents, and flow characteristics of various fuels are discussed in this study.

  1. Pacemaker System Malfunction Resulting from External Electrical Cardioversion: A Case Report

    Directory of Open Access Journals (Sweden)

    Taku Nishida, MD

    2009-01-01

    Full Text Available In May 2005 a 68-year-old woman received a VDD pacemaker implantation in the right pectoral region at our hospital for the treatment of complete atrioventricular block. In July 2008, she was diagnosed with dilated cardiomyopathy based on histological testing. In November 2008, she developed syncope due to ventricular tachycardia while at another hospital. She underwent external electrical cardioversion with an anterior-lateral paddle position using a single shock of 100 J. This shock led to severe bradycardia resulting in a transfer to our hospital. The physician who provided the shock could not have been aware that the patient had an implanted pacemaker. The skin above the pulse generator was burned. The electrocardiogram showed no pacing spikes or ventricular escape rhythm. Investigation of the pacemaker 3 hours after cardioversion revealed reprogramming of the device and a marked rise in the lead impedance (>3,000 ohm. Removal of the generator and implantation of a biventricular cardioverter defibrillator were required. The emergency situation, the small size of the generator, the small incision made using the buried suture method, and the patient's obesity all probably contributed to the physician's not noticing the implanted pacemaker. It is important to increase awareness of the severe consequences that may follow if the physician administering external defibrillation does not know about the patient's implanted pacemaker.

  2. A fault analysis of DC electric arc furnaces with SVC harmonic filters in a mini-mill plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byungju [PQ TECH INC., Youngtong-dong, Youngtong-gu, Suwon 443-813 (Korea); Lee, Hansang; Jang, Gilsoo [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701 (Korea); Han, Byungmoon [Department of Electrical Engineering, Myongji University, Nam-dong, Yongin, Gyeonggi-do, 449-728 (Korea)

    2010-07-15

    This paper proposes the most feasible solution to overcome the failure of the 2nd harmonic filter in the static VAR compensator (SVC) which operates with the DC electric arc furnace (EAF) at Gwangyang Steel Mill in Korea. In order to investigate the causes of this failure, various measurements were carried out on the DC EAF and the main transformer at the PCC (point of common connection). It was concluded that the two causes for the failure are; the inrush current in the main transformer, and the parallel resonance between the system impedance and the harmonic filter. Three solutions to suppress the transformer inrush current and another three solutions to avoid the parallel resonance are suggested. The feasibility of these solutions was verified through the computer simulation with PSCAD/EMTDC. The most feasible solution to avoid further failures of the 2nd harmonic filter was selected, based on the estimated result for the six optional solutions in the point of performance and cost. (author)

  3. Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields

    Science.gov (United States)

    Dehyar, A.; Rezaei, G.; Zamani, A.

    2016-10-01

    In the present work, we have investigated the simultaneous effects of external electric and magnetic fields on the energy spectrum of an electron bound to an impurity confined in a spherical quantum dot with Kratzer potential. To this end, energy eigenvalues are obtained using the asymptotic iteration method. The energy dependencies upon the confinement potential and external fields are reported. Our results indicate that the confinement potential, external electric and magnetic fields have a great influence on the energy eigenvalues of the system. We found that, an increase in the magnetic field increases the energy eigenvalues of the states with positive magnetic quantum number, m ≽ 0 . While, the states with negative m decrease, reaching to their minimum values and increase again, with increasing the magnetic field. Moreover, an increase in electric field strength leads to decrease the confinement effects and energy eigenvalues of the system.

  4. External electric field effect on exciton binding energy in InGaAsP/InP cylindrical quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong, E-mail: hlwang@mail.qfnu.edu.cn [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Wang, Wenjuan [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Gong, Qian; Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-12-15

    Exciton binding energies in InGaAsP/InP cylindrical quantum wires are calculated through variational method under the framework of effective-mass envelope-function approximation. It is shown that the variation of exciton binding energy is highly dependent on radius of the wire, material composition and external electric field. Exciton binding energy is a non-monotonic function of wire radius. It increases until it reaches a maximum, and then decreases as the wire radius decreases. With the increase of In composition, the wire radius need increase to reach the maximum value of exciton binding energy. It is also found that the external electric field has little effect on exciton binding energy. However, the excitonic effect will be destroyed when external electric field is large enough. In addition, the Stark shift of exciton binding energy is also calculated.

  5. A DFT study on the elastic and plastic properties of MoS2 nanosheet subjected to external electric field

    Science.gov (United States)

    Ansari, R.; Shahnazari, A.; Malakpour, S.; Faghihnasiri, M.; Sahmani, S.

    2016-09-01

    Molybdenum disulfide (MoS2) may be synthesized in a large variety of forms such as particles, monolayer and multilayers nanosheets/nanotubes, ropes and ribbons. Due to such diversity, several applications can be found for MoS2. In this paper, on the basis of density functional theory (DFT) calculations using the generalized gradient approximation (GGA) with the Perdew- Burke-Ernzerhof (PBE) exchange correlation, the elastic properties including Young's and bulk moduli together with plastic properties of MoS2 nanosheet under external electric field with magnitudes within the range of 0 V/ang-1.5 V/ang are determined. It is demonstrated that up to the magnitude of 1 V/ang, the external electric field has a negligible influence on the bulk modulus of MoS2 nanosheet. However, by applying an external electric field equal to 1.3 V/ang, a significant increase in the value of bulk modulus occurs. Additionally, by applying an external electric field equal to 1.5 V/ang, the bulk modulus decreases suddenly, showing the considerable influence of high external electric field on the bulk modulus of MoS2 nanosheet. Also, it is observed that the first and second critical strains of the MoS2 nanosheet subjected to biaxial strain are smaller than those of the MoS2 nanosheet under uniaxial strain. Furthermore, it is revealed that for the both uniaxial and biaxial loading cases, by increasing the magnitude of external electric field, the stability of MoS2 nanosheet decreases.

  6. A 7-Level Single DC Source Cascaded H-Bridge Multilevel Inverter with a Modified DTC Scheme for Induction Motor-Based Electric Vehicle Propulsion

    Directory of Open Access Journals (Sweden)

    Farid Khoucha

    2013-01-01

    Full Text Available This paper presents a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where each phase of the inverter can be implemented using a single DC source. Traditionally, each phase of the inverter requires DC source for output voltage levels. In this paper, a scheme is proposed that allows the use of a single DC source as the first DC source which would be available from batteries or fuel cells, with the remaining ( DC sources being capacitors. This scheme can simultaneously maintain the capacitors of DC voltage level and produce a nearly sinusoidal output voltage due to its high number of output levels. In this context, high performances and efficient torque and flux control are obtained, enabling a DTC solution for hybrid multilevel inverter powered induction motor drives intended for electric vehicle propulsion. Simulations and experiments show that the proposed multilevel inverter and control scheme are effective and very attractive for embedded systems such as automotive applications.

  7. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  8. A Galvanically Isolated Power Converter Module for DC Zonal Electric Distribution Systems

    Science.gov (United States)

    2006-03-01

    operating at high speed. Examples of this include such weapons as a long range electromagnetic (EM) “ Railgun ” for the shore bombardment role, and the...18 3. Inductor and Capacitor Sizing .........................................................18 III. STATE SPACE MODELING...EDS Electrical Distribution System EM Electromagnetic EMALS Electromagnetic Aircraft Launch System FBC Full Bridge Converter FBI Full

  9. Use of a Nonequilibrium MHD Generator for Conversion of SNTP Nuclear Thermal Rocket Exhaust to DC Electric Power for a Multimegawatt Nuclear Electric Propulsion System

    Science.gov (United States)

    Finley, Charles J.

    1994-07-01

    This paper explores a method by which the energy of a high speed flowing gas can efficiently be converted into DC electric power by a magnetohydrodynamic (MHD) generator. A nonequilibrium state may be created in the working fluid during the ionization process using an arc discharge. This nonequilibrium state may possibly be sustained in the fluid using the waste heat byproduct of the natural operation of the generator, if certain characteristics of the fluid/MHD system are maintained. The improved efficiency of the resulting nonequilibrium MHD generator not only allows the system to deliver increased power to the load, but reduces the amount of energy to be expelled from the closed fluid cycle by a radiator.

  10. Electrical and mechanical performance difference on piezoelectric segmentation in a passive MEMS DC current sensor applicable to two-wire DC appliances

    Science.gov (United States)

    Yang, Xu; Fu, Yupeng; Wang, Dong F.

    2017-01-01

    As society develops in intelligence, DC is being widely used in all kinds of field in modern life, which means that a sensitive and convenient DC sensor is necessary to monitor it. Compared with other kinds of current sensor, the proposed passive MEMS DC current sensor has several significant features: power-free passive sensing, small size and low cost. In this work, the performance difference of a cantilever-based bending MEMS DC current sensor among three segmentation PZT plates was first experimentally discovered. The distribution difference of X-dir (X-direction) stress along the Y axis is confirmed through FEM analysis. An optimized structure with two slots at the root of the cantilever has been proposed to minimize the difference of average X-dir stress on an area attached to three PZT plates. A nearly linear relationship between the output voltage V output and the AC current has been obtained through both theoretical calculation and experimental verification. The sensitivity of the developed MEMS DC current sensor is 40-25 mV A-1 in the current range of 0-400 mA. It is found that there is a good consistency among the calculation, experiment and simulation results.

  11. Justification of equivalent substitution circuits used to optimize the dissipative properties of electroelastic bodies with external electric circuits

    Science.gov (United States)

    Ivanov, A. S.; Matvienko, V. P.; Oshmarin, D. A.; Sevodina, N. V.; Yurlov, M. A.; Yurlova, N. A.

    2016-05-01

    We consider elastoplastic systems which are piecewise homogeneous bodies composed of piezoelectric elements some of which have piezoelectrical properties. Electric series circuits consisting of resistors, capacitors, and inductance coils are applied to piezoelectric elements through the electrode coating on the body surface. The goal of the study is to develop efficient methods of mathematical modelling for determining the parameters of elements of the external electric circuit, which ensure, at prescribed resonance frequencies, the maximum damping properties of electroelastic bodies with external electric circuits. To choose effective circuits for solving the problem posed above, we suggest to pose the problem of natural vibrations of elastic bodies whose elements exhibit piezoeffect and have external electric circuits.As the most efficient approaches for calculating the electric circuit parameters necessary for the maximal damping, we propose some versions of equivalent circuits, which can be used to substitute elastic systems with piezoelectric elements. The most reliable equivalent substitution circuits are justified on the basis of the proposed problem of natural vibrations. Numerical results are obtained for a cantilever plate with a piezoelement connected through the electrode coated surface with a series electric circuit consisting of resistors, capacitors and inductance coils.

  12. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2017-01-01

    This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement the p...

  13. Optimized electricity expansions with external costs internalized and risk of severe accidents as a new criterion in the decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Estrada S, G. J., E-mail: cmcm@fi-b.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    The external cost of severe accidents was incorporated as a new element for the assessment of energy technologies in the expansion plans of the Mexican electric generating system. Optimizations of the electric expansions were made by internalizing the external cost into the objective function of the WASP-IV model as a variable cost, and these expansions were compared with the expansion plans that did not internalize them. Average external costs reported by the Extern E Project were used for each type of technology and were added to the variable component of operation and maintenance cost in the study cases in which the externalises were internalized. Special attention was paid to study the convenience of including nuclear energy in the generating mix. The comparative assessment of six expansion plans was made by means of the Position Vector of Minimum Regret Analysis (PVMRA) decision analysis tool. The expansion plans were ranked according to seven decision criteria which consider internal costs, economical impact associated with incremental fuel prices, diversity, external costs, foreign capital fraction, carbon-free fraction, and external costs of severe accidents. A set of data for the calculation of the last criterion was obtained from a Report of the European Commission. We found that with the external costs included in the optimization process of WASP-IV, better electric expansion plans, with lower total (internal + external) generating costs, were found. On the other hand, the plans which included the participation of nuclear power plants were in general relatively more attractive than the plans that did not. (Author)

  14. Compact, DC-electrical biased sulfur dioxide sensing elements for use at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    West, David L [ORNL; Montgomery, Fred C [ORNL; Armstrong, Beth L [ORNL

    2012-01-01

    Fabrication and operation of sensing elements for the detection of sulfur dioxide (SO_2) at high temperature (800 900 ^oC) is reported. The sensing elements consisted of three (two oxide and one Pt) electrodes on yttria-stabilized zirconia substrates. To operate the elements, a DC current (typically about 0.1 mA) is driven between two of the electrodes and the voltage between one of these electrodes and the third electrode is used as the sensing signal. These sensing elements respond very strongly to SO_2, for example 2 ppm_V of SO_2 in a background of 7 vol% O_2, balance N_2 was found to produce a >10% change in the sensing signal, which could be easily detected. Sensing elements fabricated to be nominally identical were shown to yield qualitatively identical sensing behavior, and temperature, oxygen content, and flow were all found to strongly impact sensing performance. The impact of interferents, such as NO_x and CO, was evaluated and found to be relatively small in comparison to the SO_2 response. The sensing response, over a 1 month period, was very stable, with the ratio of the average change in sensing signal over one day to the average sensing signal magnitude being about 0.1%.

  15. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace

    Science.gov (United States)

    Tzonev, Tz.; Lucheva, B.

    2007-11-01

    The recycling of aluminum scrap and dross yields significant economic and energy savings, as well environmental benefits. The recovery of aluminum depends on many factors. The aim of this work is to experimentally investigate aluminum recovery under different conditions. In this study, aluminum dross was processed in a direct-current electric-arc rotary furnace. The presence of crushing refractory bodies during processing was found to increase the degree of aluminum recovery by about ten percent.

  16. Combined DC Resistivity Survey and Electric Conductivity- Dielectric Permittivity Measurement at Sag Pond near Lembang Fault, West Java, Indonesia

    Science.gov (United States)

    Iryanti, Mimin; Srigutomo, Wahyu; Bijaksana, Satria; Setiawan, Tedy

    2016-08-01

    Lembang Fault is a normal fault situated at the southern flank of Tangkuban Parahu Volcano in West Java Indonesia. The fault's movement may have caused the formation of sag pond in the vicinity of its which is characterized by the soil layers of the sag pond. The characteristics of the soil can be examined based on its electrical properties such as conductivity (the inverse of resistivity) and dielectric permittivity. Direct field measurement was conducted using DC-resistivity Wenner-Schlumberger method on the sag pond as well as laboratory resistivity measurement of cores taken from the sag pond. Two resistivity crosssections were obtained after performing 2D inversion of the data which reveal that the resistivity distribution consist of a resistive layer (40-60 ohm.m) overlying a medium resistive layer (30-35 ohm.m). The third layer has relatively low resistivity of 16-25 ohm.m. At the intersection of these two lines we took coring samples down to depth of 5 m below surface and measured the electrical conductivity and dielectric permittivity for each 1 cm of sample using EM-50 data logger. Results from both field and laboratory measurement were analysed to get a better understanding of the sag pond.

  17. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field.

    Science.gov (United States)

    Tang, Qing; Bao, Jie; Li, Yafei; Zhou, Zhen; Chen, Zhongfang

    2014-08-07

    Density functional theory computations with dispersion corrections (DFT-D) were performed to investigate the dihalogen interactions and their effect on the electronic band structures of halogenated (fluorinated and chlorinated) BN bilayers and aligned halogen-passivated zigzag BN nanoribbons (BNNRs). Our results reveal the presence of considerable homo-halogen (FF and ClCl) interactions in bilayer fluoro (chloro)-BN sheets and the aligned F (Cl)-ZBNNRs, as well as substantial hetero-halogen (FCl) interactions in hybrid fluoro-BN/chloro-BN bilayer and F-Cl-ZBNNRs. The existence of interfacial dihalogen interactions leads to significant band-gap modifications for the studied BN nanosystems. Compared with the individual fluoro (chloro)-BN monolayers or pristine BNNRs, the gap reduction in bilayer fluoro-BN (B-FF-N array), hybrid fluoro-BN/chloro-BN bilayer (N-FCl-N array), aligned Cl-ZBNNRs (B-ClCl-N alignment), and hybrid F-Cl-ZBNNRs (B-FCl-N alignment) is mainly due to interfacial polarizations, while the gap narrowing in bilayer chloro-BN (N-ClCl-N array) is ascribed to the interfacial nearly-free-electron states. Moreover, the binding strengths and electronic properties of the interactive BN nanosheets and nanoribbons can be controlled by applying an external electric field, and extensive modulation from large-gap to medium-gap semiconductors, or even metals can be realized by adjusting the direction and strength of the applied electric field. This interesting strategy for band gap control based on weak interactions offers unique opportunities for developing BN nanoscale electronic devices.

  18. Electric field measurements of DC and long wavelength structures associated with sporadic-E layers and QP radar echoes

    Directory of Open Access Journals (Sweden)

    S. Ohtsuki

    2005-10-01

    include gravity waves or a combination of these processes. The data suggest that these structures were associated with the lower altitude density striations that were the seat of the QP radar echoes observed simultaneously. They also appear to have been associated with the mechanism responsible for a well-defined pattern of "whorls" in the neutral wind data that were revealed in a chemical trail released by a second sounding rocket launched 15min later. Short scale (<100 m electric field irregularities were also observed and were strongest in the sporadic-E region below 110km. The irregularities were organized into 2–3 layers on the upleg, where the plasma density also displayed multiple layers, yet were confined to a single layer on the downleg where the plasma density showed a single, well-defined sporadic-E peak. The linear gradient drift instability involving the DC electric field and the vertical plasma gradient is shown to be incapable of driving the observed waves on the upleg, but may have contributed to the growth of short scale waves on the topside of the narrow unstable density gradient observed on the downleg. The data suggest that other sources of free energy may have been important factors for the growth of the short scale irregularities. Keywords. Ionosphere (Mid-latitude ionosphere; Electric fields and currents; Ionospheric irregularities

  19. D.C. electrical conductivity and magnetic susceptibility of polythiophene doped with iodine

    Science.gov (United States)

    Chourasia, Ashish B.; Kelkar, Deepali S.

    2013-06-01

    Polythiophene was chemically synthesized, undoped and then re-doped with iodine. FTIR spectra confirm iodine doping. XRD analysis is used to calculate crystallinity of the samples. Electrical conductivity measurements were carried out using two probe technique in the temperature range from 300 K to 373 K. Undoped and doped samples show semi conducting nature. After doping the conductivity increases by eight orders of magnitude at 318 K. Magnetic susceptibility measurements were carried out using Guoy's method, both samples show diamagnetic nature. Conductivity and magnetic susceptibility measurements indicate that predominant charge carriers, in the iodine doped polythiophene, are bipolarons.

  20. Structural, electrical, and optical properties of diamondlike carbon films deposited by dc magnetron sputtering

    Science.gov (United States)

    Broitman, E.; Lindquist, O. P. A.; Hellgren, N.; Hultman, L.; Holloway, B. C.

    2003-11-01

    The electrical and optical properties of diamondlike carbon films deposited by direct current magnetron sputtering on Si substrates at room temperature have been measured as a function of the ion energy (Eion) and ion-to-carbon flux (Jion/JC). The results show that, in the ranges of 5 eV<=Eion<=85 eV and 1.1<=Jion/JC<=6.8, the presence of defective graphite formed by subplanted C and Ar atoms, voids, and the surface roughness, are the dominant influences on the resistivity and optical absorption.

  1. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    Science.gov (United States)

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models.

  2. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    Science.gov (United States)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2016-12-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+y-x Fe2-2y Sn y O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ (y = 0.1)- and Sn4+ (y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ (y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is found to

  3. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    Science.gov (United States)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  4. Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure

    Science.gov (United States)

    Dadoenkova, Yu. S.; Bentivegna, F. F. L.; Dadoenkova, N. N.; Petrov, R. V.; Lyubchanskii, I. L.; Bichurin, M. I.

    2016-05-01

    We present a theoretical investigation of the Goos-Hänchen effect upon light reflection from a heterostructure consisting of an electro-optic film deposited on a magneto-electric film grown on a nonmagnetic dielectric substrate. It is shown that the linear magneto-electric interaction leads to an increase of the lateral shift even in the absence of any applied electric field. The presence of the electro-optic layer enables the control of the Goos-Hänchen shift and of the position of its maximum (with respect to the angle of incidence) through a variation of the magnitude and orientation of an applied electric field. It is also demonstrated that applying an external magnetic field in order to reverse the magnetization in the magnetic layer results (under the influence of the magneto-electric interaction in the system) in a sign reversal of the lateral shift but a nonreciprocal change of its amplitude.

  5. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    2012-01-01

    Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.

  6. Evaporation of water droplets on Pt-surface in presence of external electric field--A molecular dynamics study.

    Science.gov (United States)

    Hens, Abhiram; Biswas, Gautam; De, Sudipta

    2015-09-01

    Evaporation of a sessile droplet on a hot solid substrate is an important problem in fluid mechanics. It is relevant to theoretical issues in heat transfer as well as several practical applications. This study investigates the spreading and evaporation of a nanoscale water droplet on a solid platinum surface. The major objective was to analyze the effect of an external electric field on these phenomena. Varying the intensity and direction of the external electric field, a series of molecular dynamics simulations were carried out to understand these phenomena at a molecular level. The results reveal that a horizontal electric field assists in droplet spreading, whereas a vertical electric field enhances the rate of evaporation for a certain range of field intensities. It also shows that the substrate temperature plays an important role in such processes. It is seen that the effect of an external electric field on droplet evaporation becomes significant at an intermediate range of surface temperatures and this effect is not clearly visible for either very high or very low range of surface temperatures.

  7. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; YAN Limin; ZHANG Hao; LI Guoxiu

    2016-01-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V,0-500 Hz) and DC (0-3300 V) electric fields were studied.Ⅰ-Ⅴ curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA,the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone.At the same time,the meso-scale premixed flame conductivity 10-4-10-3 Ω-1.m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitnde estimate.Moreover,the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed,based on the combination of simulation and theoretical analysis.As a result,the electrode sheath dimension was evaluated to less than 0.5 mm,which indicatcd a complex effect of the collisiou sheath on the current measurements.The surface contamination effect of an active electrode was further analyzed using the SEM imaging method,which showed elements immigration during the contamination layer formation process.

  8. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  9. Study of switching electric circuits with DC hybrid breaker, one stage

    Science.gov (United States)

    Niculescu, T.; Marcu, M.; Popescu, F. G.

    2016-06-01

    The paper presents a method of extinguishing the electric arc that occurs between the contacts of direct current breakers. The method consists of using an LC type extinguishing group to be optimally sized. From this point of view is presented a theoretical approach to the phenomena that occurs immediately after disconnecting the load and the specific diagrams are drawn. Using these, the elements extinguishing group we can choose. At the second part of the paper there is presented an analyses of the circuit switching process by decomposing the process in particular time sequences. For every time interval there was conceived a numerical simulation model in MATLAB-SIMULINK medium which integrates the characteristic differential equation and plots the capacitor voltage variation diagram and the circuit dumping current diagram.

  10. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  11. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  12. Productivity measurement in the presence of externalities: An example from the electric power industry

    Science.gov (United States)

    Chaston, Kelly Ann

    Traditional productivity measures have ensured that environmental regulations were seen as deterrents to productivity growth. Such measures are constructed in a manner which make this conclusion inevitable. Traditional productivity measures include the regulation-induced additions to inputs, whether qualitatively or quantitatively, while continuing to ignore the value of the pollution emitted. The measure proposed in this thesis is derived formally from a model of social welfare. With the exception of 'prices' for emitted pollutants, for which marginal damage estimates will proxy, the proposed measure relies upon market prices, which are then incorporated into a conventional Divisia framework. Data from the electricity generation industry are used to construct both the conventional and newly proposed TFP growth rates. The industry provides an ideal framework within which this growth measure can be tested. It is a large industry that affects a majority of society as it is both consumed as a final good and pervasively used as an intermediate good. The industry is also a large polluter. On an annual basis it has been responsible for approximately one-third of the emissions of carbon-dioxide, one-third of the emissions of nitrous oxides, and two-thirds of the sulfur dioxides emissions, nationally. Furthermore, performance of the proposed measure across various samples was allowed by the diversity of utilities in the industry both with respect to location and fuel mix. Incorporating the value of externalities results in a productivity growth measure which is substantially improved. The difference in calculated productivity gains between the two measures is shown to be sizable under a number of circumstances. As well, the empirical analysis offers some general lessons as to the treatment of various pollutants--it is clearly demonstrated that movement in one pollutant cannot be used to proxy movements in others, or be used as an indicator as to the bias of traditional TFP

  13. Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chemartin, L; Lalande, P [ONERA, 29, Avenue de la division Leclerc, 92322 Chatillon (France); Delalondre, C [EDF R and D, 6 quai Watier 78400 Chatou (France); Cheron, B [CORIA, UMR 6614, 76801 Saint Etienne du Rouvray (France); Lago, F, E-mail: laurent.chemartin@onera.fr [DGA, Aeronautical Systems, 47 route de St Jean, 31130 Balma (France)

    2011-05-18

    This paper is devoted to the study of unsteady electric arcs and the effects of electrodes on their dynamics. One of the objectives is to simulate and understand the three-dimensional behaviour of arcs in complex geometries, which create important fluctuations of the column and reattachments on the electrodes. The usual methods to solve the problem of arc-electrodes coupling are not suitable to simulate three-dimensional unsteady arcs. We propose a numerical development to simulate both steady-state and unsteady arcs without additional assumptions. The method is based on the incorporation of electrodes into the computational domain. It is validated with measurements from the literature, in the case of a point-plane steady-state argon arc. The model is used to study the lightning certification test device, which simulates in laboratory the effects of lightning arcs on fuselage panels. The results bring to light, in agreement with the observations in laboratory, the fundamental role of the electrodes on the three-dimensional behaviour of the arc column. The model is also used to simulate the development of the free jet of a plasma on an aluminium planar anode. The objective is to characterize the interaction region and the thermal constraint of the arc.

  14. DC electrical and thermoelectric power measurement studies of Ni–Mg–Zn–Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.B., E-mail: sarjeraopatil97@gmail.com [Department of Physics, Krantisinh Nana Patil College Walwa, Sangli 416313 (India); Patil, R.P. [Department of Chemistry, KIT' S College of Engineering, Kolhapur 416234 (India); Chougule, B.K. [Department of Physics, Shivaji University, Kolhapur 416004 (India)

    2013-06-15

    Ni–Mg–Zn–Co ferrites having general formula, Ni{sub 0.5−x}Mg{sub x−0.01}Zn{sub 0.5−y}Co{sub y+0.01}Fe{sub 2}O{sub 4} (where x=0.1–0.4 and y=0.1–0.4) were prepared by a ceramic method. X-ray diffraction reveals formation of single-phase cubic spinel structures. The lattice parameter is found to increase linearly with increase in Zn content. The variation of the electrical resistivity vs. temperature is linear with a transition near the Curie temperature. The thermoelectric power was measured from room temperature to 500 °C by maintaining a temperature difference of 20 °C between the hot and cold ends. All samples show a negative Seebeck coefficient. This indicates n-type charge carriers in the samples. - Highlights: ► Ni{sub 0.5−x}Mg{sub x−0.01}Zn{sub 0.5−y}Co{sub y+0.01}Fe{sub 2}O{sub 4} ferrites were prepared by a ceramic method. ► Single-phase cubic spinel structure. ► Semiconductor behavior of all samples.

  15. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans.

    Science.gov (United States)

    Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo

    2014-03-01

    Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  17. Microstructural changes in a cementitious membrane due to the application of a DC electric field.

    Science.gov (United States)

    Covelo, Alba; Diaz, Belen; Freire, Lorena; Novoa, X Ramon; Perez, M Consuelo

    2008-07-01

    The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions.

  18. Electrical and dielectric properties of irradiated KU1 quartz glass from DC to 145 GHz

    CERN Document Server

    Vila, R; Heidinger, R; Morono, A; Hodgson, E R

    2002-01-01

    To characterize and examine the possible use of the KU1 quartz glass for both diagnostic and remote handling applications, the radiation induced conductivity and electrical degradation (RIC and RIED), together with dielectric loss and permittivity (10 mHz-145 GHz) have been determined for as-received, electron and neutron irradiated material. Results show that the RIC is extremely low (<10 sup - sup 8 S/m compared with about 10 sup - sup 7 S/m) for candidate oxide materials at the same dose rate, but markedly increases for doses up to about 3x10 sup - sup 5 dpa while the conductivity without radiation is reduced with dose. Dielectric measurements from 1 kHz to 20 GHz during electron irradiation show that prompt effects are only observed at very low frequencies, consistent with the low RIC results. For neutron irradiation to 10 sup - sup 4 dpa, post-irradiation measurements indicate a permanent increase in loss by up to a factor of 2 below 60 MHz. No effect is observed in the GHz range.

  19. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    Science.gov (United States)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  20. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.

    2010-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.

  2. The Hydrodynamic Solution for Flow Profiles in a Binary Strong Electrolyte Solution Under an External Electric Field

    CERN Document Server

    Eu, Byung Chan

    2010-01-01

    In this paper, we follow the general idea of the Onsager--Wilson theory of strong binary electrolyte solutions and completely calculate the velocity profile of ionic flow by first formally solving the hydrodynamic (Stokes) equation for the ionic solutions subjected to an external electric field by a Fourier transform method and then explicitly evaluating the formal Fourier transform solutions as functions of spatial positions and field strength. Thus the axial and transversal components of the velocity and the accompanying nonequilibrium pressure are explicitly obtained. They are rare examples for solutions of a hydrodynamic equation for flow in an external electric field. The present results make it possible to investigate ways to overcome the mathematical difficulty (divergence) inherent to the method of evaluating the formal solutions that Wilson used in his dissertation on the conductance theory (namely, the Onsager--Wilson theory) for strong binary electrolytes. Some examples for the velocity profiles ar...

  3. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    Science.gov (United States)

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  4. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    Science.gov (United States)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  5. DC and Structured Electric Fields Observed on the C/NOFS Satellite and Their Association with Longitude, Plasma Density, and Solar Activity

    Science.gov (United States)

    Pfaff, Robert; Freudenreich, H.; Rowland, D.; Klenzing, J.

    2012-01-01

    Observations of DC electric fields and associated E x B plasma drifts gathered by the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite are presented. We show statistical averages of the vector fields and resulting E x B plasma flows for the first three years of operations as a function of season, longitude, local time, and Fl 0.7 conditions. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. Although typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night, the data from DC electric field detector often reveal variations from this pattern that depend on longitude, solar activity, and plasma density. Clear "wave-4" tidal effects in both electric field components have been detected and will be presented. Zonal plasma drifts show a marked variation with solar activity and may be used as a proxy for neutral winds at night. Evidence for pre-reversal enhancements in the meridional drifts that depend on solar activity is present for some longitudes, and are corroborated by clear evidence in the plasma density data that the spacecraft journeyed below the F-peak during evenings when the rise in the ionosphere is most pronounced. In addition to DC electric fields, the data reveal considerable electric field structures at large scales (approx 100's of km) that are usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the mapping of structured electric fields along magnetic field lines from distant locations and consider

  6. Hooke's Atom in an Arbitrary External Electric Field: Analytical Solutions of Two-Electron Problem by Path Integral Approach

    Institute of Scientific and Technical Information of China (English)

    CAI Liang; ZHANG Ping; YANG Tao; PAN Xiao-Yin

    2011-01-01

    By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.

  7. The stability of two layer dielectric-electrolyte micro-flow subjected to an external electric field

    Science.gov (United States)

    Demekhin, E. A.; Ganchenko, G. S.; Navarkar, A.; Amiroudine, S.

    2016-09-01

    The two-phase microflow of conductive (electrolyte) and non-conductive (dielectric) viscous liquids bounded by two solid walls in an external electric field is scrutinized. The lower solid wall, which is adjoined to the electrolyte, is a charged dielectric surface; the upper wall which bounds the dielectric is insulated. The problem has a steady one-dimensional (1D) solution. The theoretical results for a plug-like velocity profile are successfully compared with available theoretical and experimental data from the literature. The linear stability of the steady-state flow is investigated numerically with spectral Galerkin's method for solving linearized eigenvalue problem. This method was successfully applied for related problem of electroosmosis of ultrathin film. The numerical analysis provides insights on the coexistence of long and short-wave instabilities. The influence of control parameters such as the ratio of the viscosities of both liquids and the ratio of the channel heights on the stability of one-dimensional flow was investigated for different values of external electric field. The influence of an external pressure gradient on the flow stability is also investigated. The experimental facts established by other authors, according to which the system destabilizes if the electroosmotic flow is oppositely directed to the external pressure gradient, is confirmed in this work. Otherwise stabilization takes place.

  8. Temperature dependence of dc electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms

    Science.gov (United States)

    Barroso-Bogeat, Adrián; Alexandre-Franco, María; Fernández-González, Carmen; Sánchez-González, José; Gómez-Serrano, Vicente

    2015-12-01

    From a commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites are prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in inert atmosphere. The temperature-dependent dc electrical conductivity of AC and the as-prepared nanocomposites is measured from room temperature up to ca. 200 °C in air atmosphere by the four-probe method. The decrease in conductivity for the hybrid materials as compared to AC is the result of a complex interplay between several factors, including not only the intrinsic conductivity, crystallite size, content and chemical nature of the supported nanoparticles, which ultimately depend on the precursor and heat treatment temperature, but also the adsorption of oxygen and water from the surrounding atmosphere. The conductivity data are discussed in terms of a thermally activated process. In this regard, both AC and the prepared nanocomposites behave as semiconductors, and the temperature-dependent conductivity data have been interpreted on the basis of the classical model proposed by Mott and Davis. Because of its high content of heteroatoms, AC may be considered as a heavily doped semiconductor, so that conduction of thermally excited carriers via acceptor or donor levels is expected to be the dominant mechanism. The activation energies for the hybrid materials suggest that the supported metal oxide nanoparticles strongly modify the electronic band structure of AC by introducing new trap levels in different positions along its band gap. Furthermore, the thermally activated conduction process satisfies the Meyer-Neldel rule, which is likely connected with the shift of the Fermi level due to the introduction of the different metal oxide nanoparticles in the AC matrix.

  9. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  10. Electric field enhancement of depolarization of excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Hillard, G.B.; Glab, W.L.

    1985-12-01

    Our calculations show that an external dc electric field can enhance by many orders of magnitude the depolarization cross section of highly excited atoms by charged particles. The enhancement is due to the fact that the electric field extends and shifts the electronic charge distribution along its direction, thus effectively creating a giant electric dipole in the atom.

  11. Quantized charged fields with t-electric potential step as external background

    CERN Document Server

    Adorno, T C; Gitman, D M

    2015-01-01

    We give a brief description of the generalized Furry picture with t-electric potential steps and use this basis to present nonperturbative calculations in three exactly solvable cases: Sauter-like (or adiabatic) electric field, T-constant electric field, and exponentially decaying electric field. Here, we provide some important and so far unpublished details. We show how these cases help to gain insight into the universal features of particle creation from vacuum. This survey of exactly solvable cases, presented on the same footing, can be used as introductory material for understanding a recent generalization of the Furry picture with x-electric potential steps [arXiv:1506.01156] and [arXiv:1511.02915].

  12. One connector for DC and AC charging of electric vehicles with an international standard; Standardisierter Kombistecker fuer DC- und AC-Laden von Elektroautos

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Michael [Audi AG, Ingolstadt (Germany); Weber, Robert [BMW Group, Muenchen (Germany); Benecke, Juergen [Daimler AG, Sindelfingen (Germany); Remisch, Dirk [Porsche AG, Weissach (Germany); Kuebel, Matthias [Volkswagen AG, Wolfsburg (Germany)

    2012-12-15

    Audi, BMW, Daimler, Porsche and Volkswagen have designed a universal charging system for electric vehicles for global deployment - the Combined Charging System. This System was designed in close cooperation with major American automobile manufacturers and development partners Phoenix Contact and Rema. This new concept has the potential to supersede many regional solutions which, up to now, have impeded standardisation and resulted in a costly coexistence of different systems worldwide. (orig.)

  13. Enhanced Absorption Performance of Carbon Nanostructure Based Metamaterials and Tuning Impedance Matching Behavior by an External AC Electric Field.

    Science.gov (United States)

    Gholipur, Reza; Khorshidi, Zahra; Bahari, Ali

    2017-04-12

    Metamaterials have surprisingly broadened the range of available practical applications in new devices such as shielding, microwave absorbing, and novel antennas. More research has been conducted related to tuning DNG frequency bands of ordered or disordered metamaterials, and far less research has focused on the importance of impedance matching behavior, with little effort and attention given to adjusting the magnitude of negative permittivity values. This is particularly important if devices deal with low-amplitude signals such as radio or TV antennas. The carbon/hafnium nickel oxide (C/Hf0.9Ni0.1Oy) nanocomposites with simultaneously negative permittivity and negative permeability, excellent metamaterial performance, and good impedance matching could become an efficient alternative for the ordered metamaterials in wave-transparent, microwave absorbing, and solar energy harvesting fields. In this study, we prepared C/Hf0.9Ni0.1Oy nanocomposites by the solvothermal method, and we clarified how the impedance matching and double-negative (DNG) behaviors of C/Hf0.9Ni0.1Oy can be tuned by an external AC electric field created by an electric quadrupole system. An external electric field allows for the alignment of the well-dispersed nanoparticles of carbon with long-range orientations order. We believe that this finding broadens our understanding of moderate conductive material-based random metamaterials (MCMRMs) and provides a novel strategy for replacing high-loss ordered or disordered metamaterials with MCMRMs.

  14. Effect of external electric fields on the dielectronic recombination cross section of lithium and sodium like ions

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.C.; Pindzola, M.S.; Bottcher, C.

    1985-03-01

    The effect of external electric fields on the dielectronic recombination cross section associated with the 2s ..-->.. 2p excitation in the Li like ions B/sup 2 +/, C/sup 3 +/, O/sup 5 +/, and Fe/sup 23 +/, and the 3s ..-->.. 3p excitation in the Na like ions Mg/sup +/, S/sup 5 +/, Cl/sup 6 +/, and Fe/sup 15 +/ has been studied in the configuration-average, distorted-wave approximation. By applying the linear-Stark approximation to the doubly-excited 2pnl and 3pnl Rydberg states in the presence of an external electric field, we study the systematics of field mixing effects on dielectronic recombination and determine the maximum field enhancement of the dielectronic recombination cross section. We find that the magnitude of the field enhancement decreases as we move up an isoelectronic sequence and is of the order of a factor of two or three in highly-ionized systems. In addition, we show that dielectronic recombination transitions through doubly-excited states near threshold can produce large narrow peaks in the cross section at low energies, which are especially prominent in high stages of ionization, and are not affected by the electric field.

  15. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    Science.gov (United States)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  16. Theoretical investigations on the geometric and electronic structures of polyacetylene molecule under the influence of external electric field

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available The geometric and electronic structures of all-trans polyacetylene (PA molecule in neutral, cationic, and anionic states have been studied theoretically by density functional theory method at the B3LYP/6-31+G* level. The results show that both the geometric and electronic structures of the PA molecule are sensitive to the external electric field (EF. For neutral PA molecule, with the increase of EF, the carbon-carbon single bonds are shortened while the carbon-carbon double bonds are elongated. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO-HOMO gap decreases with the EF increasing. For cationic PA molecule, the carbon-carbon single bonds and carbon-carbon double bonds on the high potential side are elongated and shortened, respectively. While, the carboncarbon single bonds and carbon-carbon double bonds on the low potential side are shortened and elongated, respectively. Contrary to the neutral PA case, the LUMO-HOMO gap increases with the EF increasing. Contrast to the case of cationic PA, the evolution of carbon-carbon bond lengths for the anionic PA molecule under the external EF reverses. The LUMO-HOMO gap of the anionic PA molecule decreases with the increase of external EF. In addition, the spatial distributions of the HOMO and LUMO under the influence of external EF are also discussed for the PA molecule in neutral, cationic, and anionic states.

  17. Improvement in refractive-index change in LiNbO3:Ce:Cu by applying an external electric field

    Institute of Scientific and Technical Information of China (English)

    Dai Cui-Xia; Liu Li-Ren; Liu De-An; Zhou Yu; Chai Zhi-Fang; Luan Zhu

    2005-01-01

    By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations,we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances.Experimental verifications are given with a small electric field applied externally.

  18. Influence of a Weak Field of Pulsed DC Electricity on the Behavior and Incidence of Injury in Adult Steelhead and Pacific Lamprey, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Matthew

    2009-02-13

    electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

  19. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Farmanzadeh, Davood, E-mail: d.farmanzad@umz.ac.ir; Ghazanfary, Samereh

    2014-11-30

    Graphical abstract: - Highlights: • Solvation energies show that the BNNTs/amino acids complex stabilizes in presence of solvent. • The adsorption process is sensitive to the external electric field. • The electric field is a suitable method for adsorption and storage of amino acids on BNNTs. - Abstract: The interaction of Glu (Glutamic acid), Lys (Lysine), Gly (Glycine) and Ser (Serine) amino acids with different polarities and (9, 0) zigzag single-wall boron nitride nanotubes (BNNTs) with various lengths in the presence and absence of external electric field (EF) in gas and solvent phases, are studied using density functional theory. It is found that interaction of Glu, Lys, Gly and Ser amino acids with BNNTs in both phases is energetically favorable. From solvation energy calculations, it can be seen that the BNNTs/amino acid complex dissolution in water is spontaneous. The adsorption energies and quantum molecular descriptors changed in the presence of external EF. Therefore, the study of BNNTs/amino acid complex under influence of external electric field is very important in proposing or designing new drug delivery systems in the presence of external EF. Results indicate that Glu, Lys, Gly and Ser amino acids can be adsorbed considerably on the BNNTs in the existence of external electric field. Our results showed that the BNNTs can act as a suitable drug delivery vehicle of Glu, Lys, Gly and Ser amino acids within biological systems and strength of adsorption and rate of drug release can be controlled by the external EF.

  20. Cr doped topological insulator Bi2Se3 under external electric field: A first-principle study

    Science.gov (United States)

    Lian, Ruqian; Zhang, Jian-Min; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-06-01

    In this paper, we investigated the magnetic topological insulator (MTI) Cr-doped Bi2Se3 film using first principles calculations based on the density functional theory (DFT). The band structure of Cr doped 3QL-Bi2Se3 film was calculated comparing with pure Bi2Se3 film. Our results demonstrate that the doping of Cr atom changes the degenerate surface state of pure Bi2Se3, inducing the ferromagnetism. Under the external electric field, the band gap of pure Bi2Se3 films is determined by the charge transfer and the effect of spin-orbital coupling (SOC). For the MTI, the electric field will redistribute the electrons and enhance the magnetism. Our results will further promote the development of the electronic and spintronic applications of topological insulator.

  1. Modulation of electronic structures of MoSe2/WSe2 van der Waals heterostructure by external electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Dai, Xianqi

    2017-10-01

    By using first-principles calculations, we investigate the electronic structures of MoSe2/WSe2 van der Waals(vdW) heterostructure by applying external electric field(Eext) perpendicular to the layers. It is demonstrated that MoSe2/WSe2 heterostructure is a type-II vdW heterostructure. The band gap of MoSe2/WSe2 is significantly modulated by Eext, eventually a semiconductor-to-metal transition can be realized. The positive and negative Eext have different effects on the band gap due to the intrinsic spontaneous electric polarization in MoSe2/WSe2 heterostructure. Moreover, MoSe2/WSe2 heterobilayer experiences transitions from type-II to type-I and then to type-II under various Eext. The present study provides great application potential of ultrathin MoSe2/WSe2 heterostructure in future nano- and optoelectronics.

  2. DC and Wave Electric Fields and Other Plasma Parameters Observed on Two Sounding Rockets in the Dark Cusp during IMF Bz North and South Conditions

    Science.gov (United States)

    Pfaff, R. F.; Acuna, M.; Bounds, S.; Farrell, W.; Freudenreich, W.; Lepping, R.; Vondrak, R.; Maynard, N. C.; Moen, J.; Egeland, A.

    1999-01-01

    Two Black Brant IX sounding rockets were launched into the dark, dayside cusp near magnetic noon on December 2 and 3, 1997, from Ny Alesund, Spitzbergen at 79 deg N reaching altitudes of about 450 km. Real-time ground-based and Wind IMF data were used to determine the launch conditions. The first launch, with Bz north conditions, crossed into and back out of an open field region with merging poleward of the projected trajectory. The second flight, into Bz south conditions, was timed to coincide with an enhancement in the merging rate from a increase in the negative Bz, while the DMSP Fl 3 satellite was situated slightly to the north of the rocket trajectory. Each payload returned DC electric and magnetic fields, plasma waves, energetic particles, photometer data, and thermal plasma data. Data from both flights will be shown, with an emphasis on the DC electric field results. In particular, the data gathered on December 2, 1997 will be used to discuss ionospheric signatures of merging and the open/closed character of the the cusp/low latitude boundary layer. In contrast, the data gathered on December 3, 1997 shows evidence of pulsed electric field structures which will be examined in the context of cusp plasma entry processes. Both data sets returned a rich variety of plasma waves, as well as optical emissions and thermal plasma data.

  3. Chaos control and synchronization of two neurons exposed to ELF external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiang [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: jiangwang@tju.edu.cn; Zhang Ting [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China); Che Yanqiu [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Chaos control and synchronization of two unidirectional coupled neurons exposed to ELF electrical field via nonlinear control technique is investigated. Based on results of space-time characteristics of trans-membrane voltage, the variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed. The dynamical behaviors of the modified Hodgkin-Huxley (HH) model are identified under the periodic ELF electric field using both analytical and numerical analysis. Then, using the results of the analysis, a nonlinear feedback linearization control scheme and a modified adaptive control strategy are designed to synchronize the two unidirectional coupled neurons and stabilize the chaotic trajectory of the slave system to desired periodic orbit of the master system. The simulation results demonstrated the efficiency of the proposed algorithms.

  4. Electricity generation and microbial community in microbial fuel cell using low-pH distillery wastewater at different external resistances.

    Science.gov (United States)

    Kim, Hongsuck; Kim, Byunggoon; Kim, Jiyeon; Lee, Taeho; Yu, Jaecheul

    2014-09-30

    Single chamber MFC (SMFC) consisted of two separator-electrode assemblies (SEA) using low-pH distillery wastewater (DW) was operated under continuous mode. The electricity generation and microbial community were analyzed according to the external resistance (Rext; 0.1, 0.5, 1, and 5 kΩ). The two SEAs exhibited different electricity generations, despite sharing the same anodic chamber. The SMFC showed the largest maximum power density (PDmax) of 3.7 W/m(3) (SEA 1) and 12.9 W/m(3) (SEA 2) at 5 kΩ. These results demonstrated that low-pH wastewater could be sufficiently used as fuels for electricity generation. Pyrosequencing analysis showed that microbial communities at the phylum level were significantly different according to the Rext. The communities of SEA 1 were slightly different from those of SEA 2. In both SEAs, Firmicutes (>45%) were the most dominant at 0.1 kΩ, while Firmicutes (>34%) and Caldiserica (>34%) were dominant at 5 kΩ. Caldiserica sp. might significantly contribute to electricity generation under low-pH and high-Rext.

  5. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current.

    Science.gov (United States)

    Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz

    2016-11-05

    In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane.

  6. Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings

    OpenAIRE

    2007-01-01

    We have carried out continuous wave and time resolved photoluminescence experiments in self-assembled In(Ga)As quantum dots and quantum rings embedded in field effect structure devices. In both kinds of nanostructures, we find a noticeable increase of the exciton radiative lifetime with the external voltage bias that must be attributed to the field-induced polarizability of the confined electron hole pair. The interplay between the exciton radiative recombination and the electronic carrier tu...

  7. The effect of external factors on dielectric permittivity of Rochelle salt: humidity, annealing, stresses, electric field

    Directory of Open Access Journals (Sweden)

    A.G.Slivka

    2005-01-01

    Full Text Available The effect of external factors, such as dessicating/wetting, thermal annealing, uniaxial and hydrostatic pressure, on the dielectric permittivity of Rochelle salt crystals is investigated. The obtained results are compared with the available literature data and analyzed within the phenomenological Landau approach. A significant effect of the internal polar point defects in crystals and storage conditions on the dielectric permittivity is shown.

  8. Hardware Model Of A Shipboard Zonal Electrical Distribution System (ZEDS): Alternating Current/Direct Current (AC/DC)

    Science.gov (United States)

    2010-06-01

    Tach Tach K8061 USB Board DC 1 Power Supply Wall Outlet Power Supply Zach’s FPGA Board Computer Cycle Counter OpAmp B o ard DC 2...the Frequency (Counter) Opamp circuit card iv. Connect the 5v and ±12 Volts commons f. Verify power supply two (PS2), I used the White power...to Cooling Fans 131 The Circuit Board Architectures USB Board Schematic 132 Zach’s FPGA Board 133 Rachel’s OpAmp /Cycle

  9. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    Science.gov (United States)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  10. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  11. On stability of the liquid–vapor interface in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Chikina, I. [IRAMIS, LIONS, UMR NIMBE CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Nazin, S. [Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432 (Russian Federation); Shikin, V., E-mail: shikin@issp.ac.ru [Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432 (Russian Federation)

    2015-03-01

    Finite value of thermal degree of dissociation of water α{sub aq} is shown to substantially affect the details of the development of instability at the free surface of liquid placed in normal electric field. Various consequences of this effect are discussed.

  12. Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Khairy Sayed

    2016-07-01

    Full Text Available This paper presents the control and simulation of an electric vehicle (EV charging station using a three-level converter on the grid-side as well as on the EV-side. The charging station control schemes with three-level AC/DC power conversion and a bidirectional DC/DC charging regulator are described. The integration of EVs to the power grid provides an improvement of the grid reliability and stability. EVs are considered an asset to the smart grid to optimize effective performance economically and environmentally under various operation conditions, and more significantly to sustain the resiliency of the grid in the case of emergency conditions and disturbance events. The three-level grid side converter (GSC can participate in the reactive power support or grid voltage control at the grid interfacing point or the common coupling point (PCC. A fuzzy logic proportional integral (FL-PI controller is proposed to control the GSC converter. The controllers used are verified and tested by simulation to evaluate their performance using MATLAB/SIMULINK. The comparison of a PI-controller and a PI-Fuzzy controller for the EV charging station shows the effectiveness of the proposed FL-PI controller over conventional PI controller for same circuit operating conditions. A good performance for PI-Fuzzy in terms of settling time and peak overshoot can observed from the simulation results.

  13. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field.

    Science.gov (United States)

    Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J

    2011-07-05

    The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society

  14. Effect of External Electric Field on Phase Selection and Stability of Amorphous( Nd0.1Fe0.9 )3 B Alloy

    Institute of Scientific and Technical Information of China (English)

    李山东; 唐建成; 袁钻如; 顾本喜; 都有为

    2004-01-01

    The effect of an external electric field on the crystallization behavior of amorphous(Nd0.1Fe0.9)3B alloy was investigated. The crystallization product of Nd2Fe23B3 phase was obtained for this amorphous alloy annealed at 923 K for 300 s in the presence of an external electric field of 300 kV·m-1(50 Hz); while the crystallization products are Nd1.1Fe4B4, α-Fe, and Fe3B phases under the same annealing condition except for free-electric field. On the other hand, the samples were annealed at 1023 K, which is higher than the decomposition temperature of metastable Nd2Fe23B3 phase, for 600 s. In the case of the presence of an external electric field, the metastable Nd2Fe23B3 phase, as a main phase, is still stayed in the sample. This fact suggests that the external electric field enhances the stabilization of the metastable Nd2Fe23B3 phase. The effect of the external electric field on the phase selection and stabilization was explained in terms of the specific conductance difference between the crystallization products.

  15. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  16. Atomic barium and cesium alignment-to-orientation conversion in external electric and magnetic fields

    Science.gov (United States)

    Hilborn, Robert C.; Hunter, Larry R.; Johnson, Kent; Peck, Stephen K.; Spencer, Alison; Watson, John

    1994-09-01

    We present an alternative method for changing atomic alignment to orientation through interactions with orthogonal static electric and magnetic fields. Experimental results demonstrating this effect in the 5d6p 1P state of atomic barium and the F=4 hyperfine level of the ground state of atomic cesium are presented. The theory of this effect for a j=0 to j=1 electric dipole transition is discussed in detail. The tensor polarizability of the 5d6p 1P state of Ba is determined to be 1.31(15) MHz/(kV/cm)2, in good agreement with the results of van Leeuwen and Hogervorst [Z. Phys. A 310, 37 (1983)].

  17. First-principles study of anharmonic phonon effects in tetrahedral semiconductors via an external electric field

    Science.gov (United States)

    Dabiri, Zohreh; Kazempour, Ali; Sadeghzadeh, Mohammad Ali

    2016-11-01

    The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron-phonon interaction directly and, phonon-phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.

  18. Thresholds for phosphatidylserine externalization in Chinese hamster ovarian cells following exposure to nanosecond pulsed electrical fields (nsPEF.

    Directory of Open Access Journals (Sweden)

    Rebecca L Vincelette

    Full Text Available High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED (2(-1 for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr, and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake.

  19. The external costs of electricity generation. A comparison of environmental damage of silicon photovoltaic electricity, produced with different electricity mixes, vs natural gas and coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Veltkamp, A.C.; Sinke, W.C. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In this paper the environmental damages of crystalline silicon photovoltaics are calculated, using the most recent photovoltaics data, and compared with those of the prevalent conventional energy technologies. A life cycle assessment of selected environmental impacts of 1kWh of electricity generated by various technologies was performed using Simapro software (version 7.2.4) in conjunction with the Ecoinvent database (version 2.2). The environmental impacts were assessed using the ReCiPe methodology. Because of the important role of coal and natural gas in the global electricity generation portfolio, special attention is given to the comparison of PV with those technologies. The environmental consequences of manufacturing PV modules with renewable, UCTE or 100% coal electricity mixes are explored. A brief update of the estimated monetarization of damages due to coal and climate change is included. A rough estimate of the true cost of coal and PV electricity is made in 2011.

  20. Response properties of AgCl and AgBr under an external static electric field: A density functional study

    Science.gov (United States)

    Praveen, C. S.; Kokalj, A.; Rérat, M.; Valant, M.

    2012-10-01

    Density functional theory has been applied to investigate the effect of electric field on the electronic properties of AgCl and AgBr crystals using a static electric field perturbation. A reduction in the band gap value and widening of the band widths are observed with increase in the macroscopic field value indicating a considerable red shift in the absorption spectrum of AgCl and AgBr in the presence of an external electric field. Further, dielectric properties and lattice vibrations at the gamma point are calculated with three different functionals using the CPKS and the Berry phase approach as implemented in CRYSTAL09 code. Finally, the breakdown strength of AgCl and AgBr crystal is evaluated using Callen's equation. In contrast to the case of alkali halides, it is found that the inclusion of the numerically calculated effective mass ratio into the Callen's equation considerably improves the agreement between the calculated dielectric strength and the available experimental datum.

  1. Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Science.gov (United States)

    Berland, K.; Einstein, T. L.; Hyldgaard, P.

    2012-01-01

    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.

  2. 电动自行车用无刷直流电机控制系统设计%Brushless DC Motor of Electric Bicycle Control System Design

    Institute of Scientific and Technical Information of China (English)

    钟晓伟; 宋蛰存; 许刚

    2011-01-01

    根据以无刷直流电机为驱动电机的电动自行车工作原理,设计了一种以ATmega16单片机为控制核心的电动自行车用无刷直流电机控制系统,给出了系统详细的硬件电路和软件设计方法.在MATLAB/Simulink环境下仿真得出适当的速度环与电流环调节器参数值.与传统的专用模拟控制器相比,具有更大的灵活性、可靠性,容易实现附加功能和全数字化控制.%According to brushless DC motor-driven electric motor bike working principle, a brushless DC motor of electric bicycle control system based on ATmega16 microcontroller was designed, a detail of hardware circuit and software design methods were given. In MATLAB/Simulink simulation environment to draw the appropriate speed loop and current loop regulator parameters. Compared to the traditional specific analog controller, it had greater flexibility,reliability, also was easy to implement additional features and fully digital control.

  3. Streaming from the Equator of a Drop in an External Electric Field.

    Science.gov (United States)

    Brosseau, Quentin; Vlahovska, Petia M

    2017-07-21

    Tip streaming generates micron- and submicron-sized droplets when a thin thread pulled from the pointy end of a drop disintegrates. Here, we report streaming from the equator of a drop placed in a uniform electric field. The instability generates concentric fluid rings encircling the drop, which break up to form an array of microdroplets in the equatorial plane. We show that the streaming results from an interfacial instability at the stagnation line of the electrohydrodynamic flow, which creates a sharp edge. The flow draws from the equator a thin sheet which destabilizes and sheds fluid cylinders. This streaming phenomenon provides a new route for generating monodisperse microemulsions.

  4. Hardware Model of a Shipboard Zonal Electrical Distribution System (ZEDS): Alternating Current/Direct Current (AC/DC)

    Science.gov (United States)

    2010-06-01

    shown in Figure 38. HFA60MC60C Ultrafast, Soft Recovery Diode ) OLA T ED EASE VR = 00V + V(tYP ) = 1 V F 6OA Qrr (typ) 2000C DC power Motors ANGCE...Massachusetts Institute of Technology, 2009 [13] "LabJack UE9 User’s Guide," Mar . 10, 2010. [Online] Available: [Accessed May 12, 2010]. [14] E

  5. External stimulation by nanosecond pulsed electric fields to enhance cellular uptake of nanoparticles

    Science.gov (United States)

    Franklin, Samantha; Beier, Hope T.; Ibey, Bennett L.; Nash, Kelly

    2015-03-01

    As an increasing number of studies use gold nanoparticles (AuNPs) for potential medicinal, biosensing and therapeutic applications, the synthesis and use of readily functional, bio-compatible nanoparticles is receiving much interest. For these efforts, the particles are often taken up by the cells to allow for optimum sensing or therapeutic measures. This process typically requires incubation of the particles with the cells for an extended period. In an attempt to shorten and control this incubation, we investigated whether nanosecond pulsed electric field (nsPEF) exposure of cells will cause a controlled uptake of the particles. NsPEF are known to induce the formation of nanopores in the plasma membrane, so we hypothesized that by controlling the number, amplitude or duration of the nsPEF exposure, we could control the size of the nanopores, and thus control the particle uptake. Chinese hamster ovary (CHO-K1) cells were incubated sub-10 nm AuNPs with and without exposure to 600-ns electrical pulses. Contrary to our hypothesis, the nsPEF exposure was found to actually decrease the particle uptake in the exposed cells. This result suggests that the nsPEF exposure may be affecting the endocytotic pathway and processes due to membrane disruption.

  6. Automatic System for the D.C. High Voltage Qualification of the Superconducting Electrical Circuits of the LHC Machine

    CERN Document Server

    Bozzini, D; Russenschuck, Stephan; Bednarek, M; Jurkiewicz, P; Kotarba, A; Ludwin, J; Olek, S

    2008-01-01

    A d.c. high voltage test system has been developed to verify automatically the insulation resistance of the powering circuits of the LHC. In the most complex case, up to 72 circuits share the same volume inside cryogenic lines. Each circuit can have an insulation fault versus any other circuit or versus ground. The system is able to connect up to 80 circuits and apply a voltage up to 2 kV D.C. The leakage current flowing through each circuit is measured within a range of 1 nA to 1.6 mA. The matrix of measurements allows characterizing the paths taken by the currents and locating weak points of the insulation between circuits. The system is composed of a D.C. voltage source and a data acquisition card. The card is able to measure with precision currents and voltages and to drive up to 5 high voltage switching modules offering 16 channels each. A LabVIEW application controls the system for an automatic and safe operation. This paper describes the hardware and software design, the testing methodology and the res...

  7. DC-DC powering for the CMS pixel upgrade

    Science.gov (United States)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  8. DC-DC Powering for the CMS Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2013-01-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  9. Exciton spectra in GaAs/Ga1-xAlxAs quantum wells in an externally applied electric field

    Science.gov (United States)

    Zhu, Bangfen

    1988-12-01

    A theory on the exciton spectra in quantum wells in the presence of an external electric field is presented. The theory emphasizes the usually ignored aspect, namely, that the different exciton spinor components correspond to different in-plane angular momenta and only a single spinor component contributes to the optical transition, which in conjunction with the hybridization of the heavy and light holes will affect the exciton binding energies and oscillator strengths drastically. Numerical calculations based on the theory explain the contradictory behavior of the h12a peak observed by Collins et al., which is actually the 2p state of the light-hole-conduction-band (LH1-CB1) exciton.

  10. Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites

    Science.gov (United States)

    Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping

    2017-07-01

    Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe2O4, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe2O4 ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices.

  11. Relativistic quantum dynamics of neutral particle in external electric fields: An approach on effects of spin

    CERN Document Server

    Azevedo, F S; Castro, Luis B; Filgueiras, Cleverson; Cogollo, D

    2015-01-01

    The planar quantum dynamics of spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations are obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the $r=0$ region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.

  12. Measurement of the DC Stark shift for visible NeI lines and electric field distribution in the cathode sheath of an abnormal glow discharge

    Science.gov (United States)

    Ivanović, N. V.; Šišović, N. M.; Spasojević, Dj; Konjević, N.

    2017-03-01

    We present the results of an experimental study of the DC Stark shift for seven visible NeI lines in the plane cathode sheath region of an abnormal glow discharge operated in neon with a small admixture of hydrogen. The electric field (up to 13.4 kV cm‑1) in the cathode sheath region is measured from the π-polarized profile of the H alpha line of hydrogen using the Stark polarization spectroscopy technique. Within the realized range of the electric field, the NeI lines exhibit a quadratic Stark effect. The values of coefficients, correlating Stark shift and electric field strength, were determined, enabling their future use for unknown electric field strength measurements. Among the studied lines, so far only the Stark effect analysis of the NeI 511.367 nm line has been reported, in which case our results are in good agreement with the best fit formula proposed by Jäger and Windholz (1984 Phys. Scr. 29 344) for one out of three Stark components detected under our experimental conditions.

  13. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  14. Distribution of electrical activation to the external intercostal muscles during high frequency spinal cord stimulation in dogs

    Science.gov (United States)

    DiMarco, Anthony F; Kowalski, Krzysztof E

    2011-01-01

    Abstract In contrast to previous methods of electrical stimulation of the inspiratory muscles, high frequency spinal cord stimulation (HF-SCS) results in more physiological activation of these muscles. The spatial distribution of activation to the external intercostal muscles by this method is unknown. In anaesthetized dogs, multiunit and single motor unit (SMU) EMG activity was monitored in the dorsal portion of the 3rd, 5th and 7th interspaces and ventral portion of the 3rd interspace during spontaneous breathing and HF-SCS following C2 spinal section. Stimulus amplitude during HF-SCS was adjusted such that inspired volumes matched spontaneous breathing (Protocol 1). During HF-SCS, mean peak SMU firing frequency was highest in the 3rd interspace (dorsal) (18.8 ± 0.3 Hz) and significantly lower in the 3rd interspace (ventral) (12.2 ± 0.2 Hz) and 5th interspace (dorsal) (15.3 ± 0.3 Hz) (P intercostal muscles during HF-SCS is similar to that occurring during spontaneous breathing and (b) differential descending synaptic input from supraspinal centres is not a required component of the differential spatial distribution of external intercostal muscle activation. HF-SCS may provide a more physiological method of inspiratory muscle pacing. PMID:21242258

  15. Onboard power line conditioning system for an electric or hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  16. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al2O3 single crystal implanted with Mg ions

    Science.gov (United States)

    Tardío, M.; Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J. E.; Alves, E.

    2016-07-01

    The electrical conductivity in α-Al2O3 single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 1015, 5 × 1015 and 5 × 1016 ions/cm2. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I-V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  17. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  18. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin; Niu, Haitao; Lin, Tong; Wang, Xungai; Kong, Lingxue [Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216 (Australia)

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.

  19. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  20. Analysis Of Innovative Applications of Single DC Motor in Series and Separately Excited Mode for Hybrid Electric Solar Car

    Directory of Open Access Journals (Sweden)

    Rahat Ullah Khan,

    2010-03-01

    Full Text Available In this paper an innovative technique is proposed to run a DC series motor and converting it into D C separately excited as and when required to do regenerative braking and controlling a loaded car. In this scheme we are proposing on alternate energy source for driving the car i.e. solar PV Cell based battery charging system. The implication, basic concept and limitations of this concept are discussed. Also the mode of operations including analysis and operating conditions is also discussed. The simulation results are provided to validate the concept.

  1. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    Science.gov (United States)

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  2. Charge carrier photogeneration and recombination in ladder-type poly(para-phenylene): Interplay between impurities and external electric field

    Science.gov (United States)

    Gulbinas, V.; Hertel, D.; Yartsev, A.; Sundström, V.

    2007-12-01

    Charge carrier generation and decay in m -LPPP polymer films were examined by means of femtosecond transient absorption spectroscopy in the time window of 100fs-15ns . Two modes of polaron formation with distinct behavior were identified, impurity induced in the absence of an external electric field and electric field induced in pristine film. While field induced charge generation is relatively slow, occurring throughout the excited state lifetime, the rate of impurity induced charge generation is much faster and depends on excitation wavelength; it occurs on the several hundred femtosecond time scale under excitation within the main absorption band, but excitation into the red wing of the absorption band results in charge generation within less than 100fs . Polaron decay through geminate electron-hole recombination occurs with widely distributed lifetimes, from ˜0.8ns to microseconds; the polarons characterized by the shortest decay time have a redshifted absorption spectrum (as compared to more long-lived polarons) and are attributed to tightly bound polaron pairs.

  3. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    Science.gov (United States)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  4. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: A first-principles study

    Science.gov (United States)

    Farmanzadeh, Davood; Ghazanfary, Samereh

    2014-11-01

    The interaction of Glu (Glutamic acid), Lys (Lysine), Gly (Glycine) and Ser (Serine) amino acids with different polarities and (9, 0) zigzag single-wall boron nitride nanotubes (BNNTs) with various lengths in the presence and absence of external electric field (EF) in gas and solvent phases, are studied using density functional theory. It is found that interaction of Glu, Lys, Gly and Ser amino acids with BNNTs in both phases is energetically favorable. From solvation energy calculations, it can be seen that the BNNTs/amino acid complex dissolution in water is spontaneous. The adsorption energies and quantum molecular descriptors changed in the presence of external EF. Therefore, the study of BNNTs/amino acid complex under influence of external electric field is very important in proposing or designing new drug delivery systems in the presence of external EF. Results indicate that Glu, Lys, Gly and Ser amino acids can be adsorbed considerably on the BNNTs in the existence of external electric field. Our results showed that the BNNTs can act as a suitable drug delivery vehicle of Glu, Lys, Gly and Ser amino acids within biological systems and strength of adsorption and rate of drug release can be controlled by the external EF.

  5. Electron irradiation effects on DC electrical performances of SiGe HBT in a comparison with Si BJT

    Institute of Scientific and Technical Information of China (English)

    MENG Xiangti; ZHANG Ximin; WANG Jilin; HUANG Wentiao; CHEN Peiyi; JIA Hongyong; TSIEN Peihsin

    2004-01-01

    The DC characteristics of SiGe HBT irradiated at different electron dose have been studied in a comparison with those of Si BJT. Generally, Ib and Ib - Ib0 increase, Ic, Ic - Ic0 and its +/- transition Vbe as well as DC current gainβ decreases with increasing dose; increase of Ib - Ib0 with increasing dose for Si BJT is much larger than that for SiGe HBT;β increases with Vbe or Ib, but decreases at Ib < 0.25 mA with Ib, and congregates at higher dose; and a damage factor d(β) is much less at the same dose for SiGe HBT than for Si BJT. SiGe HBT has much better anti-radiation performance than Si BJT. Some anomalous phenomena for increase of Ic, Ic - Ic0,Ib - Ib0 and β at low dose have been found. Some electron traps have been measured. The mechanism of changes of characteristics is discussed.

  6. Effect of a weak external electric field on the kinetics of the ordering of ferroelectrics upon first-order phase transitions

    Science.gov (United States)

    Mazur, O. Yu.; Stefanovich, L. I.; Yurchenko, V. M.

    2016-08-01

    The kinetics of the formation and growth of 180° domains in a weak quasi-stationary external electric field has been considered in the framework of the phenomenological Ginzburg-Landau model using the example of sodium nitrite (NaNO2) crystals that undergo a first-order ferroelectric phase transition of the order-disorder type. The influence of the rate and temperature of quenching, as well as the strength of an external electric field, on the subsequent evolution of the system toward the thermodynamic equilibrium state has been analyzed. It has been shown that, by varying a weak external electric field applied to the ferroelectric crystal after quenching, it is possible to obtain both single-domain and multi-domain ordered structures. It has been established that the formation of nonequilibrium ("virtual") multi-domain structures of the asymmetric type is possible for particular strengths of the electric field applied to the ferroelectric after quenching. A similar effect can be achieved by varying the depth of quenching of the sample. It has been found that, if the size of the order parameter inhomogeneities formed at the stage of quenching does not exceed a critical value, they can be reoriented partially or completely into domains of opposite sign. For this purpose, the relaxation after quenching should be performed in an external electric field of the appropriate sign.

  7. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    Science.gov (United States)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  8. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Indian Academy of Sciences (India)

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  9. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  10. Analytical study of whistler mode waves in presence of parallel DC electric field for relativistic plasma in the magnetosphere of Uranus

    Science.gov (United States)

    Pandey, R. S.; Kaur, Rajbir

    2016-10-01

    In present paper, field aligned whistler mode waves are analyzed, in the presence of DC field in background plasma having relativistic distribution function in the magnetosphere of Uranus. The work has been examined for relativistic Maxwellian and loss-cone distribution function. In both the cases, we have studied the effect of various plasma parameters on the growth rate of waves by using the method of characteristics and discussed using data provided by Voyager 2. Growth rate has increased by increasing the magnitude of electric field, temperature anisotropy, energy density and number density of particles for Maxwellian and loss-cone background. However, when relativistic factor (λ =√{ 1 -v2 /c2 }) increases, growth rate decreases. The significant increase in real frequency of whistler waves can be observed. The results can be used for comparative study of planetary magnetospheres. The derivation can also be adapted to study various other instabilities in magnetosphere of Uranus.

  11. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    Science.gov (United States)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  12. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  13. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  14. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Energy Technology Data Exchange (ETDEWEB)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  15. BACKGROUNDS OF EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC COMPATIBILITY OF TRACTION ASYNCHRONOUS ELECTRIC DRIVES IN THE STRUCTURE OF DC TRACTION POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    YU. S. Bondarenko

    2014-04-01

    Full Text Available Purpose. Application of physical modeling as a tool for research of any events or systems is becoming more widespread, including the field of railway transport. At the same time the adequacy of results that can be obtained, depends largely on the similarity degree of the physical model to real system. From the standpoint of the traction asynchronous electric drive (TAED research together with the traction power supply system research, the similarity can not be determined by the direct proportion of the parameters, because the processes nature accompanying the operation of these systems is non-linear. These features should be taken into account in the experimental setup, the basis for constructing of which is establishing of the system similarity that defines the purpose of this paper. Methodology. At the heart of the experimental setup creation laid reproduction of processes of energy transformation in the system of the DC traction power supply. Determination of the similarity degree of the proposed facility to the real system was carried out using the basic theorems of the similarity theory, their additional provisions on the complexity and nonlinear systems, as well as elements of mathematical analysis. Findings. According to the results of work: 1 The block diagram, the energy conversion mechanism of which is similar to the real system was received. This scheme is the basis of experimental setup, built in the future for the study of electromagnetic compatibility of TAED in the structure of DC traction electric power supply system. 2 Similarity of obtained structural scheme with the real system with the mechanism definition of calculating the scaling relations was established. Originality. In the process of establishing the similarity a simplified method for determining the scaling relations for nonlinear systems was suggested. They are identical in their structure components, but have different capacities. Practical value. Experimental

  16. The DC-DC Conversion Power System of the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Klein, Katja

    2014-01-01

    The power system of the Phase-1 pixel detector will be described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, will be detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance will be discussed.

  17. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail: zauggc@phys.ethz.ch; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  18. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Science.gov (United States)

    Zaugg, C. A.; Gronenborn, S.; Moench, H.; Mangold, M.; Miller, M.; Weichmann, U.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U.

    2014-03-01

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively.

  19. External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields.

    Science.gov (United States)

    Makarov, Vladimir I; Khmelinskii, Igor

    2016-01-01

    We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.

  20. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  1. Response of the Shockley surface state on Cu(111) to an external electrical field: A density-functional theory study

    Science.gov (United States)

    Berland, Kristian; Hyldgaard, Per; Einstein, T. L.

    2011-03-01

    We study the response of the Cu(111) Shockley surface state to an external electrical field E by combining a density-functional theory calculation for a finite slab geometry with an analysis of the Kohn-Sham wavefunctions to obtain a well-converged characterization. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We find that the shift in band minimum and effective mass depend linearly on E. Most change in electrostatic potential profile, and charge transfer occurs outside the outermost copper atoms, and most of the screening is due to bulk electrons. Our analysis is facilitated by a method used to decouple the Kohn-Sham states due to the finite slab geometry, using a rotation in Hilbert space. We discuss applications to tuning the Fermi wavelength and so the many patterns attributed to metallic surface states. Supported by (KB and PH) Swedish Vetenskapsrådet VR 621-2008-4346 and (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471.

  2. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A.; Barik, U.K. [Indian Institute of Technology Madras, Semiconductor Physics Laboratory, Department of Physics, Chennai (India)

    2006-07-15

    Silver-doped indium oxide thin films have been prepared on glass and quartz substrates at room temperature (300 K) by a reactive dc magnetron sputtering technique using an alloy target of pure indium and silver (80:20 at. %). During sputtering, the oxygen flow rates are varied in the range 0.00-2.86 sccm keeping the magnetron power constant at 40 W. The resistivity of these films is in the range 10{sup 0}-10{sup -3} {omega}cm and they show a negative temperature coefficient of resistivity. The films exhibit p-type conductivity at an oxygen flow rate of 1.71 sccm. The work function of these silver-indium oxide films has been measured by a Kelvin probe technique. The refractive index of the films (at 632.8 nm) varies in the range 1.13-1.20. Silver doping in indium oxide narrows the band gap of indium oxide (3.75 eV). (orig.)

  3. EFFECT OF Ar PRESSURE ON STRUCTURAL AND ELECTRICAL PROPERTIES OF Cu FILMS DEPOSITED ON GLASS BY DC MAGNETRON SPUTTERING

    Institute of Scientific and Technical Information of China (English)

    P.Wu; F.P.Wang; L.Q.Pan; Y.Tian; H.Qiu

    2002-01-01

    Cu films with thickness of 630-1300nm were deposited on glass substrates withoutheating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the targetcurrent increased from 200 to 1150mA with Ar pressure increasing. X-ray diffrac-tion, scanning electron microscopy and atomic force microscopy were used to observethe structural characterization of the films. The resistivity of the films was measuredusing four-point probe technique. At all the Ar pressures, the Cu films have mixturecrystalline orientations of [111], [200] and [220] in the direction of the film growth.The film deposited at lower pressure shows more [111] orientation while that depositedat higher pressure has more [220] orientation. The amount of larger grains in the filmprepared at 0.5Pa Ar pressure is slightly less than that prepared at 1. 0Pa and 1.5PaAr pressures. The resistivities of the films prepared at three different Ar pressures rep-resent few differences, about 3-4 times of that of bulk material. Besides the depositionrate increases with Ar pressure because of the increase in target current. The contri-bution of the bombardment of energetic reflected Argon atoms to these phenomena isdiscussed.

  4. Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: A first-principle study

    Science.gov (United States)

    Nguyen, Chuong V.; Hieu, Nguyen N.

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS2. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS2 when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS2 can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS2 in electronics and optoelectronics.

  5. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    Science.gov (United States)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  6. Emissions Tests Of Two Dc-To-Dc Converters

    Science.gov (United States)

    Mclyman, W. T.

    1992-01-01

    Report describes tests to characterize unwanted electric and magnetic fields, at frequencies up to few megahertz, radiated by two dc-to-dc converters, one 20-kHz square-wave converter; the other, a 33-kHz sine-wave converter. Part of effort to develop "quiet" power converter for use aboard spacecraft. Converter required to interfere minimally with delicate instruments measuring electric and magnetic fields.

  7. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    INTRODUCTIONHistorical ReviewMultiple Quadrant ChoppersPump CircuitsDevelopment of DC/DC Conversion TechniqueCategorize Prototypes and DC/DC Converters Family TreeVOLTAGE-LIFT CONVERTERSIntroductionSeven Self-Lift ConvertersPositive Output Luo-ConvertersNegative Output Luo-ConvertersModified Positive Output Luo-Converters Double Output Luo-ConvertersPOSITIVE OUTPUT SUPER-LIFT LUO-CONVERTERS IntroductionMain SeriesAdditional SeriesEnhanced Series Re-Enhanced Series Multiple-Enhanced Series Summary of Positive Output

  8. DC + RSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne

    1996-01-01

    This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL).......This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL)....

  9. First principles study of the electronic and optical properties of GaAs nanoparticles under the influence of external uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Bezi Javan, Masoud, E-mail: javan.masood@gmail.com [Department of Physics, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of)

    2012-10-01

    We present electronic and optical properties of the hydrogen terminated gallium arsenide nanoparticles using time dependent density functional theory (TD-DFT). The electronic and optical properties of the GaAs nanoparticles were calculated at presence of the uniform external electric field in the range from 0 to 0.51 V/Å. The induced electric filed can decrease the HOMO–LUMO gap of the nanoparticles and the mount of these reductions increases with gain of the electric field strength. -- Highlights: ► HOMO–LUMO gap of the nanoparticles is significantly more than GaAs bulk band gap. ► HOMO–LUMO gap of the nanoparticles decreases with increase of the nanoparticles size. ► External electric filed decrease the HOMO–LUMO gap of the nanoparticles. ► Dipole moment of nanoparticles increases with gain of the electric field strength. ► Absorption peaks of GaAs nanoparticles shows red shift with applying electric field.

  10. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  11. Design of mine DC electrical prospecting instrument based on ARM Cortex-M3 core%基于ARM Cortex-M3内核矿井直流电法仪的研制

    Institute of Scientific and Technical Information of China (English)

    宁殿艳; 张仲礼; 王继矿; 汪凯斌; 李超

    2011-01-01

    DC electrical prospecting instrument has played an important role in preventing mine water disaster, but the traditional DC electrical prospecting instrument has some disadvantages such as high power consumption, small storage capacity, hard operation and difficulty to carry, for it is mostly developed utilizing MCS -51 microcontroller. These restrict the application of DC electrical prospecting instrument to a certain extent. This article begins with the working principle of mine DC electrical, improves the traditional DC electrical prospecting instrument utilizing STM32 microcomputer based on Cortex - M3 core and 24 - bit Σ - A ADC component, and redesigns the hardware and software of mine DC eldetrieal instrument. The improved instrument has the advantage of high accuracy, low cost, low power consumption, large storage capacity, convenient communication and friendly man-machine interface compared with traditional DC electrical prospecting instrument.%直流电法仪在预防煤矿水害中发挥重要作用,但传统直流电法仪的核心芯片多采用51系列单片机,具有功耗大、存储容量小、操作不方便,难以携带等缺点,在一定程度上制约了直流电法仪的应用.文中从矿井直流电法仪的工作原理出发,采用基于ARM Cortex-M3内核的STM32处理器和基于Σ-Δ技术的24位高分辨率ADC器件对传统矿井直流电法仪进行了升级、改造,重新设计了硬件电路和软件程序.与传统矿井直流电法仪相比,新设计的直流电法仪具有精度高、成本低、功耗小、存储容量大、通讯方便和人机界面友好等优点.

  12. Bio-Inspired Concepts: Studies of Biological Response to External Electric Fields for Cellular Manipulation and Diagnostics - Modeling and Experimentation

    Science.gov (United States)

    2005-05-03

    Dielectric Spectroscopy," IEEE trans. On Dielectrics and Electrical Insulation 8, 253 (2001). 8. M. Smoluchowski, "Drei vortrage uber diffusion...Intensity Electric Fields," IEEE Conf. On Dielectrics and Electrical Insulation (Bio- Electrics Workshop), Cancun, Mexico , Oct. 2002 (invited

  13. Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes

    Science.gov (United States)

    Baert, B.; Gupta, S.; Gencarelli, F.; Loo, R.; Simoen, E.; Nguyen, N. D.

    2015-08-01

    In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.

  14. A discrete time model of a power conditioner fed permanent magnet brushless dc motor system for aerospace and electric vehicle applications for design purpose using finite elements for machine parameter determination

    Science.gov (United States)

    Nehl, T. W.

    1980-12-01

    A discrete state space model of a power conditioner fed permanent magnet brushless dc motor for aerospace and electric vehicle applications is developed. The parameters which describe that machine portion of this model are derived from a two dimensional nonlinear magnetic field analysis using the finite element method. The model predicts the instantaneous mechanical and electrical behavior of a prototype electromechanical actuator for possible use on board the shuttle orbiter. The model is also used to simulate the instantaneous performance of an advanced electric vehicle propulsion unit. The results of the computer simulations are compared with experimental test data and excellent agreement between the two is found in all cases.

  15. 外加直流电场对微生物燃料电池阳极微生物的影响研究%Research on the anode bacterials of Microbial Fuel Cell Effcted by DC electric field

    Institute of Scientific and Technical Information of China (English)

    李金洋; 陈涛; 胡艳清; 刘庆玉

    2012-01-01

    为考察外加直流电场作用对微生物燃料电池阳极微生物的影响,采用双室型MFC反应器,在启动开始时分别加以-5,-3,-1,0,+1,+3,+5 V的直流电场,作用时间依次取2min,30 min,1h,24h.结果表明,外加直流电场能够对微生物燃料电池阳极室内微生物的生长产生影响,作用时间为30 min时效果较为明显,提高作用时间后效果变化不大;±1 V的电场强度作用促进微生物的生长;较低的直流电场(±1 V)作用能够促进微生物燃料电池的阳极生物挂膜,且负电场促进效果更好,而较高的直流电场(+3 V和±5 V)作用不利于甚至损害阳极生物挂膜.%To study the effction of anode microorganisms of microbial fuel cell by impressed DC electric field, two-chamber MFCs reactor were installed in the research. The MFCs were effected by DC electric field of -5,-3,-1,0,+1 ,+3,+5 V respectively after they were started and effective time were 2 min,30 min,l h and 24 h. The results showed that impressed DC electric field effect the anode microorganisms of microbial fuel cell, 30 min had remarkable effects.Delayed the effective time can not change the result obviously.DC electric field of ±1 V can accelerate the growth of microorganisms. Microorganisms growing on the anode were accelerated by lower DC electric field (±1 V) and negative electric field much better. Higher DC electric field (+3 V and ±5 V) was not advantageous to growth of microorganisms, even killed it.

  16. Implementation of hierarchical control in DC microgrids

    DEFF Research Database (Denmark)

    Jin, Chi; Wang, Peng; Xiao, Jianfang

    2014-01-01

    DC microgrids are becoming popular in low-voltage distribution systems due to the better compatibility with photovoltaic panels, electric vehicles, and dc loads. This paper presents a practical dc microgrid developed in the Water and Energy Research Laboratory (WERL) in the Nanyang University...

  17. Hierarchical Power Sharing Control in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami Akhuleh, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2016-01-01

    Because of the advances in power electronics, DC-based power systems, have been used in industrial applications such as data centers [18], space applications [10], aircraft [12], offshore wind farms, electric vehicles [56], DC home systems [5, 20], and high-voltage DC transmission systems...

  18. DC electrical conductivity of Ag2O-TeO2-V2O5 glassy systems

    Science.gov (United States)

    Souri, D.; Tahan, Z. Esmaeili; Salehizadeh, S. A.

    2016-04-01

    In the present article, samples of xAg2O-40TeO2-(60 - x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes' law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic-ionic conduction of these glasses has been investigated over a wide temperature range of 150-380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott's model of phonon-assisted polaronic hopping, while Mott's variable-range hopping model and Greaves' hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.

  19. Electrostatic properties of fullerenes under an external electric field: First-principles calculations of energetics for all IPR isomers from C60 to C78

    Science.gov (United States)

    Sorimachi, Jun-ya; Okada, Susumu

    2016-08-01

    Based on first-principles total energy calculations, we analyze the energetics of the fullerene isomers from C60 to C78, all of which satisfy the isolated pentagon rule, under a parallel electric field. Our calculations show that the total energy of the fullerene is proportional to the square of the external electric field. On the other hand, the coefficient of the quadratic energy profile is sensitive to the fullerene species and their orientation. Furthermore, fullerenes possessing lower symmetry exhibit asymmetric quadratic energy profiles with respect to the field, indicating that they possess intrinsic polarization along particular molecular orientations.

  20. Hybrid Technologies for Clandestine Electric Reconnaissance Vehicles (CERV)

    Science.gov (United States)

    2011-08-01

    of other on board equipment. The OPC and high voltage Energy Storage system operate in concert with the Motor-Generator and Controller to form...the Vehicle DC Bus. When operating in PHEV mode from external power, the OPC provides power to the Vehicle DC Bus if either the Energy Storage System...commercial electric and hybrid buses. He has designed several motor drives including a 500 HP drive for sonar pulse power using a flywheel for energy

  1. First-order Freedericksz transition at the threshold point for weak anchoring nematic liquid crystal cell under external electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    关荣华; 杨国琛

    2003-01-01

    Based on the modified formula of Rapini-Papoular, the equilibrium equation and boundary condition of the director have been obtained and the behaviour of the Freedericksz transition at the threshold point has been studied for weak-anchoring nematic liquid crystal cells under external electric and magnetic fields with the methods of analytical derivation and numerical calculation. The results show that, except for the usual second-order transition, the first-order Freedericksz transition can also be induced by a suitable surface anchoring technique for the liquid crystal cell given in the paper. The conditions for the existence of the first-order Freedericksz transition are obtained. They are related to the material elastic coefficient k11, k33 the thickness of the liquid crystal cell, the external electric field and the strength of surface anchoring, etc.

  2. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  3. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Science.gov (United States)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  4. 电动汽车用无刷直流电机控制器设计%Controller Design for DC Brushless Motor of Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    舒雄; 杜荣华; 柴健; 舒刚华; 李亚中

    2015-01-01

    针对四轮独立驱动电动汽车所用电机须调速性好、可靠性高的特点,从工程应用出发,设计一种以dsPIC及MC33035为核心的无刷直流电机控制器。阐述了控制方案及工作原理,给出了硬件电路组成和调速方法。把该控制器运用到自行研制的四轮独立驱动电动汽车上进行测试,其结果表明,该控制器不仅具有响应速度快、调速性能好和稳定性高的特点,且开发成本低,具有广泛的应用价值。%Based on dsPIC and MC33035, a kind of controller is designed for brushless dc motor with good speed regulating and high reliability, which is used in electric car with four-wheel independent drive. The control plan and operating principle are outlined, and the corresponding hardware circuit structure and speed regulation method are introduced. The controller was applied to test self-de-veloped electric car with four-wheel independent drive. The results indicate that the controller have characteristics of fast response, good speed control performance and high stability with low cost and extensive application.

  5. Studies on the electrical properties of reactive DC magnetron-sputtered indium-doped silver oxide thin films: The role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A. [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)]. E-mail: manu@iitm.ac.in; Barik, Ullash Kumar [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-03-15

    Indium ({approx}10 at.%)-doped silver oxide (AIO) thin films have been prepared on glass substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target made of pure (99.99%) silver and indium (90:10 at.%) metals. The oxygen flow rates have been varied in the range 0.00-3.44 sccm during sputtering. The X-ray diffraction data on these indium-doped silver oxide films show polycrystalline nature. With increasing oxygen flow rate, the carrier concentration, the Hall mobility and the electron mean free path decrease. These films show a very low positive temperature coefficient of resistivity {approx}3.40x10{sup -8} ohm-cm/K. The work function values for these films (measured by Kelvin probe technique) are in the range 4.81-5.07 eV. The high electrical resistivity indicate that the films are in the island state (size effects). Calculations of the partial ionic charge (by Sanderson's theory) show that indium doping in silver oxide thin films enhance the ionicity.

  6. Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering

    Science.gov (United States)

    Gobbiner, Chaya Ravi; Ali Avanee Veedu, Muhammed; Kekuda, Dhananjaya

    2016-04-01

    Zinc oxide thin films were deposited on glass substrates at different oxygen flow rates by DC reactive magnetron sputtering. The oxygen flow rate was found to be one of the crucial parameters which influence structural, optical and electrical properties of grown films. The structural and optical characterization of the deposited films was carried out using X-ray diffraction and UV-visible spectroscopy, respectively. Swanepoel envelope and Drude-Lorentz (DL) models were applied to extract the optoelectronic parameters such as refractive index, dispersion energy and plasma frequency. Structurally, grain size was found to decrease with increase in oxygen flow rate during deposition. Moreover, all the films exhibited preferred (002) orientation confirming c-axis orientation of the films perpendicular to the substrate. For a particular range of oxygen flow rates, columnar growth was achieved. Marginal increase in the optical band gap from 3.14 to 3.22 eV was observed as the oxygen flow rate increased from 3 to 10 sccm. Calculated plasma frequency from the DL model was found to be in the infrared region. It has decreased as oxygen flow rate increased with the value from 1.625 × 1014 rad/s (862 cm-1) to 1.072 × 1014 rad/s (568 cm-1).

  7. Self-consistent modeling for estimation of the reduced electric field in a DC excited diffusion controlled CW CO2 laser

    Science.gov (United States)

    Kumar, Manoj; Bhagat, M. S.; Biswas, A. K.; Rana, L. B.; Pakhare, Jagdish; Rawat, B. S.; Kukreja, L. M.

    2016-07-01

    The results of a numerical simulation method that estimate various discharge parameters in the positive column of a DC glow discharge controlled by ambipolar diffusion are presented. The parameters like reduced electric field (E/N), electron temperature, ionization rates, ambipolar diffusion losses and the average gas temperature were numerically evaluated for several mixtures of CO2, N2 and He in low pressure regime. The estimated E/N value which is a primary governing parameter of positive column was verified experimentally using a double probe in diffusion controlled CW CO2 laser for a variety of CO2, N2 and He mixtures. The role of auxiliary ionization source like pulser used for pre-ionization and its effect on the steady state E/N value was also studied. A reasonably good agreement was found between the theoretical and the experimental results. Based on the results of this simulation a zigzag folded, diffusion-cooled, 500 W CW CO2 laser has been designed and developed for research in gas phase nanoparticle synthesis.

  8. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  9. Permafrost Changes along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

    Science.gov (United States)

    Duguay, M. A.; Lewkowicz, A. G.; Smith, S.

    2011-12-01

    A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.

  10. Conceptual design and sample preparation of electrode covered single glass macro-capillaries for studying the effect of an external electric field on particle guiding

    Energy Technology Data Exchange (ETDEWEB)

    Wartak, A. [Institute of Applied Physics, TU Wien, A-1040 Vienna (Austria); Bereczky, R.J., E-mail: bereczky.reka@atomki.mta.hu [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, P.O. Box 51 (Hungary); Kowarik, G. [Institute of Applied Physics, TU Wien, A-1040 Vienna (Austria); Tőkési, K. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, P.O. Box 51 (Hungary); Aumayr, F. [Institute of Applied Physics, TU Wien, A-1040 Vienna (Austria)

    2015-07-01

    We present the design and construction of a macroscopic glass capillary covered by electrodes on the outside. With these new capillary targets it will be possible to study the influence of an external electric field on the process of guiding of charged particles through a capillary. The new degrees of freedoms will contribute to both a better fundamental understanding of the guiding phenomenon but might also be of use in practical applications.

  11. Simulation of a DC electric arc furnace for steelmaking: study in the arc and bath regions; Simulacion de un horno electrico de arco CC para aceracion: estudio de la region del arco y del bano metalico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Argaez, M. A.; Trapaga Martinez, L. G.

    2001-07-01

    A mathematical model was developed to describe fluid flow, heat transfer, and electromagnetic phenomena in the arc and bath regions of DC electric Arc Furnaces (DC-EAF). The model is used to examine the effect on flow patterns and temperature distribution in the bath, under the influence of both an arc and bottom argon injection in steel or steel/slag systems. Validation of the model employed experimental measurements from systems physically related to DC-EAF from literature. For the conditions analyzed, electromagnetic forces dominate the fluid motion in the bath. Buoyancy and shear forces from the arc have a negligible effect in driving the flow; however, they partially counteract the electromagnetic forces. Slag decreases fluid motion in the steel and enhances temperature stratification in the system. Stirring of the bath, using a 3-nozzle inert gas injection system, is found to promote temperature uniformity in the regions near the lateral wall of the furnace. (Author) 24 refs.

  12. Investigation of shunt resistor's connection for a DC Resistive SFCL

    Energy Technology Data Exchange (ETDEWEB)

    Imparato, S; Morandi, A; Fabbri, M; Negrini, F; Ribani, P L, E-mail: salvatore.imparato@mail.ing.unibo.i [Department of Electrical Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

    2010-06-01

    A DC-operating resistive-type superconducting fault current limiter for AC applications (in short a DC Resistive SFCL) is based on the synergistic use of the 'resistive' and the 'rectifier' fault current limiter concepts, and allows the superconductor to operate in nearly DC current conditions. This regime of operation drastically reduces AC losses thus opening new perspectives with regard to materials, architecture of the cable, lay out of windings and cryogenics. In this paper the concept of DC resistive SFCL is resumed and a case study about its possible application in the distribution electrical system is reported. Two possible connections of external shunt resistor in order to reduce the Joule heating during the limiting phase are analysed.

  13. Microstructure, AC impedance and DC electrical conductivity characteristics of NiFe2-xGdxO4 (x = 0, 0.05 and 0.075

    Directory of Open Access Journals (Sweden)

    K. Kamala Bharathi

    2012-03-01

    Full Text Available The structure and electrical characteristics of Gd doped Ni ferrite materials, namely NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4, are reported to demonstrate their improved electrical properties compared to that of pure NiFe2O4. NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds crystallize in the cubic inverse spinel phase with a very small amount of GdFeO3 additional phase while pure NiFe2O4 crystallize in inverse spinel phase without any impurity phase. The back scattered electron imaging analysis indicate the primary and secondary formation in NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds. Atomic force microscopy measurements indicate that the bulk grains are ∼2-5 micron size while the grain boundaries are thin compared to bulk grains. Impedance spectroscopic analysis at different temperature indicates the different relaxation mechanisms and their variation with temperature, bulk grain and grain-boundary contributions to the electrical conductivity (Rg and capacitance (Cg of these materials. The conductivity in pure NiFeO4 is found to be predominantly due to intrinsic bulk contribution (Rg=213 kΩ and Cg=4.5 x 10-8 F. In the case of NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds, grain and grain-boundary contributions to the conductivity are clearly observed. The DC conductivity values (at 300 K of NiFe2O4, NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds are found to be 1.06 x 10-7 Ω-1 cm-1, 5.73 x 10-8 Ω-1 cm-1 and 1.28 x 10-8 Ω-1 cm-1 respectively.

  14. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field

    Science.gov (United States)

    Huang, Zongyu; Qi, Xiang; Yang, Hong; He, Chaoyu; Wei, Xiaolin; Peng, Xiangyang; Zhong, Jianxin

    2015-05-01

    Based on first-principles calculations in the framework of van der Waals density functional theory, we investigate the structural, electronic properties and band-gap tuning of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. We find that, different from the suspended monolayer MoS2 with a direct band-gap, h-BN/MoS2/h-BN has an indirect band-gap. Particular attention has been focused on the engineering of the band-gap of the h-BN/MoS2/h-BN heterostructure via application of an external electric field. With the increase of electric field, the band-gap of the h-BN/MoS2/h-BN heterostructure undergoes an indirect-to-direct band-gap transition. Once the electric field intensity is larger than 0.1 V Å-1, the gap value of direct band-gap shrinks almost linearly with the field-strength, which indicates that the h-BN/MoS2/h-BN heterostructure is a viable candidate for optoelectronic applications.

  15. Simplified dc to dc converter

    Science.gov (United States)

    Gruber, R. P. (Inventor)

    1984-01-01

    A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided.

  16. Experiments with a DC Motor

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  17. Response of the /sup 1/P/sup 0/ resonance near n = 3 in the H/sup -/ continuum to external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.

    1986-05-01

    The response to external electric fields of the /sup 1/P/sup 0/ resonance in the H/sup -/ photodetachment continuum below the n = 3 hydrogenic excitation threshold is investigated. Using the relativistic (..beta.. = 0.806) 650 MeV H/sup -/ beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) in Los Alamos, the fourth harmonic (2.66 nm) of a Nd:YAG laser is Doppler shifted to provide a continuously tunable photon beam in the rest frame of the ions. The magnetic field from pulsed Helmholtz coils, surrounding the photon-H/sup -/ interaction point provides a Lorentz-transformed barycentric electric field. Relative total photodetachment cross sections were measured as a function of photon energy and electric field. The resulting spectra were fit to a Fano line shape. 70 refs., 28 figs., 7 tabs.

  18. Plasma heating by electric field compression.

    Science.gov (United States)

    Avinash, K; Kaw, P K

    2014-05-09

    Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.

  19. Design, optimization and new solutions for DC/DC converters in hybrid vehicles; Design, Optimierung und neue Loesungen fuer DC/DC-Wandler in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Pledl, Georg; Lutter, Peter [Finepower GmbH, Ismaning (Germany)

    2010-07-01

    Especially in automotive engineering, the big aim of electronic device development is to combine minimum possible weight, highest efficiency and low electromagnetic interference. Since there is a wide range of energy storage devices and power consumption requirements are very versatile, there are many possible solutions for electronic power devices, but not all of them will be appropriate for each system. One possible solution concerning dc/dc converters is represented by the phase shift operation for full bridge topologies. This procedure is used for supplying the electrical 14 V system from the high voltage energy storage or, in the other direction, charge the HV battery from the 14 V net or even from an external 230 V / 400 ac net. Finepower has developed 2 prototypes for research, which are presented in this contribution. Another new topology, a bidirectional LLC Converter, is presented as well. Energy consumption is growing and the available space for electronic power devices is held very small, so the power density increases and thermal management becomes more difficult. As dimensions of bus bars, semiconductors or inductive components are shrinking, parasitic influence becomes more and more significant. For getting information about function and influence of parasitics of electronic power devices, simulation is a very important tool since it saves much time and gives the possibility to extract internal dimensions of electrical circuits which cannot be measured in reality. (orig.)

  20. Boost Full Bridge Bidirectional DC/DC Converter for Supervised Aeronautical Applications

    Directory of Open Access Journals (Sweden)

    Alberto Cavallo

    2014-01-01

    Full Text Available The More Electrical Aircraft concept requires electronic devices able to efficiently and safely convert electrical power between different voltage levels. The entire realization of a bidirectional DC/DC converter, from design to validation phase, is here discussed in detail. First, a boost full bridge electrical structure is selected, adopting a Parallel Input Parallel Output (PIPO interleaving technique and an optimal turns ratio selection for the transformers in order to reduce both weight and size of the equipment. Next, modulation schemes in both step-down and step-up modes are discussed. Successively ad hoc PI regulators for both operative modes are presented. A key idea of the paper is that the converter behavior must be related not only to the control strategy but also to a global supervision logic able to safely conduct the converter operations and to react from external stimuli. Thus, a finite state machine (FSM approach is employed. An innovative strategy called buffer mode is presented, defined as an intelligent combination of buck and boost modes. Extensive simulations and experimental results are shown, in order to confirm the effectiveness of the proposed approach.

  1. Theoretical study on coupling effects of modulation depth between two photorefractive phase gratings with an external applied field

    Institute of Scientific and Technical Information of China (English)

    YUAN Baohong; ZHOU Zhongxiang; HOU Chunfeng; SUN Xiudong

    2001-01-01

    We used the perturbation expanding method to the hopping model and studied coupling effects of the modulation depth between two photorefractive phase gratings stored in one point with an external applied DC electric field . It has been found that the modulation depth of one of the two gratings seriously affects the spatial-charge field of the other grating.

  2. Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Rowland, D.; Liebrecht, C.; Bromund, K.; Roddy, P.

    2010-01-01

    Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude

  3. A Model Study on the Possible Effects of an External Electrical Field on Enzymes Having Dinuclear Iron Cluster [2Fe-2S

    Directory of Open Access Journals (Sweden)

    Lemi Türker

    2012-01-01

    Full Text Available Hydrogenases which catalyze the H2 ↔ 2H+ + 2e− reaction are metalloenzymes that can be divided into two classes, the NiFe and Fe enzymes, on the basis of their metal content. Iron-sulfur clusters [2Fe-2S] and [4Fe-4S] are common in ironhydrogenases. In the present model study, [2Fe-2S] cluster has been considered to visualize the effect of external electric field on various quantum chemical properties of it. In the model, all the cysteinyl residues are in the amide form. The PM3 type semiempirical calculations have been performed for the geometry optimization of the model structure in the absence and presence of the external field. Then, single point DFT calculations (B3LYP/6-31+G(d have been carried out. Depending on the direction of the field, the chemical reactivity of the model enzyme varies which suggests that an external electric field could, under proper conditions, improve the enzymatic hydrogen production.

  4. Dynamical Localization in a Two-Electron Quantum Dot Molecule Biased by a dc Voltage

    Institute of Scientific and Technical Information of China (English)

    王立民; 段素青; 赵宪庚; 刘承师; 马本堃

    2003-01-01

    We study the dynamics of two interacting electrons in a coupled-quantum-dot system with a time-dependent external electric field. The numerical results of the two-particle states reveal that the dynamical localization still exists under appropriate dc and ac voltage amplitudes. Such localization is different from the stationary localization phenomenon. Our conclusion is instructive for the field of quantum function devices.

  5. Efficient Design in a DC to DC Converter Unit

    Science.gov (United States)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  6. PWM DC/DC Converter

    OpenAIRE

    Chen, Juan

    2008-01-01

    This report is the result of a Master Thesis work done at Seaward Electronics Inc. in Beijing, China from June to December in 2007. The main goal for this thesis is to verify and improve the performance of Honey-PWM DC-DC converter, which has been fabricated by a standard 0.6um CMOS processes. The project was started with studying of Buck converter structure. After the understanding of the converter structure, the project goes in to the analyses phase for each sub-cells, including the theory,...

  7. Magnetic and electronic properties for ultrathin BiFeO{sub 3} film under external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hong-Jian, E-mail: fenghongjian@126.com [Department of Physics, Northwest University, Xi' an 710069 (China)

    2013-03-01

    First-principals calculations show that the magnetization reversal of BiFeO{sub 3} film can be observed in y component with reversal of electric field more than ±0.001 V/Å. The charge distribution and hybridization is determined by the surface atomic distortions in plane. Bi-6s stereochemically active lone pair is still able to contribute to the electronic localization and thus the electric polarization in the film.

  8. Fuzzy Control of DC-DC Converters with Input Constraint

    Directory of Open Access Journals (Sweden)

    D. Saifia

    2012-01-01

    Full Text Available This paper proposes a method for designing fuzzy control of DC-DC converters under actuator saturation. Because linear control design methods do not take into account the nonlinearity of the system, a T-S fuzzy model and a controller design approach is used. The designed control not only handles the external disturbance but also the saturation of duty cycle. The input constraint is first transformed into a symmetric saturation which is represented by a polytopic model. Stabilization conditions for the state feedback system of DC-DC converters under actuator saturation are established using the Lyapunov approach. The proposed method has been compared and verified with a simulation example.

  9. Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model

    NARCIS (Netherlands)

    van der Borden, Arnout J.; Maathuis, Patrick G. M.; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant Kumar

    2007-01-01

    Pin tract infections of external fixators used in orthopacclic reconstructive bone surgery are serious cornplications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biotilm mode of growth detach under t

  10. Yolk/Shell Colloidal Crystals Incorporating Movable Cores with Their Motion Controlled by an External Electric Field

    NARCIS (Netherlands)

    K., Watanabe,; H., Ishii,; Konno, M.; Imhof, A.; van Blaaderen, A.; Nagao, D.

    2016-01-01

    Yolk/shell particles composed of a submicrometer-sized movable core and a silica shell are promising building blocks for novel optical colloidal crystals, because the locations of cores in the shell compartment can be reversibly changed by using external stimuli. Two dimensional arrays of yolk/shell

  11. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV) System with Charge Pattern Optimization for Energy Cost

    OpenAIRE

    T Balamurugan; Dr.S.Manoharan

    2014-01-01

    This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV) system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of th...

  12. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    Science.gov (United States)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  13. Electronic and magnetic properties of armchair MoS{sub 2} nanoribbons under both external strain and electric field, studied by first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ting; Dong, Jinming, E-mail: jdong@nju.edu.cn [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhou, Jian [Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-14

    The electronic and magnetic properties of armchair edge MoS{sub 2} nanoribbons (MoS{sub 2}-ANRs) underboth the external strain and transverse electric field (E{sub t}) have been systematically investigated by using the first-principles calculations. It is found that: (1) If no electric field is applied, an interesting structural phase transition would appear under a large tensile strain, leading to a new phase MoS{sub 2}-A'NR, and inducing a big jump peak of the band gap in the transition region. But, the band gap response to compressive strains is much different from that to tensile strain, showing no the structural phase transition. (2) Under the small tensile strains (<10%), the combined E{sub t} and tensile strain give rise to a positive superposition (resonant) effect on the band gap reduction at low E{sub t} (<3 V/nm), and oppositely a negative superposition (antiresonant) one at high E{sub t} (>4 V/nm). On the other hand, the external compressive strains have always presented the resonant effect on the band gap reduction, induced by the electric field. (3) After the structural phase transition, an external large tensile strain could greatly reduce the critical field E{sub tc} causing the band gap closure, and make the system become a ferromagnetic (FM) metal at a relative low E{sub t} (e.g., <4 V/nm), which is very helpful for its promising applications in nano-mechanical spintronics devices. (4) At high E{sub t} (>10 V/nm), the magnetic moments of both the MoS{sub 2}-ANR and MoS{sub 2}-A'NR in their FM states could be enhanced greatly by a tensile strain. Our numerical results of effectively tuning physical properties of MoS{sub 2}-ANRs by combined external strain and electric field may open their new potential applications in nanoelectronics and spintronics.

  14. Teaching about operation of brushless DC motors

    OpenAIRE

    Čufar, Aleksandra

    2013-01-01

    Brush DC motor is being replaced by brushless DC motors on every area of application. My diploma thesis is a presentation of brushless DC motor, how it works and its application. Within first part we describe various electric motors and their application. There are several types of electric motors division. Last to be added is a brushless motor. Within second part of thesis we look into a brushless DC motor, how it works, its application and control. In the third part of thesis we construct a...

  15. Optimization of control sequences for DC-DC-converters; Optimierung der Stellgroessenfolge eines DC-DC-Wandler

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Claus [Hochschule Aalen (Germany). Wirtschaftsingenieurwesen

    2009-07-01

    DC-DC-Converters are used in power electronics to adapt different voltage levels of electrical sources and sinks with respect of high efficiency. To minimize electrical losses these power electronic converters always work with switching power semiconductors. This switching principle of the converter is causing a control constraint which limits the achievable performance for the voltage control drastically. This paper presents an optimization for the control sequence in a high dynamic converter control which is based on the dead-beat control design. Thus the non-avoidable control constraint will not be violated. (orig.)

  16. Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1999-01-01

    Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence on these paramet......Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence...

  17. Enhancement of the magnetocapacitance effect in an external electric field in La{sub x}Bi{sub 1-x}FeO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Aplesnin, S. S., E-mail: apl@iph.krasn.ru; Kretinin, V. V. [Reshetnikov Siberian State Aerospace University (Russian Federation); Panasevich, A. M.; Yanushkevich, K. I. [National Academy of Sciences of Belarus, Scientific and Practical Materials Research Center (Belarus)

    2015-09-15

    The goal of the study is to determine the value of magnetocapacitance under the substitution of lanthanum for bismuth in thin La{sub x}Bi{sub 1-x}FeO{sub 3} films and to find out the effect of an external bias electric field on the magnetocapacitance effect. To solve this task, the dielectric permittivity, the magnetic permeability, and the loss tangent are measured in La{sub x}Bi{sub 1-x}FeO{sub 3} films in magnetic fields of up to 8 kOe in the range of temperatures 100 K < T < 1000 K. Maxima of the permittivity and permeability at low temperatures and the dependence of the permeability on the prehistory of a sample are found. An increase in the magnetocapacitance due to the substitution of lanthanum for bismuth is observed. A giant enhancement of magnetocapacitance in an external electric bias field is revealed. These phenomena are attributed to the rearrangement of the domain structure.

  18. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...... capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...

  19. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  20. Isolerad DC/DC-omvandlare

    OpenAIRE

    Andersson, Martin

    2011-01-01

    1 SammanfattningCrossControl är ett företag som bland annat tillverkar integrerade datorlösningar. Datorerna drivs normalt med 18-30 VDC och förbrukar som mest 50W. Datorerna säljs till flertalet olika kunder som monterar dem i allt från skogsmaskiner till tåg. I de olika fordonen varierar spänningen i de befintliga elnäten. Detta skapar behovet av att omvandla spänningen till en nivå som datorerna klarar av. En sådan apparat kallas DC/DC-omvandlare. Spänningsomvandling kan utföras genom linj...

  1. DC superconducting fault current limiter

    Science.gov (United States)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  2. Dc and ac electrical conductivity of bulk CdSe{sub x}Te{sub 1-x} (0{<=}x{<=}0.4)

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, M.A.; El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Bekheet, A.E. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)], E-mail: ashraf_bekheet@hotmail.com; Zedan, I.T. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)

    2007-11-15

    Measurements of the dc and ac conductivity were made for polycrystalline CdSe{sub x}Te{sub 1-x} (0{<=}x{<=}0.4) at various frequencies (0.1-100 kHz) and at various temperatures (293-413 K). The temperature dependence of the dc conductivity was measured in the temperature range (293-413 K). It was found that the obtained dc activation energy for the investigated compositions decrease with the increase of Se content. The ac conductivity is found to be frequency and temperature dependent and obeys the A{omega}{sup s} law, where s decreases with the increase of temperature. The ac conductivity of these compositions are explained on the basis of the correlated barrier hopping model.

  3. The influence of the splanchnic nerves on the external secretion, blood flow and electrical conductance of the cat pancreas.

    Science.gov (United States)

    Barlow, T E; Greenwell, J R; Harper, A A; Scratcherd, T

    1974-01-01

    1. Electrical stimulation of the cut peripheral end of the splanchnic nerves results in a biphasic change in electrical conductance measured across the tail of the pancreas. A phase of decreased conductance is followed by a more prolonged phase of increased conductance.2. Simultaneous measurements of pancreatic blood flow indicate that the phase of decreased conductance occurs as a result of vasoconstriction, whilst the phase of increased conductance is due to vasodilatation.3. The initial phase of decreased conductance and vasoconstriction is abolished by alpha-receptor blocking agents such as phenoxybenzamine and the phase of increased conductance blocked by beta-receptor blocking agents such as pronethalol.4. Short periods of electrical stimulation applied to the splanchnic nerves result in a secretion of amylase and a reduction in the volume rate of secretion.5. When the vasoconstrictor response was abolished by phenoxybenzamine, nerve stimulation still reduced the rate of secretion, suggesting that the inhibitory effect is in part due to a direct action of the secretory cells.6. After bretylium tosylate, splanchnic nerve stimulation no longer produced vasomotor changes in the pancreas and the inhibitory effect on the volume response was converted to one of augmentation, but the secretion of enzymes was unaffected.7. The secretion of amylase on splanchnic stimulation was abolished by intravenous injection of atropine, suggesting that a cholinergic mechanism is involved.8. Noradrenaline did not mobilize pancreatic enzymes.

  4. Nucleation process on the 180^o domain wall of PbTiO3 by the external electric field

    Science.gov (United States)

    Shin, Young-Han; Grinberg, Ilya; Chen, I.-Wei; Rappe, Andrew

    2006-03-01

    Ferroelectric oxides are extremely useful as nonvolatile memory storage materials, and the speed at which polar domains can be reversed is a critical characteristic for future development of these materials. However, the size of the critical nucleus during the polarization reversal is still unknown experimentally. If we assume that the magnitudes of local polarizations are the same and their directions are along the external field, it will be triangular and the height of the nucleus along the external field should be much larger than its width following the Miller and Weinreich's study in 1960s. We made an atomic potential for perovskite ferroelectrics based on the first-principles calculation, and performed molecular-dynamics simulations to understand the nucleation and growth process of ferroelectric domains. We find that its shape is close to a square not a triangle and its size much smaller than Miller and Weinreich's. It stems from the small polarizations and the voltex-like flow around the nucleus. To increase the system size we used the stochastic study using the nucleation and growth rates which were obtained from the molecular dynamics simulations. The overall speed of the domain wall motion can be estimated from this stochastic calculation.

  5. Digital Control Technologies for Modular DC-DC Converters

    Science.gov (United States)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  6. Effects of electric field on recrystallization texture evolution in cold-rolled high-purity aluminum sheet during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Yan; ZHAO Xiang; HE Chang-shu; ZHAO Zhi-peng; ZUO Liang; C. ESLING

    2007-01-01

    The effects of an external DC (direct current) electric field on recrystallization texture evolution in the cold-rolled aluminum sheets with 99.99% purity were investigated by means of X-ray diffraction techniques. The cold-rolled high-purity aluminum sheets were annealed for 60 min at 200, 300 and 400 ℃, respectively with and without an external DC electric field of 800 V/mm. The results show that with DC electric field, the recrystallization cube texture is strengthened at the stage of grain growth. Possible reason for the strengthening of the recrystallization cube texture with the applied electric field may be attributed to both selected nucleation and selected growth of cube oriented crystal nuclei.

  7. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-π interactions for graphene-based receptors.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Marek, Radek

    2014-02-14

    Measuring the binding energy or scanning the potential energy surface (PES) of the charged molecular systems in the presence of an external electric field (EEF) requires a careful evaluation of the origin-dependency of the energy of the system and references. Scanning the PES for charged or purely ionic systems for obtaining the intrinsic energy barriers needs careful analysis of the electric work applied on ions by the EEF. The binding energy in the presence of an EEF is different from that in the absence of an electric field as the binding energy is an anisotropic characteristic which depends on the orientation of molecules with respect to the EEF. In this contribution we discuss various aspects of the PES and the concept of binding energy in the presence of an EEF. In addition, we demonstrate that the anion-π bonding properties can be modulated by applying a uniform EEF, which has a more pronounced effect on the larger, more polarizable π-systems. An analogous behavior is presumed for cation-π systems. We predict that understanding the phenomenon introduced in the present account has enormous potential, for example, for separating charged species on the surface of polarizable two-dimensional materials such as graphene or the surface of carbon nanotubes, in desalination of water.

  8. GaN Microwave DC-DC Converters

    Science.gov (United States)

    Ramos Franco, Ignacio

    external components. The maximum measured dc-dc efficiency is approximately 45%.

  9. 基于改进无模型算法的医用电气设备的DC-DC变换器的研究%Research of Medical Electrical Device DC-DC Converter Base on Improved Model-free Adaptive Control algorithm

    Institute of Scientific and Technical Information of China (English)

    丁海波; 赵佳洋; 王晓彤

    2014-01-01

    In this paper, based on the DC-DC converter control method of the model mismatch in the model's limitations, A method of MFAC is proposed. Model-free adaptive control (MFAC) is a kind of control er design methods which needs less knowledge of mathematical models and relevant prior knowledge, and only needs the I/O data to design the control er. A compact format MFAC linear dynamic universal model, design a model free adaptive control er for DC-DC converter. It can be used to solve the problems of model mismatch. The simulation model of DC-DC converter is established by analyzing the character of model, The MFAC can overcome the model mismatch, has bet er adaptability and robustness.%本文针对基于DC/DC变换器模型的控制方法在模型失配方面的局限性,提出了一种基于无模型自适应控制的方法。建立了紧格式MFAC动态线性化泛模型,设计了DC-DC变换器的无模型自适应控制器。控制器不需要受控系统的数学模型及相关先验知识,仅利用系统I/O数据进行控制器设计,解决了变换器模型失配的问题。进行了Simulink仿真,仿真结果表明,相比于传统的基于模型的控制方法,本文所用方法能克服模型失配,具有更好的适应性和鲁棒性。

  10. Adaptable DC offset correction

    Science.gov (United States)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  11. Study of Dual-redundancy Brushless DC Motor in Electric Aircraft Braking System%飞机刹车用双余度无刷直流电动机的研究

    Institute of Scientific and Technical Information of China (English)

    高金行; 全兴源; 戴志勇; 曹杨

    2012-01-01

    A study of dual redundant brushless DC motor in electric aircraft braking system was given. Based on Ansoft, the motor magnetic circuit was analyzed. The structure parameters were optimized. With the mathematical model of brushless DC motor, the simulation performance was shown. The key technologies of Commutation were analyzed. As shown of experiment, the design is reasonable and correct. Key words; dual redundant brushless DC motor; finite element analysis; performance simulation ; key developing technologies%以全电飞机刹车用双余度无刷直流电动机为研究对象,借助Ansoft软件对电机磁路进行分析计算,优化结构参数,并对其进行性能仿真.重点论述了确保无刷余度电机性能最优的调试关键技术.经过样机性能测试与设计相符,满足使用要求.

  12. Minimizing heat loss in DC networks using batteries

    CERN Document Server

    Zocca, Alessandro

    2016-01-01

    Electricity transmission networks dissipate a non-negligible fraction of the power they transport due to the heat loss in the transmission lines. In this work we explore how the transport of energy can be more efficient by adding to the network multiple batteries that can coordinate their operations. Such batteries can both charge using the current excess in the network or discharge to meet the network current demand. Either way, the presence of batteries in the network can be leveraged to mitigate the intrinsic uncertainty in the power generation and demand and, hence, transport the energy more efficiently through the network. We consider a resistive DC network with stochastic external current injections or consumptions and show how the expected total heat loss depends on the network structure and on the batteries operations. Furthermore, in the case where the external currents are modeled by Ornstein-Uhlenbeck processes, we derive the dynamical optimal control for the batteries over a finite time interval.

  13. External meeting - Geneva University: Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May  2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...

  14. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  15. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    Science.gov (United States)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  16. The influence of an external electric field on the propagation of light waves in cholesteric liquid crystal cells

    Science.gov (United States)

    Aksenova, E. V.; Karetnikov, A. A.; Kovshik, A. P.; Krainyukov, E. S.; Svanidze, A. V.

    2017-05-01

    The specific features of light transmission in a cholesteric liquid crystal (LC) cell with a director rotated by 90° have been investigated. In this structure, where a light wave is incident at a large angle with respect to the LC surface, the light is reflected (refracted) in the LC layer near the opposite boundary. It is shown that the application of an electric field changes the character of extraordinary wave refraction, as a result of which light starts passing through a cell. The transmission threshold voltage is determined, and its dependence on the angle of incidence of light is obtained. The dependence of the transmitted-light intensity on the voltage across the cell is obtained as well. The same dependences are also derived by numerical calculations with allowance for the turning points and extinction.

  17. Relativistic quantum dynamics of a neutral particle in external electric fields: An approach on effects of spin

    Science.gov (United States)

    Azevedo, F. S.; Silva, Edilberto O.; Castro, Luis B.; Filgueiras, Cleverson; Cogollo, D.

    2015-11-01

    The planar quantum dynamics of a spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations is obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the r = 0 region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.

  18. DC/DC converter with improved rectification for higher efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Maisel, Peter; Saliternig, Martin [Continental AG, Nuernberg (Germany)

    2010-07-01

    High-power dc-dc converters are an important element of the electrical system of electric vehicles and hybrid electric vehicles. These complex modular components provide the link between the high-voltage level used for the powertrain and the low-voltage bus for the lighting system, engine management and auxiliary needs in the vehicle. The essential requirements for all converters are high efficiency, compact size, lightweight and reliability. A very popular method to increase the efficiency is the synchronous rectification. Parasitic inductances in the commutation circuit and reverse recovery effects can produce a ringing with voltage overshoots at the diodes and the transistors. These spikes can cause higher average power dissipation in the seminconductors and higher EMI (electromagnetic interference).

  19. Electrical Injuries

    Science.gov (United States)

    ... it can pass through your body and cause injuries. These electrical injuries can be external or internal. You may have one or both types. External injuries are skin burns. Internal injuries include damage to ...

  20. Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis.

    Science.gov (United States)

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Abd Majid, Wan Haliza; Abdul Rahman, Saadah

    2012-01-01

    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

  1. Differences between left and right ventricular anatomy determine the types of reentrant circuits induced by an external electric shock. A rabbit heart simulation study.

    Science.gov (United States)

    Rodríguez, Blanca; Eason, James C; Trayanova, Natalia

    2006-01-01

    Despite the fact that elucidating the mechanisms of cardiac vulnerability to electric shocks is crucial to understanding why defibrillation shocks fail, important aspects of cardiac vulnerability remain unknown. This research utilizes a novel anatomically based bidomain finite-element model of the rabbit ventricles to investigate the effect of shock polarity reversal on the reentrant activity induced by an external defibrillation-strength shock in the paced ventricles. The specific goal of the study is to examine how differences between left and right ventricular chamber anatomy result in differences in the types of reentrant circuits established by the shock. Truncated exponential monophasic shocks of duration 8 ms were delivered via two external electrodes at various timings. Vulnerability grids were constructed for shocks of reversed polarity (referred to as RV- or LV- when either the RV or the LV electrode is a cathode). Our results demonstrate that reversing electrode polarity from RV- to LV- changes the dominant type of post-shock reentry: it is figure-of-eight for RV- and quatrefoil for LV- shocks. Differences in secondary types of post-shock arrhythmia also occur following shock polarity reversal. These effects of polarity reversal are primarily due to the fact that the LV wall is thicker than the RV, resulting in a post-shock excitable gap that is predominantly within the LV wall for RV- shocks and in the septum for LV- shocks.

  2. The good routing of a non-insulated DC/DC converter; Bien router un convertisseur DC/DC non-isole

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, E.

    2001-03-01

    DC to DC converters are important sources of magnetic and electric fields with frequencies that can exceed 100 MHz. Thus, their positioning on a circuit board is of prime importance to minimize the magnetic and capacitive couplings with other parts and components of the circuit. This article summarizes the important rules to follow for a good routing of non-insulated switching DC/DC converters: taking the ohmic voltage drops into consideration, managing the MOSFET commutation, limiting the current loop disturbances, correct routing of power tracks. (J.S.)

  3. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    Science.gov (United States)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  4. "Forback" Dc-To-Dc Converters

    Science.gov (United States)

    Lukemire, Alan T.

    1992-01-01

    Dc-to-dc power-converter circuits called "forback" resemble circuits of standard configurations called "forward", "flyback", and "Cuk". Circuit employs minor modifications to existing topologies, combines advantages, while eliminating disadvantages, of older circuits.

  5. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Rey, M. [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Tremblay, J. C. [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2015-04-21

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  6. Multiport Resonant DC-DC Converter

    OpenAIRE

    Tran, Yan-Kim; Dujic, Drazen; Barrade, Philippe

    2015-01-01

    his paper presents a multiport galvanically isolated LLC resonant DC-DC converter suitable for DC applications. A three-port structure is analyzed, with full bidirectional power flow capabilities, simple control and behavior similar to that expected from a DC transformer. Each port is equipped with half-bridge modules accompanied with tuned resonant tank, partly realized with elements of a multi- winding high frequency transformer. With some restrictions that are explained in the paper, each ...

  7. VLSI Hybrid DC-DC Regulator

    OpenAIRE

    Cosp Vilella, Jordi; Martínez García, Herminio

    2015-01-01

    Hybrid DC-DC regulators are structures that combine both a linear voltage regulator and a switching DC-DC converter. The main objective of this hybrid topology is to converge, in a single circuit topology, the best of both alternatives: a small voltage output ripple, which is a common characteristic of linear regulator circuits, and good energy efficiency, as in switching alternatives. While the linear regulator fixes the required output voltage to a fixed value with negligible steady-state r...

  8. Local Bifurcations in DC-DC Converters

    OpenAIRE

    2012-01-01

    Three local bifurcations in DC-DC converters are reviewed. They are period-doubling bifurcation, saddle-node bifurcation, and Neimark bifurcation. A general sampled-data model is employed to study the types of loss of stability of the nominal (periodic) solution and their connection with local bifurcations. More accurate prediction of instability and bifurcation than using the averaging approach is obtained. Examples of bifurcations associated with instabilities in DC-DC converters are given.

  9. Simulation and Implementation of Interleaved Boost DC-DC Converter for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2011-10-01

    Full Text Available This paper deals with a boost dc-dc converter for fuel cell application. In fuel cell electric vehicles application, a high power boost dc-dc converter is adopted to adjust the output voltage, current and power of fuel cell engine to meet the vehicle requirements. One of challenge in designing a boost converter for high power application is how to handle the high current at the input side. In this paper an interleaved boost dc-dc converter is proposed for current sharing on high power application. Moreover, this converter also reduces the fuel ripple current. Performance of the interleaved boost converter is tested through simulation and experimental results. Keywords: component; Interleaved Boost Converter; Fuel Cell Electric Vehicle; high power application.  

  10. High-Efficiency dc/dc Converter

    Science.gov (United States)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  11. The effects of external electric field: creating non-zero first hyperpolarizability for centrosymmetric benzene and strongly enhancing first hyperpolarizability for non-centrosymmetric edge-modified graphene ribbon H2N-(3,3)ZGNR-NO2.

    Science.gov (United States)

    Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2013-09-01

    How to generate a non-zero first hyperpolarizability for a centrosymmetric molecule is a challenging question. In this paper, an external (pump) electric field is used to make a centrosymmetric benzene molecule generate a non-zero value of the electric field induced first hyperpolarizability (β (F) ). This comes from the centrosymmetry breaking of electron cloud. Two interesting rules are exhibited. (1) β (F) is anisotropic for different directional fields (F i, i = X, Y, Z). (2) The field dependence of β (F) is a non-monotonic function, and an optimum external electric field causes the maximum value of β (F) . The largest first hyperpolarizability β (F) reaches the considerable level of 3.9 × 10(5) a.u. under F Y = 330 × 10(-4) a.u. for benzene. The external electric field effects on non-centrosymmetric edge-modified graphene ribbon H2N-(3,3)ZGNR-NO2 was also studied in this work. The first hyperpolarizability reaches as much as 2.1 × 10(7) a.u. under F X = 600 × 10(-4) a.u. for H2N-(3,3)ZGNR-NO2. We show that the external electric field can not only create a non-zero first hyperpolarizability for centrosymmetric molecule, but also remarkably enhance the first hyperpolarizability for a non-centrosymmetric molecule.

  12. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  13. 四轮驱动电动汽车永磁无刷轮毂电机转矩分配%Torque distribution algorithm for a permanent brushless DC hub motor for four-wheel drive electric vehicles

    Institute of Scientific and Technical Information of China (English)

    卢东斌; 欧阳明高; 谷靖; 李建秋

    2012-01-01

    四轮驱动轮毂电机电动汽车采用4个永磁无刷轮毂电机驱动,根据轮毂电机的反电势接近正弦波的特点,采用磁场定向控制方法可以实现最大转矩电流控制。该文在永磁同步电机磁场定向控制效率模型的基础上,提出了相同转速转矩下的多永磁同步电机系统效率模型,根据此模型证明了多永磁同步电机系统相同转速下转矩平均分配可使电机系统效率达到最优。将此结论应用到四轮驱动电动汽车轮毂电机转矩分配研究中,通过仿真和实车测试进行验证。仿真和试验结果证明,平均分配永磁无刷轮毂电机转矩可使整车效率最优。%Four in-wheel motors drive electric vehicles are driven by four brushless DC hub motors. Since the back electromotive force (emf) waveform of a permanent brushless DC hub motor is usually nearly sinusoidal, the maximum torque per ampere control can be found using field oriented control (FOC). An efficiency model for a permanent magnet synchronous motor (PMSM) was used in an efficiency model of multi-PMSMs with the same speed and torque. The optimal efficiency can be achieved based on the average torque distribution assuming all the same speed PMSMs. This conclusion can be applied to the torque distribution of brushless DC hub motors for four-wheel drive electric vehicles. Simulation and experimental results show that the average torque allocation to the four hub motors of the electric vehicle gives the best efficiency.

  14. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    Science.gov (United States)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  15. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    Science.gov (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (Eb) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the Eb can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm(-1) electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H2 molecule when no strain or E-field is applied; however, the absorption increases to five H2 molecules under 15% biaxial strain and six H2 molecules under both 15% biaxial strain combined with a 5.14 V nm(-1)E-field. The average adsorption energies for H2 of BN-(Na-mH2) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H2)4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  16. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  17. 电动车用无刷直流电机控制系统的分析与仿真%Analysis and Simulation of Brushless DC Motor for Electric Vehicle Control System

    Institute of Scientific and Technical Information of China (English)

    汪楚锟; 谢利理

    2013-01-01

    Due to high efficiency, long life, low noise and good speed-torque characteristics of brushless DC motor, BLDCM is more extensive in auto application. A design, and simulation control strategy, system simulation analysis of the system for Brushless DC motor used in electric vehicle control system characteristics mainly are made for pre-estimation of the overall adjustment program to analyze the feasibility of control strategy. Simulation results show that the realization of functions is possible, and reaches the desired effect.%由于无刷直流电机其具有高效率、长寿命、低噪声以及较好的转速-转矩特性,在汽车中的应用比较广泛.针对电动汽车用无刷直流电机控制系统特性进行了方案设计,然后仿真验证控制策略,系统仿真分析主要是对系统的整体调节方案的预估计,分析控制策略的可行性.Matlab仿真结果显示所实现功能可行,基本达到了预期效果.

  18. Improved DC Gun Insulator

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  19. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    Science.gov (United States)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-02-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.

  20. Internalization of externalities in the generation costs of electric power centrals of carbon, combined cycle and nuclear; Internalizacion de externalidades en los costos de generacion de centrales electricas de carbon, ciclo combinado y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, M.C. [Universidad Anahuac del Norte (Mexico); Palacios H, J.; Ramirez S, R.; Alonso V, G. [ININ, Carretera Mexico-Toluca Km. 36.5 Ocoyoacac 52750 Edo. de Mexico (Mexico)]. e-mail: fgrivera@avantel.net

    2007-07-01

    The technologies of electric power generation that use fossil fuels, they incorporate in the Even Total Cost of Generation (CTNG) only the direct costs of generation (investment, fuel costs, operation costs and maintenance). nevertheless, the nuclear energy incorporates besides the direct costs, the externalities that causes to the human health and the environment. In this work the CTNG is calculated that incorporates the externalities, of a thermoelectric power station of coal, a plant of combined cycle and of four reactors of Generation III (ABWR, ACR, AP1000 and EPR). The obtained results show that the nuclear power station has smaller CTNG that the technologies that use fossil fuels. It is important to stand out that they are only considering the externalities of the stage of electricity generation, for what the mining phase and transport of the fuel toward the central are not considered in the present document. (Author)

  1. Space charge fields in DC cables

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1996-01-01

    The space charge that accumulates in DC cables can, mathematically, be resolved into two components. One is related to the temperature and the other to the magnitude of the electric field strength. Analytical expressions for the electric fields arising from each of these space charge components a...

  2. Current characteristics of λ-DNA molecules/polystyrene nanoparticles in TBE buffer solution through micro/nanofluidic capillaries under DC electric field

    Science.gov (United States)

    Duan, Yifei; Zhao, Wei; Xue, Jing; Sun, Dan; Wang, Kaige; Wang, Guiren; Li, Junjie; Bai, Jintao; Gu, Changzhi

    2017-03-01

    In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate single bio-molecules and analyze their characteristics. To accurately and flexibly control the movement of single-molecule within micro/nanofluidic channels which are the basic components of Lab-chips, the current signals in micro/nanocapillaries filled with solutions of DNA molecules or polystyrene (PS) nanoparticles are systematically studied. Experimental results indicate that the current response along the micro/nanocapillaries can be significantly influenced by the diameter of the capillaries and the pH value of the solutions. Specifically, when there is only a pure (TBE) solution, the electric conductance does not monotonically decrease with decreasing the diameter of the capillaries, but slightly increases with decreasing the capillary diameter. When λ-DNA molecules or PS nanoparticles are added into the TBE buffer, the size effect on the electric conductance of the solutions are quite different. Although in the former, the electric conductance behaves differently from that in the pure TBE solution and decreases with the decreasing diameter, in the latter, the change is similar to that in the pure TBE solution. Besides, an abnormal ‘falling’ of the electric conductance is observed in a capillary with diameter of 200 nm. The investigation will significantly enhance the understanding on the electric properties of the solutions of biomolecules and particles in micro/nanofluidics. This is especially helpful for designing functional Lab-chip devices.

  3. Highly excited hydrogen in strong d. c. electric fields: atomic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1988-03-01

    We excite atomic hydrogen from the ground state via a three-photon process to high-lying excited states in the presence of strong d.c. electric fields. The external field is used to manipulate, control, and design specific atomic structures. We can construct nearly 'one-dimensional' atoms whose electronic distributions are highly extended along the field, and which may have enormous electric dipole moments ('giant-dipole atoms').

  4. DC Electrical Conductivity Retention, Optical Properties and Ammonia Sensing Analysis of Naturally Degraded CSA-Doped Graphene/polyaniline Composite Nanofibers Prepared with CTAB

    Science.gov (United States)

    Ghazali, Sayyed; Hossain, Muhammad M.; Khan, Abuzar; Khan, Mohd Y.; Hasan, Mudassir

    2016-09-01

    In this paper, we report surfactant-mediated synthesis of camphor sulfonic acid (CSA)-doped polyaniline/graphene (PANI/GN) composite nanofibers as an electrical conductor and excellent ammonia sensor. The synthesis was mediated by cetyltrimethylammonium bromide as surfactant. The as-synthesized composite nanofibers were characterized by Raman spectroscopy, scanning electron microscopy, tunneling electron microscopy, x-ray diffraction, diffused reflectance spectroscopy and differential scanning calorimetry. The electrical conductivity of the CSA-doped PANI/GN composite nanofibers was found to be remarkably enhanced as compared to the CSA-doped PANI. The boost in electronic conductivity could be attributed to an improved electronic interaction between CSA-doped PANI backbone and GN present in the composite system. The naturally degraded CSA-doped PANI/GN composite nanofibers showed a decrease in electrical conductivity but worked as a good ammonia sensor in open atmospheric conditions.

  5. DC Electrical Conductivity Retention, Optical Properties and Ammonia Sensing Analysis of Naturally Degraded CSA-Doped Graphene/polyaniline Composite Nanofibers Prepared with CTAB

    Science.gov (United States)

    Ghazali, Sayyed; Hossain, Muhammad M.; Khan, Abuzar; Khan, Mohd Y.; Hasan, Mudassir

    2017-01-01

    In this paper, we report surfactant-mediated synthesis of camphor sulfonic acid (CSA)-doped polyaniline/graphene (PANI/GN) composite nanofibers as an electrical conductor and excellent ammonia sensor. The synthesis was mediated by cetyltrimethylammonium bromide as surfactant. The as-synthesized composite nanofibers were characterized by Raman spectroscopy, scanning electron microscopy, tunneling electron microscopy, x-ray diffraction, diffused reflectance spectroscopy and differential scanning calorimetry. The electrical conductivity of the CSA-doped PANI/GN composite nanofibers was found to be remarkably enhanced as compared to the CSA-doped PANI. The boost in electronic conductivity could be attributed to an improved electronic interaction between CSA-doped PANI backbone and GN present in the composite system. The naturally degraded CSA-doped PANI/GN composite nanofibers showed a decrease in electrical conductivity but worked as a good ammonia sensor in open atmospheric conditions.

  6. CMOS Integrated Capacitive DC-DC Converters

    CERN Document Server

    Van Breussegem, Tom

    2013-01-01

    This book provides a detailed analysis of all aspects of capacitive DC-DC converter design: topology selection, control loop design and noise mitigation. Readers will benefit from the authors’ systematic overview that starts from the ground up, in-depth circuit analysis and a thorough review of recently proposed techniques and design methodologies.  Not only design techniques are discussed, but also implementation in CMOS is shown, by pinpointing the technological opportunities of CMOS and demonstrating the implementation based on four state-of-the-art prototypes.  Provides a detailed analysis of all aspects of capacitive DC-DC converter design;  Analyzes the potential of this type of DC-DC converter and introduces a number of techniques to unleash their full potential; Combines system theory with practical implementation techniques; Includes unique analysis of CMOS technology for this application; Provides in-depth analysis of four fabricated prototypes.

  7. 外电场作用下柔性模型水的分子动力学模拟%Effect of an external electric field on liquid water using molecular dynamics simulation with a flexible potential

    Institute of Scientific and Technical Information of China (English)

    孙炜; 陈中; 黄素逸

    2006-01-01

    Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm3 under different strengths of an external electric field, ranging from 0 to 8.0 × 109 V/m, to investigate the influence of an external field on structural and dynamic properties of water.The flexible simple point charge model is used for water molecules.An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure.With increasing field strength, water system has a more perfect structure, which is similar to ice structure.However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient.The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.

  8. DC/DC Converter Stability Testing Study

    Science.gov (United States)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  9. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  10. The DC-DC conversion power system of the CMS Phase-1 pixel upgrade

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.

    2015-01-01

    The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.

  11. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga......N devices. Simple replacement of Si or SiC devices with GaN devices in the converter will not give an expected increase in efficiency or any improvement in the performance of the converter. The use of GaN devices has defined another dimension in the design of power converters, which mainly deals...

  12. Efficiency Enhancement of DC to DC Multilevel Boost Converter and Its Applications

    Directory of Open Access Journals (Sweden)

    R. Ravikumar

    2015-03-01

    Full Text Available The aim of this study is to propose a experimental verification for single-phase to three phase drive system composed of two parallel single-phase rectifiers, a three-phase inverter and an induction motor. Apart from traditional application in dc motor drives, new applications of BDC include energy storage in renewable energy systems, fuel cell energy systems, Hybrid Electric Vehicles (HEV and Uninterruptible Power Supplies (UPS. A dc-dc converter is always required to allow energy exchange between storage device and the rest of system. In HEV applications, BDCs are required to link different dc voltage buses and transfer energy between them. A non-isolated bi-directional dc-dc converters is used in our project to achieve better efficiency.

  13. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  14. 76 FR 31462 - Airworthiness Directives; The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10...

    Science.gov (United States)

    2011-06-01

    ... Model DC-10-10, DC- 10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F... Operations, M-30, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590.... Applicability (c) This AD applies to all The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15,......

  15. Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 °C - DC resistivity at 23 °C and 100 °C

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 °C, d.c. resistivity at 23°C and 100°C.

  16. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  17. SYNTHESIS OF SIDE-CHAIN LIQUID CRYSTALLINE POLYSILOXANE CONTAINING SCHIFF'S BASE MESOGENS WITH NO2-END GROUP AND ITS BEHAVIOR IN A DC ELECTRIC FIELD

    Institute of Scientific and Technical Information of China (English)

    XIE Ping; SUN Limin; ZHANG Rongben

    1993-01-01

    A side chain liquid crystalline copolysiloxane, which would show electro-optic effects as known from low mass liquid crystal, was synthesized by hydrosilylation reaction, and the two homologous monomers with different length spacers containing Schiff's base mesogen with -NO2 terminated group were grafted to a polysiloxane main chain. Residual monomer in crude product is effective in reinforcing the response to an electric field over that of pure polymeric liquid crystal.

  18. Influence of a weak field of pulsed DC electricity on the behavior and incidence of injury in adult Steelhead and Pacific Lamprey

    Science.gov (United States)

    Mesa, Matthew G.; Copeland, Elizabeth S.

    2009-01-01

    Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys.

  19. 基于无刷直流电机的执行器防堵转系统的设计%Design of electric actuator locked rotor protective system based on brushless DC motor

    Institute of Scientific and Technical Information of China (English)

    张寿春

    2012-01-01

    In order to protect the electric actuator driven by the brushless DC motor and controller for locked rotor,avoid the controller is damaged.The method of protection of taking LPC2132 central processing unit and hardware circuit of electric current collected of the control system,at same time intelligent judgment and treatment by using the method of software.Realization of intelligent control in the state of locked rotor,protect the controller.The experiment shows that: the system has reliability and the advantages of processing locked rotor in intelligent mode.%为了防止直流无刷电机驱动的执行器因电机堵转而损坏控制器,控制系统采用以LPC2132微处理器和电流采集等电路相结合的硬件保护方法,同时采用软件进行智能判断与处理。实现了电动执行器在堵转的状态下的智能控制,保护了控制器。实验结果表明:该系统具有可靠性高及智能处理堵转等优点。

  20. Novel bidirectional DC-DC converters based on the three-state switching cell

    Science.gov (United States)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.